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Abstract 
While balancing straight assembly lines is a well-studied problem, the Situation 

where the assembly line has a U-shaped Iayout is a still emerging research field. 
The advantage of these lines is that workers may simply turn around to operate at 
two legs of the line. Hence, there is an additional degree of freedom for assigning 
Operations to stations. This bears the hope that U-lines are more efficient than 
straight lines. Since work on this WP-hard problem has mainly focused on exact 
algorithms, we study priority rule heuristics. We adapted 16 priority rules which 
have been applied to the straight line case before and examine their Performance 
with a computational study. 

Keywords: U-Lines, assembly line balancing, priority rule heuristics 

1 Introduction 

When operating an assembly (flow) line, one of the key Performance measures is the 
efficiency of that line, and so, of course, we like to have lines with utmost efficiency. To 
define more precisely what efficiency means, we must take a closer look at the Situation: 
We concentrate on paced lines on which a Single (product) model is produced. Assembling 
such a model means to perform a certain set of Operations. For technological reasons, these 
Operations cannot be performed in arbitrary order, but have to respect acyclic precedence 
constraints, i.e., a partial order is given. While moving thru the line, a model subsequently 
passes several working areas, so-called stations, in each of which it remains a certain cycle 
time before it moves to the next Station. Now, the balancing problem is to decide which 
Operations are to be performed at what stations. It is not allowed to Start an Operation 
at one Station and flnish it at another Station, i.e., each Operation must be executed in 
füll at one Single Station. However, it is allowed to assign more than one Operation to a 
Single Station as long as the sum of Operation times do not exceed the cycle time. Now, 
efficiency can more formally be defined as follows: Let V be the set of Operations and tj 
be the Operation time of Operation j € V. Furthermore, let m be the number of stations 
and c be the cycle time. The efficiency E of a given assembly line is then defined as 

E _ Zjev tj 
m • c 

Usually, either more are given a priori. As a consequence, maximizing E is equivalent 
to minimizing c, if m is given, or minimizing m, if c is given. If neither m nor c is given, one 
can compute an efficiency curve by fixing one of these variables and solving the remaining 
minimization problem. Döing this for several values of the variable that is fixed gives the 
desired curve. We focus here on the case that c is known in advance and consider this as 
being a realistic Situation, because the cycle time c determines the produetion rate of the 
flow line which is tightly related to the demand that is to be met. 

Traditionally, straight flow lines have been considered where an Operation j can only 
be assigned to a Station s if and only if all Operations that must preeeed j are assigned to 
stations not beyond s. A small example may illustrate this Situation. Consider the data 
given in Figure 1 and assume a cycle time c = 10. 

A feasible Solution for this balancing problem is depicted in Figure 2. As we can see, 
five stations are required in this Solution. Indeed, this is the minimum number of stations 
required. 
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Figure 2: An Optimum Solution for the Straight Line 
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Instead of a straight layout of an assembly line a U-shaped layout has attracted 
attention in the recent past, because such formation may increase the efficiency of the 
line when compared to the straight line. The advantage of a U-line is that workers may 
now simply turn around to perform Operations at different sections of the line. Hence, 
there is an additional degree of freedom for bundling Operations to be performed at a 
common Station. Figure 3 illustrates this Situation. Apparently, only four stations are 
required now, and, therefore, this U-line is more efficient than the straight line. 

There is a vast amount of literature on the assembly line balancing problem for straight 
lines. Some Important references are the ones by Hoffmann [3], Johnson [4], Scholl and 
Klein [7], and Sprecher [8]. A much more comprehensive survey can be found in [6]. For 
U-shaped assembly lines, only few publications exist. A neat linear model formulation 
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Figure 3: An Optimum Solution for the U-Line 
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with binary decision variables for the U-shaped assembly line balancing problem has been 
presented by Urban [10]. Methods for the U-shaped assembly line balancing problem are 
discussed by Miltenburg and Wijngaard [5] and Scholl [6]. 

In view of the literature, there seems to be a lack of contributions dealing with fast 
heuristics for the U-shaped assembly line problem. In what follows, we will therefore 
present several priority rule heuristics for the U-shaped assembly line balancing problem. 
Then, we discuss the results of a computational study. 

2 Priority Rule Heuristics 

For the straight assembly line balancing problem, a bunch of priority rule heuristics have 
been applied to find feasible Solutions within short time. The Performance of such heuris
tics has been evaluated and compared against each other in [6]. To sum up the results of 
this study, priority rule heuristics work very fast and, depending on the priority rules be-
ing employed, give solutions which deviate on average ab out 4% to 8% from the Optimum 
result. 

In this paper, we will adapt the heuristics used in [6] to attack the U-shaped assembly 
line balancing problem. Two basic construction principles can be discriminated for finding 
a feasible Solution: station-oriented and operation-oriented construction schemes. Both 
construction schemes assign Operations one by one to stations until a feasible Solution is 
complete. 

The station-oriented construction scheme works as follows: Starting with Station num-
ber one as being the current Station, we determine the set of all Operations which can 
next be assigned to the current Station. For being such a valid candidate, an Operation 
must fulfill two criteria. First, its Operation time plus the sum of Operation times of all 
Operations that have already been assigned to the current Station must not exceed the 
cycle time. And second, all its predecessors or all its successors must have been already 
assigned to a Station. If the set of Operations fulfilling these two criteria contains more 
than a Single element, a priority rule is used to make a choice. After war ds, the set of valid 
candidates is updated to assign additional Operations to the current Station. Once the set 
of valid candidates is empty, the next (empty) Station is considered and so on until all 
Operations are assigned to a Station. 

The operation-oriented construction scheme works as follows: From the set of Opera
tions that have not been assigned to any Station yet, we determine the set of Operations 
which can next be assigned to a Station. For being such a valid candidate, all its pre
decessors or all its successors must have already been assigned to a Station. If this set 
contains more than a Single Operation, a priority rule helps to choose the next Operation. 
Once an Operation is selected, we assign it to the lowest numbered Station such that two 
criteria are met. First, the sum of Operation times of all Operations assigned to a partic-
ular Station must not exceed the cycle time. Second, an Operation can only be assigned 
to a Station s, if either all its predecessors have already been assigned to stations with 
no number greater than s, or all its successors have already been assigned to stations 
with no number greater than s. After an Operation is assigned to a Station, the set of 
valid candidates for the next assignment is updated and so on until a feasible Solution is 
complete. 

Throughout, we consider here single-pass heuristics only. That is, given a construc
tion scheme and a priority rule, only a Single feasible Solution is constructed by making 
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deterministic choices. It is straightforward to extend these ideas to multi-pass heuristics 
where several runs are performed while making random choices. 

In [6], 16 priority rules are tested. We have adapted all of them for our purposes: 

Rule 1 (MinOpNo): A valid candidate j is selected by choosing the one with the lowest 
Operation number 

3-

This first rule is a very simple priority rule and we use it as a standalone rule, but 
also as a tie breaker rule for all other priority rules to identify a unique candidate. 

For defining more sophisticated rules, we use V~ to denote the set of Operations which 
have already been assigned to a Station during the course of computation. Hence, V~ is 
updated after each selection of a candidate. Furthermore, for each Operation j, Fj is the 
set of immediate successors, and Pj is the set of immediate predecessors. Likewise, Ff is 
the set of all successors, and Pf is the set of all predecessors. In the example above (see 
Figure 1), for instance, for j = 5 we have F5 = {7,8}, Ff = {7,8,9,10,11}, P5 = {2,3}, 
and Pf = {0,1,2,3}. Note, if an Operation j is a valid candidate then either Ff\V~ is 
empty or Pf\V~ is empty. 

Rule 2 (MaxIFP): A valid candidate j is selected by choosing the one with the max-
imum number of unassigned immediate successors/predecessors, i.e. the one that maxi-
mizes 

max{|F}\y-|,|^\y-|}. 

Rule 3 (MaxFP): A valid candidate j is selected by choosing the one with the maximum 
number of unassigned successors/predecessors, i.e. the one that maximizes 

Priority rules which should somehow reflect information on the structure of the network 
of precedence constraints may utilize the number of arcs on paths having Operation j as 
a source/sink. That is, they utilize 

Viwi+ Z iwi 
h£Ff\V-

and 

b=IWI+ E IWI-
h€F/\V-

Cumulated values have also been studied, i.e. 

r'i= E (^fc+l) 
heFj\V-

and 
r*i= E (r\ +1). 

h€Pj\V-
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Rule 4 (MaxA): A valid candidate j is selected by choosing the one with the maximum 
number of arcs on paths to/from unassigned successors/predecessors, i.e. the one that 
maximizes 

max{r j-, Tj}. 

Rule 5 (MaxCumA): A valid candidate j is selected by choosing the one with the max
imum cumulated number of arcs on paths to/from unassigned successors/predecessors, 
i.e. the one that maximizes ^ ^ 

ma x{r*j,r*j}. 

If priority rules should somehow reflect the workload that depends on Operation j, one 
may use the Operation time tj as a measure. But, one may also use what are called the 
positional weights, i.e. 

pWj= tj + J2 th 
heF?\v-

and 

h + 12 th-
h€P?\V~ 

Again, cumulated values have also been used, i.e. 

—y ^ —+ 
pw*j= tj + J2 PW*h 

heFj\v~ 

and _ <-
pw*j= tj + 22 PW 

hzPAV-

Rule 6 (MaxTime): A valid candidate j is selected by choosing the one with the 
maximum Operation time 

tj. 

Rule 7 (MaxPW): A valid candidate j is selected by choosing the one with the maxi
mum positional weight, i.e. the one that maximizes 

max{pWj,pWj}. 

Rule 8 (MaxCumPW): A valid candidate j is selected by choosing the one with the 
maximum cumulated positional weight, i.e. the one that maximizes 

—f 4— 
max{ pw*j,pw*j}. 

From the positional weight, one can derive the earliest Station away from the current 
Station an Operation can be assigned to. Formally, this is 

Ej = mm{\pwj /c|, \pü)j /c]}. 
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Since |V| is an upper bound on the minimum number of stations required, 

Lj = \V\ - Ei 

is the latest Station an Operation must be assigned to in order to improve that upper 
bound. Putting both together, 

Sj = Lj — E j + € 

can be used as a measure for the slack (we add some small number e, because Sj will later 
occur as a denominator and we want to avoid a division by zero). 

Rule 9 (MinE): A valid candidate j is selected by choosing the one with the minimum 
offset, i.e. the one that minimizes 

Rule 10 (MinL): A valid candidate j is selected by choosing the one with the minimum 
latest Station, i.e. the one that minimizes 

Rule 11 (MinSlack): A valid candidate j is selected by choosing the one with the 
minimum slack, i.e. the one that minimizes 

Sj. 

Combining the ideas of several of the above rules yields further priority rules. By 
combining rules 6 and 10 (or 11), we get two additional priority rules. 

Rule 12 (MaxTimeL): A valid candidate j is selected by choosing the one with the 
maximum ratio 

tj/Lj. 

Rule 13 (MaxTimeSlack): A valid candidate j is selected by choosing the one with 
the maximum ratio 

tj jSj. 

Combining rules 3 and 11 gives the following rule. 

Rule 14 (MaxFPSlack): A valid candidate j is selected by choosing the one with the 
maximum ratio 

Combining rules 7 and (the reciprocal value of) 3 is also possible. 
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Rule 15 (MaxAvgPW): A valid candidate j is selected by choosing the one with the 
maximurii ratio 

max/_A_ m } 
H\F?\V-| + i' |p;\y-| + r' 

Finally, we combine rules 3 and 10. 

Rule 16 (MinAvgL): A valid candidate j is selected by choosing the one with the 
minimum ratio 

[p&j/ci \y\- \püj /cii 
1 |F;\V-| + I ' |P;\V-| + I 

3 Computational Study 

We have implemented the priority rule heuristics in C and run the programs on a Pentium 
TT C omputer with 330 MHz, 64 MB Ram and a Linux operating System. We have used 
the test sets that have previously been used by Scholl [6]. That is, we have used the 64 
instances from the Talbot data set [9], the 50 instances from the Hoffmann data set[2, 3], 
the 168 instances from the Scholl data set [6], and a combined data set which includes all 
269 instances (13 instances are in the Talbot data set as well as in the Hoffmann data set). 
Note that all of these instances have a unique dummy start and end Operation, i.e. the 
first and the last Operation has an Operation time of zero. Because of this, we eliminate 
these two dummy Operations in advance by assigning them to the first Station at the very 
beginning. Otherwise, rules like MaxTime would produce the same result for U-lines as 
for straight lines which is not desired. Each of the 16 priority rules has been combined 
with the operation-oriented construction scheme (0) as well as with the station-oriented 
construction scheme (S). Note that for the straight assembly line balancing problem all 
rules are static (see [6]), i.e. the priority values need to be computed only once before the 
construction scheme takes over and updating is not necessary, but for U-lines these rules 
are dynamic rules (only MinOpNo and MaxTime remain static), because V~ changes dur-
ing run-time which affects the priority values. The rules are implemented in a so-called 
immediate-update-first fashion (see, for instance, [1] or [6]), i.e. for each Operation the 
priority value is updated immediately after each assignment of an Operation to a Station. 
As a measure of Performance, we examined the (average and maximum) percentage devia-
tion from the Optimum objective function value (provided by Scholl [6]), the (average and 
maximum) absolute deviation from the Optimum result, and the (average and maximum) 
run-time in CPU-seconds. Tables 1, 2, 3, and 4 provide these figures. 

For most of the priority rules being employed, both construction schemes give similar 
results. By focusing on the combined data set (Table 4), we see that, if for a certain priority 
rule the operation-oriented construction scheme is superior, differences between both 
construction scheme are fairly small. On the other hand, if for a particular priority rule 
the station-oriented construction scheme is the better performer, then the differences are 
offcen significantly Iarger. This leads to the conclusion that the station-oriented heuristics 
should be preferred. In fact, Scholl [6] concluded that for straight assembly lines the 
station-oriented approaches are also "more promising" than the operation-oriented ones. 

Not surprisingly, the run-time is small in (almost) all cases. Only the MaxCumA and 
the MaxCumPW priority rules resulted in excessive run-times longer than one hour when 
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relative deviation absolute deviation run--time 
AVG MAX AVG MAX AVG MAX 

rule 0 S O S O S 0 s O S O s 
MinOpNo 10.2 9.3 50.0 50.0 0.6 0.5 2.0 2.0 0.01 0.01 0.08 0.06 
MaxIFP 8.1 7.9 50.0 50.0 0.5 0.5 2.0 2.0 0.02 0.01 0.12 0.09 
MaxFP 6.2 7.2 50.0 50.0 0.4 0.4 2.0 2.0 0.02 0.01 0.12 0.07 
MaxA 6.5 7.2 50.0 50.0 0.4 0.4 2.0 2.0 0.03 0.03 0.20 0.15 
MaxCumA 6.9 7.1 50.0 50.0 0.4 0.4 2.0 2.0 0.05 0.04 0.34 0.29 
MaxTime 6.2 5.0 33.3 33.3 0.4 0.3 2.0 1.0 0.01 0.01 0.09 0.08 
MaxPW 5.8 6.2 50.0 50.0 0.3 0.4 1.0 1.0 0.02 0.01 0.11 0.07 
MaxCumPW 5.1 6.2 50.0 50.0 0.3 0.4 1.0 1.0 0.04 0.04 0.30 0.26 
MinE 9.8 9.8 50.0 50.0 0.6 0.6 3.0 3.0 0.02 0.01 0.11 0.07 
MinL 9.7 9.4 50.0 50.0 0.5 0.5 2.0 2.0 0.02 0.01 0.12 0.08 
MinSlack 9.7 9.4 50.0 50.0 0.5 0.5 2.0 2.0 0.02 0.01 0.12 0.08 
MaxTimeL 6.2 5.0 33.3 33.3 0.4 0.3 2.0 1.0 0.02 0.01 0.12 0.08 
MaxTimeSlack 6.2 5.0 33.3 33.3 0.4 0.3 2.0 1.0 0.02 0.01 0.12 0.09 
MaxFPSlack 6.0 6.9 50.0 50.0 0.3 0.4 1.0 2.0 0.02 0.02 0.15 0.10 
MaxAvgPW 4.9 4.5 33.3 33.3 0.3 0.3 1.0 1.0 0.02 0.01 0.11 0.07 
MinAvgL 6.3 7.4 50.0 50.0 0.4 0.4 1.0 1.0 0.02 0.01 0.10 0.07 

Table 1: Results for the Talbot Data Set 

relative deviation absolute deviation run--time 
AVG MAX AVG MAX AVG MAX 

rule O S O S O S 0 S O S 0 S 
MinOpNo 9.9 7.8 20.0 20.0 1.5 1.0 4.0 2.0 0.03 0.02 0.09 0.06 
MaxIFP 7.8 7.6 20.0 20.0 1.1 1.0 2.0 2.0 0.05 0.03 0.13 0.08 
MaxFP 6.6 6.9 20.0 20.0 0.9 0.9 2.0 2.0 0.04 0.03 0.10 0.07 
MaxA 6.8 6.9 20.0 20.0 0.9 0.9 2.0 2.0 0.09 0.06 0.21 0.14 
MaxCumA 6.5 6.6 20.0 20.0 0.8 0.8 2.0 2.0 0.14 0.11 0.34 0.29 
MaxTime 7.9 5.9 20.0 16.7 1.1 0.8 3.0 2:0 0.03 0.02 0.08 0.06 
MaxPW 5.8 5.8 16.7 16.7 0.8 0.8 1.0 1.0 0.04 0.03 0.10 0.08 
MaxCumPW 6.2 5.7 20.0 16.7 0.8 0.7 1.0 1.0 0.13 0.10 0.30 0.25 
MinE 10.4 10.2 20.8 20.0 1.6 1.5 5.0 4.0 0.04 0.03 0.11 0.08 
MinL 8.1 7.1 20.0 20.0 1.2 1.0 3.0 2.0 0.05 0.03 0.12 0.08 
MinSlack 8.1 7.1 20.0 20.0 1.2 1.0 3.0 2.0 0.05 0.04 0.12 0.08 
MaxTimeL 7.9 6.1 20.0 16.7 1.1 0.8 3.0 2.0 0.05 0.03 0.12 0.08 
MaxTimeSlack 7.9 6.1 20.0 16.7 1.1 0.8 3.0 2.0. 0.05 0.04 0.12 0.08 
MaxFPSlack 6.3 6.7 20.0 20.0 0.8 0.8 2.0 2.0 0.06 0.04 0.15 0.09 
MaxAvgPW 7.1 7.0 20.0 20.0 1.0 0.9 3.0 3.0 0.04 0.03 0.11 0.07 
MinAvgL 6.8 6.7 20.0 20.0 0.9 0.8 2.0 2.0 0.04 0.03 0.11 0.07 

Table 2: Results for the Hoffmann Data Set 
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relative deviation absolute deviation run--time 
AVG MAX AVG MAX AVG MAX 

rule 0 S O S O S O S O S O S 

MinOpNo 7.9 7.4 33.3 33.3 1.8 1.7 9.0 9.0 0.29 0.22 1.67 1.21 
MaxIFP 7.2 7.0 33.3 33.3 1.6 1.5 9.0 9.0 0.50 0.41 2.85 2.34 
MaxFP 6.0 6.2 33.3 33.3 1.4 1.4 8.0 8.0 0.42 0.35 2.46 2.01 
MaxA 6.0 6.2 33.3 33.3 1.3 1.4 8.0 8.0 1.37 1.11 8.11 7.20 
MaxCumA* 6.6 6.8 33.3 33.3 1.4 1.4 6.0 6.0 0.40 0.34 1.16 1.01 
MaxTime 6.6 4.5 33.3 33.3 1.5 0.9 6.0 4.0 0.30 0.22 1.74 1.22 
MaxPW 5.2 5.4 33.3 33.3 1.1 1.1 7.0 7.0 0.42 0.35 2.42 2.00 
MaxCumPW* 5.7 6.2 33.3 33.3 1.1 1.2 6.0 7.0 0.38 0.32 1.10 0.95 
MinE 8.4 8.2 33.3 33.3 1.9 1.8 7.0 7.0 0.49 0.41 2.80 2.36 
MinL 7.6 7.4 33.3 33.3 1.8 1.7 10.0 11.0 0.47 0.40 2.73 2.29 
MinSlack 7.6 7.4 33.3 33.3 1.8 1.7 10.0 11.0 0.48 0.40 2.77 2.30 
MaxTimeL 6.9 4.3 33.3 33.3 1.6 0.9 9.0 3.0 0.49 0.41 2.78 2.34 
MaxTimeSlack 6.9 4.3 33.3 33.3 1.6 0.9 9.0 3.0 0.50 0.42 2.79 2.35 
MaxFPSlack 6.3 6.5 33.3 33.3 1.4 1.5 9.0 9.0 0.52 0.42 2.84 2.34 
MaxAvgPW 6.0 5.0 33.3 33.3 1.2 0.9 5.0 4.0 0.44 0.38 2.46 2.24 
MinAvgL 5.9 6.2 33.3 33.3 1.3 1.4 8.0 8.0 0.43 0.36 2.45 2.03 

*: These results are without the 26 instances with 297 Operations from the Scholl data set, because the 
run-time per instance exceeds 1 hour when these rules are used. 

Table 3: Results for the Scholl Data Set 

relative deviation absolute deviation run--time 
AVG MAX AVG MAX AVG MAX 

rule O S O S O s O s O S O S 

MinOpNo 8.7 7.8 50.0 50.0 1.5 1.3 9.0 9.0 0.19 0.14 1.68 1.28 
MaxIFP 7.4 7.2 50.0 50.0 1.2 1.2 9.0 9.0 0.32 0.27 2.81 2.35 
MaxFP 6.1 6.4 50.0 50.0 1.1 1.1 8.0 8.0 0.27 0.22 2.43 2.00 
MaxA 6.1 6.4 50.0 50.0 1.0 1.1 8.0 8.0 0.90 0.70 8.44 7.11 
MaxCumA* 6.5 6.7 50.0 50.0 1.0 1.1 6.0 6.0 0.27 0.23 1.14 1.01 
MaxTime 6.5 4.7 33.3 33.3 1.2 0.7 6.0 4.0 0.20 0.14 1.74 1.20 
MaxPW 5.3 5.5 50.0 50.0 0.9 0.9 7.0 7.0 0.28 0.23 2.45 2.02 
MaxCumPW* 5.5 6.0 50.0 50.0 0.8 0.9 6.0 7.0 0.26 0.22 1.09 0.95 
MinE 9.0 8.8 50.0 50.0 1.6 1.5 7.0 7.0 0.31 0.26 2.79 2.37 
MinL 8.1 7.7 50.0 50.0 1.4 1.3 10.0 11.0 0.31 0.25 2.75 2.30 
MinSlack 8.1 7.7 50.0 50.0 1.4 1.3 10.0 11.0 0.31 0.26 2.78 2.31 
MaxTimeL 6.8 4.6 33.3 33.3 1.2 0.7 9.0 3.0 0.32 0.26 2.81 2.35 
MaxTimeSlack 6.8 4.6 33.3 33.3 1.3 0.7 9.0 3.0 0.32 0.27 2.80 2.36 
MaxFPSlack 6.1 6.5 50.0 50.0 1.1 1.1 9.0 9.0 . 0.34 0.27 2.81 2.33 
MaxAvgPW 5.8 5.0 33.3 33.3 1.0 0.8 5.0 4.0 0.28 0.25 2.46 2.27 
MinAvgL 6.1 6.5 50.0 50.0 1.0 1.1 8.0 8.0 0.28 0.23 2.44 2.02 

*: These results are without the 26 instances with 297 Operations from the Scholl data set, because the 
run-time per instance exceeds 1 hour when these rules are used. 

Table 4: Results for the Combined Data Set 
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large instances with 297 Operations are to be solved. Usually, the figures are fractions of 
a second. 

On average, the feasible Solutions require only less than two more stations than the 
optimum Solution. The average percentage deviation from the optimum result is less than 
10.4% in all cases. As one would expect, the simple rule MinOpNo gives worse results 
than most of the other rules. MinE, MinL, and MinSlack seem to be no good rules as well. 
MaxPW seems to be the top performer when an operation-oriented construction scheme is 
used showing an average deviation of 5.3% from the optimum result for the combined data 
set. For the station-oriented approach the rules MaxTimeL and MaxTimeSlack give best 
results with an average deviation of 4.6% only for the combined data set. Surprisingly, 
the simple rule MaxTime gives an almost equally good result (4.7% average deviation). 

4 Conclusion 

In this paper we have examined the Performance of priority rule heuristics for the U-
shaped assembly line balancing problem. 16 rules, which have previously been discussed 
in the context of straight assembly lines, have been adapted and applied. Fach rule has 
been combined with an operation-oriented and a station-oriented construction scheme. 
As a test-bed we have taken instances from the literature. The main result is that station-
oriented construction schemes outperform operation-oriented construction schemes. For 
the operation-oriented construction scheme, the best on average result has been achieved 
with a priority rule based on the so-called positional weight. This rule lead to an overall 
average deviation of 5.3% from the optimum result. for the station-oriented construction 
scheme, the best on average result has been achieved by using rules that combine the 
Operation time with Information on the latest Station and the slack, respectively. These 
rules lead to an overall average deviation of 4.6% from the optimum result. This is a 
promising result given that we studied single-pass heuristics only. That is, this result 
could have been achieved by applying simple construction principles for finding a Single 
feasible Solution. 

Future work should develop and test more sophisticated heuristics for balancing U-
shaped assembly lines. Especially improvement heuristics can and should be considered. 
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