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Abstract

Inference using large datasets is not nearly as straightforward as conventional econo-

metric theory suggests when the disturbances are clustered, even with very small intra-

cluster correlations. The information contained in such a dataset grows much more

slowly with the sample size than it would if the observations were independent. More-

over, inferences become increasingly unreliable as the dataset gets larger. These asser-

tions are based on an extensive series of estimations undertaken using a large dataset

taken from the U.S. Current Population Survey.
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1 Introduction

In econometrics and statistics, it is generally believed that a large sample is always better
than a small sample drawn in the same way from the same population. There are at least
two reasons for this belief. When each observation contains roughly the same amount of
information, a large sample must necessarily contain more information than a small one.
Thus we would expect to obtain more precise estimates from the former than from the latter.
Moreover, we would expect a large sample to yield more reliable inferences than a small one
whenever con�dence intervals and hypothesis tests are based on asymptotic theory, because
the assumptions of that theory should be closer to being true.

In practice, however, large samples may not have the desirable properties that we expect.
In this paper, I point out that very large samples need to be used with care. They do indeed
contain more information than small samples. But they may not contain nearly as much
information as we think they do, and, if we are not careful, inferences based on them may
actually be less reliable than inferences based on small samples.

The fundamental problem is that, in practice, the observations in most samples are not
entirely independent. Although small levels of dependence have minimal consequences when
samples are small, they may have very substantial consequences when samples are large.
The objective of this paper is to illustrate those consequences.

The theoretical implications of within-sample dependence have been studied in detail
in Andrews (2005). Unlike that paper, this one is not concerned with econometric the-
ory, except at a rather super�cial level. Instead, the paper attempts to see whether such
dependence is actually a problem. To that end, it performs various estimations and simu-
lations using a real dataset, which is quite large (more than 1.15 million observations), and
it obtains some surprising results. Of course, because the data are real, we do not really
know how they were generated. But it seems clear that there is dependence and that it has
profound consequences.

2 The Data and an Earnings Equation

The data are taken from the Current Population Survey for the United States. There are
1,156,597 observations on white men aged 25 to 65 for the years 1979 through 2015. Each
observation is associated with one of 51 states (including the District of Columbia). There
are 4,068 observations for the smallest state (Hawaii), and there are 87,427 observations for
the largest state (California).

It is common to estimate an earnings equation using data like these. The dependent
variable is the logarithm of weekly earnings. The independent variables are age, age squared,
and four education dummies (high school, high school plus two years, college/university, at
least one postgraduate degree). Thus the basic equation to be estimated is

ygti = β1 + β2Ed2gti + β3Ed3gti + β4Ed4gti + β5Ed5gti

+ β6Agegti + β7Age
2
gti +

37∑
j=2

γj Year
j
gti + ugti, (1)

where g indexes states from 1 to 51, t indexes years from 1 to 37, i indexes individuals within
each year, and Year

j
gti is a dummy variable that equals 1 whenever t = j. The time �xed
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e�ects are essential because earnings (which are not adjusted for in�ation) tend to increase
over time and vary over the business cycle.

Suppose we are interested in the value of having a postgraduate degree. The percentage
increase in earnings relative to simply having a university degree is

100
(
exp(ϕ)− 1

) ∼= 100ϕ, (2)

where ϕ ≡ β5 − β4. The OLS estimates of β5 and β4 are 0.80293 and 0.68498, respec-
tively. Using the left-hand side of equation (2) and the delta method, we estimate the
percentage increase to be 12.519% with a standard error of 0.225. The latter is based on a
heteroskedasticity-consistent covariance matrix, speci�cally the HC1 variant; see MacKinnon
and White (1985). This implies that a 95% con�dence interval is [12.077, 12.961].

So far, everything looks good. I seem to have obtained a fairly precise estimate of the
e�ect on earnings of having a postgraduate degree. However, equation (1) is a bit too simple.
Because the data have both a time dimension and a cross-section one, it makes sense to
model the disturbances as

ugti = vt + wg + εgti. (3)

This is called an error-components model. The vt are time components, and the wg are
cross-section components, which can be treated as either �xed or random.

It has been known for a very long time that ignoring error components can lead to severe
errors of inference; see Kloek (1981) and Moulton (1986, 1990). The conventional approach
is to use either a random-e�ects or a �xed-e�ects speci�cation. The former is a particular
type of generalized least squares, and the latter involves adding dummy variables for the
time and cross-section �xed e�ects. Because the random-e�ects speci�cation requires the
strong assumption that the vt and wi are uncorrelated with the regressors, it is safer to
use the �xed-e�ects speci�cation when possible. With a large sample like this one, and no
regressors that would be explained by all the dummies, it is natural to use �xed e�ects.

Since equation (1) already contains time dummies, using �xed e�ects simply means
adding 50 state dummies. When that is done, the OLS estimate of β5 − β4 is 0.10965. The
implied percentage increase is 11.589% with an HC1 standard error of 0.222. The resulting
95% con�dence interval is [11.155, 12.023]. Adding the state dummy variables has caused
our estimate of the value of a postgraduate degree to drop by almost a full percentage point,
or more than four standard errors. However, the width of the con�dence interval is almost
unchanged.

3 Clustered Disturbances

Until fairly recently, many applied econometricians would have been quite happy with the
estimates given at the end of the previous section. If the earnings equation (1) and the
error-components speci�cation (3) are correct, those estimates and their standard errors
should be reliable. However, the error-components speci�cation is actually quite restrictive.
Among other things, it forces the e�ects of time trends and the business cycle to be the
same for every state. It also implies that what remains of the disturbances after the time
and state dummies have removed their respective error components must be uncorrelated.
As we will see shortly, this implication is emphatically not true for the model and dataset
that I am using.
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In modern applied work with individual data that come from multiple jurisdictions, it
is customary to treat each jurisdiction as a cluster and to allow for arbitrary patterns of
intra-cluster correlation. The model (1) can be thought of as a special case of the linear
regression model

y ≡


y1
y2
...
yG

 = Xβ + u ≡


X1

X2
...
XG

β +


u1

u2
...
uG

, (4)

where g indexes states and the g th cluster has Ng observations. Here X, y, and u have

N =
∑G

g=1Ng rows, X has K columns, and β is a K--vector. In the case of (1) with state
dummies added, G = 51, K = 83, and N = 1,156,597. If we allow for an arbitrary pattern
of within-cluster correlation and assume that there is no inter-cluster correlation, then the
true covariance matrix of the vector u is

(X ′X)−1

(
G∑

g=1

X ′gΩgXg

)
(X ′X)−1, (5)

where Ωg = E(ugu
′
g) is the covariance matrix of the disturbances for the g th cluster.

Even though we do not know, and cannot consistently estimate, the Ωg matrices, it
is possible to estimate the covariance matrix (5) consistently when G is large. The most
popular cluster-robust variance estimator, or CRVE, is

CV1 :
G(N − 1)

(G− 1)(N −K)
(X ′X)−1

(
G∑

g=1

X ′gûgû
′
gXg

)
(X ′X)−1, (6)

where ûg denotes the vector of OLS residuals for cluster g, and û denotes the vector of
all the OLS residuals. This matrix seems to have been proposed �rst in Liang and Zeger
(1986). It can be thought of as a generalization of the HC1 heteroskedasticity-consistent
covariance matrix.

There are also cluster generalizations of the HC2 and HC3 matrices. The former was
proposed in Bell and McCa�rey (2002), and there is evidence that it performs somewhat
better than CV1; see MacKinnon (2015) and Imbens and Kolesar (2016). Unfortunately, the
CV2 and CV3 covariance matrices involve taking either the inverse symmetric square root
or the ordinary matrix inverse of Ng × Ng matrices for g = 1, . . . , G. These matrices are
the ones on the diagonal block of the projection matrix MX ≡ I−X(X ′X)−1X ′. For the
dataset I am using, Ng can be as large as 87,427, for California, so that it would be totally
infeasible to use either CV2 or CV3.

1

It easy to compute a test statistic that has the form of a t statistic by dividing any
parameter estimate by the square root of the appropriate diagonal element of (6). It is
then customary to compare this test statistic with the t(G− 1) distribution rather than the

1Simply storing the diagonal block ofMX that corresponds to California would require about 57 GB of
memory. Inverting it, or �nding its inverse symmetric square root, would require additional memory and
an enormous amount of CPU time. This would have to be done for all 51 states.
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t(N −K) distribution; see Donald and Lang (2007) and Bester, Conley and Hansen (2011).
Intuitively, we use G− 1 because there are only G terms in the summation in (6).

For the earnings equation (1), there are at least two natural ways to form a cluster-robust
covariance matrix. One is to cluster by state, so that there are 51 clusters, and the other is
to cluster by state-year pair, so that there are 1887 clusters. I now re-estimate the standard
error of the percentage change in wages associated with a postgraduate degree using these
two methods.

Table 1: Value of a Postgraduate Degree

Case % Gain s.e.(% Gain) 95% Lower 95% Upper
HC1 11.589 0.222 11.155 12.023

CV1(S,Y) 11.589 0.318 10.967 12.212
CV1(S) 11.589 0.584 10.447 12.732

HC1 does not cluster at all. CV1(S,Y) uses 1887 clusters at the state-year level, and
CV1(S) uses 51 clusters at the state level.

Table 1 shows three di�erent standard errors, and the associated con�dence intervals,
for the value of a postgraduate degree. The substantial variation among the standard errors
provides clear evidence of clustering, both within state-year pairs and across years within
states. Since clustering at the state-year level imposes stronger restrictions on the covariance
matrix than clustering at the state level, the large drop in the standard error when we move
from the latter to the former provides convincing evidence that state-year clustering is too
restrictive.

The only standard error in Table 1 that might be reliable is the one in the last line. It is
2.63 times the standard error in the �rst line. Increasing the standard error by a factor of
2.63 is equivalent to reducing the sample size by a factor of 2.63 squared. In other words, this
sample of 1,156,597 observations, which are evidently dependent within state-level clusters,
appears to be equivalent to a sample of approximately 167,000 independent observations.

It is not hard to see why this sample contains much less information than its large size
would lead us to expect. Consider the sample mean ȳ = (1/N)

∑N
i=1 yi. The usual formula

for the variance of ȳ is

Var(ȳ) =
1

N
σ2. (7)

Thus the standard error of ȳ is proportional to N−1/2.
The standard formula (7) assumes that Var(yi) = σ2 and Cov(yi, yj) = 0. A formula for

the variance of the sample mean that is valid under much weaker assumptions is

Var(ȳ) =
1

N2

(
N∑
i=1

Var(yi) + 2
N∑
i=1

N∑
j=i+1

Cov(yi, yj)

)
. (8)

Heteroskedasticity is not a serious problem. If Var(yi) = σ2
i , we just need to de�ne σ2 as

N−1
∑N

i=1 σ
2
i , and the �rst term on the right-hand side of equation (8) simpli�es to (7).

However, if the Cov(yi, yj) are not all zero, equation (8) as a whole cannot possibly simplify
to equation (7).
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Figure 1: Inverse of s(ϕ̂) as a function of M
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Now consider the two terms on the right-hand side of equation (8). The �rst term is
evidently O(1/N). But the second term is O(1), because it involves two summations over N ,
and it is divided by N2. Thus, even if the Cov(yi, yj) terms are very small, the second term
on the right-hand side of equation (8) will eventually become larger than the �rst term.2 As
N →∞, under appropriate regularity conditions, the �rst term will vanish, but the second
term will converge to a positive constant. Thus, for large enough sample sizes, additional
observations will provide essentially no additional information.

This disturbing result implies that, for large samples with clustered disturbances and a
�xed number of clusters, the accuracy of the estimates will grow more slowly than N1/2 and
will be bounded from above.

In order to investigate whether this phenomenon is important for the model and data used
here, I created multiple subsamples of various sizes, ranging from 1/64 of the original sample
to 1/2 of the original sample. Let M denote the reduced sample size, where M ∼= N/m for
m = 2, 3, 4, 6, 9, 16, 25, 36, 49, 64. Then the subsamples of size M were created by retaining
only observations m+ j, 2m+ j, and so on, for a number of values of j ≤ m.

Figure 1 graphs the inverse of the average of the reported standard errors of ϕ̂ for
three covariance matrix estimators against M , where the horizontal axis is proportional to
the square root of M . For values of M less than about 30,000, the three standard errors
are essentially the same. For larger values of M , the heteroskedasticity-robust standard

2The result would be di�erent if the Cov(yi, yj) terms had mean zero, of course, but there is no reason
to expect that to be the case. On the contrary, we expect the mean to be positive.
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errors remain proportional to
√

1/M , so the �gure shows a straight line. However, the

two cluster-robust standard errors decline more slowly than
√

1/M . In consequence, their
inverses increase more slowly. For state-level clustering, the inverse standard errors increase
very slowly indeed beyond about M = 250,000.

We cannot be at all sure that the state-level clustered standard errors are reliable,3 but
we do know that the other two standard errors are too small. Thus the lowest curve in
Figure 1 puts an (approximate) upper bound on the rate at which accuracy improves with
sample size for the parameter ϕ with this dataset. As the theory suggests, this rate is very
low for large sample sizes.

4 Placebo Law Experiments

Although it is important to obtain accurate con�dence intervals for economically interesting
parameters such as ϕ, it is probably even more important to make valid inferences about the
e�ects of public policies. Equations similar to (1) are often used for this purpose. Suppose
that certain jurisdictions (in this case, certain states) have implemented a particular policy
at various points in time. Then, by adding a treatment dummy variable that equals 1 for
every state and time period when the policy was active to such an equation, economists
can estimate the e�ect of the policy on the dependent variable and test whether it was
statistically signi�cant.

This sort of empirical exercise is often called �di�erence in di�erences� or �DiD.� In the
simplest case, such as Card and Krueger (1994), there are just two jurisdictions and two
time periods, and it is not possible to use clustered standard errors. However, most DiD
regressions involve several jurisdictions (for example, 51 states) and quite a few time periods,
and it is routine to allow for clustering. It may not be immediately obvious that adding an
appropriate dummy variable to an equation like (1) is equivalent to di�erence in di�erences,
but this is in fact how almost all DiD exercises are performed nowadays; see Angrist and
Pischke (2008).

One way to examine the reliability of inference with clustered data is to simulate the
e�ect of �placebo laws� in DiD regressions. This ingenious idea was developed in Bertrand,
Du�o and Mullainathan (2004), which uses a regression similar to (1), but for a shorter time
period, with data for women instead of men, and with di�erent education variables. Instead
of generating a new dataset for each replication, a placebo-law experiment simply generates
a new treatment dummy variable. These treatment dummies are entirely arti�cial, so they
should not actually have any impact on the dependent variable. MacKinnon and Webb
(2016a) performs an extensive set of placebo-law experiments using essentially the same
dataset and speci�cation as Bertrand, Du�o and Mullainathan (2004).

In this section, I perform a large number of placebo-law experiments. The number of
�treated� states, denoted G1, varies from 1 to 51. If a state is treated, its treatment can
start in any year from 1984 to 2010, with equal probability. Thus the number of possible
treatment dummy variables is 51 × 27 = 1377 for G1 = 1, 51 × 50 × 272/2 = 929,475
for G1 = 2, and very much larger numbers for larger values of G1. In the experiments, I

3This is true for two reasons. First, the disturbances may still be correlated across clusters, although the
bootstrap results in Section 5 suggest that this is not a serious problem. Second, when cluster sizes di�er a
lot, as they do in this case, CV1 standard errors tend to be unreliable; see MacKinnon and Webb (2016a).
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Figure 2: Rejection frequencies for placebo law tests, N = 1,156,597
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enumerate all possible treatment dummies for G1 = 1, so that there are 1377 replications.
For G1 > 1, I choose 40,000 treatment dummies at random, with replacement, from the sets
of all possible treatment dummies.

Figure 2 reports rejection frequencies at the 5% level for t statistics based on the HC1,
CV1(S, Y ), and CV1(S) covariance matrices for all 51 possible values of G1. Only CV1(S)
ever yields inferences that are close to being reliable. Tests based on heteroskedasticity-
robust standard errors always overreject extremely severely. Tests based on clustering at
the state-year level also always overreject very severely. In contrast, tests based on clustering
at the state level overreject moderately for G1 > 15. However, there is severe overrejection
for G1 ≤ 5 and extreme overrejection for G1 = 1 and G1 = 2.

The reason for the extreme overrejection by CV1(S) when G1 is small is explained in
MacKinnon and Webb (2016a). Suppose that δ denotes the coe�cient on the treatment
dummy, which must be orthogonal to the residuals for all treated observations. When the
treated observations all belong to very few groups, this means that the row and column of the
middle factor in expression (6) which correspond to δ are much too small. In consequence,
the CRVE grossly underestimates the variance of δ̂ when G1 is small. This causes the
variance of the t statistic to be much too large, leading to severe overrejection.

Since they reject so often, the test statistics for δ = 0 must have very much larger stan-
dard deviations than t statistics should have. In fact, for G1 = 25, the standard deviations
are 5.65, 2.78, and 1.10 for statistics based on HC1, CV1(S, Y ), and CV1(S), respectively.
This means that, if the HC1 and CV1(S, Y ) t statistics are approximately normally dis-
tributed, we will obtain test statistics greater than 5.65 and 2.78 in absolute value, respec-
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Figure 3: Rejection frequencies for placebo law tests, HC1
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tively, more than 30% of the time. Thus, when we use the wrong covariance matrix, there
is a very substantial probability of obtaining by chance a test statistic that appears to be
not merely signi�cant, but highly signi�cant.

Based on the results of Section 3, in particular the ones in Figure 1, it seems plausible
that the placebo-law experiments would have yielded di�erent results if the sample size
had been smaller. In order to investigate this conjecture, I reduced the sample size to
M ∼= N/m by retaining observations numbered m, 2m, and so on, for m = 2, 5, 10, and 20.
I then performed the same set of 51 placebo-law experiments for each value of M as for the
full sample, except that I used 100,000 replications instead of 40,000 for m = 5, 10, and 20.

Figure 3 shows 5% rejection frequencies for HC1 t statistics for �ve sample sizes. These
decrease steadily and quite dramatically as the sample size drops. When M = N/20 =
57,829, they are never more than 22.4%. In contrast, when M = N = 1,156,597, they can
be as large as 74.8%. Thus it is evident that failing to account for clustered disturbances
leads to increasingly serious errors of inference as the sample size increases.

Figure 4 shows 5% rejection frequencies for CV1(S, Y ) t statistics for the same �ve
sample sizes. These also decrease quite dramatically as the sample size drops, but they are
not as bad for large sample sizes as the ones in Figure 3. For the very smallest sample, with
M = 57,829, the CV1(S, Y ) and HC1 rejection frequencies are almost indistinguishable.
This suggests that the consequences of whatever within-sample correlations clustering at
the state-year level picks up must be relatively small compared to those of the within-state,
cross-year correlations that clustering at the state level picks up.
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Figure 4: Rejection frequencies for placebo law tests, CV1(S, Y )
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Figure 5 shows 5% rejection frequencies for CV1(S) t statistics for the same �ve sample
sizes. It looks very di�erent from Figures 3 and 4. In this case, sample size does not seem
to matter. The �ve curves are almost on top of each other.4 This suggests that the CV1(S)
covariance matrices are taking proper account of whatever within-sample correlations there
may be. Clustering at the state level seems to be su�cient.

5 The Wild Cluster Bootstrap

Based on Figure 5, it appears that, with large samples like this one, inferences based on
cluster-robust covariance matrices are likely to be inaccurate, especially when the number
of treated clusters is small. For most values of G1, however, it is possible to obtain more
accurate inferences by using the wild cluster bootstrap. This procedure was proposed by
Cameron, Gelbach and Miller (2008) and studied in detail by MacKinnon and Webb (2016a).

For hypothesis testing, the preferred variant of the wild cluster bootstrap uses the fol-
lowing DGP to generate the bootstrap data:

y∗big = Xigβ̃ + ũigv
∗b
g . (9)

Here Xig is the vector of regressors for observation i within cluster g, ũig is the residual
for that observation based on OLS estimation subject to whatever restriction(s) are to be
tested, β̃ is a vector of restricted OLS estimates, and v∗bg is an auxiliary random variable.
Notice that the same value of v∗bg multiplies every residual ũig in group g. This ensures that

4The curve for M = N/20 is a bit below the others for larger values of G1, but this probably just re�ects
sampling variability.
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Figure 5: Rejection frequencies for placebo law tests, CV1(S)
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the bootstrap DGP mimics the intra-cluster correlations of the residuals. Unless G is very
small, it seems to be best to draw v∗bg from the Rademacher distribution, which is equal to
1 and −1 with equal probabilities. However, this can cause problems when G is less than
about 12; see Webb (2014).

The DGP (9) is used to generate B bootstrap samples which satisfy the null hypothesis,
say that βk = 0. In order to test that hypothesis, each of these is used to calculate a
bootstrap test statistic

t∗bk =
β̂∗bk(

CV∗bkk
)1/2 , (10)

where β̂∗bk is the estimate of βk from the bth bootstrap sample, and CV∗bkk is the k
th diagonal

element of a corresponding cluster-robust covariance matrix such as (6). The bootstrap P
value is then the fraction of the t∗bk that are more extreme than the actual test statistic tk.
For a symmetric bootstrap test, this would be

p̂∗s =
1

B

B∑
b=1

I
(
|t∗bk | > |t̂k|

)
, (11)

where I(·) denotes the indicator function.
Figure 6 shows rejection frequencies for wild cluster bootstrap tests at the .01, .05, and

.10 levels. These are based on 10,000 replications with B = 399. Results are shown only for
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Figure 6: Rejection frequencies for bootstrap placebo law tests
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G1 = 1, . . . , 24 and G1 = 25, 30, . . . , 50 because each experiment took at least seven days
of computer time. The bootstrap tests perform very well, although not quite perfectly, for
G1 ≥ 25. They underreject severely when G1 is very small, and they overreject moderately
for values of G1 that are quite small but not very small.

MacKinnon and Webb (2016a) explains why the bootstrap tests underreject to such an
extreme extent when G1 is very small. An alternative form of the wild cluster bootstrap
test, which uses unrestricted residuals and parameter estimates instead of restricted ones,
would have overrejected very severely in the same cases. These features of the wild cluster
bootstrap are very unfortunate. We cannot learn much from a test that almost never rejects
(restricted wild cluster bootstrap) or from a test that very often rejects (unrestricted wild
cluster bootstrap). A number of alternative methods have been proposed to handle the
situation in which G1 is very small, but it appears that none of them can safely be relied
upon to provide reliable inference in all cases; see Conley and Taber (2011) and MacKinnon
and Webb (2016b,c).

6 �Canadian� Data

Because the CPS dataset I have been using is for the United States, there are 51 clusters.
In many empirical studies, however, the number of clusters is much smaller than that. With
Canadian data, for example, it would often be natural to cluster at the provincial level,
which implies that G = 10.

In order to see what happens when there are just ten clusters, I perform an additional set
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Figure 7: Rejection frequencies for �Canadian� placebo law tests
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of placebo-law experiments using �Canadian� data. The data are not actually for Canada.
Instead, I take data for ten U.S. states from the dataset I have been using. The idea is to
choose states for which the sample sizes closely match the sample sizes for the Labour Force
Survey in Canada. The chosen states, with their Canadian counterparts in parentheses, are
California (ON), Texas (QC), New Jersey (BC), Massachusetts (AB), North Carolina (MB),
Minnesota (SK), Maine (NS), Oregon (NB), Louisiana (NL), and the District of Columbia
(PE). The sample has N = 317, 984 observations.

The model is the same one used in the previous section, except that there are 9 �provin-
cial� dummies instead of 50 state dummies. Once again, placebo-law treatments are allowed
to start in any year between 1984 and 2010. This implies that, when G1 = 1, there are
only 10 × 27 = 270 possible choices for the treatment dummy. When G1 = 2, there are
(10 × 9 × 272)/2 = 32,805. For both these cases, I enumerate every possible case. For
G1 ≥ 3, I pick 100,000 cases at random for the methods that do not involve bootstrapping
and 25,000 for the wild cluster bootstrap.

Figure 7 shows rejection frequencies for four di�erent tests at the .05 level of the coef-
�cient on the placebo-law dummy variable. When we ignore intra-cluster correlation and
simply use heteroskedasticity-robust standard errors, rejection frequencies are extremely
high, always exceeding 84%. Clustering at the state-year level reduces these only modestly,
to between 68% and 81%.

Clustering at the state level reduces the rejection frequencies dramatically, except when
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G1 is small. For G1 ≥ 4, the rejection frequencies are always between 12.1% and 13.3%. Of
course, these would have been substantially higher if I had used asymptotic critical values
instead of ones based on the t(9) distribution. As before, the wild cluster bootstrap performs
best. Except for G1 = 1, where it never rejects, it performs quite well. For 3 ≤ G1 ≤ 10, it
always rejects between 5.6% and 7.7% of the time.

Even though genuine Canadian data would undoubtedly yield di�erent results, this exer-
cise is interesting. It suggests that the wild cluster bootstrap is not too unreliable when the
number of clusters is as small as 10, provided the number of treated clusters is not extremely
small. In contrast, methods that do not involve clustering at the jurisdiction level are likely
to be highly unreliable, and cluster-robust t statistics are not reliable even when clustering
at that level.

7 Why Are the Residuals Clustered?

There are at least two explanations for the state-level intra-cluster correlations that ap-
parently exist in the residuals for regression (1). The �rst is that these correlations arise
because of model misspeci�cation, and the second is that they arise from the way in which
the data are gathered. In this section, I brie�y discuss these two explanations.

Although equation (1) with the addition of state �xed e�ects is a very standard one,
it could be misspeci�ed in many ways. Perhaps there should be a larger set of education
dummy variables, or perhaps the e�ect of age on earnings should be more complicated than
the quadratic speci�cation in the model.

The assumption that there are state and year �xed e�ects is particularly strong. It
implies that the impact of time on earnings is the same for every state and that the impact
of location on earnings is constant across time. A more general speci�cation would include
51 × 37 − 1 = 1886 state-year dummy variables instead of the state and year �xed e�ects.
However, such a model would be useless for evaluating policies that vary across states and
years but not across individuals, because the state-year dummies would explain all the
variation in every possible treatment variable. A less general but more useful model would
be one that incorporated state-level time trends as well as state-level �xed e�ects. It might
be of interest to investigate such a model.

It seems plausible that misspeci�cation will cause residuals to be correlated within states,
with weak or nonexistent correlations for observations that are several years apart and
stronger ones for observations belonging to the same year or nearby years. This would
explain why clustering at the state-year level works badly but clustering at the state level
works fairly well.

The second explanation for state-level intra-cluster correlation of the residuals is that
the Current Population Survey is a complex survey. It uses specialized sampling techniques
such as clustering, strati�cation, multiple stages of selection, and unequal probabilities of
selection. This complexity is necessary in order to achieve a reasonable balance between the
cost and statistical accuracy of the survey.

Unfortunately, the complex design of the C.P.S. also ensures that the observations are
not entirely independent within states. For reasons of cost and feasibility, the basic unit
of sample selection is the census tract, not the household. Once a tract has been selected,
it typically contributes a number of households to the surveys that are done over several
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adjacent years. Any sort of dependence within census tracts will then lead to residuals that
are correlated within states both within and across years.

It is sometimes possible to take account of the features of the design of a particular sur-
vey. See, among others, Fuller (1975), Binder (1983), and Rao and Wu (1988). Kolenikov
(2010) provides an accessible introduction to this literature along with Stata code for boot-
strap inference when the survey design is known. When the survey design is very complex,
however, it would be extremely di�cult to implement this sort of procedure. When the
design is unknown to the investigator, it would be impossible. In many cases, the best we
can do is to cluster at the appropriate level.

It may well be the case that other large datasets display less intra-cluster correlation
than this one, or di�erent patterns of it, perhaps because the survey design is di�erent or
the data do not come from a survey. Data from online retailers or other websites probably
have di�erent characteristics than data from the Current Population Survey. However, it
seems unlikely that any large dataset will have observations that are entirely independent.
Even very low levels of intra-cluster correlation can have a substantial e�ect on inference
when the sample size is very large. Therefore, in the absence of evidence to the contrary, I
conjecture that the results of this paper are potentially relevant for most large datasets in
econometrics.

8 Conclusions

This paper has investigated a particular dataset, with more than one million observations,
taken from the Current Population Survey of the United States. With large datasets, even
very small correlations of disturbances within clusters can cause severe errors of inference.
These correlations may arise from misspeci�cation (such as omitted variables that vary by
cluster) or from the survey design. Including �xed e�ects for time and location does not
fully account for them. Not surprisingly, the problems associated with clustering seem to
be more severe for Canada, with 10 provinces, than for the United States, with 51 states.

The information content of a sample is not proportional to sample size, but, when we
use standard errors that are not clustered, we pretend that it is. For very large samples,
the loss of information from clustered disturbances may be very large.

Using standard errors clustered at the right level, together with the critical values from
the t(G−1) distribution, whereG is the number of clusters, helps a lot. Using the wild cluster
bootstrap helps even more, provided the number of treated clusters is not too small; see
MacKinnon and Webb (2016a). It is particularly important to use appropriately clustered
standard errors when the sample size is large, because the severity of erroneous inference
tends to increase with the sample size.

There are special problems associated with regressions that focus on the e�ects of eco-
nomic policies that vary across jurisdictions and possibly time periods. When the number of
treated clusters is small, cluster-robust t statistics and bootstrap tests based on unrestricted
estimates tend to overreject severely, and bootstrap tests based on restricted estimates tend
to underreject severely.
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