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Abstract

Inference using di�erence-in-di�erences with clustered data requires care. Previous

research has shown that t tests based on a cluster-robust variance estimator (CRVE)

severely over-reject when there are few treated clusters, that di�erent variants of the

wild cluster bootstrap can over-reject or under-reject severely, and that procedures

based on randomization show promise. We demonstrate that randomization inference

(RI) procedures based on estimated coe�cients, such as the one proposed by Conley

and Taber (2011), fail whenever the treated clusters are atypical. We propose an RI

procedure based on t statistics which fails only when the treated clusters are atypical

and few in number. We also propose a bootstrap-based alternative to randomization

inference, which mitigates the discrete nature of RI P values when the number of

clusters is small.
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1 Introduction

Inference for estimators that use clustered data, particularly for di�erence-in-di�erences es-
timators, has received considerable attention in the past decade. Cameron and Miller (2015)
provides a recent and comprehensive survey. While much progress has been made, there are
still situations in which reliable inference is a challenge. It is particularly challenging when
there are very few treated clusters. Past research, including Conley and Taber (2011), has
shown that inference based on cluster-robust test statistics greatly over-rejects in this case.
MacKinnon and Webb (2016) explains why this happens and why the wild cluster bootstrap
of Cameron, Gelbach and Miller (2008) does not solve the problem. In fact, the wild cluster
bootstrap either greatly under-rejects or greatly over-rejects, depending on whether or not
the null hypothesis is imposed on the bootstrap DGP.

Several authors have considered randomization inference (RI) as a way to obtain tests
with accurate size when there are few treated groups (Conley and Taber, 2011; Canay,
Romano and Shaikh, 2014; Ferman and Pinto, 2015). RI procedures necessarily rely on
strong assumptions about the comparability of the control groups to the treated groups. We
show that, for the Conley-Taber procedure, these assumptions almost always fail to hold
when the treated groups have either more or fewer observations than the control groups. As
a consequence, the procedure can severely over-reject or under-reject if the treated groups
are substantially smaller or larger than the controls.

We are motivated by the many studies that use individual data, in which there is variation
in treatment across both groups and time periods. Such models are often expressed as
follows. If i indexes individuals, g indexes groups, and t indexes time periods, then a classic
�di�erence-in-di�erences� (or �DiD�) regression can be written as

yigt = β1 + β2GTigt + β3PTigt + β4GTigtPTigt + εigt, (1)

i = 1, . . . , Ng, g = 1, . . . , G, t = 1, . . . , T.

Here GTigt is a �group treated� dummy that equals 1 if group g is treated in any time
period, and PTigt is a �period treated� dummy that equals 1 if any group is treated in time
period t. The coe�cient of most interest is β4, which shows the e�ect on treated groups in
periods when there is treatment. Following the literature, we divide the G groups into G0

control groups, for which GTigt = 0, and G1 treated groups, for which GTigt = 1, so that
G = G0 +G1. We are concerned with the case in which G1 is small.

Section 2 deals with a variety of procedures for inference with clustered errors, some of
them speci�cally intended for situations with very few treated clusters. Subsection 2.1 dis-
cusses cluster-robust variance estimation and shows why it fails when there are few treated
clusters. Subsection 2.2 brie�y discusses some procedures that we do not focus on. Sub-
section 2.3 explains how the wild cluster bootstrap works. Subsection 2.4 introduces ran-
domization inference, Subsection 2.5 describes the Conley-Taber approach to randomization
inference, and Subsection 2.6 suggests an alternative RI procedure based on t statistics in-
stead of coe�cients. Subsection 2.7 examines some of the theoretical properties of these two
RI procedures and shows that neither of them can be expected to perform well in certain
cases. Subsection 2.8 discusses a practical problem with all random inference procedures
when the number of control groups is small. Subsection 2.9 then introduces a bootstrap-
based modi�ed RI procedure that solves this problem.
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In Section 3, we use Monte Carlo simulation experiments to compare several procedures.
The model and DGP used in the experiments are described in Subsection 3.1, and the
results are presented in Subsections 3.2, 3.4, and 3.5. We �nd, as the theory of Subsection
2.7 suggests, that none of the existing procedures yields reliable inferences when groups
are heterogeneous and only one group is treated. However, the new RI procedure does
outperform the Conley-Taber procedure when two or more groups are treated. Moreover,
the new bootstrap-based RI procedure substantially improves inference in cases where the
only problem is an insu�cient number of control groups. Section 4 presents results for an
empirical example, and Section 5 concludes.

2 Inference with Few Treated Clusters

A linear regression model with clustered errors may be written as

y ≡


y1
y2
...
yG

 = Xβ + ε ≡


X1

X2
...
XG

β +


ε1
ε2
...
εG

, (2)

where each of the G clusters, indexed by g, has Ng observations. The matrix X and the

vectors y and ε have N =
∑G

g=1Ng rows, X has k columns, and the parameter vector β
has k rows. OLS estimation of equation (2) yields estimates β̂ and residuals ε̂.

Because the elements of the εg are in general neither independent nor identically dis-
tributed, both classical OLS and heteroskedasticity-robust standard errors for β̂ are invalid.
As a result, conventional inference can be severely unreliable. It is therefore customary to
use a cluster-robust variance estimator, or CRVE. There are several of these, of which the
earliest may be Liang and Zeger (1986). The CRVE we investigate is de�ned as:

G(N − 1)

(G− 1)(N − k)
(X ′X)−1

(
G∑

g=1

X ′gε̂gε̂
′
gXg

)
(X ′X)−1. (3)

This is the estimator that is used when the cluster command is invoked in Stata. It yields
reliable inferences when the number of clusters is large (Cameron, Gelbach and Miller, 2008)
and the number of observations per cluster does not vary too much (Carter, Schnepel and
Steigerwald, 2015; MacKinnon and Webb, 2016). However, Conley and Taber (2011) and
MacKinnon and Webb (2016) show that t statistics based on (3) over-reject severely when
the parameter of interest is the coe�cient on a treatment dummy and there are very few
treated clusters. Rejection frequencies can be over 80% when only one cluster is treated,
even when the t statistics are assumed to follow a t(G−1) distribution, as is now commonly
done based on the results of Donald and Lang (2007) and Bester, Conley and Hansen (2011).

2.1 Cluster-Robust Variance Estimation

It is of interest to see precisely why inference based on the CRVE (3) fails so dramati-
cally when there is just one treated cluster.1 Consider, for simplicity, the dummy variable

1This subsection is based on parts of Section 6 of MacKinnon and Webb (2016).
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regression model
yig = β1 + β2dig + εig, (4)

where the treatment dummy dig equals 1 for the �rst G1 clusters and 0 for the remaining
G0 clusters. Making equation (4) more complicated by adding additional regressors, or
by allowing only some observations within the treated clusters to be treated, as in the DiD
regression (1), would not change anything important. The fundamental problem for all these
models, as we will see shortly, is that the residuals sum to zero over all treated observations.

Equation (4) may be rewritten in vector notation as y = β1ι + β2d + ε, where y, ι, d,
and ε are N -vectors with typical elements yig, 1, dig, and εig, respectively, and i is assumed
to vary more rapidly than g. Then the OLS estimate of β2 is

β̂2 =
(d− d̄ι)′y

(d− d̄ι)′(d− d̄ι) =
(d− d̄ι)′ε
N(d̄− d̄ 2)

, (5)

where the second equality holds under the null hypothesis that β2 = 0, and d̄ =
(∑G1

g=1Ng

)
/N

is the sample mean of the dig, that is, the proportion of treated observations. The variance

of β̂2 is evidently

Var(β̂2) =
(d− d̄ι)′Ω(d− d̄ι)(
(d− d̄ι)′(d− d̄ι)

)2 =
(d− d̄ι)′Ω(d− d̄ι)
N2d̄ 2(1− d̄)2

, (6)

where Ω is an N ×N block diagonal matrix with G covariance matrices Ωg of dimensions
Ng ×Ng forming the diagonal blocks.

From (3), it is easy to see that the CRVE for β̂2 is proportional to

1

N2d̄ 2(1− d̄)2

G∑
g=1

(dg − d̄ιg)′ε̂gε̂′g(dg − d̄ιg). (7)

Thus (7) should provide a good estimate of Var(β̂2) if the summation provides a good
estimate of the quadratic form in (6). Unfortunately, this is not the case when the number
of treated clusters is small.

It is not di�cult to show that the summation in expression (7) is equal to

(1− d̄)2
G1∑
g=1

(ι′ε̂g)
2 + d̄ 2

G∑
g=G1+1

(ι′ε̂g)
2, (8)

where the vectors ι have the same number of elements as the vectors ε̂g. This expression is
supposed to estimate the quadratic form in expression (6), which can be written as

(1− d̄)2
G1∑
g=1

ι′Ωgι+ d̄ 2

G∑
g=G1+1

ι′Ωgι. (9)

Unfortunately, expression (8) estimates expression (9) very badly when G1 is small.
Consider the extreme case in which G1 = 1. Since di1 = 1 and dig = 0 for g > 1, the
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residuals for cluster 1 must sum to zero. This implies that the �rst term in expression (8)
equals zero. In contrast, the �rst term in expression (9) is not zero, and it will generally be
quite large relative to the second term, because d̄ will normally be small if just one cluster
is treated. In fact, if we let G→∞ while keeping G1 = 1, it must be the case that d̄→ 0.
Evidently (8) will severely underestimate (9) when G1 = 1.

When two or more clusters are treated, the residuals for those clusters will not sum to
zero for each cluster, but they must sum to zero over all the treated clusters. In consequence,
the expectation of the squared summation for the �rst treated cluster must underestimate
the corresponding true variance. When the errors are homoskedastic and independent, it
does so by a factor of (M1 − N1)/M1, where N1 is the number of treated observations in
cluster 1, and M1 is the number of treated observations in all treated clusters.2 Although
this result is somewhat special, it strongly suggests that, for G1 small, the sum of squared
summations in the �rst term of (8) will severely underestimate the corresponding double
summation in (9). The problem evidently goes away as G1 increases, provided the sizes of
the treated clusters are not too variable, and simulation results in MacKinnon and Webb
(2016) suggest that it does so quite quickly.

2.2 Other Procedures

Building o� results in Donald and Lang (2007), Ibragimov and Müller (2016) studies the
Behrens-Fisher problem of comparing means of two groups with di�erent variances. The
paper focuses on di�erences in means for treated and control groups and proves that t tests
for these di�erences in means follow asymptotic distributions with degrees of freedom equal
to min(G0, G1)−1. When G1 = 1, this number is 0, which implies that the Ibragimov-Müller
procedure is not appropriate when there is only one treated group.

A very di�erent alternative procedure is proposed by Abadie, Diamond and Hainmueller
(2010). It also bases inference on an empirical distribution generated by perturbing the
assignment of treatment. However, the procedure di�ers substantially from the ones con-
sidered in this paper, because it constructs a �synthetic control� as a weighted average of
potential control groups, based on the characteristics of the explanatory variables. This
results in both a di�erent estimate of the �treatment e�ect� and a di�erent P value. For
this reason, we do not study the synthetic controls approach in this paper.

Recent work by Carter, Schnepel and Steigerwald (2015) develops the asymptotic prop-
erties of the CRVE when the number of observations per cluster is not constant. The authors
show that, when clusters are unbalanced, the dataset has an e�ective number of clusters,
G∗, which is less than G (sometimes very much less). Simulations in MacKinnon and Webb
(2016) show that using critical values based on G∗ can work fairly well when intermediate
numbers of clusters are treated. However, when few clusters are treated (or untreated), it
can either over-reject or under-reject severely. When G∗ is extremely small, which happens
whenever G1 is small, sharply di�erent results can be obtained depending on whether the
test statistic is assumed to follow a t(G∗) or a t(G∗− 1) distribution. For this reason, we do
not consider these procedures in our simulation experiments. Alternative degrees-of-freedom
corrections, in some cases based on alternative CRVEs, have also been proposed by Imbens
and Kolesar (2016) and Young (2015b). All of these procedures are computationally chal-

2This result is equation (A.2) of the online appendix of MacKinnon and Webb (2016).
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lenging, and in some cases infeasible, for datasets with large clusters. We therefore do not
study them in our experiments.

2.3 The Wild Cluster Bootstrap

The wild cluster bootstrap was proposed by Cameron, Gelbach and Miller (2008) as a
method for reliable inference in cases with a small number of clusters.3 It was studied
extensively in MacKinnon and Webb (2016) for the cases of unbalanced clusters and/or few
treated clusters. Because we will be proposing a new procedure that is closely related to
the wild cluster bootstrap in Subsection 2.9, we review how the latter works.

Suppose we wish to test the hypothesis that a single coe�cient in equation (2) is zero.
Without loss of generality, we let this be βk, the last coe�cient of β. The restricted wild
cluster bootstrap works as follows:

1. Estimate equation (2) by OLS.

2. Calculate t̂k, the t statistic for βk = 0, using the square root of the kth diagonal element
of (3) as a cluster-robust standard error.

3. Re-estimate the model (2) subject to the restriction that βk = 0, so as to obtain the
restricted residuals ε̃ and the restricted estimates β̃.

4. For each of B bootstrap replications, indexed by b, generate a new set of bootstrap
dependent variables y∗big using the bootstrap DGP

y∗big = Xigβ̃ + ε̃igv
∗b
g , (10)

where y∗big is an element of the vector y∗b of observations on the bootstrap dependent
variable, Xig is the corresponding row of X, and so on. Here v∗bg is a random variable
that follows the Rademacher distribution; see Davidson and Flachaire (2008). It takes
the values 1 and −1 with equal probability. Observe that v∗bg takes the same value for
all observations within each group. Because of that, we would not want to use the
Rademacher distribution if G were smaller than about 12; see Webb (2014), which
proposes an alternative for such cases.

5. For each bootstrap replication, estimate regression (2) using y∗b as the regressand,
and calculate t∗bk , the bootstrap t statistic for βk = 0, using the square root of the kth

diagonal element of (3), with bootstrap residuals replacing the OLS residuals, as the
standard error.

6. Calculate the bootstrap P value as

p̂∗s =
1

B

B∑
b=1

I
(
|t∗bk | > |̂tk|

)
, (11)

3A di�erent, but much less e�ective, bootstrap procedure for cluster-robust inference was previously
suggested by Bertrand, Du�o and Mullainathan (2004).
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where I(·) denotes the indicator function. Equation (11) assumes that the distribution
of tk is symmetric. Alternatively, one can use a slightly more complicated formula to
calculate an equal-tail bootstrap P value.

The procedure just described is known as the restricted wild cluster, or WCR, bootstrap,
because the bootstrap DGP (10) uses restricted parameter estimates and restricted residuals.
The unrestricted wild cluster, or WCU, bootstrap is a closely related procedure. It uses
unrestricted estimates and unrestricted residuals in step 4, and the bootstrap t statistics in
step 5 now test the hypothesis that βk = β̂k.

MacKinnon and Webb (2016) explains why the wild cluster bootstrap fails when the
number of treated clusters is small. The WCR bootstrap, which imposes the null hypothesis,
leads to severe under-rejection. In contrast, the WCU bootstrap, which does not impose
the null hypothesis, leads to severe over-rejection. When just one cluster is treated, it over-
rejects at almost the same rate as using CRVE t statistics with the t(G − 1) distribution.
In many of the Monte Carlo experiments discussed below, we obtained results for the WCR
and WCU bootstraps, but we do not report most of them because those procedures are
treated in detail in MacKinnon and Webb (2016).

2.4 Randomization Inference

Randomization inference was �rst proposed by Fisher (1935) as a procedure for performing
exact tests in the context of experiments. The idea is to compare an observed test statistic
T̂ from the realization of the experiment to an empirical distribution of test statistics T ∗j for
j = 1, . . . , S. The empirical distribution is generated by re-randomizing the assignment of
treatment across experimental units. To compute each of the T ∗j , we use the actual outcomes
while pretending that certain non-treated experimental units were treated.

If T̂ is in the tails of this empirical distribution, then this is evidence against the null
hypothesis of no treatment e�ect. The general practice is to incorporate all available in-
formation about treatment assignment in conducting the re-randomization (Yates, 1984).
This is necessary, because randomization tests are valid only when the distribution of the
test statistic is invariant to the realization of the re-randomizations across permutations of
assigned treatments (Lehmann and Romano, 2008).

When treatment is randomly assigned at the individual level, the invariance of the distri-
bution of the test statistic to re-randomization will follow naturally. However, if treatment
assignment is at the group level instead, then the extent of unbalancedness can determine
how close the distribution is to being invariant. When clusters are balanced, the value of
d̄ in equation (8) will be constant across re-randomizations. However, when clusters are
unbalanced, d̄ may vary considerably across re-randomizations. The implications of this are
discussed below in Subsection 2.7.

2.5 Randomization Inference � Coe�cients

Conley and Taber (2011) suggests two procedures for inference with few treated groups.
Both of these procedures involve constructing an empirical distribution by randomizing the
assignment of groups to �treatment� and �control� and using this empirical distribution to
conduct inference. These procedures are quite involved, and the details can be found in
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their paper. Of the two procedures, we restrict attention to the one based on randomization
inference, because it often has better size properties in their Monte Carlo experiments.

Under suitable assumptions, randomization inference tests yield exact inferences when
the data come from experiments where there was random assignment to treatment. However,
this is very rarely the case for applications of the DiD regression model (1) in economics.

For the RI procedure of Conley and Taber (2011), a coe�cient equivalent to β4 in
equation (1) is estimated, and the estimate, say β̂, is compared to an empirical distribution
of estimated β∗j , where j indexes repetitions. The β∗j are obtained by pretending that
control groups are actually treated.4 Thus, when G1 = 1, the number of β∗j is G0. This
procedure evidently depends on the strong assumption that β̂ and the β∗j follow the same
distribution. But that cannot be the case if the coe�cients for some clusters are estimated
more e�ciently than for others, perhaps because some clusters have more observations. As
we will demonstrate in Subsection 3.2, when clusters are of di�erent sizes, and unusually large
or small clusters are treated, this type of RI procedure can have very poor size properties.
A similar problem arises whenever the variance of the error terms for the treated clusters
di�ers from the variance of the error terms for the controls; see Subsection 3.4.

2.6 Randomization Inference � t statistics

As an alternative to the Conley-Taber procedure, we consider an RI procedure based on
cluster-robust t statistics. Instead of comparing β̂ to the empirical distribution of the β∗j ,
we compare the actual t statistic t̂ to an empirical distribution of the t∗j that correspond to
the β∗j. This is similar to one of the procedures studied in Young (2015a).

When there is just one treated group, it is natural to compare t̂ to the empirical dis-
tribution of G0 di�erent t

∗
j statistics. However, when there are two or more treated groups

and G0 is not quite small, the number of potential t∗j to compare with can be very large. In
such cases, we may pick B of them at random. Note that, to avoid ties, we never include
the actual t̂ among the t∗j .

Our randomization inference procedure works as follows:

1. Estimate the regression model and calculate the cluster-robust t statistic for the coef-
�cient of interest. For the DiD model (1), this is the t statistic for β4 = 0. Refer to
this t statistic as t̂.

2. Generate a number of t∗j statistics to compare t̂ with.

• When G1 = 1, assign a group from the G0 control groups as the �treated� group
g∗ for each repetition, re-estimate the model using the observations from all
G groups, and calculate a new t statistic, t∗j , indicating randomized treatment.
Repeat this process for all G0 control groups. Thus the empirical distribution of
the t∗j will have G0 elements.

• When G1 > 1, sequentially treat every set of G1 groups except the set actually
treated, re-estimate equation (1), and calculate a new t∗j . There are potentially

4Actually, this is not quite how the procedure discussed in Conley and Taber (2011) works. Instead
of using β̂ and the β∗

j , the procedure is based on quantities that are numerically close and asymptotically
equivalent to them.
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GCG1 − 1 sets of groups to compare with, where nCk denotes �n choose k.� When
this number is not too large, obtain all of the t∗j by enumeration. When it exceeds
B (picked on the basis of computational cost), choose the comparators randomly,
without replacement, from the set of potential comparators. Thus the empirical
distribution will have min(GCG1 − 1, B) elements.

3. Sort the vector of t∗j statistics.

4. Determine the location of t̂ within the sorted vector of the t∗j and compute a P value.
This may be done in more than one way; see Subsection 2.8.

We will refer to the procedure just described as �t statistic randomization inference,� or
RI-t for short, and to the Conley-Taber procedure described in the preceding subsection as
�coe�cient randomization inference,� or RI-β for short.

2.7 Properties of Randomization Inference Procedures

It seems plausible that randomization inference should perform better when it is based on
t statistics than when it is based on coe�cients, because t statistics are asymptotically
pivotal (that is, invariant to any unknown parameters) and coe�cients are not. Thus it is
less unrealistic to assume that t̂ and the t∗j follow the same distribution than it is to assume
that β̂ and the β∗j do so. Unfortunately, as we now demonstrate, the two RI procedures do
not di�er much when G1 is very small. As a result, there are many circumstances in which
they are both likely to yield similar inferences, which can be grossly invalid.

Consider again the pure treatment model (4). Under the null hypothesis, the parameter
estimate β̂2 is given in equation (5) and can be rewritten as

β̂2 =
1

Nd̄(1− d̄)

(
(1− d̄)

G1∑
g=1

ι′εg − d̄
G∑

g=G1+1

ι′εg

)
. (12)

Combining this result with (7) and (8), we �nd that the t statistic is

t̂2 =
(1− d̄)

∑G1

g=1 ι
′εg − d̄

∑G
g=G1+1 ι

′εg(
(1− d̄)2

∑G1

g=1(ι
′ε̂g)2 + d̄ 2

∑G
g=G1+1(ι

′ε̂g)2
)1/2 . (13)

Note that the numerator depends on the error terms εg and the denominator depends on
the residuals ε̂g.

Now suppose that G1 = 1. In that case, as we saw in Subsection 2.1, the �rst term in
the denominator of (13) equals zero. If we further assume that G0 is large relative to G1 and
that N1 is not unusually large, then the �rst term in parentheses in equation (12), which
is also the numerator of t̂2, must be much larger than the second. Therefore, it must be
approximately the case that

β̂2 ≈
1

Nd̄
ι′ε1 = Op(N

−1/2
1 ), (14)
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where the order relation uses the facts that d̄ = O(N1)/O(N) and ι′ε1 =
∑N1

i=1 εi1 =

Op(N
1/2
1 ). The result (14) is intuitive: The larger the number of treated observations,

the less dispersed will be the estimate of β.
Similarly,

t̂2 ≈
(1− d̄)ι′ε1

d̄
(∑G

g=2(ι
′ε̂g)2

)1/2 = Op(N
−1/2
1 )Op(N

1/2), (15)

where the order relation uses the same facts. For simplicity, we have also assumed that
G = O(N), so that the square root in the denominator is Op(N

1/2). Since the rightmost
factor on the right-hand side of equation (15) does not depend on which cluster is being
treated, this assumption does not matter for RI inference, and that factor can be ignored.
The important thing is that the absolute values of both t̂2 and β̂2 are Op(N

−1/2
1 ). They can

both therefore be expected to shrink as the number of treated observations increases.
Equations (14) and (15) make it evident that both RI procedures will tend to over-reject

when N1 is small and under-reject when N1 is large. In the former case, both β̂2 and t̂2
will tend to be more variable than the β∗j and t∗j with which they are being compared,
because N

−1/2
1 is larger than N∗j

−1/2 for most of the other clusters. In the latter case, by the
same argument in reverse, both β̂2 and t̂2 will tend to be less variable than the β∗j and t∗j
with which they are being compared. Thus neither RI procedure can possibly provide valid
inferences when G1 = 1 and the treated cluster is larger or smaller than the controls.

The case of G1 = 1 is the most extreme one. As G1 increases, we would expect the
distribution of t̂ eventually to lose any dependence on the sizes of the treated clusters,
because the �rst term in the denominator of (13) will no longer be zero, and d̄ will increase
with G1. In contrast, the distribution of β̂2 will continue to depend on the sizes of the
treated clusters. Thus we would expect the behavior of the two RI procedures to become
less and less similar as G1 increases in cases with unbalanced clusters where neither of them
yields valid inferences when G1 = 1.

The failure of both RI-β and RI-t when G1 is small and cluster sizes vary, and of the
former even when G1 is not small, is a consequence of the fact that β̂2 and t̂2 depend on
d̄, which is not invariant across re-randomizations. As such, it is not surprising that the
randomization inference procedures fail with unbalanced clusters, as the simulation results
in Subsections 3.2 and 3.3 will demonstrate.

The RI-β procedure was originally suggested for use with aggregate data, or with individ-
ual data that have been aggregated into time-cluster cells. It is probably less unreasonable
to expect β̂2 and the β∗j to follow the same distribution in those cases than in the case of
individual data. Nevertheless, the assumption that β̂ and the β∗j follow the same distri-
bution is still a very strong one. Variations across clusters in the number of underlying
observations per cell, in the values of other regressors, or in the variances of the error terms
may all invalidate this crucial assumption.5 In contrast, t̂ and the t∗j can be expected to
follow approximately the same distribution whenever G1 and G are not too small.

5Ferman and Pinto (2015) show that aggregation of unbalanced clusters introduces heteroskedasticity in
the aggregate data, which causes similar problems for randomization inference when either large or small
clusters are treated.
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2.8 Randomization Inference and Interval P Values

The most natural way to calculate an RI P value is probably to use the equivalent of
equation (11). Let S denote the number of repetitions, which would be G0 when G1 = 1
and the minimum of GCG1 − 1 and B when G1 > 1. Then the analog of (11) is

p̂∗1 =
1

S

S∑
j=1

I
(
|t∗j | > |̂t|

)
. (16)

However, this method of computing a P value is arbitrary. A widely-used alternative is

p̂∗2 =
1

S + 1

(
1 +

S∑
j=1

I
(
|t∗j | > |̂t|

))
. (17)

Both procedures are valid, as would be any procedure that yields a number between p̂∗1 and
p̂∗2, because P values based on a �nite number of simulations are interval-identi�ed rather
than point-identi�ed. Evidently, p̂∗1 and p̂

∗
2 tend to the same value as S →∞, but they can

yield quite di�erent results when S is small.
Figure 1 shows analytical rejection frequencies for tests at the .05 level based on equations

(16) and (17). The tests would reject exactly 5% of the time if S were in�nite, but the �gure
is drawn for values of S between 7 and 103. In the �gure, R denotes the number of times
that t̂ is more extreme than t∗j , so that p̂

∗
1 = R/S and p̂∗2 = (R+1)/(S+1). It is evident that

p̂∗1 always rejects more often than p̂∗2, except when S = 19, 39, 59, and so on.6 Even for fairly
large values of S, the di�erence between the two rejection frequencies can be substantial.7

This phenomenon does not cause a serious problem for bootstrap inference. We can
obtain identical inferences from the two varieties of P value by choosing the number of
bootstraps B (which is equivalent to S) so that α(B + 1) is an integer, where α is the level
of the test. In many cases, it is feasible to make B large, so that the interval between p̂∗1
and p̂∗2 must be very small whether or not α(B + 1) is an integer.

Unfortunately, neither of these solutions works for randomization inference. As an ex-
treme example, suppose the data come from Canada, which has just ten provinces. If one
province is treated, then G1 = 1, G0 = 9, and the P value can lie in only one of nine intervals:
0 to 1/10, 1/9 to 2/10, 2/9 to 3/10, and so on. Even if R = 0, it would never be reasonable
to reject at the .01 or .05 levels. The problem with P values not being point-identi�ed is
discussed at length in Webb (2014).

6The �gure is drawn under the assumption that we reject whenever either P value is equal to or less
than 0.05. This is the only correct procedure for p̂∗2. However, for p̂

∗
1 it might be more natural to reject only

when p̂∗1 < 0.05. If that were done, the results for p̂∗1 with S = 20, 40, 60, and so on would be identical to
the results for p̂∗2 with those values of S. The remainder of the �gure would be unchanged.

7It is possible to obtain an exact test by using a draw from the U[0, 1] distribution. The procedure
proposed in Racine and MacKinnon (2007) simply replaces the 1 after the large left parenthesis in (17)
with such a draw. A similar procedure, which allows for ties, is used in Young (2015a). However, these
procedures have the unfortunate property that the outcome of the test depends on the realization of a single
random variable drawn by the investigator.
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2.9 Wild Bootstrap Randomization Inference

In this subsection, we suggest a simple way to overcome the problem discussed in the previous
one. We propose a procedure that we refer to as wild bootstrap randomization inference, or
WBRI. The WBRI procedure essentially nests the RI-t procedure of Subsection 2.6 within
the wild cluster bootstrap of Subsection 2.3. The procedure for generating the t∗j statistics
is as follows:

1. Estimate equation (1) by OLS and calculate t̂ for the coe�cient of interest using CRVE
standard errors.

2. Construct a bootstrap sample, y∗b , using the restricted wild cluster bootstrap procedure
discussed in Subsection 2.3. Then estimate equation (1) using y∗b and calculate a
bootstrap t statistic t∗b using CRVE standard errors.

3. Re-estimate equation (1) using y∗b , sequentially changing the �treated� group(s) to all
possible sets of G1 groups, except the set that was actually treated. When G1 = 1,
this is done by cycling the �treated� group across all G0 control groups. Calculate a t
statistic t∗b for each randomization using CRVE standard errors.

4. Repeat steps 2 and 3 B times, constructing a new y∗b in each step 2.

5. Perform inference by comparing t̂ to the B × GCG1 bootstrap statistics t∗b . These
include B bootstrap statistics that correspond to the G1 actually treated groups and
are drawn from exactly the same distribution as the t statistics in the restricted wild
cluster bootstrap procedure, along with B(GCG1−1) bootstrap statistics in which each
set of groups other than actual one is �treated� in turn.

The WBRI procedure can be used to generate as many t∗b as desired by making B large
enough. Thus it can solve the problem of interval P values. However, it does not remedy
the failure of the RI-t procedure when G1 is small. Thus we cannot expect it to yield reliable
inferences in that case when clusters are heterogeneous.

Since every possible set of G1 clusters is �treated� in the bootstrap samples, the number
of test statistics is B×GCG1 . Unless G is quite small, this will be a large number for G1 > 2
even when B = 1. In general, it makes sense to use the WBRI procedure only when the
RI-t procedure does not provide enough t∗j for the interval P value problem to be negligible.
As a rule of thumb, we suggest using WBRI when G1 = 1 and G < 500, or G1 = 2 and
G < 45, or G1 = 3 and G < 20. We suggest choosing B so that B × GCG1 is at least 1000.

3 Simulation Experiments

We conduct a number of Monte Carlo experiments to study the performance of various
inferential procedures when the number of treated clusters is small and cluster sizes are
heterogeneous. In the experiments, we vary the total number of clusters, the number of
treated clusters, and which clusters are treated. Since sample size does not seem to matter,
we either hold it �xed or let it vary with the number of clusters.
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3.1 Monte Carlo Design

In all experiments, we assign N total observations unevenly among G clusters using the
following formula:

Ng =

[
N

exp(γg/G)∑G
j=1 exp(γj/G)

]
, g = 1, . . . , G− 1, (18)

where [x] means the integer part of x. The value of NG is then set to N −∑G1

g=1Ng. The
key parameter here is γ ≥ 0, which determines how uneven the cluster sizes are. When
γ = 0 and N/G is an integer, equation (18) implies that Ng = N/G for all g. As γ increases,
however, cluster sizes vary more and more.8

The data generating process is the DiD model, equation (1), with β4 = 0. Each ob-
servation is assigned to one of 20 �years�, and the starting year of �treatment� is randomly
assigned to years between 4 and 14. The error terms are homoskedastic and correlated
within each cluster, with correlation coe�cient 0.05. The number of Monte Carlo replica-
tions in all experiments is 100,000. Rejection frequencies are calculated at the 1%, 5%, and
10% levels, although only the 5% rejection frequencies are discussed below.

3.2 Monte Carlo Results for RI Procedures

In the �rst set of experiments, N = 4000, G = 40, and the number of treated clusters
varies from 1, 2, ..., 10. The treated clusters are chosen in three ways: the smallest �rst, the
largest �rst, or at random. The more observations the treated clusters have (at least up to
about half the sample size), the more e�ciently β4 should be estimated.9 Thus, as discussed
in Subsection 2.7, we would expect randomization inference based on coe�cient estimates
to perform less well than randomization inference based on t statistics when the treated
clusters are unusually large or small.

For the two varieties of randomization inference, the number of randomizations is as
follows: 39 for G1 = 1; 40C2 − 1 = 779 for G1 = 2; and 999 for G1 ≥ 3. We set G = 40 to
avoid the problem of interval P values, since with 39 or 779 randomizations the rejection
frequencies based on p̂∗1 and p̂

∗
2 must be identical at the .05 level.

The most striking result is that the size of some tests depends heavily on which clusters
are treated. For instance, with RI-β, there is severe under-rejection when the largest clusters
are treated �rst and fairly severe over-rejection when the smallest clusters are treated �rst.
As the analysis in Subsection 2.7 predicts, RI-t also performs poorly when G1 = 1, with the
same pattern of under-rejection and over-rejection as RI-β.

These patterns can be seen clearly in Figure 2, which graphs rejection frequencies against
G1 for both RI-β and RI-t tests. For RI-β, not much changes as G1 increases. In contrast, for
RI-t, the rejection frequencies improve rapidly as G1 increases. When the smallest clusters
are treated, the procedure seems to work perfectly for G1 ≥ 6. When the largest clusters
are treated, it always under-rejects, but not severely.

8For the experiments with 4000 observations and γ = 2, the sizes of the 40 clusters are: 32, 33, 35, 37,
39, 41, 43, 45, 47, 50, 52, 55, 58, 61, 64, 67, 71, 75, 78, 82, 87, 91, 96, 101, 106, 112, 117, 123, 130, 136, 143,
151, 158, 167, 175, 184, 194, 204, 214, and 246.

9It is di�cult to be precise about this, because e�ciency will also depend on intra-cluster correlations,
the number of treated years, and the values of other regressors.
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One other result that is evident in Figure 2 is that both RI procedures work extremely
well when the treated clusters are chosen at random. That makes sense, because the the-
ory of randomization inference is based on treatment being assigned at random. In the
context of DiD inference with non-experimental data, however, this result is actually quite
misleading. In this case, clusters are not treated at random, and the investigator knows
which clusters were actually treated. The distribution of cluster sizes is the same for all
the experiments. The good results for random treatment arise because we are averaging
over 100,000 replications. In some of those replications, when small clusters happen to be
treated, too many rejections occur. In others, when large clusters happen to be treated,
too few rejections occur. Only when clusters of intermediate size (or an appropriate mix of
small and large clusters) are treated do both RI procedures actually work well.

Figure 3 illustrates this point. The �gure shows rejection frequencies for the RI-t proce-
dure when G1 = 1 and G = 40.10 The horizontal axis shows the rank of the treated cluster,
ordered from smallest to largest. There are �ve curves, which correspond to �ve values
of γ. The higher the value of γ, the more variable are the cluster sizes. As expected, the
tests over-reject when the treated cluster is small and under-reject when it is large. Both
over-rejection and under-rejection become more severe as γ increases.

Because the relative sizes of treated and control clusters evidently matter greatly when
the smallest clusters are treated, we perform a second set of experiments in which N = 5000,
G = 20, and the parameter γ in equation (18) is varied between 0 and 4 at intervals of 0.5.
This is done for three values of G1 (1, 2, and 3) for both RI procedures. As can be seen in
Figure 4, they both work very well when γ = 0, and they both over-reject more and more
severely as γ increases. However, the RI-t procedure over-rejects less and less severely as
G1 increases from 1 to 2 to 3, while the RI-β procedure over-rejects much more severely
for G1 = 2 and G1 = 3 than for G1 = 1. This is consistent with the theoretical results in
Subsection 2.7.

It is of interest to compare the performance of the RI-β and RI-t procedures with that of
the wild cluster bootstrap. Figure 6 shows rejection frequencies for the restricted wild cluster
bootstrap for the same experiments as Figure 2.11 As the theoretical and simulation results
in MacKinnon and Webb (2016) suggest, the WCR bootstrap severely under-rejects for very
small values of G1, but it performs very well for G1 ≥ 6. Unlike the two RI procedures, its
performance is very similar in all three cases, although the region of severe under-rejection
is smallest when the treated clusters are the largest ones.

3.3 Why the RI Procedures Can Fail

Figure 5 provides more intuition about why both RI procedures can fail with unbalanced
clusters. The �gure plots the distributions of β̂ and of the corresponding t statistic for
G1 = 1 and G1 = 2 with N = 2000, G = 40, and γ = 2 for a pure treatment model.
The smallest cluster has 16 observations, and the largest has 134. Within each panel,

10Results for the RI-β procedure are not reported because, as the theory of Subsection 2.7 suggests, they
are very similar to the ones in Figure 3.

11The �gure does not show results for the WCU bootstrap, because they are so di�erent from the ones for
the WCR bootstrap. When G1 = 1, the rejection frequencies are 0.615, 0.758, and 0.861 for the largest-�rst,
random, and smallest-�rst cases.
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distributions are plotted for three cases: the case in which G1 randomly-chosen clusters are
treated, the case in which the treated clusters are chosen from the smallest 10 clusters, and
the case in which the treated clusters are chosen from the largest 10 clusters. The �rst
case corresponds to the unconditional distribution of either β̂ or t̂, and the other two cases
correspond to distributions conditional on the treated clusters being either small or large.

Recall that, for randomization inference to be valid, the distribution of the test statistic
must be invariant to randomization. An implication of this is that the two conditional
distributions should be indistinguishable from the unconditional distribution. For G1 = 1,
however, both conditional distributions di�er greatly from the unconditional distribution
for both β̂ and t̂. For G1 = 2, the conditional distributions of β̂ di�er just as greatly
from the unconditional one. However, the conditional distributions of t̂ are much closer to
the unconditional distribution, although they are still distinct. We also obtained results,
not shown, for G1 = 3, 4, . . . , 8. As G1 increases, the conditional distributions of β̂ never
converge to the unconditional distribution, while those of t̂ do converge quite rapidly.

Since researchers always know the sizes, and usually the identities, of the clusters that
are treated, it generally makes no sense to pretend that the treated clusters are chosen at
random. Failing to condition on what the researcher knows about the treated and control
clusters inevitably results in unreliable inference, especially for RI-β. Ferman and Pinto
(2015) eloquently makes this point in the context of aggregate data.

3.4 RI Procedures with Heteroskedasticity

In the experiments reported so far, the distributions of the coe�cients can di�er across
clusters only because cluster sizes may vary. However, that is not the only possible reason
for those distributions to di�er. Another possibility is that the error terms for the treated
clusters may have larger or smaller variances than those of the controls. To investigate
this possibility, we performed an additional set of experiments in which the standard error
for the treated clusters was λ times the standard error for the controls. We would expect
over-rejection when λ > 1 and under-rejection when λ < 1. This is easiest to see for the
extreme case in which G1 = 1. From equations (14) and (15), it is evident that the larger
the variance of the error terms for the treated cluster, the larger will be the variances of β̂2
and t̂2 for the treated cluster when G1 = 1. As G1 increases, the problem should go away
for RI-t but not for RI-β.

Figure 7 shows rejection frequencies for the RI-β and RI-t procedures for a DiD model
with 40 equal-sized clusters and 800 observations. Results are shown for three values of λ,
namely, λ = 2.0, λ = 1.25, and λ = 0.5. As expected, both procedures over-reject when
λ > 1 and under-reject when λ < 1. When G1 = 1, both the over-rejection for λ = 2.0 and
the under-rejection for λ = 0.5 are very severe. For all values of λ, they are almost identical
for RI-β and RI-t. As G1 increases, the performance of RI-t initially improves quite quickly,
while that of RI-β improves very slowly. However, the rate of improvement for RI-t slows
down greatly as G1 increases. It still over-rejects noticeably for G1 = 10 when λ = 2.0 and
under-rejects noticeably when λ = 0.5.12

12Using a di�erent experimental design, Canay, Romano and Shaikh (2014) also study the performance
of RI-β (and several other tests) when the treated clusters have greater variance than the untreated ones.
They �nd even more severe overrejection for λ = 2.0 than we do.
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3.5 Monte Carlo Results for WBRI

The WBRI procedure described in Subsection 2.9 is designed to avoid the problem of interval
P values. Based on Figure 8, it seems to be quite e�ective at doing so. The �gure deals
with the case in which G1 = 1, which is when the interval P value problem is most severe.
Every cluster has 100 observations, and the number of clusters varies from 10 to 60, which
implies that the number of controls varies from 9 to 59. Thus when G = 20, 40, and 60,
the two RI P values must yield the same outcomes. In every other case, however, p̂∗1 = R/S
must reject more often than p̂∗2 = (R + 1)/(S + 1). As expected, the observed rejection
frequencies for the two RI tests look very similar to the theoretical ones in Figure 1.

In Figure 8, the WBRI rejection frequencies are almost always between the two RI
rejection frequencies and are always quite close to 5% except when G is very small. This
is what we would like to see. However, it must be remembered that the �gure deals with
a very special case. The WBRI procedure cannot be expected to work any better than the
RI-t procedure when the treated clusters are smaller or larger than the untreated clusters,
or when their error terms have di�erent variances. There is at present no proof that it will
work well even when the only problem is that the number of control groups is small and α
times one plus that number is not an integer.

4 Example

Coming soon.

5 Conclusion

We compare several new and existing procedures for inference with few treated clusters,
focusing on ones based on randomization inference. There are three main �ndings, which
are obtained theoretically for a simple model in Subsection 2.7 and con�rmed by simulation
results in Section 3.

The �rst result is that none of the procedures works well when there are very few treated
clusters and those clusters are atypical in terms of either the number of observations or the
variance of the error terms. The second is that all the RI procedures appear to work well
when the treated clusters are typical or chosen at random. The third is that the performance
of procedures based on randomization inference for coe�cients improves slowly or not at all
as G1 (the number of treated clusters) increases, while the performance of procedures based
on randomization inference for t statistics generally improves quite rapidly. Thus the latter
can often be used safely when G1 is fairly small, but not extremely small.
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Figure 1: Rejection Frequencies and Number of Simulations
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Figure 2: Rejection Frequencies for Randomization Inference
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Figure 3: Rejection Frequencies for t Statistic RI when G1 = 1
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Figure 4: Rejection Frequencies for Two Types of Randomization Inference
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Figure 5: Empirical Distributions of Test Statistics
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Figure 6: Rejection Frequencies for the WCR Bootstrap
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Figure 7: Rejection Frequencies for RI Procedures with Heteroskedasticity

1 2 3 4 5 6 7 8 9 10
0.00

0.02

0.04

0.06
0.08

0.10

0.12

0.14
0.16

0.18

0.20
0.22

0.24

0.26

0.28
0.30

....................................................................................................................................................................................................................................................................................................................................................................................................................................................................................



.....................................................................................................................RI-β, λ = 2.0

................................................
.........................................

.................................
....................................................

....................................................................................
..............................................................................................................................................................................

..................................................................................................................................................................

....................................................................................RI-t, λ = 0.5



....................................................................................RI-t, λ = 2.0



.....................................................................................................................RI-β, λ = 0.5



.....................................................................................................................RI-β, λ = 1.25



....................................................................................RI-t, λ = 1.25

G1

Rej. Rate

22



Figure 8: WBRI Rejection Frequencies and RI Intervals
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