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Abstract 

A flow line consists of a sequence of work places (or stations) through which one 
or more producta (or modeis) move one-way in order to be processed. Each model 
requires specific Operations which must be performed in a predefined Order. To be 
able to do so, the stations must be equipped with machines, robots, and workers 
having a certain skill such that it is guaranteed that each model passing through the 
system can be completely processed. The number of stations and the equipment of 
these stations is called the configuration of the flow line. In this paper we deal with 
the JsfV-hzxd problem of finding a configuration such that the net present value of 
cash outflows for installing and maintaining the flow line is minimized. As a special 
case, minimizing the number of stations is treated as well. Lower bounds are derived 
using column generation. Also, two heuristics are presented. One heuristic is based 
on the result of the column generation procedura while the other is adapted from 
the so-called majority merge heuristic. A computational study proves that the 
feasible Solution obtained on the basis of column generation requires a decidedly 
lower investment budget. 

Keywords: Flow line configuration, investment budget, net present value, shortest com­
mon supersequence, column generation 

1 Flow Line Configuration 

Finding a flow line configuration is a long-term decision problem which usually defines the 
production capabilities for several years. For small to medium sized firms, the financial 
bürden of installing a flow line is immense. The investment not only includes the price for 
the acquisition of men and machines, but also Covers future operating and maintaining 
costs (e.g., expenses for wages and repair). 

To discuss the problem, assume that we have E different types of Station equipments. 
For each equipment e € {1 we have an estimate ce > 0 for the net present value 
(NPV) of the investment (cash outflow) per equipment. For example, a particular type of 
equipment could be "2 workers with a certain skill". Furthermore, we plan to manufacture 
J different models on the flow line. Without loss of generality, let us suppose that we 
have to perform L Operations for each model j € {1,..., J}. Let eji denote the equipment 
that is needed to perform the z-th Operation of model j. 

A small example will help to illustrate the problem. Consider an instance with J = 3 
models. Each model requires L = 5 Operations. Furthermore, let us assume to have E = 3 
types of Station equipment. Table 1 shows which Operations need what equipment. For 
example, the third operation of model 2 needs equipment of type 1. 

Three feasible solutions for this instance are given in Table 2. While configuration 1 
consists of 10 stations, configurations 2 and 3 consist of 8 stations only which is, by the 
way, the minimal length. To install configuration 1 one must invest in 5 equipments of 
type 1, 3 of type 2, and 2 of type 3. Configuration 1 is dominated by configuration 2 in 
terms of the length of the flow line, and it is dominated by configuration 3 in terms of 
the investment to make. The question whether to prefer configuration 2 or 3 depends on 
the NPV's of the investment alternatives. 

In summary we find that two objectives may determine what is a desirable flow line 
configuration. First, one may wish to keep the length of the flow line as short as possible. 
Given the speed with which models move through the system, this minimizes the lead time 
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Table 1: Equipment Requirements 

Stations: 1 2 3 4 5 6 7 8 9 10 
Configuration 1: 1 2 1 3 2 1 2 1 3 1 
Model 1: # • • • • 
Model 2: • • • • # 
Model 3: • • • • • 

Configuration 2: 3 1 2 3 1 3 2 1 
Model 1: # # • # • 
Model 2: • • • • • 
Model 3: • # • • • 
Configuration 3: 1 2 3 1 2 3 1 2 
Model 1: • # # # • 
Model 2: • • • • • 
Model 3: 

Table 2: Feasible Configurations 

(defined as the time between entering and leaving the flow line). Such objective may be 
important in a make-to-order environment where short lead time helps to keep inventory 
levels low which in turn reduces the opportunity cost of capital, because customer orders 
can be fulfilled fast without large inventories. Second, one may wish to minimize the 
Investment to make. This is important especially for small and medium sized Arms which 
usually face low budgets. It is generally important for all firms, because low production 
costs allow low product prices which is an important marketing instrument in a compet-
itive environment. Note, shorter flow lines do not necessarily mean lower Investments. 
Compare the configurations 1 and 2 in the example above. If equipment of type 3 is 
very expensive and equipment of type 1 is fairly cheap, the configuration 1 may dominate 
configuration 2 in terms of the investment to make though specifying a longer flow line. 

In this paper we will deal with the problem of minimizing the investment to make. 
Remarkable to note, this Covers the problem of minimizing the length of the flow line as 
well, because choosing ce = 1 for all e £ {1,, E} reveals the minimal length problem to 
be a special case of the minimal investment problem. As a Solution procedura we propose 
column generation where the subproblem reveals to be a shortest path problem in an 
acyclic graph. 

The existing literature is restricted to the special case ce = 1 for all e 6 {1,..., E} 
and refers to it as the shortest common supersequence problem. It has been proven that 
this problem is ATP-hard [11, 13, 14, 19] even for E = 2. Thus, the minimal investment 
problem must be A/*7Miard, too. Heuristics are presented in [2, 4, 6, 5, 9]. Optimal 
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procedures are described in [5]. 
Somehow related to our problem is the assembly line balancing problem (see, for 

instance, [7, 8, 10, 17, 18, 20]). In both problems Operations are to be assigned to stations 
and a common goal is to minimize the number of stations again. In the assembly line 
balancing problem, however, the notion of a Station means a working area rather than 
a particular type of equipment. Operations are to be assigned to these working areas 
subject to some side constraints (e.g., the sum of processing times of the Operations to be 
executed at a Station must not exceed the cycle time of the assembly line). The question 
of what equipment is needed to perform certain Operations plays no role in assembly 
line balancing. Cost and profit oriented objectives have almost not been considered for 
assembly line balancing so far. A very few exceptions exist for the single-mode] case (see 
[12, 15, 16]). A multi-model case is described in [3]. Investment decisions have not been 
treated at all in the context of assembly line balancing. 

We proceed as follows: Next, in Section 2 we present a combinatorial programming 
model to give a precise description of the problem to be attacked. Section 3 is devoted 
to find lower bounds by column generation. In Section 4 we derive Upper bounds. A 
computational study in Section 5 tests the Performance of the presented methods. Section 
6 finishes the paper with some concluding remarks. 

2 Model Formulation 

To couch the minimal investment flow line configuration problem mathematically, we need 
to introduce some notation first. The parameters are: 

E : the number of equipment types to be considered; 
J : the number of models to be produced; 
L : the number of Operations per model; 
P : an upper bound on the number of stations (=positions), e.g., P = J • L\ 
ce : NPV of the investment to make for installing equipment e once; 
Me : the set of Operations which require equipment of type e. 

To identify the Operations we use (j,i) to denote the i-th Operation of model j. That 
is, Operations are considered to be distinct although they may require the same type of 
equipment. Furthermore, we assume that Mef)Met = {} for e ^ e', i.e. Operations require 
exactly one type of equipment. This implies that I Me \= J • L. Once more we like 
to point out that ce = 1 for e G {1,..., E} Covers the case of minimizing the length of 
the flow line. 

To describe the decision we have to make, we use the following binary decision vari­
ables: 

Xjip : 1, if Operation (j,i) is performed at position p (0, otherwise); 
zep : 1, if equipment of type e is installed at position p (0, otherwise). 

The problem can now be described formally. 

E P 
min W 

e=l p=l 
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subject to 
p 

(2) 

P j — 1 i J 
i = 1,..., L — 1 ^2p{xj{i+l)p xjip) — 1 

p=1 
(3) 

^ 3^'jp | -Zep 
e = 1,..., E 
p=l,...,P (4) 

E 
Y,Zep< 1 P = ...P (5) 
e=l 

j = 1,..., J 

•Ejip ^ {0, lj- % — 1? • • • , L 
P=l,...,P 

(6) 

^ e {0,1} (7) 

The objective (1) is the minimize the total investment budget for the flow line configu­
ration. Equation (2) makes sure that each operation is assigned to exactly one Station (= 
Position) in the flow line. Due to (3), the precedence relations among the operation are 
guaranteed. Restriction (4) ensures that an operation can only be performed at a certain 
Position in the flow line, if proper equipment is installed at that position. At most one type 
of equipment can be installed at a certain position which is formulated in (5). (6) and (7) 
are the binary constraints for the decision variables. Note, feasible solutions may contain 
"empty" positions. We have not added a restriction (P—p)zep > J2f=i Ht=p+i zet for 
p e {1,..., P — 1} to the model, because this is technical overhead. Even without it, the 
Solution has a unique Interpretation: Positions p with Yle-\ zep = 0 can simply be ignored. 
Stations are represented by those positions for which this expression has a positive value. 

3 Lower Bounds 

Because the problem formulated in the previous section is MV-hard, it is very unlikely to 
find an optimal Solution procedure that is efflcient. For P > J • L, the feasibility problem 
is solvable in 0(J - L) time, but it becomes jV'P-complete, if arbitrary values of P are 
used. However, in many cases P = J - L may be used and the construction of heuristics 
which guarantee to find a feasible Solution is simple. What remains is to evaluate these 
heuristics. Optimal solutions are not available and using the best known feasible Solution 
as a point of reference does not give any insight into the deviation from the optimum 
result. Hence, lower bounds are needed. A simple lower bound is 

which is based on the fact that every equipment is needed at least as often as Operations 
of a Single model require that equipment. A more sophisticated approach that we present 
here is based on column generation. 

(8) 
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3.1 The Master Problem 

In Section 2 we identified stations with positions to which Operations are assigned to. To 
formulate a master problem, we now use the idea that each Solution can be described by 
a one-to-one mapping of the Operations to positions p € {1,..., P} where P = J • L. 
Loosely speaking, a Station is then represented by a sequence of subsequent positions such 
that all Operations in this subsequence require the same type of equipment. 

A column in the master problem describes an assignment of Operations to positions. 
To be more precise, we need additional Parameters: 

bjips : 1, if operation (j, z) is assigned to position p in column s (0, otherwise); 
ls : the NPV of the investment to make according to column s; 
S : the number of columns. 

From this point of view, the decision to make is to seJect one or more columns. The 
new decision variable is: 

ys : 1, if column s is selected (0, otherwise). 

This renders it possible to reformulate the problem as follows: 

5 
min lsVs (9) 

subject to 
5 P 
Z Y, b0ivsVs = 1 
5=1 P=1 

3 
i 

= 1,. 
= 

..,J 
.,L 

mm hap>y* = i 
s=l j=1 t=l 

P = 1,. ..,P 

'j(t+i)ps — bjips)ys 1 
j 
i 

= 1,.. 
= 1,.. 

..,J 
-iL — 

Vs e {0,1} s = !,-• ..,5 

(10) 

(11) 
S=1 j=1 t=l 

^2J2p(bi(i+i)Ps - bjips)ys >1 i = i' ' r, - 1 (12) 
s=l p=l 

(13) 

The objective (9) is to minimize the investment to make. Due to (10), columns must 
be selected such that every operation is assigned to exactly one position. (11) makes 
sure that Operations are assigned to distinct positions. Both together define a one-to-one 
mapping of Operations to positions. Precedence constraints among the Operations come 
in via (12). Finally, (13) deßnes the decision variable to be binary valued. 

Given all possible columns, this model is equivalent to the one presented in Section 
2. Solving the LP-relaxation of this model yields a lower bound. The problem with 
it is that the number of columns grows exponentially with J and L (and P). This is 
where column generation comes in. Starting with a Single column (5—1) which deßnes 
a feasible Solution, we solve the LP-relaxation of the model. 

In our implementation the first column is defined by 
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Equipment: 1 2 1 3 2 2 3 1 2 1 3 1 2 3 1 
Model 1: • • # • • 
Model 2: # • # • • 

Model 3: # # • • • 

Station: xxxxx xxxxxxxxx 

Table 3: An Initial Column 

where j £ {I L}} and p € {1,..., P}. Table 3 illustrates this definition 
by using the example from Section 1 again. 

The investment l\ that corresponds to this configuration can be computed as follows. 
For p e {1, - -., P}, let 

™(p) (15) 
j-1 i= 1 

be the model assigned to position p, and 

o{p) =Y^J2i'bßP i (lß) 
j=li=i 

be the operation within that model. Furthermore, let wp a binary indicator variable 
which is one if the operation at position p cannot be performed at the same Station as the 
operation at position p— 1, and which is zero, otherwise. More formally, we have w\ = 1 
and 

(1, if m(p) = m(p - 1) 
1, if m(p) f m(p - 1) and em(p)j0(p) ^ em(p_1))0(j,_a) (17) 
Oj otherwise 

The last line in Table 3 indicates via "x" which positions define a new Station (wp = 1). 
Putting all this together, we can compute 

P E 
h = S S H CebjipiWp, (18) 

p=le=l (j,t)€JVfe 

the objective function coefficient for the first column. 
Once we have solved the LP-Relaxation optimally, the question arises whether or 

not other columns can exist which, when added to the master problem, could lead to a 
reduction of the objective function value. To answer this question, we consider the dual 
of the model. The dual variables and Hß correspond to the constraints (10), (11), 
and (12), respectively. The dual then reads as follows: 

J L P J L-1 
max^^^ + EAP + EE^ (19) 

j=1 1=1 p=l ja 1 Z=1 
subject to 
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J L P 
S 52 52 bjips {ßji + Ap) 
j=l i= l p—l 

J L—l P 
^2 52 ̂ Z^(^J*C*+l)ps — bjips)'Rji ^ h S = 1, . . . , 5 (20) 
j=l 2=1 p=l 

<21' 

\p€lR p = 1,..., P (22) 

***<> izl;:::;!-! w 

From the strong duality theorem we know that the optimal objective fünction value 
of the master problem's LP-relaxation is equal to the optimal objective fünction value of 
its dual. Looking for a column 5 + 1 which may reduce the objective fünction value of the 
master problem is thus equivalent to look for a row 5 + 1 which, when added to the dual, 
may reduce the Optimum objective fünction value of the dual. Such a row must violate 
restriction (20). In other words, we have to search for values 6^(5+1) (and a corresponding 
ls+1 value) such that 

j L p J L-l p 
5^ 52 52 bjip(s+i){ßji + \) + 52 52 52 P(bj{w)p(s+i) ~ bjip(s+i))nji > ls+1 (24) 
j= 1 *=1 p= 1 j~ 1 i=l p=l 

holds where the /i^'s, Ap's, and %^/s are parameters now. How to do so efficiently, is the 
subject of the next subsection. If such values can be found, we add a new column to the 
master problem, solve its LP-relaxation, and Start all over again. This procedure iterates 
until (24) cannot be fulfilled ("pricing out"). After termination, the lower bound can be 
strengthened a bit when all parameters ce are integral values (which is true especially 
when we consider the problem of minimizing the length of the flow line). In such cases, 
the smallest integer value which is greater than or equal to the bound obtained is also a 
lower bound. 

3.2 The Subproblem 

We will now present a strongly polynomial time algorithm which minimizes 

j L p J L-l p 
is+1 - 52 5252bjip(s+\){Pji + - 52 52 52pfoti+iw+i) ~ ^(5+1))^ (25) 

j= 1 i~l p—\ j~ 1 i— 1 p— 1 

given some values for Xp, and Clearly, if the minimum of this expression is 
negative, we have found a Solution such that (24) holds, and thus we have found a new 
column for the master problem. If the minimum is non-negative, we have priced out the 
problem and the column generation procedure terminates. 

The problem of minimizing (25) is equivalent to finding a shortest path from a source 
to a sink node in an acyclic digraph. To understand this, we need to dehne that graph, 
of course. 

The underlying idea for constructing a graph which helps us to minimize (25), is based 
on the fact that for each position p € we need to specify an operation to fill 
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in that position. So, what we will work out in more detail just now, is a graph where 
nodes are represented by a triple indicating that operation (j,i) may be assigned 
to position p. 

More formally, let T = {N,A,v) be the graph to be defined where N is the set of 
nodes, A is the set of arcs, and v is the set of arc weights. Before we define N, we note 
that an operation (j, i) may never be assigned to a position p < i, because the precedence 
relations among the Operations require that the i — 1 Operations (j, 1),..., (j, i — 1) are 
assigned to positions prior to the one of operation (jji)- Also, operation (j,i) may never 
be assigned to a position p > P — (L — i), because the precedence relations among the 
Operations require that the L — i Operations (j: i 4-1),. - •, (j, L) are assigned to positions 
after the one operation (j, i) is assigned to. Thus, we define 

N = {[jihP] | j € {1,..., 7} and i € {1,..., L} and p € {«,..., P — (L - i)}} (26) 

U{[0,0,0], [J + 1,0,P + 1]} 

where [0,0,0] is the dummy source node and [J + 1,0, P + 1] is the dummy sink node. 
Let us turn to define the set of arcs A and the corresponding arc weights v now. 

Roughly speaking, we have an arc from node [j, i,p] to node [h, /c, t], only if the assignment 
of operation (h, k) to period t is not in conflict with the assignment of operation (j, i) to 
period p. Since we want to assign an operation to every position, it is sufiicient to consider 
arcs with t = p + 1 only. To give a systematic presentation of all arcs, we discriminate 
them with respect to the type of nodes they connect. 

First, there are arcs emanating from the dummy source node and pointing to some of 
those nodes which correspond to position one. It would be correct to have a connection 
between the dummy source node and every node with p — 1. However, we can use the 
following insight to keep the number of arcs small. 

Insight 1: If there are two different models j and h with j < h such that their first 
Operations require the same equipment, i.e. eji = e&i, then it is sufficient to have an arc 
from the dummy source node to node [j, 1,1], but not to node [h, 1,1]. 

Proof: Consider an assignment of Operations to positions where (ft, 1) is assigned to 
position 1 and operation (j, 1) to p' > 2. Note, a Solution with p' > 2 is dominated by 
the assignment which emerges from the one above by shifting all Operations assigned to 
positions 2 thru pr — 1 one position further, and assigning operation (j, 1) to position 
2, because e&i = e;i. Hence, it is sufficient to consider p' = 2. Now, keeping all other 
assignments as they were, the assignments (j, 1) to 1 and (h, 1) to 2 represent the same 
Solution. All we have to make sure is that the arc ([j, 1,1], [h, 1, 2]) is included in the 
graph. The definition of the arc set A4 will do so (see Insight 4 below). • 

Thus, arcs emanating from the dummy source node can be defined as follows: 

A\ - {([0,0,0], [j, 1,1]) € N x N | VÄ € {1,... J - 1} : ehl # en} (27) 

It is clear that \Ai\<J. For a € A\ where a is of the form ([0,0,0], [j11,1]), we define 

Va = cejj — fijl — Ai + 7Tji. (28) 

Second, there are arcs entering the dummy sink node from nodes corresponding to 
position P. Similar to the definition of Ai there are cases in which we can reduce the 
number of arcs using the following insight. 
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6ji i = 1 i=2 
3 = 1 1 2 
3=2 2 1 

Table 4: Equipment Requirements for the Small Example 

Insight 2: If there are two different models j and h with j > h such that their last 
Operations require the same equipment, i.e. ejL = e^, then it is sufficient to have an arc 
from the node [j, L7 P] to the dummy sink node, but not from the node [h, L, P]. 

Proof: Consider an assignment of Operations to positions where (ft, L) is assigned to 
position P and operation (j, L) top' < P— 1. Note, aSolution withp' < P—1 is dominated 
by the assignment which emerges from the one above by shifting all Operations assigned to 
positions p'-bl thru P— 1 one position to the left, and assigning operation (j, L) to position 
P — 1, because ehL = e,x- Hence, it is sufficient to consider pr = P — 1. Now, keeping all 
other assignments as they were, the assignments (j, L) to P and (ft, L) to P - 1 represent 
the same Solution. All we have to make sure is that the arc ([/i, L, P — 1 ],[?,£, P]) is 
included in the graph. The definition of the arc set A4 will do so (see Insight 4 below). • 

Thus, arcs pointing to the dummy sink node can be defined as follows: 

^2 = {([?j L, P], [J -f-1,0, P + 1]) € N x N | VA € {j -f 1,..., J} : e^L 7^ ^x} (29) 

Again, we have | A2 |< J. For a € A2 where a is of the form ([?', L, P], [J + 1,0, P + 1]), 
we define 

va ~ 0. (30) 

Third, there are arcs which represent the precedence relations among the Operations, 
i.e. 

^3 = + 1,P + I]) | \j,i,p] e N and [j,i 4- l,p + 1] e iV}. (31) 

It is easy to verify that | ̂ 43 |= J - [L — 1) - (P — L +1). For where a is of the form 
IM + l,p+ 1]), we define 

v _ / S(i+i) ~ W(«+i) ~ ^CPH-I) - (P + 1) * - nj(t+i)) , if i + 1 < £ /ßgx 
a \ cc>(i+1) - jUj{<+i) - A(p+i} - (p + 1) • 7Tji , otherwise 

To illustrate the definitions given so far, consider a small example with J = L = E ~ 2, 
i.e. P = 4, and the equipment requirements given in Table 4. Figure 1 illustrates the 
node set TV, and the arc sets Ai, A2, and A$ (rows correspond to Operations and columns 
correspond to positions). 

To complete the definition of the arc set A, we now consider those arcs which connect 
nodes belonging to different models. The following insights help to keep the number of 
arcs small. 

Insight 3: An arc from node [j,i,p] to [ft, + 1] with j ^ h can only exist, if 
% + k < p 4-1 and P — (L — i) — (L — k) > p + 1 holds. 

Proof: Due to the precedence relations among the Operations, the Operations (j, 1),..., 
(j\ i — 1) and (h, 1),..., (h, k — 1) must be assigned to positions prior to p. This proves the 
former condition. Also, we have to take into account that Operations (j, i + 1),..., (j, L) 

9 



0 1 2 3 4 5 

(0,0) 

(M) 

(1,2) 

(2.1) 

(2.2) 

(3,0) 

Figure 1: An Illustration of 7V, Ai, A2, and As 

and (h,k 4- 1),..., (/i, L) must All in some positions which is the reason for the latter 
condition. n 

Insight 4: If the Operations (j,z) and (h,k) require identical equipment, i.e. eji = ehk, 
then we can assume without loss of generality that, if both Operations are assigned to 
subsequent positions p and p + 1, the operation with lower model number is assigned to 
Position p. That is, if j < h holds, we want to have the arc ([j, z,p], [/i, k,p 4 1]) but not 
the arc ([Ä, k,p], [j, i,p 4- 1]). 

Proof: The proof is trivial. a 

Insight 5: Iii < L, j < h, and ^ €j(i+1) = ehk then we can disregard without loss 
of generality the arc ([j, i,p], [h, k,p 4- 1]). 

Proof: Consider an assignment of Operations to positions where (j, i) is assigned to p, 
(h, k) to p 4- 1, and (j, i + 1) to p' > p 4- 2. Note, a Solution with p' > p 4- 2 is dominated 
by the assignment which emerges from the one above by shifting all Operations assigned 
to positions p + 2 thru p' — 1 one position further, and assigning operation (j,i 4-1) to 
Position p + 2, because ehk = Hence, it is sufficient to consider p* =p +2. Now, 
keeping all other assignments as they were, the assignments (j, i) to p, (j, i + 1) to p + 1, 
and (/i, h) top+2 represent the same Solution and is indeed covered by the graph, because 
there exists an arc from [j,i+ 1,^4-1] to [h,k,p 4-2] by construction. • 

Insight 6: If k > 1, j < h, and ehk ¥= eHk-1) = tji then we can disregard without loss 
of generality the arc [h,k,p+ 1]). 

Proof: The proof is similar to the one for Insight 5. Consider an assignment of 
Operations to positions where (h, k — 1) is assigned to p' < p — 1, (j, i) to p, and (A, k) to 
p + 1. Note, a Solution with p1 < p — 1 is dominated by the assignment which emerges 
from the one above by shifting all Operations assigned to positions p{ + 1 thru p — 1 one 
Position further to the left, and assigning operation (/&,& — 1) to position p — 1, because 
eh(k-i) = t- Hence, it is sufficient to consider p' = p — 1. Now, keeping all other 
assignments as they were, the assignments (j, i) to p - 1, (A, & - 1) to p, and (/i, k) to 
pH-1 represent the same Solution and is indeed covered by the graph, because there exists 
an arc from [?, z,p — 1] to [h, k — l,p] by construction. • 
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Insight 7: Consider a node \j,i^p]. It is clear from the Interpretation of the nodes 
that the Operations (j, 1),..., (j, i — 1) must have been assigned to positions prior to p 
theo. Consider now the node [h,k,p 4- 1] where h ^ j. The sequence of Operations 
(h, 1),..., (h, k) is a subsequence of the sequence of Operations (j, 1),..., (j, i — 1), if and 
only if there exists a fünction a : {1,..., k} -> {1,..., i - 1} which is strictly increasing 
and ehg = ej>(5) holds for every g € {1,..., k}. This Situation will in short-hand notation 
be stated as < j,i — 1 >^:< h,k > The insight is that if such Situation occurs, it is 
sufficient to consider the case where (hy 1),..., (h, k) is assigned to positions prior to p. 
This is to say, the arc ([?', z,p], [h, kyp 4- 1]) need not exist. 

Proof: Obvious. A Solution where ceteribus paribus (h,k) is assigned to a position 
right next to (j, <?{k)) cannot be worse. O 

Formally, all this can be stated by 

^4 = {([i, i,p], [A, k,P 4-1]) e N x TV I 1 < j, h < J and j ^ h and 
i + k <p+l < P ~ (L — i) — (L — k)} 

n{([j)^p]5 [Kk,p+ 1]) € TV x TV 1 < j, h < J and j ^ h and 
{eji f ehk or j < h)} 

n{(L?)^p]j [K k,p 4-1]) € TV x TV | 1 < j,h< J and j / h and 
(i = L or j > h or tji ~ thk or ß/ifc)} 

i,p], [h, k,p 4- 1]) € TV x TV | 1 < j,h < J and j j=- h and 
(k - 1 or j > h or e3i = ehk or eh(k-i) # eß)} 

+ 1]) € TV x TV | 1 < j:h < J and j ^ h and 
< j, i - 1 >^< h, k >}. 

(33) 
Note, | Ä4 |< J- (J-1)-L2-(P-1). For a € A4 where a is of the form ([j,z,p], [h, fc,p+l]), 
we define: 

Vn = < 

Cfihk ~~ ßhk ~ A(p+i) — (p 4- l){Wh(k-•1) - Khk) , if Cji 7^ ehk and 1 < k < L 
CChk ~~ ßhk ~ ^(p+1) + (P + 1) ' Khk , if eji f ehk and k = 1 
CChk ~ ßhk ~ ^(p+1) - (p 4-1) * ^h{k -1) , if eß ¥= ehk and k = L 

—ßhk ~ A(p+i) - (p 4- l)(7TA(jfe_i) -*hk) , if eß = ehk and V
 

V
 

i—
i 

—ßhk — A(p+1) 4- (p 4-1) * Khk , if eß = and k — 1 
~ßhk — A(p+i) - (p + 1) - TTh{k-1) i if &ji = ehk and k — L 

(34) 

Putting all together, we have 

A — Ai U A? U A% U AA . (35) 

Figure 2 illustrates the node set TV and the complete arc set A for the small example 
above. 

A shortest path from the dummy source node to the dummy sink node in the graph 
T defines a new column, if the problem is not priced out. We simply set bßP{s-\-i) — 1, if 
node \jy i,p] lies on the shortest path, and bjip^+1) = 0, otherwise. The objective fünction 
coefficient Z5+1 is determined by adding the ce values associated with the arcs which belong 
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(0,0) 

(1.1) 

(1.2) 

(2.1) 

(2.2) 

(3,0) 

Figure 2: An Illustration of N and A 

to the shortest path. An Illustration of the column generation procedura is given in the 
appendix. 

In summary, it has been shown that the subproblem can be solved efficiently by Com­
puting a shortest path in an acyclic digraph. The time complexity of such kind of shortest 
path problems is determined by the number of arcs (see e.g. [1]), because nodes are in 
topological order. In our case, this means that we can solve the subproblem in 0(JZ • L3) 
time. 

We finish this subsection with some important remarks: In our sm all example every 
path from the dummy source node to the dummy sink node represents a feasible Solution. 
In general, it may happen that paths exist which do not represent feasible solutions, 
because some Operations (j, i) occur more than once on such a path (i.e. they occur at 
several positions) while other Operations occur not. Also, Figure 2 shows a Symmetrie 
graph. This wont be the case in general. Furthermore, as one can see in Figure 2, there 
may be nodes which cannot be reached from the dummy source node (see nodes [1,1,3] 
and [2,1, 2]) as well as there may be paths which are a dead end (see the paths to nodes 
[2,2,2] and [1,2,3]). Hence, the graph can be further reduced in a preprocessing phase 
(i.e., before the iteration of the column generation procedure starts) by deleting arcs. The 
next subsection is devoted to discuss this in more detail. 

3.3 Preprocessing 

Consider the set of non-dummy nodes in the graph for the subproblem. If there is a node 
n to which no arc is pointing to, we cannot reach node n from the dummy source node. 
Hence, we can delete all arcs emanating from n. Similarly, if there is a node n from which 
no arc is emanating, we cannot reach the dummy sink node from n. Hence, we can also 
delete all arcs pointing to n. To ease the notation, we use d~(n) to denote the in-degree 
of node n, i.e. the number of arcs pointing to node n. Analogously, d+(n) denotes the 
out-degree of node n, i.e. the number of arcs emanating from node n. Preprocessing then 
works as follows: 

0 1 2 3 4 5 
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Phase 1 (Forward): 

Step 1.1: Set j = 1, i = 1, and p = 1. 
Step 1.2: If p > P then goto Phase 2. 
Step 1.3: If j > J then set j = 1, increase p by one, and goto Step 1.2. 
Step 1.4: Compute d~([j, i,p\). 

If d~([j^i,p\) = 0 then delete all arcs emanating from [?,i,p]. 
Step 1.5: If i < L then increase i by one and goto Step 1.4. 

Otherwise, set % — 1, increase j by one, and goto Step 1.3. 

Phase 2 (Backward): 

Step 2.1: Set j = 1, i = 1, and p= P. 
Step 2.2: If p < 1 then STOP. 
Step 2.3: If j > J then set j = 1, decrease p by one, and goto Step 2.2. 
Step 2.4-' Compute d^([j, i,p]). 

If d+([j,i,p]) = 0 then delete all arcs pointing to 
Step 2.5: If i < L then increase i by one and goto Step 2.4-

Otherwise, set i = 1, increase j by one, and goto Step 2.3. 

4 Upper Bounds 

Up to here, we tackled the problem of finding a lower bound for the minimal investment 
flow line configuration problem. For practica, however, a lower bound for the investment to 
make is of little help. What is needed is a feasible Solution which defines an upper bound. 
In this section we present two approaches. One makes use of the column generation result 
while the other is a straightforward construction scheme. 

4.1 A Column Generation Based Solution 

Upon termination of the column generation procedura, we can easily compute 

5 V 
$jip ~ 5Z ^2 bjitsVs (36) 

a=l t—1 

for j e {!,.J}, % 6 £}, and p € {1,...,P}. This value can be interpreted as 
being a priority value for assigning operation (j, i) to position p. Using this Interpretation, 
we can derive a construction scheme to find a feasible Solution. The symbols used to 
specify the construction scheme are: p the current position, l is the investment to make, 
wp — l signals the beginning of a new Station, D is the set of Operations which are valid 
candidates to be assigned next, F is the set of models which are assigned to the current 
Station, m(p) is the model assigned to position p, and o(p) is the operation within that 
model. 
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Step 1: Set p — 1, / = 0, and wp = 0 for p £ {1,..., P}. 
Set D = {(j, 1) | 1 < i < J}-

Step 2: Determine (j,z) G D such that (ßjip — max: <f>hkp-
\flyK/C-L/ 

Step 3: Set wp = 1, F — {}, and l = l + ceji. 
Step 4: Set m(p) = j, o(p) =i,F = FU {j}, D = D\{(j,?)}, and p = p + 1. 
Step 5: If z < L then set D = D U {(j, i + 1)}-
5iep 5; Search for (?, z) € Z? where = em(p_i))0(p-i) and j £ F. 

If such (j3 %) can be found then goto Step 4-
Step 7: If D ± {} then goto Step 2. 

Otherwise, STOP. 

As a tie break rule in Step 2, we use the minimum model number j. Upon termination 
of this construction scheme, l is an upper bound for the Optimum objective function value. 
The number of stations can be determined by evaluating J2p=i Wp- Operation o(p) of model 
m(p) at position p is performed at Station EjLi 

4.2 A Simple Construction Scheme 

Since feasibility is no problem, it is very easy to specify ad hoc heuristics which do not 
make use of the result of the column generation procedure. The heuristic described above 
is a priority rule based method. Hence, we can derive a simple variant from it by replacing 
the definition of the priority value <j)jip. For instance, we can modify Step 2 and use a 
dynamic rule (tie breaker: lowest equipment number, lowest model number): 

Step 2: Compute ipji = £ 
Ch,k)€DC]Meji eü 

and determine (j, i) e D such that ipji = max iphk. 
(h,,k)€D 

The idea of the rule ipji is to assign an operation (j,i) to the current position p such 
that many other Operations may use the same equipment while there is a tendency to 
delay those Operations which require high Investments. For the special case ce = 1 for 
e € {1,..., E}, this procedure is known as "majority merge" (see, e.g., [2, 9]). 

5 Computational Study 

To test the Performance of the presented procedures, we have implemented them in GNU 
C using the CPLEX callable library to solve the LP-relaxation of the master problem. 
The programs were executed on a Pentium Computer with 120 MHz running a LINUX 
operating system. 

5.1 The Test—Bed 

We defined a fractional experimental design to study the impact of different parameter 
levels of L, J, and E on the Performance. For each parameter level combination we 
generated 10 instances randomly. Throughout, we provide the average results only. 

To study the impact of L, i.e. the number of Operations per model, we set J = 3 and 
E = 3. Table 5 shows the number of arcs in the subproblem and the time measured in 
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L — 5 L — 10 L = 15 
#Arcs: 540.6 4109.9 12614.2 
Initializing time: 0.11 4.58 45.28 

Table 5: Instance Characteristics Depending on L 

J — 3 C-H
 

Ii cn
 

II OO
 

#Arcs: 540.6 4900.2 26091.4 
Initializing time: 0.11 5.98 182.31 

Table 6: Instance Characteristics Depending on J 

CPU-seconds to initialize the column generation procedure where initializing consists of 
constructing the graph and performing the preprocessing phase. 

In a similar manner, we varied J, the number of models. In this test, we set L = 5 
and E = 3. Table 6 provides the instance characteristics depending on J. 

Also, we considered three different levels of E, the number of equipment types. Here, 
we set J = 3 and L = 10. Table 7 shows if and how the size of the subproblem depends 
on E. 

5.2 Minimizing the Investment 

In a first experiment, we chose the net present values ce randomly from the interval 
[1,100] with uniform distribution. For each instance, a new set of c€ values was drawn. 
The Performance measures of interest are: 

• The total number of columns generated. 

• The run-time in CPU-seconds of the column generation procedure (without initial­
izing) for finding a lower bound. 

• The improvement of the lower bound obtained with respect to the lower bound 
defined by (8). The improvement is defined by 

DEVLB = LBCG-LB0 100 (37) 
LIDQ 

where LBCG is the lower bound obtained by column generation and LBo is the lower 
bound due to (8). 

E — 3 E = 5 II OO
 

#Arcs: 4109.9 5157.5 5625.8 
Initializing time: 4.58 6.88 8.09 

Table 7: Instance Characteristics Depending on E 
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L = 5 L — 10 1 = 15 

#Columns: 95.1 281.7 833.1 
Run-time: 1.25 25.19 358.58 
DEVLB: 6.20 5.81 4.15 

5.31 22.73 30.55 
DEVtfBM: 15.77 35.05 48.46 

Table 8: Performance Depending on L 

The deviation of the upper bounds from the lower bound. The deviations are defined 

DEVgg = UBc°~ LBCG • 100 (38) 
LBCG 

for the upper bound UBCG derived from the column generation result, and 

DEVtfBM = UBu™ LBCG . 100 (39) 
LBCG 

for the upper bound UBMM obtained with the majority merge like heuristic. Again, 
LBCG is the lower bound given by column generation. 

The run-time Performance of the heuristics is not reported in more detail, because it 
turned out that all instances can be solved within less than one second. The majority 
merge like heuristic works remarkably fast which is due to its simplicity. Its run-time is 
less than 0.1 seconds for each instance in our test-bed. 

Table 8 provides the results depending on L. It turns out that the lower bound which 
is computed by column generation improves the simple bound. But, more important, the 
feasible Solution derived from the column generation result is decidedly better than the 
Solution which is computed by applying the majority merge heuristic. Since differences 
between LBCG and LBo are not dramatic, we conjecture that large gaps between upper 
and lower bound are due to weak lower bounds. 

The impact of J on the Performance is reported in Table 9. The result accords to the 
one above. The improvement of the simple lower bound LB0 again is not large. However, 
the feasible Solution derived from the column generation result is extremely better than 
the one computed with majority merge. For J = 8, for instance, the deviation of the 
majority merge result from the lower bound is about five times higher than the column 
generation based feasible Solution. 

Table 10 gives some insight into how E affects the Performance. While the results are 
not as impressive as before, the tendency is the same. The lower bound LB0 can only 
be improved slightly. But, the feasible Solution gained via column generation is decidedly 
better than the one obtained with majority merge. The deviations of the upper bounds 
from the lower bound are more or less the same no matter what value E is chosen. Thus, 
it turns out that the main impact of E is on the run-time Performance. 

5.3 Minimizing the Length 

In a second experiment, we used the same instances as before, but this time, we chose 
ce = 1 for all e € {1,..., E}. That is, we considered the problem of minimizing the length 
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J = 3 II J = 8 
#Columns: 95.1 260.2 524.6 
Run-time: 1.25 16.91 158.91 
DEVLB: 6.20 5.06 3.22 

5.31 20.89 27.55 
DEVtfM-. 15.77 75.21 136.43 

Table 9: Performance Depending on J 

E — 3 E = 5 E — 8 
#Columns: 281.7 329.8 492.7 
Run-time: 25.19 34.36 62.41 
DEVLB: 5.81 2.12 5.43 

22.73 25.92 27.06 
35.05 32.21 38.39 

Table 10: Performance Depending on E 

of the flow line. 
In Table 11 we can see what happens of L is varied. Compared to the minimal in­

vestment problem, we have a greater improvement of the lower bound LBo now. Again, 
the feasible solutions derived from the column generation result are much better than the 
majority merge results. This is remarkable to note, because the column generation pro­
cedure was developed to solve a more general problem while the majority merge heuristic 
is tailored to solve the minimal length problem. 

The impact of J on the Performance is revealed in Table 12. Again, the result of 
the majority merge heuristic is disastrous if J grows while the column generation based 
feasible Solution is reasonably well. Once more, improvements of the lower bound LBQ 
are stronger than for the minimal investment problem. 

It remains to study the impact of E on the Performance. Table 13 gives the results 
and allows to make the same observations as before. 

L = 5 L = 10 L = 15 

#Columns: 85.7 281.9 688.9 
Run-time: 1.09 26.95 272.75 
DEVLB: 14.17 8.48 7.17 

4.90 18.00 27.13 
19.52 24.41 33.94 

Table 11: Performance Depending on L 
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J — 3 J — 5 J — 8 
#Columns: 857 191.4 500.4 
Run-time: 1.09 11.6 155.21 
DEVLB: 14.17 10.15 7.12 
DEVgg: 4.90 17.51 21.11 
DEVjjß4: 19.52 64.51 126.33 

Table 12: Performance Depending on J 

E = 3 E = b E — 8 

#Columns: 281.9 286.9 459.4 
Run-time: 26.95 28.88 56.64 
DEVLB• 8.48 4.97 8.58 
DEV™: 18.00 18.30 24.44 
DEVjjß4: 24.41 32.74 36.55 

Table 13: Performance Depending on E 

6 Conclusion 

In this paper we have discussed the J\TV-hard problem of finding a flow line configuration 
such that the net present value of the cash outflows for installing and maintaining the flow 
line is minimized. We have shown that this problem can be seen as a generalization of 
the so-called shortest common supersequence problem and thus Covers the special case of 
minimizing the length of the flow line. A mathematical programming model formulation 
is given to describe the problem precisely. To compute lower bounds a column generation 
procedure is developed. The subproblem turns out to be a shortest path problem in an 
acyclic network which can be solved efficiently. The number of arcs in this network can be 
reduced by making use of several problem specific insights. Additionally, two heuristics 
are presented. The first one uses the column generation result and constructs a feasible 
Solution. The second one is a generalization of the so-called majority merge heuristic 
which has been proposed in the literature to solve the shortest common supersequence 
problem. A computational study is performed to test the Performance of the presented 
methods. The lower bound obtained by column generation is better than a simple analytic 
bound. But, even more important is the fact that the feasible Solution derived from the 
column generation result is extremely better than the majority merge Solution. Impressive 
improvements are gained for both, the minimal investment problem as well as the minimal 
length problem. Since we conjecture that large gaps between upper and lower bounds are 
due to poor lower bounds, future work should be devoted to lower bounds in order to 
prove us right. 
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Position: 12 3 4 
Operation: (1,1) (1,2) (2,1) (2,2) 

Table 14: The Initial Column 

Position: 12 3 4 
Operation: (2,1) (1,1) (2,2) (1,2) 

Table 15: The Second Column 
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A An Example 

To illustrate the column generation procedure, we provide a protocol for the small example 
with J = 2, L — 2, and E = 2 that has already been used in Section 3. Table 4 gives 
the equipment requirements. Let us assume c\ = 20 and c% = 10. The initial column as 
defined by (14) is illustrated in Table 14. The corresponding objective function coefficient 
is /-j = 50. 

Solving the LP-relaxation of the master problem optimally gives ßn = 50. All other 
dual variables are assigned to zero. By solving the subproblem, we then find the shortest 
path [0,0,0] — [2,1,1] — [1,1,2] — [2,2,3] — [1,2,4] — [3,0,5]. The length of that path 
is -10. From this we can derive the second column for the master problem (see Table 15) 
and the objective function coefficient — 40. 

Solving the master problem a second time, gives fin = 50 again. All other dual 
variables are assigned to zero. And again, we solve the subproblem which gives the same 
shortest path as before. The length still is -10. Thus, the third column is identical to the 
second, and we have I3 = 40, of course. Solving the master problem one more time yields 
pu = 40 and all other dual variables are assigned to zero. Now, the subproblem gives 
the same shortest path as before, but this time the length is zero. Hence, the problem is 
priced out and the procedure terminates. The Solution of the last master problem defines 
the lower bound. We get yl — y3 — 0, and 2/2 = 1- The corresponding objective function 
value is 40 which is not only a lower bound for the investment to make, but it is the 
minimal investment, because the Solution of the LP-relaxation is an integral Solution. 
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