
Kimms, Alf

Working Paper — Digitized Version

Balancing u-shaped assembly lines heuristically

Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel, No. 524

Provided in Cooperation with:
Christian-Albrechts-University of Kiel, Institute of Business Administration

Suggested Citation: Kimms, Alf (2000) : Balancing u-shaped assembly lines heuristically, Manuskripte
aus den Instituten für Betriebswirtschaftslehre der Universität Kiel, No. 524, Universität Kiel, Institut
für Betriebswirtschaftslehre, Kiel

This Version is available at:
https://hdl.handle.net/10419/149074

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/149074
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

Manuskripte

aus den

Instituten für Betriebswirtschaftslehre

der Universität Kiel

Manuskripte

aus den

Instituten für Betriebswirtschaftslehre

der Universität Kiel

No. 524

Balancing U—Shaped Assembly Lines Heuristically

A. Kim ms

March 2000

Alf Kimms
Lehrstuhl für Produktion und Logistik, Institut für Betriebswirtschaftslehre, Christian-
Albrechts-Universität zu Kiel, Olshausenstr. 40, 24118 Kiel, Germany
email: Kimms@bwl.uni-kiel.de
URL: http://www.wiso.uni-kiel.de/bwlinstitute/Prod

ftp://ftp.wiso.uni-kiel.de/pub/operations-research

Abstract
While balancing straight assembly lines is a well-studied problem, the Situation

where the assembly line has a U-shaped Iayout is a still emerging research field.
The advantage of these lines is that workers may simply turn around to operate at
two legs of the line. Hence, there is an additional degree of freedom for assigning
Operations to stations. This bears the hope that U-lines are more efficient than
straight lines. Since work on this WP-hard problem has mainly focused on exact
algorithms, we study priority rule heuristics. We adapted 16 priority rules which
have been applied to the straight line case before and examine their Performance
with a computational study.

Keywords: U-Lines, assembly line balancing, priority rule heuristics

1 Introduction

When operating an assembly (flow) line, one of the key Performance measures is the
efficiency of that line, and so, of course, we like to have lines with utmost efficiency. To
define more precisely what efficiency means, we must take a closer look at the Situation:
We concentrate on paced lines on which a Single (product) model is produced. Assembling
such a model means to perform a certain set of Operations. For technological reasons, these
Operations cannot be performed in arbitrary order, but have to respect acyclic precedence
constraints, i.e., a partial order is given. While moving thru the line, a model subsequently
passes several working areas, so-called stations, in each of which it remains a certain cycle
time before it moves to the next Station. Now, the balancing problem is to decide which
Operations are to be performed at what stations. It is not allowed to Start an Operation
at one Station and flnish it at another Station, i.e., each Operation must be executed in
füll at one Single Station. However, it is allowed to assign more than one Operation to a
Single Station as long as the sum of Operation times do not exceed the cycle time. Now,
efficiency can more formally be defined as follows: Let V be the set of Operations and tj
be the Operation time of Operation j € V. Furthermore, let m be the number of stations
and c be the cycle time. The efficiency E of a given assembly line is then defined as

E _ Zjev tj
m • c

Usually, either more are given a priori. As a consequence, maximizing E is equivalent
to minimizing c, if m is given, or minimizing m, if c is given. If neither m nor c is given, one
can compute an efficiency curve by fixing one of these variables and solving the remaining
minimization problem. Döing this for several values of the variable that is fixed gives the
desired curve. We focus here on the case that c is known in advance and consider this as
being a realistic Situation, because the cycle time c determines the produetion rate of the
flow line which is tightly related to the demand that is to be met.

Traditionally, straight flow lines have been considered where an Operation j can only
be assigned to a Station s if and only if all Operations that must preeeed j are assigned to
stations not beyond s. A small example may illustrate this Situation. Consider the data
given in Figure 1 and assume a cycle time c = 10.

A feasible Solution for this balancing problem is depicted in Figure 2. As we can see,
five stations are required in this Solution. Indeed, this is the minimum number of stations
required.

1

ö ,
4 4 (6 \ 4

Figure 1: A Small Example

V o o

Q..Q..O.

Station 1

Q..Q..Ö.

Station 2

Ö..Q.

Station 3

.Q..0.

Station 4

Figure 2: An Optimum Solution for the Straight Line

Q..0

Station 5

Instead of a straight layout of an assembly line a U-shaped layout has attracted
attention in the recent past, because such formation may increase the efficiency of the
line when compared to the straight line. The advantage of a U-line is that workers may
now simply turn around to perform Operations at different sections of the line. Hence,
there is an additional degree of freedom for bundling Operations to be performed at a
common Station. Figure 3 illustrates this Situation. Apparently, only four stations are
required now, and, therefore, this U-line is more efficient than the straight line.

There is a vast amount of literature on the assembly line balancing problem for straight
lines. Some Important references are the ones by Hoffmann [3], Johnson [4], Scholl and
Klein [7], and Sprecher [8]. A much more comprehensive survey can be found in [6]. For
U-shaped assembly lines, only few publications exist. A neat linear model formulation

0 3

_Q-Q

4

0

6 3 4

Q.

Station 1 Station 2 Station 3 Station 4

-©-©-©-
0 3 4 4 2

"0"'
6

Figure 3: An Optimum Solution for the U-Line

2

with binary decision variables for the U-shaped assembly line balancing problem has been
presented by Urban [10]. Methods for the U-shaped assembly line balancing problem are
discussed by Miltenburg and Wijngaard [5] and Scholl [6].

In view of the literature, there seems to be a lack of contributions dealing with fast
heuristics for the U-shaped assembly line problem. In what follows, we will therefore
present several priority rule heuristics for the U-shaped assembly line balancing problem.
Then, we discuss the results of a computational study.

2 Priority Rule Heuristics

For the straight assembly line balancing problem, a bunch of priority rule heuristics have
been applied to find feasible Solutions within short time. The Performance of such heuris
tics has been evaluated and compared against each other in [6]. To sum up the results of
this study, priority rule heuristics work very fast and, depending on the priority rules be-
ing employed, give solutions which deviate on average ab out 4% to 8% from the Optimum
result.

In this paper, we will adapt the heuristics used in [6] to attack the U-shaped assembly
line balancing problem. Two basic construction principles can be discriminated for finding
a feasible Solution: station-oriented and operation-oriented construction schemes. Both
construction schemes assign Operations one by one to stations until a feasible Solution is
complete.

The station-oriented construction scheme works as follows: Starting with Station num-
ber one as being the current Station, we determine the set of all Operations which can
next be assigned to the current Station. For being such a valid candidate, an Operation
must fulfill two criteria. First, its Operation time plus the sum of Operation times of all
Operations that have already been assigned to the current Station must not exceed the
cycle time. And second, all its predecessors or all its successors must have been already
assigned to a Station. If the set of Operations fulfilling these two criteria contains more
than a Single element, a priority rule is used to make a choice. After war ds, the set of valid
candidates is updated to assign additional Operations to the current Station. Once the set
of valid candidates is empty, the next (empty) Station is considered and so on until all
Operations are assigned to a Station.

The operation-oriented construction scheme works as follows: From the set of Opera
tions that have not been assigned to any Station yet, we determine the set of Operations
which can next be assigned to a Station. For being such a valid candidate, all its pre
decessors or all its successors must have already been assigned to a Station. If this set
contains more than a Single Operation, a priority rule helps to choose the next Operation.
Once an Operation is selected, we assign it to the lowest numbered Station such that two
criteria are met. First, the sum of Operation times of all Operations assigned to a partic-
ular Station must not exceed the cycle time. Second, an Operation can only be assigned
to a Station s, if either all its predecessors have already been assigned to stations with
no number greater than s, or all its successors have already been assigned to stations
with no number greater than s. After an Operation is assigned to a Station, the set of
valid candidates for the next assignment is updated and so on until a feasible Solution is
complete.

Throughout, we consider here single-pass heuristics only. That is, given a construc
tion scheme and a priority rule, only a Single feasible Solution is constructed by making

3

deterministic choices. It is straightforward to extend these ideas to multi-pass heuristics
where several runs are performed while making random choices.

In [6], 16 priority rules are tested. We have adapted all of them for our purposes:

Rule 1 (MinOpNo): A valid candidate j is selected by choosing the one with the lowest
Operation number

3-

This first rule is a very simple priority rule and we use it as a standalone rule, but
also as a tie breaker rule for all other priority rules to identify a unique candidate.

For defining more sophisticated rules, we use V~ to denote the set of Operations which
have already been assigned to a Station during the course of computation. Hence, V~ is
updated after each selection of a candidate. Furthermore, for each Operation j, Fj is the
set of immediate successors, and Pj is the set of immediate predecessors. Likewise, Ff is
the set of all successors, and Pf is the set of all predecessors. In the example above (see
Figure 1), for instance, for j = 5 we have F5 = {7,8}, Ff = {7,8,9,10,11}, P5 = {2,3},
and Pf = {0,1,2,3}. Note, if an Operation j is a valid candidate then either Ff\V~ is
empty or Pf\V~ is empty.

Rule 2 (MaxIFP): A valid candidate j is selected by choosing the one with the max-
imum number of unassigned immediate successors/predecessors, i.e. the one that maxi-
mizes

max{|F}\y-|,|^\y-|}.

Rule 3 (MaxFP): A valid candidate j is selected by choosing the one with the maximum
number of unassigned successors/predecessors, i.e. the one that maximizes

Priority rules which should somehow reflect information on the structure of the network
of precedence constraints may utilize the number of arcs on paths having Operation j as
a source/sink. That is, they utilize

Viwi+ Z iwi
h£Ff\V-

and

b=IWI+ E IWI-
h€F/\V-

Cumulated values have also been studied, i.e.

r'i= E (^fc+l)
heFj\V-

and
r*i= E (r\ +1).

h€Pj\V-

4

Rule 4 (MaxA): A valid candidate j is selected by choosing the one with the maximum
number of arcs on paths to/from unassigned successors/predecessors, i.e. the one that
maximizes

max{r j-, Tj}.

Rule 5 (MaxCumA): A valid candidate j is selected by choosing the one with the max
imum cumulated number of arcs on paths to/from unassigned successors/predecessors,
i.e. the one that maximizes ^ ^

ma x{r*j,r*j}.

If priority rules should somehow reflect the workload that depends on Operation j, one
may use the Operation time tj as a measure. But, one may also use what are called the
positional weights, i.e.

pWj= tj + J2 th
heF?\v-

and

h + 12 th-
h€P?\V~

Again, cumulated values have also been used, i.e.

—y ^ —+
pw*j= tj + J2 PW*h

heFj\v~

and _ <-
pw*j= tj + 22 PW

hzPAV-

Rule 6 (MaxTime): A valid candidate j is selected by choosing the one with the
maximum Operation time

tj.

Rule 7 (MaxPW): A valid candidate j is selected by choosing the one with the maxi
mum positional weight, i.e. the one that maximizes

max{pWj,pWj}.

Rule 8 (MaxCumPW): A valid candidate j is selected by choosing the one with the
maximum cumulated positional weight, i.e. the one that maximizes

—f 4—
max{ pw*j,pw*j}.

From the positional weight, one can derive the earliest Station away from the current
Station an Operation can be assigned to. Formally, this is

Ej = mm{\pwj /c|, \pü)j /c]}.

5

Since |V| is an upper bound on the minimum number of stations required,

Lj = \V\ - Ei

is the latest Station an Operation must be assigned to in order to improve that upper
bound. Putting both together,

Sj = Lj — E j + €

can be used as a measure for the slack (we add some small number e, because Sj will later
occur as a denominator and we want to avoid a division by zero).

Rule 9 (MinE): A valid candidate j is selected by choosing the one with the minimum
offset, i.e. the one that minimizes

Rule 10 (MinL): A valid candidate j is selected by choosing the one with the minimum
latest Station, i.e. the one that minimizes

Rule 11 (MinSlack): A valid candidate j is selected by choosing the one with the
minimum slack, i.e. the one that minimizes

Sj.

Combining the ideas of several of the above rules yields further priority rules. By
combining rules 6 and 10 (or 11), we get two additional priority rules.

Rule 12 (MaxTimeL): A valid candidate j is selected by choosing the one with the
maximum ratio

tj/Lj.

Rule 13 (MaxTimeSlack): A valid candidate j is selected by choosing the one with
the maximum ratio

tj jSj.

Combining rules 3 and 11 gives the following rule.

Rule 14 (MaxFPSlack): A valid candidate j is selected by choosing the one with the
maximum ratio

Combining rules 7 and (the reciprocal value of) 3 is also possible.

6

Rule 15 (MaxAvgPW): A valid candidate j is selected by choosing the one with the
maximurii ratio

max/_A_ m }
H\F?\V-| + i' |p;\y-| + r'

Finally, we combine rules 3 and 10.

Rule 16 (MinAvgL): A valid candidate j is selected by choosing the one with the
minimum ratio

[p&j/ci \y\- \püj /cii
1 |F;\V-| + I ' |P;\V-| + I

3 Computational Study

We have implemented the priority rule heuristics in C and run the programs on a Pentium
TT C omputer with 330 MHz, 64 MB Ram and a Linux operating System. We have used
the test sets that have previously been used by Scholl [6]. That is, we have used the 64
instances from the Talbot data set [9], the 50 instances from the Hoffmann data set[2, 3],
the 168 instances from the Scholl data set [6], and a combined data set which includes all
269 instances (13 instances are in the Talbot data set as well as in the Hoffmann data set).
Note that all of these instances have a unique dummy start and end Operation, i.e. the
first and the last Operation has an Operation time of zero. Because of this, we eliminate
these two dummy Operations in advance by assigning them to the first Station at the very
beginning. Otherwise, rules like MaxTime would produce the same result for U-lines as
for straight lines which is not desired. Each of the 16 priority rules has been combined
with the operation-oriented construction scheme (0) as well as with the station-oriented
construction scheme (S). Note that for the straight assembly line balancing problem all
rules are static (see [6]), i.e. the priority values need to be computed only once before the
construction scheme takes over and updating is not necessary, but for U-lines these rules
are dynamic rules (only MinOpNo and MaxTime remain static), because V~ changes dur-
ing run-time which affects the priority values. The rules are implemented in a so-called
immediate-update-first fashion (see, for instance, [1] or [6]), i.e. for each Operation the
priority value is updated immediately after each assignment of an Operation to a Station.
As a measure of Performance, we examined the (average and maximum) percentage devia-
tion from the Optimum objective function value (provided by Scholl [6]), the (average and
maximum) absolute deviation from the Optimum result, and the (average and maximum)
run-time in CPU-seconds. Tables 1, 2, 3, and 4 provide these figures.

For most of the priority rules being employed, both construction schemes give similar
results. By focusing on the combined data set (Table 4), we see that, if for a certain priority
rule the operation-oriented construction scheme is superior, differences between both
construction scheme are fairly small. On the other hand, if for a particular priority rule
the station-oriented construction scheme is the better performer, then the differences are
offcen significantly Iarger. This leads to the conclusion that the station-oriented heuristics
should be preferred. In fact, Scholl [6] concluded that for straight assembly lines the
station-oriented approaches are also "more promising" than the operation-oriented ones.

Not surprisingly, the run-time is small in (almost) all cases. Only the MaxCumA and
the MaxCumPW priority rules resulted in excessive run-times longer than one hour when

7

relative deviation absolute deviation run--time
AVG MAX AVG MAX AVG MAX

rule 0 S O S O S 0 s O S O s
MinOpNo 10.2 9.3 50.0 50.0 0.6 0.5 2.0 2.0 0.01 0.01 0.08 0.06
MaxIFP 8.1 7.9 50.0 50.0 0.5 0.5 2.0 2.0 0.02 0.01 0.12 0.09
MaxFP 6.2 7.2 50.0 50.0 0.4 0.4 2.0 2.0 0.02 0.01 0.12 0.07
MaxA 6.5 7.2 50.0 50.0 0.4 0.4 2.0 2.0 0.03 0.03 0.20 0.15
MaxCumA 6.9 7.1 50.0 50.0 0.4 0.4 2.0 2.0 0.05 0.04 0.34 0.29
MaxTime 6.2 5.0 33.3 33.3 0.4 0.3 2.0 1.0 0.01 0.01 0.09 0.08
MaxPW 5.8 6.2 50.0 50.0 0.3 0.4 1.0 1.0 0.02 0.01 0.11 0.07
MaxCumPW 5.1 6.2 50.0 50.0 0.3 0.4 1.0 1.0 0.04 0.04 0.30 0.26
MinE 9.8 9.8 50.0 50.0 0.6 0.6 3.0 3.0 0.02 0.01 0.11 0.07
MinL 9.7 9.4 50.0 50.0 0.5 0.5 2.0 2.0 0.02 0.01 0.12 0.08
MinSlack 9.7 9.4 50.0 50.0 0.5 0.5 2.0 2.0 0.02 0.01 0.12 0.08
MaxTimeL 6.2 5.0 33.3 33.3 0.4 0.3 2.0 1.0 0.02 0.01 0.12 0.08
MaxTimeSlack 6.2 5.0 33.3 33.3 0.4 0.3 2.0 1.0 0.02 0.01 0.12 0.09
MaxFPSlack 6.0 6.9 50.0 50.0 0.3 0.4 1.0 2.0 0.02 0.02 0.15 0.10
MaxAvgPW 4.9 4.5 33.3 33.3 0.3 0.3 1.0 1.0 0.02 0.01 0.11 0.07
MinAvgL 6.3 7.4 50.0 50.0 0.4 0.4 1.0 1.0 0.02 0.01 0.10 0.07

Table 1: Results for the Talbot Data Set

relative deviation absolute deviation run--time
AVG MAX AVG MAX AVG MAX

rule O S O S O S 0 S O S 0 S
MinOpNo 9.9 7.8 20.0 20.0 1.5 1.0 4.0 2.0 0.03 0.02 0.09 0.06
MaxIFP 7.8 7.6 20.0 20.0 1.1 1.0 2.0 2.0 0.05 0.03 0.13 0.08
MaxFP 6.6 6.9 20.0 20.0 0.9 0.9 2.0 2.0 0.04 0.03 0.10 0.07
MaxA 6.8 6.9 20.0 20.0 0.9 0.9 2.0 2.0 0.09 0.06 0.21 0.14
MaxCumA 6.5 6.6 20.0 20.0 0.8 0.8 2.0 2.0 0.14 0.11 0.34 0.29
MaxTime 7.9 5.9 20.0 16.7 1.1 0.8 3.0 2:0 0.03 0.02 0.08 0.06
MaxPW 5.8 5.8 16.7 16.7 0.8 0.8 1.0 1.0 0.04 0.03 0.10 0.08
MaxCumPW 6.2 5.7 20.0 16.7 0.8 0.7 1.0 1.0 0.13 0.10 0.30 0.25
MinE 10.4 10.2 20.8 20.0 1.6 1.5 5.0 4.0 0.04 0.03 0.11 0.08
MinL 8.1 7.1 20.0 20.0 1.2 1.0 3.0 2.0 0.05 0.03 0.12 0.08
MinSlack 8.1 7.1 20.0 20.0 1.2 1.0 3.0 2.0 0.05 0.04 0.12 0.08
MaxTimeL 7.9 6.1 20.0 16.7 1.1 0.8 3.0 2.0 0.05 0.03 0.12 0.08
MaxTimeSlack 7.9 6.1 20.0 16.7 1.1 0.8 3.0 2.0. 0.05 0.04 0.12 0.08
MaxFPSlack 6.3 6.7 20.0 20.0 0.8 0.8 2.0 2.0 0.06 0.04 0.15 0.09
MaxAvgPW 7.1 7.0 20.0 20.0 1.0 0.9 3.0 3.0 0.04 0.03 0.11 0.07
MinAvgL 6.8 6.7 20.0 20.0 0.9 0.8 2.0 2.0 0.04 0.03 0.11 0.07

Table 2: Results for the Hoffmann Data Set

8

relative deviation absolute deviation run--time
AVG MAX AVG MAX AVG MAX

rule 0 S O S O S O S O S O S

MinOpNo 7.9 7.4 33.3 33.3 1.8 1.7 9.0 9.0 0.29 0.22 1.67 1.21
MaxIFP 7.2 7.0 33.3 33.3 1.6 1.5 9.0 9.0 0.50 0.41 2.85 2.34
MaxFP 6.0 6.2 33.3 33.3 1.4 1.4 8.0 8.0 0.42 0.35 2.46 2.01
MaxA 6.0 6.2 33.3 33.3 1.3 1.4 8.0 8.0 1.37 1.11 8.11 7.20
MaxCumA* 6.6 6.8 33.3 33.3 1.4 1.4 6.0 6.0 0.40 0.34 1.16 1.01
MaxTime 6.6 4.5 33.3 33.3 1.5 0.9 6.0 4.0 0.30 0.22 1.74 1.22
MaxPW 5.2 5.4 33.3 33.3 1.1 1.1 7.0 7.0 0.42 0.35 2.42 2.00
MaxCumPW* 5.7 6.2 33.3 33.3 1.1 1.2 6.0 7.0 0.38 0.32 1.10 0.95
MinE 8.4 8.2 33.3 33.3 1.9 1.8 7.0 7.0 0.49 0.41 2.80 2.36
MinL 7.6 7.4 33.3 33.3 1.8 1.7 10.0 11.0 0.47 0.40 2.73 2.29
MinSlack 7.6 7.4 33.3 33.3 1.8 1.7 10.0 11.0 0.48 0.40 2.77 2.30
MaxTimeL 6.9 4.3 33.3 33.3 1.6 0.9 9.0 3.0 0.49 0.41 2.78 2.34
MaxTimeSlack 6.9 4.3 33.3 33.3 1.6 0.9 9.0 3.0 0.50 0.42 2.79 2.35
MaxFPSlack 6.3 6.5 33.3 33.3 1.4 1.5 9.0 9.0 0.52 0.42 2.84 2.34
MaxAvgPW 6.0 5.0 33.3 33.3 1.2 0.9 5.0 4.0 0.44 0.38 2.46 2.24
MinAvgL 5.9 6.2 33.3 33.3 1.3 1.4 8.0 8.0 0.43 0.36 2.45 2.03

*: These results are without the 26 instances with 297 Operations from the Scholl data set, because the
run-time per instance exceeds 1 hour when these rules are used.

Table 3: Results for the Scholl Data Set

relative deviation absolute deviation run--time
AVG MAX AVG MAX AVG MAX

rule O S O S O s O s O S O S

MinOpNo 8.7 7.8 50.0 50.0 1.5 1.3 9.0 9.0 0.19 0.14 1.68 1.28
MaxIFP 7.4 7.2 50.0 50.0 1.2 1.2 9.0 9.0 0.32 0.27 2.81 2.35
MaxFP 6.1 6.4 50.0 50.0 1.1 1.1 8.0 8.0 0.27 0.22 2.43 2.00
MaxA 6.1 6.4 50.0 50.0 1.0 1.1 8.0 8.0 0.90 0.70 8.44 7.11
MaxCumA* 6.5 6.7 50.0 50.0 1.0 1.1 6.0 6.0 0.27 0.23 1.14 1.01
MaxTime 6.5 4.7 33.3 33.3 1.2 0.7 6.0 4.0 0.20 0.14 1.74 1.20
MaxPW 5.3 5.5 50.0 50.0 0.9 0.9 7.0 7.0 0.28 0.23 2.45 2.02
MaxCumPW* 5.5 6.0 50.0 50.0 0.8 0.9 6.0 7.0 0.26 0.22 1.09 0.95
MinE 9.0 8.8 50.0 50.0 1.6 1.5 7.0 7.0 0.31 0.26 2.79 2.37
MinL 8.1 7.7 50.0 50.0 1.4 1.3 10.0 11.0 0.31 0.25 2.75 2.30
MinSlack 8.1 7.7 50.0 50.0 1.4 1.3 10.0 11.0 0.31 0.26 2.78 2.31
MaxTimeL 6.8 4.6 33.3 33.3 1.2 0.7 9.0 3.0 0.32 0.26 2.81 2.35
MaxTimeSlack 6.8 4.6 33.3 33.3 1.3 0.7 9.0 3.0 0.32 0.27 2.80 2.36
MaxFPSlack 6.1 6.5 50.0 50.0 1.1 1.1 9.0 9.0 . 0.34 0.27 2.81 2.33
MaxAvgPW 5.8 5.0 33.3 33.3 1.0 0.8 5.0 4.0 0.28 0.25 2.46 2.27
MinAvgL 6.1 6.5 50.0 50.0 1.0 1.1 8.0 8.0 0.28 0.23 2.44 2.02

*: These results are without the 26 instances with 297 Operations from the Scholl data set, because the
run-time per instance exceeds 1 hour when these rules are used.

Table 4: Results for the Combined Data Set

9

large instances with 297 Operations are to be solved. Usually, the figures are fractions of
a second.

On average, the feasible Solutions require only less than two more stations than the
optimum Solution. The average percentage deviation from the optimum result is less than
10.4% in all cases. As one would expect, the simple rule MinOpNo gives worse results
than most of the other rules. MinE, MinL, and MinSlack seem to be no good rules as well.
MaxPW seems to be the top performer when an operation-oriented construction scheme is
used showing an average deviation of 5.3% from the optimum result for the combined data
set. For the station-oriented approach the rules MaxTimeL and MaxTimeSlack give best
results with an average deviation of 4.6% only for the combined data set. Surprisingly,
the simple rule MaxTime gives an almost equally good result (4.7% average deviation).

4 Conclusion

In this paper we have examined the Performance of priority rule heuristics for the U-
shaped assembly line balancing problem. 16 rules, which have previously been discussed
in the context of straight assembly lines, have been adapted and applied. Fach rule has
been combined with an operation-oriented and a station-oriented construction scheme.
As a test-bed we have taken instances from the literature. The main result is that station-
oriented construction schemes outperform operation-oriented construction schemes. For
the operation-oriented construction scheme, the best on average result has been achieved
with a priority rule based on the so-called positional weight. This rule lead to an overall
average deviation of 5.3% from the optimum result. for the station-oriented construction
scheme, the best on average result has been achieved by using rules that combine the
Operation time with Information on the latest Station and the slack, respectively. These
rules lead to an overall average deviation of 4.6% from the optimum result. This is a
promising result given that we studied single-pass heuristics only. That is, this result
could have been achieved by applying simple construction principles for finding a Single
feasible Solution.

Future work should develop and test more sophisticated heuristics for balancing U-
shaped assembly lines. Especially improvement heuristics can and should be considered.

Acknowledgement

Thanks to Michael Sülzer for implementing the heuristics in C. We are indebted to Armin
Scholl for providing the optimum objective function values of the U-line instances.

References

[1] Hackman, S.T., Magazine, M.J., Wee, T.S., (1989), Fast, Effective Algorithms for
Simple Assembly Line Balancing Problems, Operations Research, Vol. 37, pp. 916—
924

[2] Hoffmann, T.R., (1990), Assembly Line Balancing: A Set of Challenging Problems,
International Journal of Production Research, Vol. 28, pp. 1807-1815

10

[3] Hoffmann, T.R., (1992), Eureka: A Hybrid System for Assembly Line Balancing,
Management Science, Vol. 38, pp. 39-47

[4] Johnson, R.V., (1988), Optimally Balancing Large Assembly Lines with FABLE,
Management Science, Vol. 34, pp. 240-253

[5] Miltenburg, G.J., Wijngaard, J., (1994), The U-Line Balancing Problem, Manage
ment Science, Vol. 40, pp. 1378-1388

[6] Scholl, A., (1999), Balancing and Sequencing of Assembly Lines, Heidelberg, Phys-
ica, 2nd edition

[7] Scholl, A., Klein, R., (1999), Balancing Assembly Lines Effectively — A Computa-
tional Comparison, European Journal of Operational Research, Vol. 114, pp. 50-58

[8] Sprecher, A., (1999), A Competitive Branch-and-Bound Algorithm for the Simple
Assembly Line Balancing Problem, International Journal of Production Research,
Vol. 37, pp. 1787-1816

[9] Talbot, F.B., Patterson, J.H., Gehrlein, W.V., (1986), A Comparative Evaluation
of Heuristic Line Balancing Techniques, Management Science, Vol. 32, pp. 430-454

[10] Urban, T.L., (1998), Optimal Balancing of U-Shaped Assembly Lines, Management
Science, Vol. 44, pp. 738-741

11

