~ A Service of
’. b Leibniz-Informationszentrum

.j B I l I Wirtschaft
) o o o Leibniz Information Centre
Make YOUT PUbllCCltlonS VZSlble. h for Economics ' '

Jordan, Carsten; Drexl|, Andreas

Working Paper — Digitized Version
Discrete lotsizing and scheduling by batch sequencing

Manuskripte aus den Instituten fir Betriebswirtschaftslehre der Universitat Kiel, No. 438

Provided in Cooperation with:
Christian-Albrechts-University of Kiel, Institute of Business Administration

Suggested Citation: Jordan, Carsten; Drexl|, Andreas (1997) : Discrete lotsizing and scheduling by
batch sequencing, Manuskripte aus den Instituten fiir Betriebswirtschaftslehre der Universitat Kiel,
No. 438, Universitat Kiel, Institut fir Betriebswirtschaftslehre, Kiel

This Version is available at:
https://hdl.handle.net/10419/149058

Standard-Nutzungsbedingungen: Terms of use:

Die Dokumente auf EconStor durfen zu eigenen wissenschaftlichen Documents in EconStor may be saved and copied for your personal
Zwecken und zum Privatgebrauch gespeichert und kopiert werden. and scholarly purposes.

Sie durfen die Dokumente nicht fiir 6ffentliche oder kommerzielle You are not to copy documents for public or commercial purposes, to
Zwecke vervielféltigen, 6ffentlich ausstellen, 6ffentlich zugénglich exhibit the documents publicly, to make them publicly available on the
machen, vertreiben oder anderweitig nutzen. internet, or to distribute or otherwise use the documents in public.
Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen If the documents have been made available under an Open Content
(insbesondere CC-Lizenzen) zur Verfiigung gestellt haben sollten, Licence (especially Creative Commons Licences), you may exercise
gelten abweichend von diesen Nutzungsbedingungen die in der dort further usage rights as specified in the indicated licence.

genannten Lizenz gewahrten Nutzungsrechte.

Mitglied der

WWW.ECONSTOR.EU é@“}

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/149058
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

Manuskripte
aus den
Instituten fUr Betriebswirtschaftslehre
der Universitat Kiel

Discrete Lotsizing and Scheduling

by Batch Sequencing

Jordan/Drex]

Manuskripte
aus den
Instituten fir Betriebswirtschaftslehre
der Universitat Kiel

No. 438

Discrete Lotsizing and Scheduling
by Batch Sequencing

Jordan/Drexl|

April 1997
to appear in Management Science

© Do not copy, publish or distribute without authors’ permission.

Carsten Jordan, Andreas Drezl, Lehrstuhl fiir Produktion und Logistik, Institut fir Betriebswirtschaftslehre,
Christian-Albrechts-Universitat zu Kiel, Olshausenstr. 40, 24118 Kiel, Germany
email: Jordan@bwl.uni-kiel.de
Drex!@bw].uni-kiel.de
URL: http://www.wiso.uni-kiel.de/bwlinstitute/Prod
ftp:/ /ftp.wiso.uni-kiel.de/pub/operations-research

Abstract: The discrete lotsizing and scheduling problem for one machine with sequence dependent
setup times and setup costs is solved as a single machine scheduling problem, which we term the batch
sequencing problem. The relationship between the lotsizing problem and the batch sequencing problem is
analyzed. The batch sequencing problem is solved with a branch & bound algorithm which is accelerated
by bounding and dominance rules. The algorithm is compared with recently published procedures for
solving variants of the DLSP and is found to be more efficient if the number of items is not large.
KEYWORDS: DISCRETE LOTSIZING AND SCHEDULING, SEQUENCE DEPENDENT SETUP TIMES AND
SETUP COSTS, BATCH SEQUENCING, BRANCH & BOUND ALGORITHM, BOUNDING /DOMINANCE RULES.

1 Introduction

In certain manufacturing systems a significant amount of setup is required to change production from
one type of products to another, such as in the scheduling of production lines or in chemical engineering.
Productivity can then be increased by batching in order to avoid setups. However, demand for different
products arises at different points in time within the planning horizon. To satisfy dynamic demand, either
large inventeries must be kept if production is run with large batches or frequent setups are required if
mventory levels are kept low. Significant setup times, which consume scarce production capacity, tend
to further complicate the scheduling problem. The discrete lotsizing and scheduling problem (DLSP) is a
well-known model for this situation.

In the DLSP, demand for each item is dynamic and back-logging is not allowed. Prior to each produc-
tion run a setup is required. Setup costs and setup times depend on either the next item only (sequence
independent), or on the sequence of items (sequence dependent). Production has to meet the present or
future demand, and the latter case also incurs holding costs. The planning horizon is divided into a finite
number of (short) periods. In each period at most one itern: can be produced, or a setup is made (“all
or nothing production™). An optimal production schedule for the DLSP minimizes the sum of setup and
holding costs.

The relationship between the DLSP and scheduling models in general motivated us to solve the DLSP
as a batch sequencing problem (BSP). We derive BSP instances from DLSP instances and solve the
DLSP as a BSP. Demand for an item is interpreted as a job with a deadline and a processing time. Jobs
corresponding to demand for the same item are grouped into one family. [tems in the DLSP are families in
the BSP. All jobs must be processed on a single machine between time zero and their respective deadlines,
while switching from a job in one family to a job in another family incurs a (sequence dependent) setup
time and setup cost. Early completion of jobs is penalized by earliness costs which correspond to holding
costs. As for the DLSP, an optimal schedule for the BSP minimizes the sum of setup and earliness costs.

The DLSP was first introduced by Lasdon and Terjung [13] with an application to production schedul-
ing in a tire company. Complexity results for the DLSP and its extensions are examined in Salomon et
al. [17], where the close relationship of the DLSP to job (class) scheduling problems is emphasized. A
broader view on lotsizing and scheduling problems is given in Potts and Van Wassenhove [16]. An ap-
proach based on Jagrangean relaxation is proposed by Fleischmann {7] for the DLSP without setup times.
Fleischmann {8] utilizes ideas from solution procedures for vehicle routing problems to solve the DLSP
with sequence dependent setup costs. The DLSP with sequence independent setup times and setup costs

is examined by Cattrysse et al. [4]. In a recent work, Salomon et al. {18] propose a dynamic programming

based approach for solving the DLSP with sequence dependent setup times and setup costs to optimality.
The results of [4], [8] and [18] will serve as a benchmark for our approach for solving the BSP.

Haase and Kimms [12] present a new mathematical model formulation for lotsizing and scheduling
with sequence dependent setup times and costs which considers only efficient sequences. In additton,
they provide a branch & bound algorithm which solves instances optimally and efficiently. A local search
algorithm for lotsizing and scheduling with sequence dependent setup costs is presented in Haase [11]. A
review of recent lotsizing and scheduling research can be found in Drexl and Kimms [5]. Schutten et al.
[20] present an exact branch-and-bound algorithm for single-machine scheduling with release dates, due
dates, family setup times, and maximum lateness as objective, respectively.

The complexity of scheduling problems with batch setup times is investigated by Bruno and Downey [2]
and Monma and Potts [15]. Bruno and Downey show the feasibility problem to be NP-hard if setup times
are nonzero. Solution procedures for scheduling problems with batch setup times are studied in Unal and
Kiran [21], Abn and Hyun [1] and Mason and Anderson [14]. In [21] the feasibility problem of the B5P is
addressed and an effective heuristic is proposed. In [1] and [14}, algorithms to minimize mean flow time
are proposed. Webster and Baker [24] survey recent results and derive properties of optimal schedules for
various batching problems.

The contribution of the paper is twofold. First, we solve the DLSP as a BSP and state the equivalence
between both models such that we can solve either the DLSP or the BSP. Second, we present an algorithm
that solves the BSP faster than known procedures solving the DLSP.

The paper is organized as follows: we present the DLSP and the BSP in Section 2 and provide a
numerical example in Section 3. The relationship between the two models 1s analyzed in Section 4.
Section 5 presents a timetabling procedure to convert a sequence into a minimum cost schedule, and in
Section 6 we describe a branch & bound algorithm for solving the BSP. A comparison of our algorithm
with solution procedures solving variants of the DLSP is found in Section 7. Summary and conclusions

follow in Section 8.

2 Model Formulations

The DLSP is presented with sequence dependent setup times and setup costs, we refer to this problem as
SDSTS%. SDSTSC includes the DLSP with sequence independent setups (SISTSC), sequence dependent
setup costs but zero setup times (SDSC), and the generic DLSP with sequence independent setup costs
and zero setup times (cf. Fleischmann [7]) as special cases.

The DLSP parameters are given in Table 1. Items (families) in the DLSP (BSP) are indexed by ¢, and
h; denotes holding costs per unit of item ¢ and period. Production has to fulfill the demand g;,c for item 1
in period f. Setup costs scg; are “distributed” over max{l, st ;} setup periods by defining per-period
setup costs scz'i. The decision variables are given in Table 2: we set ¥i+ = 1 if production takes place
for item i in peried 1. Vgi+ = 1 indicates a setup from item g to item ¢ in peried ¢, and [; ; denoctes the
inventory of item i at the end of period t. ’

In the mixed binary formulation of Table 3, the objective (1) minimizes the sum of setup costs sc;i {per
setup period stg;) and inventory holding costs. Constraints (2) express the inventory balance. The “all
or nothing production” is enforced by constraints (3): in each period, the machine either produces af

full unit capacity, undergoes setup for an item, or is idle, i.e. Yo = 1 for an idle period. For stg; = 0

constraints (4) instantiate Vg ;. appropriately. Constraints (5) couple setup and production whenever
sty; > 00 ifitem is produced in period ¢ and item ¢ in period t—7—1 then the decision variable Voit—r =1
for T = t — stgi,...,t — 1. Constraints (6) ensure, that the Y:: are in correct positions relative to one
another, therefore, we have to set Yy - = 1 for 7 < 0 in (10). Constraints {7) prevent any back-logging.
Finally, the variables I; ;, V.-, and Y} ; are initialized for 7 < 0, by constraints (10). Due to the “all
or nothing production”, we can write down a DLSP schedule in terms of a period-itern assignment in a
string v = (v1, V2, - - .,br). v specifies the action in each period, i.e. 1y = LifYi,=1,1=0,...,N, or

v = a, if Vg ;0 =1 (for stg; > 0).

Table 1: Parameters of the DLSP

1 index of item (=family),i=10,..., N, 0 denotes the idle machine
1 index of periods, t =1,...,T

it demand of item ¢ in period ¢

h; holding costs per unit and peried of item 4

stg; setup time from item g to item 4, 9,7 =0,..., N

SCZ,i setup costs per setup period from item g to item 7, ¢,i=0,...,N
scg; setup costs from item g to item 2, g,i=0,... N

scqi = seg; max{l, sty;}

Table 2: Decision Variables of the DLSP

it 1, if item 7 is produced in period ¢. and 0 otherwise.
Yo,: = 1 denotes idle time in peried ¢

Vyie 1, if the machine is setup for item 7 in period ¢, while the previous item
was item g, and 0 otherwise

Ly inventory of item 4 at the end of period ¢

The BSP is a family scheduling problem (cf. e.g. Webster and Baker [24]). Parameters (cf. Table 4)
related to the A families are the index i, the number of jobs n; in each family, and the total number of
Jobs J. Index i = 0 denotes the idle machine. As for the DLSP, holding costs h; represent the costs for
hoiding one unit of family 1 in inventory for one period of time. Setup times st ; and setup costs $cq; are
given for each pair of families ¢ and . The set of jobs is partitioned into families i, the j-th job of family ¢
is indexed by the tuple (i, j). Associated with each job (i, j) are a processing time p(i j), 2 deadline dg; ;),
and a weight wy; ;. Job weights wy; ;) are proportional to the quantity (=processing time) of the job
(proportional weights), they are derived from h; and p; ;). We put the tuple in brackets to index the job

attributes because the tuple denotes a job as one entity.

TFable 3: Model of the DLSP

T /N
Min Zprsp = ZZ (z sch Vain hiIi,t) (1)

i=1t=1 \g=0

subject to

Liemt +Yio = gre = Lig i=l..,N t=1...T (2)

N

S Vet 3 Voiz =1 t=1,...,T (3)

=0 {g,i|stg_.>0,g;£i}
g=0,...,N; i=1,... . N; g#¢

Veie 2 Yae-1+ Yie—1 (4)
stgi=0; t=1,...,T;
g=0,....N; =1, N; g #7;

Vair 2 Yot + Ygemsty im1— 1 Stgs >0 T=t—stgi, ..., t—1; {5)
t=1,...,T

N =0,... N, =1 N
g b y H) 3 ’

Zyg,t—stg,,—l z}zi,t (6)

g=0 stg; >0, t=1,...,T

Lie >0 i=1,...,N; t=1,...,T (7
9=0,....N; i=1,...,N; g#z

Vgﬂ‘,t E{O,l} (8)
t=1,...,T

Y. €{0,1} i=0,..,N; t=1,...,T (9)

Lir = gir =0T, =1 g1=0,....N; 7<0 (10)

The decision variables are given in Table 5. The sequence 7 denotes the processing order of the jobs,
(%), Jix)) denotes the job at position k; together with completion times Cli) of each job we obtain the
schedule . A conceptual model formulation for the BSP is presented in Table 6. Zpsp(c) denotes the
sumn of earliness and setup costs for a schedule ¢, which is minimized by the objective (11). The earliness
di,5) — Cj) is weighted by wy; ;), and setup costs SCig_yy,ipg are incurred between jobs of different
families. Each job is to be scheduled between time zero and its deadline, while respecting the sequence
on the machine as well as the setup times. This is done by constraints (12). Constraints (13) set Py equal
to one if there is idle time between two consecutive jobs. We then have a setup time 5t0,igy from the idle
machine rather than a sequence dependent setup time Stig,_y),igy- IDitializations of beginning and end of
the schedule are given in (15) and (16), respectively.

Remark 1 For the BSP and DLSP parameters we assume that:

1. setup times and setup costs satisfy the triangle inequality, i.e. st,; < stgr + sti; and scq; <
scgt + s¢i, g,1,0=0,...,N.

Table 4: Parameters of the BSP

5 number of jobs of family ¢, J = Efil n;:. total number of jobs
(i,4) denotes the j-th job of family i, i=1,...,N,j=1,...,n;
Pa,;) processing time for the j-th job of family ¢

deadline for the j-th job of family ¢

w; ;) earliness weight per unit time for the j-th job of family i

B big number

Table 5: Decision variables of the BSP

G sequence of all jobs, 7 = (i, Jpuy): (&21, Jtap) - - (e, 3gm)s - - - (G 1))
(7«1, Jix]) denotes the job at position k

Cli) completion time of job (3, 7)

P 1, if there is idle time between the jobs (4x_11, jjk-17)} and (i1, jia1)s

and 0, otherwise

Table 6: Model of the BSP

Min Zpsp(o) = Z [w(i[k]yj[k])(d(i[k]:j[k]) = Cligpdp) + 8Cigemapip + Prlsco,ig = Sc"tk-llai[k])]
k=1
subject to

C(f[k-x],j[k-x]) < min {C(i[k]:j[k]} = Pl i) Stﬂ'[k_x],i(k; - Pk(StU.i(k] - S.ti[k—.l]:i[k])’ d(i[k—”:j[k—]])}

k=1,...,J
B.P — (C(i[km[k}) — Plippdey) — Stife iy — C(i[k—l]:j[k-l])) >0 k=1,...,J
P €{0,1} E=1....J

(iIUIvj[O]) = (0,0); dig0) = Cto,0) =0

C(i[fl:j[ﬂ) = d(i[J],j[J])

(11)

2. there are no setups within a family, i.e. st;; = sc;; = 0, and no tear-down times and costs, l.e.

Stz‘,g = 8Cjp— O, i= 0, vy N.

3. “Longer” setup times lead to “higher” setup costs, i.e. scg; = f(stgi} with a nondecreasing func-
tion f(-}.

4. there is binary demand in the DLSP, i.e. ¢;, € {0,1}.

5. jobs of one family are labeled in order of increasing deadlines, and deadlines do not interfere, i.e.

dii 5y + P+ < digt1)-

Remark 1 states in (1.) that it is not beneficial to perform two setups in order to accomplish one.
Mason and Anderson [14] show that problems with nonzero tear-downs can easily be converted into
problems with sequence dependent setups and zero tear-downs, which motivates (2.). With (1.) and (2.)
we have stg; > sty (forall g,i = 1,..., N), which holds analogously for setup costs. Thus, the third
term in the objective (11} is always nonnegative. In (3.) we exclude the case that shorter setup times may
have higher setup costs. anticipates the “all or nothing production” for each item ¢ (cf. also Salomon et
al. [17]) and is basically the same assumption as (5.).

The main observation that motivated us to consider the DLSP as a special case of the BSP is that
the (g; ;)-matrix is sparse, especially if setup times are significant. The basic idea is to interpret items
in the DLSP as famalies in the BSP and to regard nonzero demand in the DLSP as jobs with a deadline
and a processing time in the BSP. In order to solve the DLSP as a special case of the BSP we derive
BSP instances from DLSP instances in the following way: setup times and setup costs in the BSP and
DLSP are identical, and the job attributes of the BSP instances are derived from the (g;:)-matrix by
Definitions 1 and 2.

Definition 1 BSPUT(DLSP) is defined as a BSP instance with unit time jobs derived from a DLSP
instance. For each family i there are n; = E;r:l Gip jobs. Anentryg,=1(i=1,... N, t=1,....7)
denotes a job (i,7) where pijy =1, wujy = hy, andds =1t (7=1,...,n;).

Definition 2 BSP(DLSP) is defined as a BSP instance derived from a DLSP instance. A sequence of
consecutive “ones” in the (g;.)-matriz, ie. g;; = 1 (t = 1,...,13) denotes a job (4,7} where pi ;) =
to ~t1 + 1, wisj) = hipuyy, and djy = t2, 5 = 1,...,n;. The number of times that a sequence of

consecutive ones appears for an item 1 defines n;.

DLSP instances Transformation BSP(DLSP) or BSPUT(DLSF)
¥ [
DLSP < Equivalence -+ > Bsp
v ¥
DLSP solution procedures < Comparison > BSP solution procedure

‘—’l Solution —; [

Figure 1: Comparison of DLSP and BSP

Figure 1 provides the framework for the BSP-DLSP comparison: after transforming DLSP instances
into BSP instances, we compare the performance of solution procedures and the quality of the solutions.
The difference between the approaches is as follows: in the DLSP, decisions are made anew in each
individnal period t, represented by decision variables Y;; and V,;, (cf. Table 9). In the BSP, we decide
how to schedule jobs, i.e. we decide about the completion times of the jobs. BSP and DLSP address
the same underlying planning problem, but use different decision variables. Briiggemann and Jahnke (3]
make another observation which concerns the transformation of instances: a DLSP instance may be not
polynomially bounded in size while the size of the BSP(DLSP) instance is polynomially bounded. On that
account. in [3] it is argued, that the {g; .)-matrix is not a “reascnable” encoding for a DLSP instance in

the sense of Garey and Johnson [10] because BSP(DLSP) describes a problem instance in a more concise

way.

3 Numerical Example

In this section, we provide an example illustrating the generation of BSPUT(DLSP) and BSP(DLSP).

This example will also be used to demonstrate certain properties of the BSP.

Table 7: Numerical Example: Setup and Holding Costs

stgi |1 2 3 scgi |1 2 3| My
0 [1 2 1 0 |5 10 5
1 0 1 1 1 0 5 b 1
2 10 0 1 2 70 0 53D
3 1 2 0 3 5 10 0 1

In Figure 2 we illustrate the equivalence between both models. The corresponding parameters setup
times, setup costs and holding costs are given in Table 7. Figure 2 shows the demand matrix (g;:) of
DLSP and the jobs at their respective deadlines of BSPUT(DLSP) and BSP(DLSP).

For BSPUT(DLSP), we interpret each entry of “one” as a job (i, 7) with a deadline d(; ;). Processing
times p(; ;) are equal to one for all jobs. We summarize the BSPUT(DLSP) parameters in Table 8. An
optimal DLSP schedule with k; = 3 is the string »® in Figure 2 (with entries {0, 2,1, 2,3} for idle or
setup time or for production of the different items, respectively). This schedule is represented by o3* for
BSPUT(DLSP), and is displayed in Table 8. Both schedules have an optimal objective function value
of Zgsp(o¥t) = 44.

In BSP(DLSP), consecutive “ones” in the demand matrix (g; ;) are linked to one job. The number
of jobs is thus smaller in BSP(DLSP) than in BSPUT(DLSP). For instance, jobs (1,2) and (1,3) in
BSPUT(DLSP) are linked to one job (1,2) in BSP(DLSP), compare o} and ¢p. However, a BSP(DLSP)
schedule cannot represent o¥® in Figure 2 since there we need unit time jobs. For BSP(DLSP) we now
let the cost parameters h; = 1, (i =1,2,3) (i-e. equal holding costs for all families) and sco 3 = 10: then,
v is the optimal DLSP schedule and ¢, the optimal BSP(DLSP) schedule. Again, the optimal objective

: : 000 0 0 1.1
/o 0000 00 1000000050 | DLSP
200 0 00 0:0 0 0 1 0000000000 1:0
310 00000000 1000011000 01 Gyt
1,2(1,3
! L1 . BSPUT(DLSP)
2 2,1 : .,
[i,5): P35
3 31 3.9[3.3 E’_i {£.4): P(4,5)
1 1,1 1;2 BSP(DLSP)
2 2,1 : 2,2
- : i 5)) P g)
3 3,1 32 3,3
0000 a1 a 2a300a333a1 DLSP, v°
E&TE_}EIE 3,2/3.3[3.4 2.2|1,3| BSPUT(DLSF), o3
0000a§a21a3333000aa DLSP, v}
=== E|2,2|1,2 13| BSPUT(DLSP), o}
==RE=NIEIE 22] 1.2 BSP(DLSP), o
—o 11,1553 = 32 [53==22] 12 BSP(DLSP), &
LIE2.1| 12 22931 32 (33 ' ‘ BSP(DLSP), o4
E [l 1 1 1 I) I I 1 I
0 5 10 15 20

Figure 2: DLSP, BSPUT(DLSP) and BSP(DLSP)

function value is Zggp (ap) = 44 for v° and o.
The example shows that the same schedules can be obtained from different models. In the next section

we formally analyze the equivalence between the DLSP and the BSP.

4 Equivalence Between DLSP and BSP

In the BSP we distinguish between sequence and schedule. A BSP schedule may have inserted idle
time so that the processing order does not (fuily) describe a schedule. In the following we will say that
job (4 , 72) if job (42

we consecutively schedule job (i 72), there is no idle time between both jobs, i.e. the term

,J'Y is consecutively sequenced before job (i?
1,71) before (42,

in brackets in constraints (13) equals zero. A sequence = for the BSP cousists of groups, where a group is

,jz) is sequenced at the nezt position. If

an (ordered) set of consecutively sequenced jobs which belong to the same family. On the other hand, a
schedule consists of (one or several) blocks. Jobs in one block are consecutively scheduled, different blocks
are separated by idle time (to distinguish from setup time). Jobs in one block may belong to different

families, and both block and group may consist of a single job. As an example refer to Figure 2 where

Table 8: BSPUT(DLSP) Instance and Solution

L3 (LY (12 (1,3 (21 (2,2 (31 (32 (33 (34)

dii 5) § 2 21 9 2 10 15 16 21
P 1 1 1 1 1 1 1 1 1
wi j) 1 1 1 3 3 1 1 1 1
E 1 2 3 4 5 6 7 8 9
(i) (L1 (21 (3.1 (3,20 (3,3) (3,4 (L2) (22) (13)
Cippivy) 6 8 10 14 15 18 18 20 21 g%

both o. and o4 consist of five groups, o forms two blocks, and ¢4 is only one block.

For a given sequence 7, a BSP schedule ¢ is called semiactive if Cls,5) is constrained by either d(; j) or
the start of the next job; no job can be scheduled later or rightshified in a serniactive schedule 5. We can
derive & from a sequence ~ if constraints (12) are equalities and Py is set to zero. The costs Zgsp(&) are
a lower bound for costs Zpsp(o) of a BSP schedule & because & is the optimal schedule of the relaxed
BSP in which constraints (13) are omitted. However, in the semiactive schedule there may be idle time
and it may be beneficial to schedule somne jobs earlier, 1.e. to leftshift some jobs to save setups (which will
be our concern in the timetabling procedure in Section 5).

In both models we save setups by batching jobs. In the DLSP, a baich is a non-interrupted sequence of
periods where production takes place for the same item ¢ # 0,1.e. ¥; ; = 1, t =1;,...,{5. In the BSP, jobs
of one group which are consecutively scheduled without a setup are in the same batch. A batch must not
be preempted by idle time. In Figure 2, the group of family 3 forms two batches in schedule ¢, whereas
this group is one batch in o.

We will call a sequence 7 {schedule ¢) an EDDWF sequence (schedule) if jobs of one family are
sequenced (scheduled) in nondecreasing order of their deadlines (where EDDWE abbreviates earliest
deadline within families). Ordering the jobs in EDDWF is called ordered batch scheduling problem in
Monma and Potts [15]. By considering only EDDWF sequences, we reduce the search space for the
branch & bound algorithm described in Section 6.

We first consider BSPUT(DLSP) instances. The following theorem states, that for
BSPUT(DLSP) we can restrict ourselves ito EDDWF sequences.

Theorem 1 Any BSPUT(DLSP) schedule o can be converted into an EDDWF schedule ¢ with the same
cost.

Proof: Recall that jobs of one family all have the same weights and processing times. In a sched-
ule ¢, let A, B, C represent parts of ¢ (consisting of several jobs), and Cy,Cg, Cc (pa.pB,pc) the com-
pletion (processing) times of the parts. Consider a schedule where jobs are not ordered in EDDWF,
lLe. ¢ = (Ca,C6 5.y, CB, Ciiiy, Cc). Thus Cjp) < Cujy £ diugy < d(ij,)- The schedule ¢ =

(Ca, é(i,j]), C’B,C'(ijjz), C¢) with é(i,jl) = Clija)s Cliia) = Cligy) has the same objective function value

because W5,y = W) = hi. The completion times of the parts A,B,C do not change because

P(ijy) = Plij.) = L. Interchanging jobs can be repeated until ¢ is an EDDWF schedule, completing

the proof. a
A DLSP schedule v and a BSPUT(DLSP) schedule ¢ are called corresponding solutions if they define
the same decision. A schedule v = (v1,vs, . .., vr) and a schedule o are corresponding solutions if for each

point in time ¢ = 1,.. ., T the following holds: () », = and in o the job being processed at ¢ belongs to
family 4, (#7) v, = a and a setup is performed in o, and (i) »; = 0 and the machine is idle in o.

Figure 2 gives an example for corresponding solutions: v corresponds to of*, and v® corresponds to
c#*. We can always derive entries in v from o, and completion times in o can always be derived from v

if o 1s an EDDWTF schedule.

Theorem 2 A schedule o is feasible for BSPUT(DLSP) if and only if the corresponding solution v is
feasible for DLSP, and v and o have the same objective function value.
Proof: Obvious. (]
As a consequence of Theorem 2, a schedule & is optimal for BSPUT(DLSP) if and only if the corres-
ponding solution » is optimal for DLSP, which constitutes the equivalence between DLSP and BSP for
BSPUT(DLSP) instances. We can thus solve DLSP by solving BSPUT(DLSP).
In general, however, the more attractive option will be to solve BSP(DLSP)} because the number of

jobs is smaller.

Definition 3 In a schedule o, let a production start of family ¢ be the start time of the first job in a
batch. Let inventory for family i build between Cy; ;y and d; jy. The schedule o is called regenerative if

there is no production start for a family i as long as there is still inventory for family :.

The term “regenerative” stems from the regeneration property found by Wagner and Whitin [23] (for
similar ideas cf. e.g. Vickson et al. [22]). Each regenerative schedule is also an EDDWF schedule, but
the reverse is not true. If a schedule ¢ is regenerative, jobs (4,7) and (i, j + 1) are in the same batch if
Clii+1) — Pi.j+1) < d(i 4) holds. Furthermore, in a regenerative BSPUT(DLSP) schedule o, jobs from
consecutive “ones” in {g; ¢) are scheduled consecutively (recall for instance oyt and oy, in Figure 2); hence a
regenerative BSPUT(DLSP) schedule represents a BSP(DLSP) schedule as well. In Figure 2, schedule oy
is not regenerative: a batch for family = 1 is started at ¢ = 4 though there is still inventory for ¢ = 1.

We first show that we do not lose feasibility when restricting ourselves to regencrative schedules only.

Theorem 3 If ¢ is a feasible BSPUT(DLSP) or BSP(DLSP) schedule then there is also a feasible re-
generative schedule &.
Proof: In a schedule o, let i (i4) be the family to which the first (last) job in part B (A) belongs.
Consider a non-regenerative schedule o, i.e. ¢ = (Cj, Cii,1) Cr, Cli 41y, Cc). Jobs (i,7) and (4,7 + 1)
are not in one batch though Clij+1) — PG g+1) < di gy
Consider schedule & = (C4,Cp, Cps 5), Cs,j41), Cc) with Cpijy = Cpi j11) = Ppij+1) and Cp = C —
Pi.g), where (i, 7) and B are interchanged and (4, j) and (3,5 + 1) are in one batch. & is feasible because
Clijy € ds j). By leftshifting B we do not violate feasibility. Furthermore, due to the triangle inequality
we have st;a ;5 < stja; + st; ;2. Thus, B can be leftshifted by p(: ;) time units without affecting Ca.
Interchanging jobs can be repeated until ¢ is regenerative which proves the theorem. O
An illustration for the construction of regenerative schedules is depicted in Figure 3. Interchanging

(¢,7) and B, we obtain from o the regenerative schedule #.

10

(i, 7) B (z‘%,j+1) C o
A B (3, 7) (z’f,j—;—l) cC &

dz,5)

Figure 3: Regenerative Schedule

Unit processing times are not needed for the proof of Theorem 3, so we have in fact two results: first, to
find a feasible schedule we may consider BSP(DLSP) instead of BSPUT(DLSP). Second, for BSP(DLSP)
we only need to search over regenerative schedules to find a feasible schedule. Theorem 3 is a stronger
result than the one found by Salomon et al. [17] and Unal and Kiran [21] who only state the first result.

Moreover, if holding costs are equal, the next theorem extends this result to optimal schedules.

Theorem 4 If ¢ is an optimal BSPUT(DLSP) or BSP(DLSP) schedule and h; is constant for all i, then
there 15 also an optimal regenerative schedule &.
Proof: Analogous to the proof of Theorem 3 we now must consider the change of the objective function
value if (i,) and B are interchanged. Without loss of generality, let h; = 1 for all i, then py; ;; = wy).
Let Zpsp (o) (Zpsp(F)) denote the objective function value of o {&).

For part B, which is leftshifted, we have wp < pp because processing time in part B is at most pp,

but B may contain setups as well. Interchanging B and (3, j), the objective changes as follows:
Zpsp(5) = Zpsp(0) —~ wg(Cp — Cp) — w(ijj)(é(i,j) — Cli,5)) — 8Cia ; — 8¢ i3 + 5C;4 ;B

(é) Zpsp(o) + wepy ;) — Wy 5)PB (%) Zpsp(o) + pBP(i,j) ~ Pui,j)PB = ZBsp(0)

Due to the triangle inequality, setup costs and setup times in o are not larger than in &, i.e. —sc;a; —
§¢; ;8 + 5¢;4 ;5 < 0. Furthermore, if setup time is saved (as in Figure 3}, we will not increase setup costs
due to Rernark 1, which explains (¢}. We leftshift B by p;; ;) and rightshift (4, 7) by pp with wp < ps,
which explains (ii). Thus Zpsp () < Zpsp (o), which proves the theorem. O

Considering regenerative schedules, we again achieve a considerable reduction of the search space.
To summarize we have so far obtained the following results: (z) DLSP and BSP are equivalent for
BSPUT(DLSP). (1) BSP(DLSP) is feasible if and only if DLSP is feasible. (%) For equal holding costs an
optimal BSP{DLSP) schedule is optimal for DLSP. When instances with unequal holding costs are solved,
the theoretical difference between BSP(DLSP) and DLSP in (i) has only a small effect: computational
results in Section 7.3 will show that there is almost always an optimal regenerative BSPUT (DLSP}) schedule

to be found by solving BSP(DLSP).

5 A Timetabling Procedure for a Given Sequence

For a given sequence = the following timetabling procedure decides how te partition 7 into blocks, or

equivalently, which consecutively sequenced jobs should be consecutively scheduled. In the BSP model

11

formulation of Table 6, we have P = 1 if the job at position k starts a new block, or Px = 0 if it is
blocked with the preceding job. By starting a ‘new block at position k, we save earliness costs at the
expense of additional setup costs. In Figure 2, earliness costs of op are higher than for ¢, but we save
one setup in .

In the timetabling procedure, we start with the semiactive schedule and leftshift some of the jobs to
find a minimum cost schedule. Consider the example in Figure 2: for the sequence = = ((2,1),(1,1),
(3,1),(3,2), (8,3),(2,2),(1,2)) the semiactive schedule & is given in Figure 4. We first consider two
special cases. If we omit constraints (13) of the BSP (so that each group is a batch and idle time may
preempt the batch) timetabling is trivial: the semiactive schedule is optimal for a given sequence because
no job can be rightshifted to decrease earliness costs (and because setup costs are determined by 7 and
not by o). Timetabling is also trivial if earliness weights are zero (i.e. h; = 0 for all ¢ and therefore
w(; 5y = 0 for all (4, 7)): in this case, we can leftshift each job (without increasing earliness costs) until the
resulting schedule is one block (e.g. schedule ¢g in Figure 2 is one block and no job can be leftshifted).
We have scy; < s¢i0+ SCo,i = SCo,i, Setup costs are minimized if jobs are scheduled in a block, and there
is an optimal schedule which consists of one block.

In the general case, we need some definitions: block costs beg, k., are the cost contribution of a block

from position k; to kz, i.e.

kz k?
beg, k, = E w(i[kl.j[k])(d(i[k],j[x]) - C(f[k],j[k])) + Z SCipk_1)ip
k=k, k=f;+1

The block size bsy is the number of jobs which are consecutively scheduled after job (i, jjx)) (with
{2x), jx)) included). For instance, in Figure 4 we have bsy = 3 (for (ipy), jpy) = (2,1).

| 211,11 32 [3.3 22| 12 | ¢

I T] T 1 l T | 1 T T] |

0 5 10 15 20
Position k=1 2 3 4 35 6 7

Figure 4: Semiactive Schedule

Let fy.(b) denote the costs of a schedule from position k to J if bs; = b. Let denote [the costs of the
minimum cost schedule and bs} the corresponding block size at position k. The recurrence equation for

determining f; and bsj for k= J,... 1is:

fe=, min {fi(b}} (17)

b=1,. bst, +1
filbsy) = Jfx
Fe(b) = bek kb1 + 50440 + Frps
Fis1 =05 iy =0 bshy, =0 (18)
In equation (17) we take the minimum cost for bs; = 1,...,bs;, ;41 where bsi1 + 1 is the mazimum
block size at position k (and a new block starts at k + bsi41 +1). For a given block size b, fx(b) is the

surn of block costs from position k to position & + b — 1, the setup scg,i, ., to the next block and the

minimum cost fi - Minimum cost of a sequence are computed via fi for k =1, and the complexity of

12

the algorithm is O(J¢). Basically, equation (17) must be computed for every sequence. However, some
simplifications are possible: if two jobs can be consecutively scheduled in the semiactive schedule, it is
optimal to increment bsi = bsg; + 1, because seg; < scp;, so that equation (17) needs not be evaluated.
Consequently, if the semiactive schedule is one block, timetabling is again trivial: each group in & equals
one batch, the whole schedule forms a block, and ¢ = o

If setups are sequence independent, a minimum cost schedule can be derived with less effort as follows: let
the group size gsx at position k denote the number of consecutively sequenced jobs at positions r > k that
belong to the same family as job (é(e] Jis))- Then, for sequence independent setups, equation (17) must
be evaluated only for & = 1,..., gs¢. The reasoning Is as follows: jobs of different groups are leftshifted
to be blocked only if we can save setup cost. Then, for consecutive groups of families ¢ and 7 we would
need scg; < Scg 0+ 80 = $co i, which does not hold for sequence independent setups; therefore, we only
need to decide about the leftshift within a group.

An example for the computations of equation (17) is given in Table 9 for the semiactive schedule in
Figure 4 (see the cost parameters in Table 7). The schedule ¢ contains idle time, and we determine f;
and bsj for each position k, & < J.

Consider jobs (2,2), (3,3) and (3.2) at positions 6,5 and 4 in Figure 4. Up to position 4 the semiactive
schedule is one block, and we increment bs;, which is denoted by entries (-) in Table 9. After job (3,1},
¢ has inserted idle time between positions 3 and 4 (d(3,) = 10) and all different block sizes must be
considered to find the minimum cost schedule. In Table 9, we find f§ = f5(1}, i.e. we start a new block
after position k& = 3 and split the group into two batches, as done for &, in Figure 2. For the objective

function value, we add scp 2 to f; and obtain a cost of Zpsp(o.) = 40.

6 Sequencing Algorithm

In this section we present a branch & bound algorithm for solving the BSP to optimality, denoted as
SABSP. Jobs are sequenced backwards, i.e. at stage 1 a job is assigned to position J, at stage 2 to
position J — 1, at stage s to position J — s + 1. An s-partial sequence 7* assigns s jobs to the last
s positions of sequence 7, in addition to that an s-partial schedule o° also assigns completion times to
each job in m*. A partial schedule w® is called completion of ¢® if w® extends ¢* to a schedule o which
schedules all jobs, and we write ¢ = (w*,0°).

We only examine EDDWF sequences, as if there were precedence constraints between the jobs. The
precedence graph for the example in Figure 2 is shown in Figure 5. Using the EDDWF ordering, we
decide in fact at each stage s which family to schedule. A job is eligible at stage s if all its (precedence
related) predecessors are scheduled. An_s-partial schedule (corresponding to a node in the search tree) is
extended by scheduling an eligible job at stage s+ 1. We apply depth-first search in our enumeration and
use the bounding, branching, and dominance rules described in Sections 6.1 and 6.2 to prune the search
tree.

Each (s-partial) sequence #* uniquely defines a minimum cost {s-partial) schedule ¢* by the timetabling
Procedure. Enumeration is done over all sequences and stops after all sequences have been (implicitly)
examined; the best solution found is optimal. The implementation of SABSP takes advantage of the faci
that equation (17) needs not be recalculated for every ¢° and, in the case of backtracking, the cornputation

of equation (17) has already been accomplished for the partial schedule to which we backtrack.

13

Table 9: Computations of Equation (17) for the Example in Figure 4

(pn,) k| fF bsp | b fu(b) = beg kb1 + 5C0ipgy T fiis
00 8|0 0
L2y 710 1)1 0 = 0 + 0 4 0
22 6| - - |1 ;

1 2 |2 1 = 1 + 0 + 0
33 5| - - |1 -

- < 9 -

6 3 |3 16

b+10+2) + 0 + 0

3,2) 4| - - |1 B
- - |2 -
- - |3 -
18 4 (4 18 = {245+104+1) + 0 + 0
{3,1) 3123 1 |1 23 = 0 4 5 + 18
2 29 = 8 + 5 + 16
3 21 = (8+8} + 10 + 1
4 35 = (8+8+10+4) + 5 + 0
5 36 = (8+8+104+4404+6)+ 0 4+ 0
(,1y 2 - - 11 _
28 2 |2 28 = 5 + 5 4+ 18
2,1) 1| - - |1 _
- -2 .
30 313 30 = (2+5) + 5 4+ 18

Figure 5: EDDWF Precedence Graph for Backward Sequencing

Table 10: Attributes of Partial Schedules

(i*,3%) job under consideration at stage s

UB upper bound, objective function value of the current best schedule
i{o*) start time of ¢%, 1.e. C(isljs) = Pis 55

e(o®) cost of ¢* without the setup for (:*, 7°)

AST(USE®) set of jobs already scheduled (unscheduled) in the s-partial schedule &*

UZ® set of families to which jobs in #4/8° belong to
Gi{c”) set of Jobs which form the first block of o*
wy (%) sum of earliness weights of jobs in G; (%), i.e.

wy(o°) = E(i,j)EQ’x(Us) WG)

Table 10 lists attributes of s-partial schedules. For each scheduling stage s we identify the job (i°, 7°)
under consideration, and the start time ¢(¢*) and costs ¢(c*) of the s-partial schedule. The set of currently
scheduled {unscheduled) jobs is denoted by AS® (US*). LI’ denotes to which families the jobs in U S*

belong; 7 B is the current upper bound.

6.1 Bounding and Branching Rules

The feasibility bound states that for a given ¢°, all currently unscheduled jobs in 4 S must be scheduled
between time zero and ¢(o°) and, furthermore, we need a setup time for each family in Z/Z°. More formally,

define

<<<<<

PEUTT g (i,5)eUs*
Then, ¢° has no feasible completion w* if {(c*} — T* < 0.

The cost bound states that cost ¢{¢®) of an s-partial schedule is a lower bound for all extensions

of ¢*, and for any completion w® at least one setup for each family in 4Z° must be performed. We define

.....

Then, o* cannot be extended to a schedule ¢ = (w*, ¢*) which improves UB if C* + ¢(¢*) = UB.

Both bounds are checked for each s-partial schedule o*. Clearly, T* and C° can be easily updated
during the search. We also tested a more sophisticated lower bound where all unscheduled jobs were
scheduled in EDD order without setups. In this way we were able to derive a lower bound on the earliness
costs as well and check feasibility more carefully, but computation times did not decrease.

If only regenerative schedules need to be considered to find the optimal schedule (cf. Theorem 4), we
employ a branching rule as follows: scheduling (¢*,j°) at stage s (with j* > 1), job (i, 5% — 1) becomes
eligible in the EDDWF precedence graph. If t(o®) < d(;: j+ 1), we schedule (¢, 7° — 1) at stage s +1 (ie.
we batch (4%, 7°) and (¢°, j* — 1)) and do not consider any other job as an extension of ¢°. We need not

15

enumerate partial schedules where o* is extended by a job (g,j} Where g # i* because then the resulting

schedule is non-regenerative.

6.2 Dominance Rules

The most remarkable reduction of computation times comes as a result of the dominance rules. The
dominance rules of SABSP compare two s-partial schedules ¢* and &°, which schedule the same set of
jobs, so that AS® = AS . In this notation, schedule 7 denotes the s-partial schedule currently under
consideration, while o* denotes a previously enumerated schedule which may dominate 7°. A partial
schedule o dominates & if it is more efficient in terms of time and cost: o° starts later to schedule the
job-set, i.e. t{¢*) > t(7"), and o* incurs less cost, i.e. ¢(¢°}) < ¢(@"). If the family #* of the job scheduled
at stage s differs in ¢ and &° we make both partial schedules “comparable” with a setup from FORT AR
we compare time and cost but subtract setup times and setup costs appropriately.

If a schedule ¢ is not deminated, we store for the job set .AS® and family ¢ the pair ¢(¢*) and ¢(o°)
which is “most likely” to dominate other s-partial schedules. Note that the number of partial schedules is
exponential in the number of items N so that storage requirements for the dominance rules grow rapidly
if N increases.

For a formal description of the dominance rules we need several definitions {cf. Table 10): all jobs
which form a block with (%, j) belong to the set Gi(¢*), and the sum of earliness weights in G;(c*) is
denoted as wq(¢*). The dominance rules take into account the block costs for all extensions of ¢* and #":
we consider for ¢ the maximurm, for ° the minimum costs incurred by blocking; ¢° then dominates &°
if ¢(¢*) plus an upper bound on block costs is less or equal ¢(7°) plus a lower bound on block costs.

An upper bound on the block costs for o° is given by scg s (recall that scq; > scg ;). Then, o° starts
a new block. But a tighter upper bound can be found for start times close to t{z*): in order to save costs
we can leftshift all the jobs in Gy (o) (but only these), because after G;(c*) we perform a new setup from
the idle machine. G; (o) is the largest block which may be leftshifted. Let pbt(c®) denote the time where
the cost increase due to a leftshift of G,(¢°) exceeds scg ;.. We then have w;{a*)(t(c*) — pbt(c*)) = scp,is
and define the pull-back-time pbt(o°) of an s-partial schedule ¢* as follows:
seq 45
wi(o®)’

pht(c®) = t(c°) —

Consequently, for time ¢, pbt(o°) <t < ¢(c’), an upper bound on block costs is given by leftshifting G, (¢*);
for 1 < pbi{o°), block costs are bounded by scg;s. In this argumentation we implicitely assume, that
holding inventory during setup time must not exceed setup costs.

A lower bound on the block costs for @ is given in the same way as for ¢, but now we consider the
smallest block that can be leftshifted, which is simply job (¥, 77).

We can now state the dominance rule: we differentiate between i = 7 (Theorem 5) and i* # 7 (The-

orem 6).

Theorem 5 Consider two s-partial schedules o and &° with AS® = AS and i* = 7. Let At =
t{o®) —t(F°) and A* = 1(c°) — pbt(c*). o° dominates 7° if
(z) @) <i(o*)

() — a (@) > e(o*) + min{A*w, (0*), scq 4+ } for stois < A

bl

16

(@ —b c(@)2e(0") +&'w(e*) for stos > A" and
(2ii) o) + min{A“w(,’s)j,),scolis} > c{c*) + scg s
Proof: Any completion w® of ° 1s also a feasible completion of ¢* because of (i); if (w*, &) is feasible,
(w",0¥) Is feasible, too. Due to (i7), for any w*, the schedule (w*, ") has lower costs than (w*, 7).

In the following we consider the cost contributions of o* and 7 due to leftshifting, when we extend o*
and 7. Consider Figure 6 for an illustration of the situation in a time-cost diagram. We have i* = ¥ and
due to EDDWF also (2*,3%) = (z*,7°). The solid line represents the upper bound on block costs for o.
For pbt(c*) <t < t(c7), it is less expensive to leftshift G;(c®) (and extra costs are Aiwl(o")), while
for t < pbt(c”) a setup from the idle machine to #° is performed (with cost scg 3-). However, in the case
that A% < stg; (see (44) — b), we must leftshift G, (¢*) and blocking cost are not bounded by scg ;.. The
broken line represents the lower bound on block costs for @°. The smallest block that can be leftshifted
is the job (%, 5%).

In order to prove that @° will never have less costs than o* due to blocking, we check the costs at
points (i¢) and (i71): at (42} (which is either (if) — a or (i) — §), we compare the costs at {(5°) while
at (iii) we compare them at pbt(c*). Between (i) and (i) costs increase linearly, and for t < pbt(c®) we
know that there is a monotonous cost increase for @, while costs of ¢° no longer increase. Thus, if (i)

and (iZ) are fulfilled, cost contributions of ¢ are less than those of 7°, i.e. there is no completion w*

such that Zgsp(w®,7°) < Zgsp(w’,*), completing the proof. g
cost (i) (i)
(&) + scois R - o : :
clo®) + sco,is \;\\
C(U'S)]
o® : {#°,7°)
pht(a®) H(e®)
o’ (z's,js) E | I

t(7°) t

Figure 6: Illustration of Theorem 5

For the example in Figure 2, Figures 7 and 8 illustrate Theorem 5 with 3-partial schedules ¢ and 7°. Tn
Figure 7, we have G, (02) = G1(7%) = {(3,3),(2,2), (1,2)}, t(¢*) > 1(7°) and pbt(03) = 15-5/4 = 13.75.
Checking (i), we have 22 > 16 4+ min{1 - 4,5}, while for (iif) we have 22 + min{0.25 - 1,5} > 16 + 5,
so that ©° is dominated. Figure 8 illustrates the effect of block costs, but with modified data as follows:
s¢os = 10 and d3» = 15. Thus pbt(0?) = 13 ~ 10/3, and A™ = 10/3. Checking Theorem 5, we have (i)
16 > 15 + min{0 - 3,5}, but (#6i) 16 + min{10/3- 2,10} > 15 + 10 is not fulfilled. Thus, ¢ does not
dominate 5 though c{o®) < (%) and t(c®) = £(7°). Figure 8 shows that ele?) > ofF*) if Gi(o?) 1s

leftshifted.

17

c(c®) = 16

3,3 2,21 1,2 a®
3,3 1,2 2,2 Lo
I I ' ! l I T T 1 I I I i |
0 5 10 15 20
c(7°) = 22 t

Figure 7: Theorem 5: ¢° dominates 7

c(o?) =24 e(e®) =15
3,1 32 33| 32 33 =22 o3
3,1: 32 3,2 2,2/3,3 72
F I 1] 13 Ll I I I 1 1 1 1
0 5 10 15 20
c(@) = 22 () = 16 t

Figure 8: Theorem 5: o does not dominate 7°

In the second dominance rule for the case i # 7°, we must consider scp; instead of scy ; to take block

costs into account.
Theorem 6 Given two s-partial schedules o° and T with AS® = AS and i 415, 0° dominates & if

(%) tT') + stz <o) and

(71) c(@) 2 (") + sco s
Proof: Let i denote the family of the (last) job in a completion w® of 75. Then st;o ;+ < 8w 7+ S0 e,
analogously for setup costs due to the triangle inequality. Thus any completion w* of & is also a feasible
completion of o* because of (i); if (w*,7) is feasible, (w*, o) is feasible, too. Due to (i1}, for any w*, the
schedule (w*,¢°) has lower costs than (w®, 7).

The difference is that now also block costs are taken into account in {71}): when leftshifting G1 (o) in
an extension of o°, we have c(¢*) + scg i+ as an upper bound for the cost contribution. A trivial lower
bound for the cost contribution of & is ¢(7°). Thus ¢° dominates 7 as any w® completes ¢* at lower
costs, completing the proof. o

Finally, an alternative way to solve the BSP is a dynamic programming approach. We define the
Jjob-sets as states and apply the dominance rules in the same way. An implementation of this approach

was less efficient and is described in Jordan [9].

18

7 Computational Results

From the analysis in Section 4 we know that we address the same plapning problem in BSP and DLSP,
and that we find corresponding solutions. Consequently, in this section we compare the performance of
algorithms solving the BSP with procedures for solving variants of the DLSP. The comparison is made
on the DLSP instances used to test the DLSP procedures; we take the instances provided by the cited
authors and solve them as BSP(DLSP) or BSPUT(DLSP) instances (cf. Figure 1). An exception is made
for veference [8] where we use randomly generated instances.

The different DLSP variants are summarized in Table 11. For the DLSP, in the first column the
reference, in the second the DLSP variant is displayed. The fourth column denotes the proposed algorithm,
the third column shows whether computational results for the proposed algorithm are reported for equal
or unequal holding costs. Depending on the holding costs, the different DLSP variants are solved as
BSP(DLSP) or BSPUT{DLSP) instances. With the exception of reference [18], the DLSP procedures are

tested with equal holding costs, so that regenerative schedules are optimal in {4] and [8].

Table 11: Solving Different DLSP Variants as a BSP

DLsSP BSP

Author Variant Holding Costs Algorithm Instances Properties of
Schedules

Cattrysse SISTSC h;=1 DACGP BSP(DLSP) EDDWF and

et al. [4] regenerative

Fleisch- SDSC hi=1 TSPOROPT BSP(DLSP) EDDWF and

mann [§] regenerative

Salomon SDSTSC b, >0 TSPTWA BSPUT(DLSP) EDDWF

et al. [18]

h;=0 TSPTWA BSP(DLSP) EDDWF and

one block

7.1 Sequence Independent Setup Times and Setup Costs (SISTSC)

In Cattrysse et al. [4], a mathematical programming based procedure to solve SISTSC is proposed.
Cattrysse et al. [4] refer to their procedure as dual ascent and column generation procedure (DACGP).
The DLSP is first formulated as a set partitioning problem (SPP) where the columns represent the
production schedule for one item ¢; the costs of each column can be calculated separately because setups
are sequence independent. DACGP then computes a lower bound for the SPP by column generation, new
columns can be generated solving a single item subproblem by a (polynemial) DP recursion. In DACGP
a feasible schedule, i.e. an upper bound, may be found in the column generation step, or is calculated
by an enumerative algorithm with the columns generated so far. If in neither case a feasible schedule is

found, an attempt is made with a simplex based procedure.

19

The (heuristic) DACGP generates an upper and a lower bound, SABSP solves BSP{DLSP} to optim-
ality. DACGP is coded in FORTRAN, SABSP is coded in C. DACGP was run on an IBM-PS2 Model
80 PC (80386 processor) with a 80387 mathematical coprocessor, we implemented SABSP on the same
machine to make computation times comparable.

Computational results for the DACGP are reported only for identical holding costs {h; = 1) for all
itemns. Consequently, we solve DLSP as BSP(DLSP) and only need to consider regenerative schedules,
cf. Theorem 4. Furthermore, the timetabling procedure requires fewer computations in equation (17) as
setups are sequence independent.

The DLSP instances with nonzero setup times are provided by the authors of [4]. They generated

instances for item-period combinations {(N, T)} = {(2,20), (2,40), (4,40), (2, 60},
(4,60), (6,60)}. We refer only to instances with T = 60 because smaller instances are solved much faster
by SABSP than by DACGP. The DLSP instances have setup times sty ; of either 0, I or 2 periods.
The average setup-time per item {over all instances) is (approximately) 0.5, making setup times not very
significant. For each item-period combination instances with different (approximate) capacity utilizations
p were generated: low (L) capacitated (p < 0.55), medium (M) (0.55 < p < 0.75) and high (H) capacitated
instances (p > 0.73). Approximate capacity utilization is defined as p = (1/T) Zi’t gi+- 30 instances were
generated for each (I, T, p) combination, amounting to 3 - 3 - 30 = 270 instances in total.

In Table 12, we use #.J to denote the average number of jobs in BSP(DLSP) for the instance size (N, T)
of the DLSP. For DACGP we use Ag,g to denote the average gap (in percent) between upper and lower
bound. #;n; is the number of instances found infeasible by the different procedures and R,, 4 denotes the
average time (in seconds) needed for the 30 instances in each class. For DACGP, all values in Table 12
are taken from [4].

In the comparison between DACGP and SABSP, the B&B algorithm solves problems with N = 2 and
N = 4 much faster; the number of sequences to examine is relatively small. For N = 6 computation times
of SABSP are in the same order of magnitude than for DACGP. In (6, 60,M) the simplex based procedure
in DACGP finds a feasible integer solution for one of the 10 instances claimed infeasible by DACGP.
Thus, in (6,60,M), 9 instances remain unsolved by DACGP, wherecas SABSP finds only 7 infeasible
instances. DACGP also fails to find existing feasible schedules for (N, T, p) =(2,60,H), (4,60,M). Recall
that SABSP takes advantage of a small solution space, keeping the enumeration tree small and thus
detecting infeasibility or a feasible schedule quite quickly. DACGP tries to improve the lower and upper
bound, which is difficult without an initia} feasible schedule. Therefore the (heuristic solution procedure)
DACGP may fail to detect feasible schedules if the solution space is small.

For the same problem size (N, T) in DLSP, the number of jobs J in BSP(DLSP) may be very different.
Therefore, solution times differ considerably for SABSP. Tabie 13 presents the frequency distribution of
solution times. In every problem class the majority of instances is solved in less than the average time for
DACGP.

7.2 Sequence Dependent Setup Costs (SDSC)

An algorithm for solving SDSC 1s proposed by Fleischmann (8]. Fleischmanu transforms the DLSP into
a traveling salesman problem with time windows (TSPTW), where a tour corresponds to a production

schedule in SDSC. Fleischmann calculates a lower bound by lagrangean relaxation; the condition that

20

Table 12: Comparison of DLSP and BSP Algorithms for SISTSC

DLSP BSP

DACGP SABSP
(N,T) #J p| Davg Rawg #ing | Ravg Fing
(2,60) 19 L | 017 258 2 0.1 2
25 M 0.20 76.3 7 0.2 7
29 H 1.22 2749 10 0.1 9
(4,60) 21 L | 015 389 3| 42 3
31 M| 047 1208 6| 11.8 5
35 H | 143 2687 11 7.1 10
(6,60) 22 L 013 56.2 1] 369 1
3 M 0.70 264.9 10 | 148.0 7
3 H | 09 2741 10] 987 10

(386 PC with coprocessor)

Table 13: Frequency Distribution of Solution Times of SABSP

Number of instances solved faster than ... [sec]
(N, T) <01 <1 <10 <30 <100 <300 <1000 > 1000 < Raug {DACGP)
(2,60) L 10 20 30
M 4 26 30
H 13 17 30
(4.60) L 4 23 3 30
M 2 16 10 2 30
H 3 4 13 10 30
(6,60) L 1 4 5 10 8 2 25
M 1 1 3 5 12 5 2 1 26
H 1 4 5 10 8 2 28

(386 PC with coprocessor)

21

each node is to be visited exactly once, is relaxed. An upper bound is calculated by a heuristic, that first
constructs a tour for the TSPTW and then tries to improve the schedule using an Or-opt operation. In
Or-opt, pieces of the initial tour are exchanged to obtain an improved schedule. Or-opt is repeated until
no more improvements are found. We refer to Fleischmann’s algorithm as TSPOROPT. TSPOROPT
was coded in Fortran, experiments were performed on a 486DX2/66 PC with the original code provided
by Fleischmann.

Fleischmann divides the time axis into micro and macro periods. Holding costs arise only between
macro periods, and demand occurs only at the end of macro periods. Thus a direct comparison of
TSPOROQPT and SABSP using Fleischmann’s instances is not viable; instead, we use randomly generated
BSP instances which are then transformed into DLSP instances. We generated 30 instances for N =
5 families and low (L) (g = 0.75) or high (H)(p &~ 0.97) capacity utilization. Note that for zero setup
times, p does not depend on the schedule; the feasibility problem is polynomially solvable. In BSP, we
have an average number #J = 33 of jobs with a processing time out of the interval [1,4]. In DLSP, we
have an average T = 73 for high (H) and 7 = 100 for low (L) capacitated instances. Holding costs are
identical, and we solve BSP(DLSP). From [8] we select the 2 setup cost matrices 54 and S6 which satisfy
the triangle inequality: in S4 costs equal 100 for g < 7 and 500 for g > i. For 56 we have only two
kinds of setups: items {1,2,3} and {4,5} form two setup-groups, with minor setup costs of 100 within
the setup-groups and major setup costs of 500 from one setup-group to the other.

In Table 14 results are aggregated over the 30 instances in each class. We use Agyg to denote the
average gap between lower and upper bound in % for TSPOROPT and Raug (Rayg) to denote the aver-
age time for TSPOROPT (SABSP) in seconds. We denote by AZpe, the average deviation in % of the
objective function value of the heuristic TSPOROPT from the optimal one found by SABSP. Table 14

Table 14: Comparison of DLSP and BSP Algorithms for SDSC

setup cost TSPOROPT SABSP
matrix ~ (N,T) #J p | Davg DZsest Ravg Raug
(6,75) 33 H 5.2 4.1 3.8 0.1

54 {(5,100) 33 L 15.9 15.3 38.2 24.6
(5,75) 33 H 3.7 2.0 3.4 0.2

56 (5,100) 33 L | 39.2 15.8 33.¢9 107.8

(486DX2/66 PC)

shows that A,y 4 can be quite large for TSPOROPT. Solution times of SABSP are short for high capacit-
ated Instances and long for low ones. For S4, TSPOROPT generates a very good lower bound, we have
Lgug & AZpes and the deviation from the optimal objective is due to the poor heuristic upper bound.
On the other hand, for S6 both the lower and the upper bound are not very close to the optimum. Note
that SABSP does not solve large instances of SDSC with 8 or 10 items whereas Fleischmann reports

computational experience for instances of this size as well. The feasibility bound is much weaker for zero

22

setup times, or, equivalently, the solution space is much larger, making SABSP less effective. For the

instances in Table 14, however, SABSP yields a better performance.

7.3 Sequence Dependent Setup Times and Setup Costs (SDSTSC)

In Salomon et al. [18], Fleischmann’s transformation of the DLSP into a TSP with time windows (TSPTW)
is extended for nonzero setup times in order to solve SDSTSC. Nodes in the TSP network represent positive
demands, and all nodes must be visited within a certain time window. The transformed DLSP is solved
by a dynamic programming approach designed for TSPTW problems (cf. Dumas et al. [6]), we refer to
the procedure in [18] as TSPTWA. Paths in the TSP network correspond to partial schedules. Similar to
the dominance rule for SABSP, in TSPTWA paths may dominate other paths via a cost dominance, or
they may be eliminated because they cannot be extended, which corresponds to the feasibility bound.

TSPTWA is coded in C and run on a HP9000/730 workstation (76 mips, 22 M flops). SABSP runs
on a 486DX2/66 PC. In order to test TSPTWA Salomon et al. [18] use randomly generated instances,
in which. similar to [4], setup times st;; € {0,1,2}. Unfortunately, the setup times do not satisfy the
triangle inequality. A "triangularization” (e.g. with the Floyd/Warshall algorithm) often results in setup
times equal to zero. So we adjusted the setup times ”"upwards” (which is possible in this case because
sty € {0,1,2}) and as a result, setup times are rarely zero. We added 4 (8) units to the planning horizon
for N =3 and N = 5 (N = 10) in order to obtain the same {medium} capacity utilization as in [18].
In this way, instances are supposed to have the same degree of difficulty for TSPTWA and SABSP: the
smaller solution space due to correcting sty ; upwards is compensated by a longer planning horizon.

In [18] instances are generated for T = 20, 40, 60, and we take the (largest) instances for the item-period
combination {(N,T)} = {(10.40), (3,60).(5,60),(10,60)}. The instances have a medium (M) capacity
utilization 0.5 < p < 0.75 because setup times are nonzero. For each (N,T) combination, 30 instances
with and without holding costs are generated. Holding costs differ among the items. Consequently, we
solve BSPUT(DLSP) if h; > 0 and BSP(DLSP) if h; = 0. Furthermore, we need not apply the timetabling
procedure in the latter case because the optimal schedule is one block. In Table 15, #F (#F) denotes
the number of problems solved by TSPTWA (SABSP) within a time limit of 1200 sec (1200 sec) and
a memory limit of 20 MB (10 MB). #J denotes the average number of jobs for the BSP. Raug (Rfyg)
denotes the average time SABSP requires to solve the instances (considering only regenerative schedules).
The average time is calculated over all instances which are solved within the time limit, Raug Is put in
brackets if not all instances are solved. The last column shows the results if we consider only regenerative
schedules during enumeration for h; > 0: AZB__ provides the maximal deviation in % from the optimal
schedule (which may be non-regenerative).

Table 15 demonstrates that SABSP succeeds in solving some of the problems which remained unsolved
by TSPTWA. Solution times of SABSP are relatively short compared with TSPTWA for N = 3 and
N = 5. Solution times increase for N = 10, and instances can only be solved if the number of jobs is
relatively small. Instances become difficult for nonzero, especially for unequal holding costs. If we only
elumerate over regenerative schedules, solution times for SABSP decrease. Moreover, cnly one instance
is not solved to optimality for (N,T) = (3,64). Thus, even for unequal holding costs optimal schedules
ale regenerative in most cases. Furthermore, for (N, T) = (10, 48) ({10,68)), 29 (3) instances would have

been solved within the time limit of 1200 sec if only regenerative schedules would have been considered.

23

Table 15: Comparison of DLSP and BSP Algorithms for SDSTSC

TSPTWA SABSP
(N.T) #J hi | #F Rayg #F Ry | RS, DZ5.
95 =0 21 <1200] 30 35 - -
(10,48) ,c gl 1 <1200 21 (489.8) | (373.1) 0.0
38 =0 30 <1200] 30 08 - -
(3.64) 40 ol 30 <1200{ 3 51 1.4 0.4
38 0| 25 <1200 30 280 - -
(5.6 45 S0 0 30 1403 | 363 0.0
38 =0| 4 <1200] 14 (416) | - -
(10,68) 55 S0 o 9 (438.6) | (488.4) 0.0

(486DX2/66 PC)

8 Summary and Conclusions

In this paper, we examined both the discrete lotsizing and scheduling problem (DLSP) and the batch
sequencing problem (BSP).

We presented model formulations for the DLSP and for the BSP. In the DLSP, decisions regarding
what is to be done are made in each individual period, while in the BSP, we decide how to schedule jobs.
The DLSP can be solved as a BSP if the DLSP instances are transformed. For each schedule of one
model there is a corresponding solution for the other model. We proved the equivalence of both models,
meaning that for an optimal schedule of thie BSP the corresponding solution of the DLSP is also an optimal
schedule, and vice versa.

In order to solve the BSP effectively, we tried to restrict the search to only a subset of all possible
schedules. We found out that jobs of one family can be preordered according to their deadlines. Further-
more, for equal holding costs, it is optimal to start production for a family only if there is no inventory of
this family.

When sclving the BSP with a branch & bound algorithm to optimality, we face the difficulty that
already the feasibility problem is difficult. We must maintain feasibility and minimize costs at the same
time. Compared with other scheduling models, the objective function is rather difficult for the BSP. A
tight lower bound could thus not be developed. We therefore used dominance rules to prune the search
tree. Again, the difficult objective function complicates the dominance rules and forces us to distinguish
different cases.

In order to evaluate our approach, we tested it against (specialized) procedures for solving variants

of the DLSP. Despite the fact that we have no effective lower bound, our approach proved to be more

efficient if () the number of items is small, and (i) instances are hard to solve, i.e. capacity utilization 1s

24

high and setup times are significant. It is then “more appropriate” to schedule jobs than to decide what
to do in each individual period.

in the DLSP, the time horizon is divided into small periods and all parameters are based on the period
length. In the BSP, all parameters can also be real numbers: setup times, in particular, are not restricted
to being multiples of a period length. The different models also result in different problem sizes for DLSP
and BSP: the problem size for DLSP is essentially the number of items N and periods T while the problemn
size for the BSP depends on the number of families and jobs.

We conjecture that our approach is advantageous for instances with few items and a small solution
space (i.e. long setup times and high capacity utilization), where the job sequence is the main characteristic
of a solution. In such cases we managed to solve instances with 10 (5) families and 30 (50} jobs on a
PC. DLSP solution procedures are thought to be better suited for lower capacitated instances with many
items, setup times that are not very significant, and parameters which differ among the periods. It is then
appropriate ta decide anew for each individual period.

In the future we will extend the BSP to multilevel structures and multiple machines.

Acknowledgments

We are indebted to Dirk Cattrysse and Marc Solsmon who made available their instances, and to
Bernhard Fleischmann who made available his code. Furthermore, we would like to thank three an-

onymous referees for their valuable comments on earlier versions of this paper.

References

(1] AEN, B.H. anDp J.H. Hyun, 1990. Single facility multi-class job scheduling. Computers and Ope-
rations Research, Vol. 17, pp. 265-272.

2] BruNo, J. AND P. DowNEY, 1978. Complexity of task sequencing with deadlines, setup-times and
changeover costs. SIAM Journal on Computing, Vol. 7, pp. 393-404.

[3] BRUGGEMANN, W. AND H. JAHNKE, 1994. Remarks on: ”Some extensions of the discrete lotsizing
and scheduling problem” by Salomon, M., L.G. Kroon, R. Kuik and L.N. Van Wassenhove. Working

Paper, Institut fir Logistik and Transport, University Hamburg, Germany.

[4] CaTTRYsSE, D., M. SaLomon, R. Kuik aND L.N. VAN WASSENHOVE, 1993. A dual ascent and
column generation heuristic for the discrete lotsizing and scheduling problem with setup-times. Man-

agement Science, Vol. 39, pp. 477-486.

[5] DREXL, A. AND A. Kimms, 1996. Lot sizing and scheduling: survey and extensions. Working Paper,

University Kiel, to appear in Buropean Journal of Operational Research.

[6] Dumas, Y., J. DEsrosIERS, E. GELINAS AND M.M. SoLoMoON, 1995. Technical Note: An optimal
algorithm for the traveling salesman problem with time windows. Operations Research, Vol. 43,

pp. 367-371.
FLEISCHMANN, B., 1990. The discrete lot-sizing and scheduling problem. European Journal of Op-
erational Research, Vol. 44, pp. 337-348.

[7

PR

25

[8] FLEISCHMANN, B., 1994. The discrete lot-sizing and scheduling problem with sequence-dependent
setup-costs. European Journal of Operational Research, Vol. 75, pp. 395-404.

[9] JorpAN, C., 1995. Batching and Scheduling - Models and Methods for Several Problem Classes.
Lecture Notes in Economics and Mathematical Systems No. 437, Springer, Berlin 1996.

[10] GAREY, M.R. AND D.S. Jounson, 1979. Computers and intractability — a guide to the theory of

NP-completeness. Freeman, San Francisco.

[11] Haasg, K., 1996. Capacitated lot-sizing with sequence dependent setup costs. OR Spektrum, Vol. 18,
pp. 51-59.
[12] Haase, K. aND A. Kimms, 1996. Lot sizing and scheduling with sequence dependent setup costs

and times and efficient rescheduling opportunities. Working Paper, University Kiel.

[13] Laspon L.S. AND R.C. TERIUNG, 1971. An efficient algorithm for multi-item scheduling. Operations
Research, Vol. 19, pp. 946-969.

[14] MasoN, A.J. AND E.J. ANDERSON, 1981. Minimizing flow time on a single machine with job classes
and setup times. Naval Research Logistics, Vol. 38, pp. 333-350.

[15] MonmMa, C.L. aNp C.N. PorTs, 1989. On the complexity of scheduling with batch setup-times.
Operations Research, Vol. 37, pp. 798-804.

(16] Ports, C.N. AND L.N. vAN WASSENHOVE, 1992. Integrating scheduling with batching and lot-
sizing: a review of algorithms and complexity. Journal of the Operational Research Society, Vol. 43,
pp. 396-406.

[17]) SaLomon, M., L.G. KrooN, R. KUik AND L.N. VAN WASSENHOVE, 1991. Some extensions of the
discrete lotsizing and scheduling problem. Management Science, Vol. 37, pp. 801-812.

[18] SaLomon, M., M.M. SoLoMON, L.N. VAN WASSENHOVE, Y.D. Dumas, S. DAUZERE-PERES,
1995. Discrete lotsizing and scheduling with sequence dependent setup times and costs. Working

Paper, to appear in European Journal of Operational Research.

[19] SanTos, C. AND M. MAGAZINE, 1985. Batching in single operation manufacturing systems. Opera-
tions Research Letters, Vol. 4, pp. 99-103

[20] ScuuTTEN, J.M.J., S.L. VAN DE VELDE AND W.H.M. Z1JM, 1996. Single-machine scheduling with
release dates, due dates and family setup times. Management Science, Vol. 42, pp. 1165-1174.

[21] UnaL, A. AND A.S. KIRAN, 1992. Batch sequencing. IIE Transactions, Vol. 24, pp. 73-83.

[22] Vickson, R.G., M. MAGAZINE AND C. SANTOs, 1993. Batching and sequencing of components at
a single facility. /IE Transactions, Vol. 25, pp. 65-70.

(23] WaGNER, H.M. AND T.M. WHITIN, 1958. Dynamic version of the economic lot size model. Man-
agement Science, Vol. 5, pp. 89-96.

[24] WEBSTER, S. AND K.R. BAKER, 1995. Scheduling groups of jobs on a single machine. Operations
Research, Vol. 43, pp. 692-704.

26

