
Jordan, Carsten; Drexl, Andreas

Working Paper — Digitized Version

Discrete lotsizing and scheduling by batch sequencing

Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel, No. 438

Provided in Cooperation with:
Christian-Albrechts-University of Kiel, Institute of Business Administration

Suggested Citation: Jordan, Carsten; Drexl, Andreas (1997) : Discrete lotsizing and scheduling by
batch sequencing, Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel,
No. 438, Universität Kiel, Institut für Betriebswirtschaftslehre, Kiel

This Version is available at:
https://hdl.handle.net/10419/149058

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/149058
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

Manuskripte

aus den

Instituten für Betriebswirtschaftslehre

der Universität Kiel

Manuskripte

aus den

Instituten für Betriebswirtschaftslehre

der Universität Kiel

No. 438

Discrete Lotsizing and Scheduling

by Batch Sequencing

Jordan/Drexl

April 1997

to appear in Management Science

© Do not copy, publish or distribute without authors' permission.

Carsten Jordan, Andreas Drexl, Lehrstuhl für Produktion und Logistik, Institut für Betriebswirtschaftslehre,
Christian-Albrechts-Universität zu K iel, Olshausenstr. 40, 24118 Kiel, Germany
email: Jordan@bwl.uni-kiel.de

Drexl@bwl.uni-kiel.de
URL: http://www.wiso.uni-kiel.de/bwlinstitute/Prod

ftp://ftp.wiso.uni-kiel.de/pub/operations-research

Abstract: The discrete lotsizing and scheduling problem for one machine with sequence dependent
setup times and setup costs is solved as a single machine scheduiing problem, which we term the batch
sequencing problem. The relationship between the lotsizing problem and the batch sequencing problem is
analyzed. The batch sequencing problem is solved with a brauch & bound algorithm which is accelerated
by bounding and dominance rules. The algorithm is compared with recently published procedures for
solving variants of the DLSP and is found to be more efficient if the number of items is not large.

KEYWORDS: DISCRETE LOTSIZING AND SCHEDULING, SEQUENCE DEPENDENT SETUP TIMES AND
SETUP COSTS, BATCH SEQUENCING, BRANCH & BOUND AL GORITHM, BOUNDING/DOMINANCE RU LES.

1 Introduction

In certain manufacturing Systems a significant amount of se tup is required to change production from
one type of products to another, such as in the scheduling of production lines or in chemical engineering.
Productivity can then be i ncreased by batching in order to avoid Setups. However, demand for different
products arises at different points in time within the planning horizon. To satisfy dynamic demand, either
large inventories must be kept if pr oduction is run with large batches or frequent setups are required if
inventory Ievels are kept low. Significant setup times, which consume scarce production capacity, tend
to further complicate the scheduling problem. The discrete lotsizing and scheduling problem (DLSP) is a
well-known model for this Situation.

In the DLSP. demand for each item is dynamic and back-logging is not allowed. Prior to each produc­
tion run a setup is required. Setup costs and setup times depend on either the next item only (sequence
independent), or on the sequence of i tems (sequence dependent). Production has to meet the present or
future demand, and the latter case also incurs holding costs. The planning horizon is divided into a finite
number of (short) periods. In each period at most one item can be produced, or a setup is made ("all
or n othing production"). An o ptimal production schedule for the DLSP minimizes the sum of setup and
holding costs.

The relationship between the DLSP and scheduling models in general motivated us to solve the DLSP
as a batch sequencing problem (BSP). We derive BSP instances from DLSP instances and solve the
DLSP as a BSP. Demand for an item is interpreted as a job with a deadline and a processing time. Jobs
corresponding to demand for the same item are grouped into one family. Items in the DLSP are families in
the BSP. All jobs must be processed on a single machine between time zero and their respective deadlines,
while switching from a job in one family to a job in another family incurs a (sequence dependent) setup
time and setup cost. Early completion of jobs is penalized by earliness costs which correspond to holding
costs. As for the DLSP, an optimal schedule for the BSP minimizes the sum of setup and earliness costs.

The DLSP was first introduced by Lasdon and Terjung [13] with an application to production schedul­
ing in a tire Company. Complexity results for the DLSP and its extensions are examined in Salomon et
ab [17], w here the close relationship of the DLSP to job (class) scheduling problems is emphasized. A
broader view on lotsizing and scheduling problems is given in Potts and Van Wassenhove [16]. An ap-
proach based on lagrangean relaxation is proposed by Fleischmann [7] for the DLSP without setup times.
Fleischmann [8] u tilizes ideas from Solution procedures for vehicle routing problems to solve the DLSP
with sequence dependent setup costs. The DLSP with sequence independent setup times and setup costs
is examined by Cattrysse et al. [4]. In a recent work, Salomon et al. [18] propose a dynamic programming

1

based approach for solving the DLSP with sequence dependent setup times and setup costs to optimality.
The results of [4] , [8] and [18] will s erve as a benchmark for our approach for solving the BSP.

Haase and Kimms [12] present a new mathematical model formulation for lotsizing and scheduling
with sequence dependent setup times and costs which considers only efficient sequences. In addition,
they provide a branch Sz bo und algorithm which solves instances optimally and efficiently. A lo cal search
algorithm for lotsizing and scheduling with sequence dependent setup costs is presented in Haase [11]. A
review of recent lotsizing and scheduling research can be found in Drexl and Kimms [5]. Schütten et al.
[20] present an exact branch-and-bound algorithm for single-machine scheduling with release dates, due
dates, family setup times, and maximum lateness as objective, respectively.

The complexity of scheduling problems with batch setup times is investigated by Bruno and Downey [2]
and Monma and Potts [15]. Bruno and Downey show the feasibility problem to be NP-hard if setup times
are nonzero. Solution procedures for scheduling problems with batch setup times are studied in Unal and
Kiran [21], Ahn and Hyun [1] and Mason an d Anderson [14]. In [21] the feasibility problem of the BSP is
addressed and an effective heuristic is proposed. In [1] and [14], al gorithms to minimize mean flow time
are proposed. Webster and Baker [24] survey r ecent results and derive properties of optimal schedules for
various batching problems.

The contribution of the paper is twofold. First, we solve the DLSP as a BSP and State the equivalence
between both models such that we can solve either the DLSP or the BSP. Second, we present an algorithm
that solves the BSP faster than known procedures solving the DLSP.

The paper is organized as follows: we present the DLSP and the BSP in Section 2 and provide a
numerical example in Section 3. The relationship between the two models is analyzed in Section 4.
Section 5 presents a timetabling procedure to convert a sequence into a minimum cost schedule, and in
Section 6 we desc ribe a branch & bound algorithm for solving the BSP. A comparison of our algorithm
with Solution procedures solving variants of t he DLSP is found in Secti on 7. Summary and conclusions
follow in Section 8.

2 Model Formulations

The DLSP is presented with sequence dependent setup times and setup costs, we refer to this problem as
SDSTSC). SDSTSC includes the DLSP with sequence independent setups (SISTSC), sequence dependent
setup costs but zero s etup times (SDSC), and the generic DLSP with sequence independent setup costs
and zero setup times (cf. Fleischmann [7]) as special cases.

The DLSP Parameters are given in Table 1. Items (families) in the DLSP (BSP) are indexed by i, and
h{ denotes holding costs per unit of item i and period. Production has to fulflll the demand for item i
in period t. Setup costs scg>i are "distributed" over max{l,st3it} setup periods by deflning per-period
setup costs The decision variables are given in Table 2: we set Yiit = 1 if production takes place
for item i in period t. = 1 indicates a setup from item g to item i in period t, and /jjt denotes the
inventory of item i at the end of pe riod t.

In the mixed binary formulation of Table 3, the objective (1) minimizes the sum of setup costs sc^ i (per
setup period st9ii) and inventory holding costs. Constraints (2) express the inventory balance. The "all
or nothing production" is enforced by constraints (3): in each period, the machine either produces at
füll unit capacity, undergoes setup for an item, or is idle, i.e. YQJ ~ 1 for an idle period. For stg^ — 0

2

constraints (4) instantiate Vgti,t appropriately. Constraints (5) couple setup and production whenever
stgj > 0: i fitemz'is produced in period i and item g in per iod t-r-1 then the decision variable V9iijt_T = 1
for T — t stg,ii • - • — 1. Constraints (6) ensure, that the Y{it are in correct positions relative to one
another, therefore. we have to set YOJT = 1 for r < 0 in (10). Constraints (7) p revent any back-logging.
Finally, the variables /i(T, Vg)iiT} and Yi>T are initialized for r < 0, by constraints (10). Due to the "all
or no thing production", we can write down a DLSP schedule in terms of a period-item assignment in a
string i/ = (^I, ^2, • - -,VT)- V specifies the action in each period, i.e. vt = i, if Y i>t = 1, i = 0,...,N, or
yt •= a, if Vg ,i,t = 1 (f°r stg,i > ^)-

Table 1: Parameters of the DLSP

i index of ite m (=family), i = 0,..N, 0 denotes the idle machine

t index of p eriods, t = 1,... ,T

qitt demand of item i in period t

h{ holding costs per unit and period of it em i

st9ti setup time from item g to item i, g,i = 0,..N

s(?g/i setup costs per setup period from item g to item z, g, i = 0,..., AT

sc9ti setup costs from item g to item z, g, i = 0,..., iV

scg,i = j ma x{l,

Table 2: Decision Variables of the DLSP

Yiit 1, if i tem i is produced in period t. and 0 otherwise.

y0|t — 1 denotes idle time in period t

V9ii)t 1, if t he machine is setup for item i in period t, while the previous item

was item g, and 0 otherwise

/i,t inventory of item i at the end of p eriod t

The BSP is a farnily scheduling problem (cf. e.g. Webster and Baker [24]). Parameters (cf. Table 4)
related to the Ar families are the index i, the number of jo bs nt- in each family, and the total number of
j°bs J. Index i = 0 denotes the idle machine. As for the DLSP, holding costs hi represent the costs for
holding one unit of family i in inventory for one period of time. Setup times st9ii and setup costs sc9ii are
given for each pair of families g and i. The set of jobs is partitioned into families i} the j-th Job of family i
is indexed by t he tuple (z, j). Associated with each job (z, j) are a processing time p(ij), a deadline
and a weight Job weights u>(i are proportional to the quantity (=processing time) of the job
{proportional weights), they are derived from hi and p(ij)- We put the tuple in brackets to index the job
Attributes because the tuple denotes a job as one entity.

3

Table 3: Model of the DLSP

N T / N
Min ZDLSp = \ + hiIi>1

i = l (=1 \5 = 0 '

subject to

h,t-I 4- — 5i,£ = h,t

^2Yi,t+ ^2 V9,i,t = 1

t = 0

Vg,i,t > Yg,t-1 + Yi,t ~ 1

Vg,i,T > Wt + ;-l 1

N
T, Yg,t-Stg,i-1 ^
5=0

/i£ > 0

Vg,i,t E {0, 1}

Yi>t€{ 0.1}

A',r = Vg,i,r — 0;VO,T — 1

i = 1,..TV; t=l}...,T

t = 1,.. .,T

5 = 0,..Ar; z = 1, • •N: g / i;

sig,i =0; t = 1,... , T;

g = 0,. .Ar; i = 1,TV; y ^ z;

sigti >0 T — ~t ^g,i) • • •) ^ 1)

t = 1,..., T

jr = 0,. .., AT; z = 1, . .TV;

s^i >0; t=l,...,T

= 1,..., N\ t = 1,..., T

g = 0, ...,7V; i = 1,...,TV; 5 ^ i;

t = 1,.. .,X

i = 0,..., AV; t = 1,.. .,T

g,z = 0,...,A; r < 0

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

The decision variables are given in Table 5. The sequence n denotes the processing order of the Jobs,
(*"[*] >j[A]) denotes the job at position k; together with completion times of each Job we obtain the
schedule er. A co nceptual model formulation for the BSP is presented in Table 6. ZBSP{<?) denotes the
sum of earliness an d setup costs for a schedule er, which is minimized by the objective (11)- The earliness

— C(ij) is weighted by lOfij), and setup costs are ineurred between Jobs of different
families. Each Job is to be scheduled between time zero and its deadline, while respecting the sequence
on the machine as well as the setup times. This is done by constraints (12). Constraints (13) set Pk eq ual
to one if there is idle time between two consecutive Jobs. We then have a setup time from the idle
machine rather than a sequence dependent setup time Initializations of beginning and end of
the schedule are given in (15) and (16), respectively.

Remark 1 For the BSP and DLSP parameters we assume that:

1. setup times and setup costs satisfy the triangle inequality, i.e. stg>i < st9ii + sti^ and sc9ii <
sc9ti +sciti) g,i,l = 0,...,7V.

4

Table 4: Parameters of the BSP

ni number of jobs of family i, J = n»: total number of jobs

(z, j) denotes the j-th job of family z, i = 1,..., jVj j - 1,..., m

P(i,j) processing time for the j-th job of family i

d(ij) deadline for the j-th job of family i

earliness weight per unit time for the j-th job of family i

B big number

Table 5: Decision variables of the BSP

TT sequence of all jobs, TT = ((i[y], jpj), {i[2]J[2}), • • -, i[fcj), • • -, (*[J]> i[j]))

(i[k\,j[k]) denotes the job at position k

C(ij) completion time of job (i,j)

Pk 1, if there is idle time between t he jobs and (*[*],j[*]),

and 0, otherwise

Table 6: Model of the BSP

J
Min ZBSP{C) = [u,(*{fc]»J[*])(c'(i[*]»J[fe]) — Q*[k]Jw)) +

k = l
subject to

^('[fc-iidifc-i]) — min " Pb[k]J[kl) ~ ~ —

k = 1,..., J (12)

B • Pk — (C(i[fc] j[fe]) — P(i[fc],j[fc]) — S^*[fc-i],*[*J ~ ~ ^(»[A-I]d[fc-Ij)) — ^ k = l, . . . ,J (13)

fk € {0,1} /: = !,. ..,J (14)

(l[o]»i[o]) = (0,0); d(o,o) = C(0,o) = 0 (15)

2. there are no setups within a family, i.e. stij = scij = 0, and no tear-down times and costs, i.e.

sti o = sciio = 0, i — 0,..., A\

3. "Longer" setup times lead to "higher" setup costs, i.e. scgj = f(si9ti) with a nondecreasing func-

tion /(•).

4. there is binary demand in the DLSP, i.e. #|t e {0,1}.

5. Jobs of one family are labeled in order of in creasing deadlines, and deadlines do not interfere, i.e.
d(i-j)+P(i,3 +1) - d{i,3 +1)-

Remark 1 s tates in (1.) that it is not beneficial to perform two setups in order to accomplish one.
Mason and Anderson [14] show that problems with nonzero tear-downs can easily be converted into
Problems with sequence dependent setups and zero tear-downs, which motivates (2.). With (1.) and (2.)
we have st0,t > st3ti (for all g, i = 1,..., N), which holds analogously for setup costs. Thus, the third
term in the objective (11) is always nonnegative. In (3.) we exclude the case that shorter setup times may
have higher setup costs. anticipates the "all or nothing production" for each item i (cf. also Salomon et
al. [17]) and is basically the same assumption as (5.).

The main Observation that motivated us to consider the DLSP as a special case of the BSP is that
the (g1)£)-matrix is sparse, especially if setup times are significant. The basic idea is to Interpret items
in the DLSP as families in the BSP and to regard nonzero demand in the DLSP as jobs with a deadline
and a processing time in the BSP. In order to solve the DLSP as a special case of the BSP we derive
BSP instances from DLSP instances in the following way: setup times and setup costs in the BSP and
DLSP are identical, and the job attributes of the BSP instances are derived from the (g^£)-matrix by
Definitions 1 and 2.

Definition 1 BSPUT(DLSP) is defined as a BSP instance with unit time jobs derived from a DLSP
instance. For each family i there are n» = ^t=i ?«,* 3 obs- entrV = 1 ft = - • •. N, t = 1,.... T)
denotesajob (i}j) where p^tj) = l, = hi; and d(ij) = t (j = 1,. ..,

Definition 2 BSP(DLSP) is defined as a BSP instance derived from a DLSP instance. A sequence of
consecutive "ones'1 in the (qiit)-matrix, i.e. qi;t = 1 (t = denotes a job (i,j) where P(ij) =
i-i — t\ + 1, and = t2; j = The number of times that a sequence of
consecutive ones appears for an item i defines U{.

Figure 1: Comparison of DLSP and BSP

6

Figure 1 provides the framework for the BSP-DLSP comparison: after transforming DLSP instances
into BSP instances, we compare the Performance of Solution procedures and the quality of the Solutions.
The difference between the approaches is as follows: in the DLSP, decisions are made anew in each
individual period t> represented by d ecision variables Yiit and Vg<iit (cf. Table 2). In the BSP, we decide
how t o schedule Jobs, i.e. we decide about the completion times of the Jobs. BSP and DLSP address
the same underlying planning problem, but use different decision variables. Briiggemann and Jahnke [3]
make another Observation which concerns the transformation of ins tances: a DLSP instance may be not
polynomially bounded in size while the size of the BSP(DLSP) instance is polynomially bounded. On that
account. in [3] i t is argued, that the (^J-matrix is not a "reasonable" encoding for a DLSP instance in
the sense of Garey and Johnson [10] because BSP(DLSP) describes a problem instance in a more concise
way.

3 Numerical Example

In this section, we provide an example illustrating the generation of BSPUT(DLSP) and BSP(DLSP).
This example will also be used to demonstrate certain properties of the BSP.

Table 7; Numerical Example; Setup and Holding Costs

Stg.i 12 3 sc9ii 1 2 3 hi

0 12 1 0 5 10 5

1 0 11 1 0 5 5 1

2 0 0 1 2 0 0 5 3(1)

3 12 0 3 5 10 0 1

In Figure 2 we il lustrate the equivalence between both models. The corresponding parameters setup
times, setup costs and Holding costs are given in Table 7. Figure 2 shows the demand matrix (qi>t) of
DLSP and the Jobs at their respective deadlines of BS PUT(DLSP) and BSP(DLSP).

For BS PUT(DLSP), we Interpret each entry of "one;' as a job (i,j) with a deadline d^^y Processing
times P(ij) are equal to one for all Jobs. We summarize the BSPUT(DLSP) parameters in Table 8. An
optimal DLSP schedule with hi = 3 is the string va in Figure 2 (with entries {0,a, 1,2,3} for idle or
setup time or for production of th e different items, respectively). This schedule is represented by c r^ for
BSPUT(DLSP), and is displayed in Table 8. Both schedules have an optimal objective function value
°f ZBSP{a^t) = 44.

In BSP(DLSP), consecutive "ones" in the demand matrix (qi;t) are linked to one job. The number
of Jobs is thus smaller in BSP(DLSP) than in BSPUT(DLSP). For instance, Jobs (1,2) and (1,3) in
BSPUT(DLSP) are linked to one job (1,2) in BSP(DLSP), compare crf and <rb. However, aB SP(DLSP)
schedule cannot represent cr^£ in Figure 2 since there we need unit time jobs. For B SP(DLSP) we now
ist the cost parameters hi = 1, (f = 1, 2,3) (i.e. equal Holding costs f or all families) and sco(3 — 10: then.
v is the optimal DLSP schedule and the optimal BSP(DLSP) schedule. Again, the optimal objective

7

0 0 0 0 0

0 0 0 0 0
0 0 0 0 0

0 0 0 0 a

0 0 10 0

0 0 0 1 0
0 0 0 0 1

1,1

2,1

0 0 0 0 0

0 0 0 0 0
0 0 0 0 1

0 0 0 0 1

0 0 0 0 1
1 0 0 0 0

1,2 1,3

2.2

3,1 3,2 3,3 3.4

1,1

2,1

3,1

Ia2a3:00a33

112

2.2

3,3

3 a 1 a 2: 1

1,1 2,1 3,1 3,2 3,3 3,4 1,2

1,1 2,1

0 000 a:a21a3;3330 0|0aa2 1 j 1

2,1

2,1

2,1

1,1

1,1

1,1

2,2

3,1

3,1

3,1

3,1

3,2 3,3

3,2 3,3

3,4

3,2

3,2 33 |99 l;2

2,2

2,2

1,2 1,3

i;2

3,3
—i—'—'—'—'—r

5 10 15 20

Figure 2: DLSP, BSPUT(DLSP) and BSP(DLSP)

DLSP

Qi,t

BSPUT(DLSP)

BSP(DLSP)

DLSP, i/a

BSPUT(DLSP), &f
DLSP, vb

BSPUT(DLSP), af

BSP(DLSP), ab

BSP(DLSP), trc

BSP(DLSP), trd

t

function value is ZßSP^b) = 44 for vb and <rb.
The example shows that the same schedules can be obtained from different models. In the next section

we formally analyze the equivalence between the DLSP and the BSP.

4 Equivalence Between DLSP and BSP

In the BSP we distinguish between sequence and schedule. A BSP schedule may have inserted idle
time so that the processing order does not (fully) describe a schedule. In the following we will say that
job (2 , j 1) is consecutively sequenced before job (i2, j2) ifjob (i2,j2) is sequenced at the next position. If
we co nsecutively schedule job (i1,.?1) before (s2,J2), there is no idle time between both Jobs, i.e. the term
in brackets in constraints (13) equals zero. A sequence 7r for the BSP consists of groups, where a group is
an (ordered) set of conse cutively sequenced jobs which belang to the same family. On the other hand, a
schedule consists of (one or several) blocks. Jobs in one block are consecutively scheduled, different blocks
are separated by i dle time (to distinguish from setup time). Jobs in one block may belong to different
families, and both block and group may consist of a single job. As an example refer to Figure 2 where

8

Table 8: BSPUT(DLSP) Instance and Solution

(i,j) (i,i) (1,2) (1,3) (2,1) (2,2) (3,1) (3,2) (3,3) (3,4)

8 20 21 9 20 10 15 16 21

P(iJ) 1 1 1 1 1 1 1 1 1

W(iJ) 1 1 1 3 3 1 1 1 1

k 1 2 3 4 5 6 7 8 9

(1,1) (2,1) (3,1) (3,2) (3,3) (3,4) (1,2) (2,2) (1,3)

6 8 10 14 15 16 18 20 21

both erc and ers. cons ist of five g roups, crc forms two blocks, and Cd is only one block.
For a given sequence 7r, a BSP schedule er is called semiactive if C(i,j) is constrained by either or

the start of the next job; no job can be scheduled later or rightshified in a semiactive schedule er. We can
derive er from a sequence 7r if cons traints (12) are equalities and Pk is set to zero. The costs ZBSP(P) are
a lower b ound for costs ZBSP(CT) of a BSP schedule er be cause a is the optimal schedule of the relaxed
BSP in which constraints (13) are omitted. However. in the semiactive schedule there may be idle time
and it may be beneficial to schedule some jobs earlier, i.e. to leftshifl some jobs to save setups (which will
be our concern in the timetabling procedure in Section 5).

In both models we save setups by batching jobs. In the DLSP, a batch is a non-interrupted sequence of
periods where produetion takes place for the same item i ^ 0, i.e. Yitt = 1, t = ,..., ti- In the BSP, jobs
of one g roup which are consecutively scheduled without a setup are in the same batch. A batch must not
be p reempted by i dle time. In Figure 2, the group of family 3 forms two batches in s chedule erc whereas
this group is one batch in er5.

We will call a sequence re (schedule er) a n EDDWF sequence (schedule) if jobs of one family are
sequenced (scheduled) in nondecreasing order of their deadlines (where EDDWF abbreviates earliest
deadline within families). Ordering the jobs in EDDWF is c alled ordered batch scheduhng problem i n
Monma and Potts [15]. By considering only EDDWF sequences, we reduce the search space for the
brauch & bound algorithm described in Section 6.

We first consider BSPUT(DLSP) instances. The following theorem states, that for
BSPUT(DLSP) we can restrict ourselves to EDDWF sequences.

Theorem X Any BSPUT(DLSP) schedule e r can be converted i nto an EDDWF schedule ä with the same
cosf.

Proof: Recall that jobs of one family all have the same weights and processing times. In a sched­
ule er, let At B, C represent parts of e r (consis ting of several jobs), and CA)CB, CC (PA-PB,PC) the com-
pletion (processing) times of the parts. Consider a schedule where jobs are not ordered in EDDWF,
i.e. 0- = TW C^,) < The schedule f =

with Cßj,) = Cßj,), has the same objective hmetion vaiue
because = w(i,j2) ~ The completion times of the parts A,B}C do not change because

9

P(iJi) = P(*J2) = L Interchanging jobs can be repeated until a is an EDDWF schedule, completing

the proof. D

A DLSP schedule v and a BSPUT(DLSP) schedule a are called corresponding solutions if they dehne
the same decision. A schedule v - (ux, i/2,.. •, i*r) and a schedule a are corresponding solutions if for each
point in time t = 1,..., T the following holds: (f) v% = i and in a the job being processed at t belongs to
family i, (ii) vt=z. and a setup is performed in er, an d (in) Vt — 0 and the machine is idle in er.

Figure 2 gives a n example for corresponding solutions: va corresponds to er"', and vb corresponds to
er"4. We can always derive entries in v from er, and completion times in er can always be derived from v
if er is an EDDWF schedule.

Theorem 2 A schedule er i s feasible for BSPUT(DLSP) if and only if the corresponding Solution v is
feasible for D LSP, and v and er haue the same objective function value.
Proof: Obvious. ü

As a consequence of Theorem 2, a schedule er is op timal for BSPUT(DLSP) if and only if the corres­
ponding Solution v is optimal for DLSP, which constitutes the equivalence between DLSP and BSP for
BSPUT(DLSP) instances. We can thus solve DLSP by solving BSPUT(DLSP).

In general, however, the more attractive option will be to solve BSP(DLSP) because the number of
jobs is smaller.

Definition 3 In a schedule er, let a produetion start of family i be th e start time of the first job in a
batch. Let inventory for family i build between C (t j) and dyj). The schedule er is called re generative if
there is no produetion start for a family i as long as there is still inventory for family i.

The term "regenerative" stems from the regeneration property found by Wagner and Whitin [23] (for
similar ideas cf. e .g. Vickson et al. [22]). Each regenerative schedule is also an EDDWF schedule, but
the reverse is not true. If a schedule er is r egenerative, jobs (i,j) and (i,j + 1) are in the same batch if
C(M+I) holds. Furthermore, in a regenerative BSPUT(DLSP) schedule a, jobs from
consecutive "ones" in (<fr(t) are scheduled co nsecutively (recall for instance and er^ in Fig ure 2); hence a
regenerative BSPUT(DLSP) schedule represents a BSP(DLSP) schedule as well. In Figure 2, schedule ad
is not regenerative: a batch for family i = 1 is started at t — 4 though there is still inventory for i = 1.

We first show t hat we do not lose feasibility when restricting ourselves to regenerative schedules only.

Theorem 3 If er is a feasible BSPUT(DLSP) or BSP(DLSP) schedule then there is also a feasible re­
generative schedule d.
Proof: In a schedule er, let iB (iA) be the family to which the first (last) job in part B (A) belongs.
Consider anon-regenerative schedule <r, i .e. <r = Jobs (i,j) and (:,J + 1)
are not in one batch though C(iy+i) - P(i,J+i) < d^jy

Consider schedule a = (CA, CB, Cyjy Cyij+i), Cc) with = Cyij+^ - P(ij+1) and CB = CB -
Pb'J)' where (i,j) and B are interchanged and (i,j) and 1) are in one batch. er is fe asible because

(w) — By le ftshifting B we do not violate feasibility. Furthermore, due to the triangle inequality
we have stjA ts < ^ + sti^B. Thus, B can be leftshifted by pyj) time units without affecting CA-
Interchanging jobs can be repeated until a is regenerative which prove s the theorenn. •

An Illustration for the construction of regenerative schedules is depicted in Figure 3. Interchanging
(i,j) and B, we obtain from a the regenerative schedule d.

10

A ihj) B (nj + 1) r

A B ihj) &j + 1) c

4w)

Figure 3: Regenerative Schedule

Unit processing times are not needed for the proof of Theorem 3, so we have in fact two results: first, to
find a feasible schedule we may consider BSP(DLSP) instead of BSPUT(DLSP). Second, for BSP(DLSP)
we onlv need to search over regenerative schedules to find a feasible schedule. Theorem 3 is a stronger
result than the one found by Salomon et al. [17] and Unal and Kiran [21] who only S tate the first result.
Moreover, if holding costs are equal, the next theorem extends this result to optimal schedules.

Theorem 4 If er ts an optimal BSPUT(DLSP) or BSP(DLSP) schedule and hi is constant for all i, then
there is also an optimal regenerative schedule ä.

Proof: Analogous to the proof of Theorem 3 we now must consider the change of the objective function
value if (iyj) and B are interchanged. Without loss of generality, Jet hi = 1 for all i, then
Let ZBSP(O-) (Zßsp(d)) denote the objective function value of a (a).

For part B, which is leftshifted, we ha ve Wß < pß because processing time in part B is at most pß,
but B may contain setups as well. Interchanging B and the objective changes as follows:

ZBSP(Ö-) = ZBsp(cr) ~ wB(Cß — Cß) - — C(i,j)) - sciA)i - sciriB + sqx ^

(0 («)
< ZBSP(O-) + WBP(i,j) - w(ij)PB < ZBSP((T) +PßP(ij) P(i,j)Pß = Zßsp(cr)

Due to the triangle inequality, setup costs and setup times in er a re not larger than in ä, i.e. — sciA —
sci {B + sciAjis < 0. Furthermore, if setup time is saved (as in Figure 3), we will not increase setup costs
due to Rernark 1, which explains («). We leftsh ift B by p(itj) and rightshift (i,j) by pß with wp < pß,
which explains (ü). Thus Zßsp{d) < Zßsp{cr), which proves the theorem. D

Considering regenerative schedules, we again achieve a considerable reduetion of the search Space.
To summarize we have so far obtained the following results: (i) DLSP and BSP are äquivalent for
BSPUT(DLSP). (ii) BSP(DLSP) is feasible if and only if DLSP is feasible. (Hi) For equal holding costs an
optimal BSP(DLSP) schedule is optimal for DLSP. When instances with unequal holding costs are solved,
the theoretical difference between BSP(DLSP) and DLSP in (Hi) has only a small effect: computational
results in Section 7.3 will show that there is almost always an optimal regenerative BSPUT(DLSP) schedule
to be found by solving BSP(DLSP).

5 A Timetabling Procedura for a Given Sequence

For a given sequence 7r the following timetabling procedura decides how t o partition TT into blocks, or
equivalently, which consecutively sequenced j obs should be consecutively scheduled. In the BSP model

11

formulation of Tab le 6, we have Pk = 1 if th e job at position k starts a new block, or Pk = 0 if it is
blocked with the preceding job. By starting a new block at position k, we save earliness costs at the
expense of a dditional setup costs. In Figure 2, earliness costs of < rb &re highe r than for ac but we save

one setup in at,.
In the timetabling procedura, we start with the semiactive schedule and leftshift some of the Jobs to

find a minimum cost schedule. Consider the example in Figure 2: for the sequence 7r = ((2,1), (1,1),
(3,1), (3,2), (3,3), (2,2), (1,2)) the semiactive schedule a is given in Figure 4. We first consider two
special cases. If we omit constraints (13) of the BSP (so t hat each group is a batch and idle time may
preempt the batch) timetabling is trivial: the semiactive schedule is optimal for a given sequence because
no job can be r ightshifted to decrease earliness costs (and because setup costs are determined by 7r an d
not by a). Timetabling is also trivial if earliness weights are zero (i.e. /i; = 0 for all z a nd therefore
w(ij) = 0 for all (z, j)): in this case, we can leftshift each job (without increasing earliness costs) until the
resulting schedule is one block (e.g. schedule aj in Figure 2 is one block and no job can be leftshifted).
We have sc9fi < sc^o + sco,i = scori, setup costs are minimized if jobs are scheduled in a block, and there
is an optimal schedule which consists of one block.

In the general case, we need some definitions: block costs bckl)k2 are the cost contribution of a block
from position Aq to i.e.

k2 k2

bckl,k2 = ~~ ^(i"[fe]^[fc])) + X
k=k i k=k}+\

The block size bsk is the number of jobs which are consecutively scheduled after job (zpp %]) (with
(^[/c], j[k]) inclu ded). For instance, in Figure 4 we have 6s, = 3 (for (z'p], jp]) = (2,1).

1 1
2d IT 3,2 3,3

I
2,2 1,2

|
0 5 10 15 20

Position k =1 2 3 4 5 6 7

Figure 4: Semiactive Schedule

Let fk(b) denote the costs of a schedule from position k t o J if bsk = 6. Let denote fk the costs of the
minimum cost s chedule and bsk the corresponding block size at position k. The recurrence equation for
determining fk and for k = J,..., 1 is:

AM) = .c

fk(b) = bck,k+b-i + 5c0ji[fc+b] T fk+b

fj+I = 0; i[j+i] = 0; bs*j+l = 0 (18)

In equation (17) we take the minimum cost for bsk - 1,..., 6ŝ +1 + 1 where bs*k+l + 1 is the maximum
block size at position k (and a new block starts at k 4- 6s£ +1 + 1). For a given block size 6, fk{b) is the
sum of block costs from position k to position 6 + 6-1, the setup sc0]i[fc+b] to the next block and the
minimum cost f£+b. Minimum cost of a sequence are computed via f* for k = 1, and the complexity of

12

the a lgorithm is Ö{Je). Basically, equation (17) must be computed for every sequence. However, some
simplifications are possible: if two jobs can be consecut ively scheduled in the semiactive schedule, it is
optimal to increment bsk = ^sk+i "b 1, because sc9yi < sco^, SO that equation (17) needs not be evaluated.
Consequently, if the semiactive schedule is one block, timetabling is again trivial: each group in a equals
one ba tch, the whole schedule forms a block, and a = cr.
If Setups are sequence independent, a minimumcost schedule can be derived with less effort as follows: let
the group size gsk at position k de note the number of con secutively sequenced jobs at positions r > k t hat
belong to the same family as job (jpq, jpq). Then, for sequence independent setups, equation (17) must
be evaluated only for 6= 1,..., gsk . The reasoning is as follows: jobs of different groups are leftshifted
to be blocked only if we can save setup cost. Then, for consecutive groups of families g and i we would
need s cgs < sc9so + sco.i = SCCM, which does not hold for sequence independent setups; therefore, we only
need to decide about the leftshift wzthin a group.

An example for the computations of equation (17) is given in Table 9 for the semiactive schedule in
Figure 4 (see the cost parameters in Table 7). The schedule & contain s idle time, and we determine fk

and bsk for each position k, k < J.
Consider jobs (2,2), (3,3) and (3,2) at positions 6,5 and 4 in Figure 4. Up to position 4 the semiactive

schedule is one block, and we increment bs'k, which is denoted by entries (-) in Table 9. After job (3,1),
<x has inserted idle time between positions 3 and 4 (d(3,i) = 10) and all different block sizes must be
considered to find the minimum cost schedule. In Table 9, we find /£ = /h(1), i.e. we s tart a new block
after position k = 3 and split the group into two batches, as done for ac in Figure 2. For the objective
function value, we a dd sco,2 t o f\ and obtain a cost of ZJB SP((TC) = 40.

6 Sequencing Algorithm

In this section we present a branch &; bound algorithm for solving the BSP to optimality, denoted as
SABSP. Jobs are sequenced backwards, i.e. at stage 1 a job is assigned to position J, at stage 2 to
Position J — 1, at stage s to position J - s + 1. An s-partial sequence 7TS assigns s jobs to the last
s positions of sequence TT, in addition to that an s-partial schedule crs also assigns completion times to
each job in TTS . A partial schedule w* is called completion of a s if u> s extends crs to a schedule a which
schedules all jobs, and we wr ite <x = (w\ crs).

We only examine EDDWF sequences, as if there were precedence constraints between the jobs. The
precedence graph for the example in Figure 2 is shown in Figure 5. Using th e EDDWF ordering, we
decide in fact at each stage s which famtly to schedule. A job is eligible at stage s if all its (precedence
related) predecessors are scheduled. An^s-partial schedule (corresponding to a node in the search tree) is
extended by scheduling an eligible job at stage s + 1. We apply depth-first search in our enumeration and
use the bounding, branching, and dominance rules described in Sections 6.1 and 6.2 to prune the search
tree.

Each (s-partial) sequence 7rs uniquely defines a minimumcost (s-partial) schedule crs by the timetabling
procedure. Enumeration is done over all sequences and stops after all sequences have been (implicitly)
exarnined; the best Solution found is optimal. The Implementation of SABSP takes advantage of the fact
that equation (17) needs not be recalculated for every cr s and, in the case of backtracking, the computation
°f equation (17) has already been accomplished for the partial schedule to which we backtrack.

13

Table 9: Computations of Equation (17) for the Example in Figure 4

(«'[*]'JE*]) k n K b fk{b) — bck}k+b-l + scO,i[*+b] H~ fk+b

(0,0) 8 0 0

(1,2) 7 0 1 10= 0 +0+0

(2,2) 6

1 2

1

2 1= 1 +0+0

(3,3) 5

16 3

1

2

3 16 = (5 + 10 + 1) + 0 +0

(3,2) 4

18 4

1

2

3

4 18 = (2 + 5+10+1) +0+0

(3,1) 3 23 1 1 23 = 0 +5+18

2 29 = 8 + 5 +i6

3 27 = (8+8) +10+1

4 35 = (8+8+10+4) + 5 +0

5 36 = (8+8+10+4+0+6) + 0 +0

(1.1) 2

28 2

1

2 28 = 5 + 5 + 18

(2,1) 1

30 3

1

2

3 30 = (2 + 5) + 5 + 18

Figure 5: EDDWF Precedence Graph for Backward Sequencing

Table 10: Attributes of Partial Schedules

job under consideration at stage s

UB upper bound, objective funetion value of the current best schedule

t(i7*) start time of <r % i.e. C(j,

c(crs) cost of (T * w ithout the setup for (is, js)

AS*(USS) set of jobs already scheduled (unscheduled) in the s-partial schedule (rs

UX* set of families to which jobs in US* belong to

&(0 set of jobs which form the first block of cr s

lül(<TS) sum of ear liness weights of jobs in i.e.

(aS) = W(*J)

Table 10 lists Attributes of s-partial schedules. For each scheduling stage s we identif y the job
under consideration, and the start time t(er5) and costs c(cr-s) of the s- partial schedule. The set of currently
scheduled (unscheduled) jobs is denoted by AS* (U$s). UXS denotes to which families the Jobs in US*
belong; UB is the current Upper b ound.

6.1 Bounding and Branching Rules

The feasibility bound states that for a given crs, all currently unscheduled jobs in US* must be scheduled
between time zero and t{o"s) and, furthermore, we need a setup time for each family in UX*. More formally,
dehne

T'= Z Z
i&41* 9** (i,j)£USs

Then, as has no feasible completion if t{<r*) — T* < 0.
The cost bound states that cost c(c5) of an s-partial schedule is a lower bo und for all extensions

of cr \ and for any completion w5 at least one setup for each family in UX* must be performed. We dehne

Z ,5^')-
i£UZs 9**

Then, er5 cannot be extended to a schedule er = (w5, crs) which improves UB if C s + c(crÄ) > UB.
Both bounds are checked for each s-partial schedule <rs. Clearly, T* and Cs can be easily updated

during the search. We also tested a more sophisticated lower bound where all unscheduled jobs were
scheduled in EDD order without setups. In this way we were able to derive a lower b ound on the earliness
costs as well a nd check feasibility more carefully, but computation times did not decrease.

If only regenerative schedules need to be considered to find the optimal schedule (cf. Theorem 4), we
employ a branching rule as follows: scheduling (is ,js) at stage s (with j* > 1), job — 1) becomes
eligible in the EDDWF precedence graph. If t(f5) < dp-Sj-s_t), we schedule (i*,J* — 1) a t stage s-f-1 (i.e.
we batc h and (is,js - 1)) and do not consider any other job as an extension of a s. We need not

15

enumerate partial schedules where <j ' is extended by a job (gj) where g ^ is because then the resulting

schedule is non-regenerative.

6.2 Dominance Rules

The most remarkable reduction of co mputation times comes as a result of the dominance rules. The
dominance rules of SABSP compare two s-partial schedules <rs and äs, which schedule the same set of
Jobs, so that AS' = ÄS*. In this notation, schedule äs denotes the s-partial schedule currently under
consideration, while as denotes a previously enumerated schedule which may dominate as. A partial
schedule as dominates <f5 if i t is more efßcient in terms of time and cost: <rs starts later to schedule the
job-set, i.e. t(as) > t(&*), and <rs incurs less cos t, i.e. c(tr5) < c{vs). If the family is of the job scheduled
at stage s differs in <r* and Ws we mak e both partial schedules "comparable" with a setup frorn is to is:
we compare time and cost but subtract setup times and setup costs appropriately.

If a schedule as is not dominated, we störe for the job set ASS and family i* the pair t(<rs) and c(crs)
which is "most likely" to dominate other s-partial schedules. Note that the number of partial schedules is
exponential in the number of ite ms N so that storage requirements for the dominance rules grow rapidly
if N increases.

For a formal description of the dominance rules we need several definitions (cf. Table 10): all jobs
which form a block with (is,js) belong to the set QI(<TS), and the sum of earliness weights in Gi{&s) is
denoted as u>i(<75). T he dominance rules take into account the block costs for all extensions of er5 and 7r*:
we consider for the maximum, for <f5 the minimum costs ineurred by blocking; as then dominates as

if c(<r #) plus an upper bound on block costs is less or equal c(<f*) plus a lower bound on block costs.
An upper bound on the block costs for cr s is given by sc o,»« (recall that SCQJ > sc9}i). Then, crs starts

a new block. But a tighter upper bound can be found for start times close to in order to save costs
we can leftshift all the jobs in Gi{cs) (but only these), because after G\(<TS) we perform a new setup from
the idle machine. G\(es) is the largest block which may be leftshifted. Let pbt(crs) denote the time where
the cost increase due to a leftshift of Gi{crs) exceeds sc0jt*. We then have w\(<Ts)(t(<rs) -pbt{crs)) = sco.i»
and dehne the pull-back-timep6f(cr5) of an s-partial schedule a* as follows:

Consequently, for time t, pbt(as) <t< t(crs), an upper bound on block costs is given by leftshifting G\ s);"
for t < p6t(f5), block costs are bounded by sco,»*. In this argumentation we implicitely assume, that
holding inventory during setup time must not exceed setup costs.

A lower bound on the block costs for cs is given in the same way a s for er5, but now we consider the
smallest block that can be l eftshifted, which is simply job (F",p).

We can now State the dominance rule: we differentiate between is = F (Theorem 5) and is ^ ¥ (The­
orem 6).

Theorem 5 Consider two s-partial schedules as and as with AS' = ÄS* and i* = ¥. Let Ai =
i(<rs) — i(crs) and A " = t(Tf^) — pbt{o~s). as dominates lrs if

(i) t(¥s)

(•H)-a c(ö^) > c(o-') + min{A'wi(cr'),sco^,} for stoy <

16

(ii) — b c(aS) A (tr') for stoi* > A1 and

(iii) c(ö*) + min{Allw^tj,),scQiit} > c(a*) + sc0,i*.
Proof: Any completion w' of W* is also a feasible completion of er' because of (i); if (us ,as) is feasible,
(u*, crs) is feasible, too. Due to (ii), for any u*, the schedule (vs,cs) has lower costs than (w4,^4).

In the following we consider the cost contributions of <rs and ö" due to leftshifting, when we extend as

and a s. Consider Figure 6 for an Illustration of the Situation in a time-cost diagram. We have i* = ¥ and
due to EDDWF also (i'\ j*) — (F\ j'). The solid line represents the upper bound on block costs for er5.
For pbt(cr*) < t < t(a'): if is less expansive to leftshift G\(vs) (and extra costs are A'wi(</)), while
for t < pbt(<rs) a setup from the idle machine to i* is performed (with cost geo (,). However, in the case
that A* < st0li (see (ii) - b), we must leftshift G\(<rs) an d blocking cost are not bounded by sco ,»«- T he
broken li ne represents the lower bound on block costs for Ws. The smallest block th at can be le ftshifted
is the job (i* ,j*).

In order to prove that äs will never have less costs than as due to blocking, we check the costs at
points (ii) and (iii)'. at (ii) (which is either (ii) - cor (ii) — 6), we comp are the costs at t(vs) while
at (iii) we compare them at pbt(&'). Between (u) and (iii) costs increase linearly, and for t < pbt(<rs) we
know that there is a monotonous cost increase for Trs, while costs of cr s no longer increase. Thus, if (i i)
and (iii) are fulfilled. cost contributions of <r* are less than those of äs, i.e. there is no completion u*
such tha t Zß5p(w5,^4) < ZBSP(^'\ CTS), completing the proof. •

cost (iii) (ii)

Figure 6: Illustration of Theorem 5

For the example in Figure 2, F igures 7 and 8 illustrate Theorem 5 with 3-partial schedules er3 and <r . In
Figure 7, w e have Q\ (<r3) = Gi(v3) = {(3, 3), (2,2), (1, 2)}, t(<r3) > t(r3) and pbt(cr3) = 15 - 5/4 = 13.75.
Checking (iz), we have 22 > 16 + min{l -4,5}, while for (iii) we have 22 + min{0.25 - 1,5 } > 16 + 5,
so th at a3 is dominated. Figure 8 illustrates the effect of block costs, but with modified data as follows.
sc03 = 10 and d3j2 = 15. Thus pbt(cr3) = 13- 10/3, and A" = 10/3. Checking Theorem 5, we have (ii)
16 > 15 + min{0 • 3, 5}, but (iii) 16 + min{10/3 • 2,10} >15 + 10 is not fulfilled. Thus, <r3 does not
dominate o^3, though c(er3) < c(ä3) and t(a3) - t(c^). Figure 8 shows that c(^4) > c(W*) if Gi(cr A) is
leftshifted.

17

c(<73) = 16

3,3 2,2 1,2

X X IF 2,2
—i 1 r i | i i i i | i i i

c(ä3) = 22

Figure 7: Theorem 5: er 3 dominates ä3

c{ er4) = 24 cf(73) = 15

3,1 3,2 !3,3 3,2 3,3 2,2

3,1 3,2 ; 3,2 2,2 3,3
i | i i | i i i i | i i i i i

ä3

ä3

10

c(ö^) = 22

15 20

c((73) = 16

Figure 8: Theorem 5: er 3 does not dominate ä3

In the second dominance rule for the case is F we must consider SCQJ instead of scSjJ to take block
costs into account.

Theorem 6 Given two s-partial schedules as and a* with >15'' = ASS and i* ^ F, er5 domznates as if

(i) t(ä') + < t(o-s) and

(ii) c(äs) > c(c7*) 4- scojt-'.
Proof: Let iu denote the family of the (last) job in a completion u* of ÖF Then sf^it-. < st p- + stj? ,
analogously for setup costs due to the triangle inequality. Thus any completion ws of Ws is also a feasible
completion of < r' because of (z); if (w\ö^) is feasible, (w>Ä) is feasible, too. Due to (ii), for any u*, the
schedule (u;s,<7s) has lower costs than (u',W).

The difference i s that now also block costs are taken into account in (n): when leftshifting Q\(<rs) in
an extension of er , we have c(c3) + sco,t* as an upper bound for the cost contribution. A trivial lower
bound for the cost contribution of er 5 is c(o"s). Thus er5 dominates as any uts completes <rs at lower
costs, completing the proof. •

Finally, an alternative way to solve the BSP is a dynamic programming approach. We define the
j ob-sets as states and apply the dominance rules in the same way. An Implementation of this approach
was less efficient and is described in Jordan [9].

18

7 Computational Results

From the analysis in Section 4 we kn ow that we address the same planning problem in BSP and DLSP,
and that we find corresponding Solutions. Consequently, in this section we cornpa re the Performance of
algorithms solving the BSP with procedures for solving variants of the DLSP- The comparison is made
on th e DLSP instances used to test the DLSP procedures; we take the instances provided by the cited
authors and solve them as BSP(DLSP) or BSPUT(DLSP) instances (cf. Figure 1). An exception is made
for refe rence [8] where we use randomly generated instances.

The different DLSP variants are summarized in Table IT For the DLSP, in the first column the
reference, in the second the DLSP variant is displayed. The fourth column denotes the proposed algorithm.
the t hird column shows whether computational results for the proposed algorithm are reported for equal
or unequal holding costs. Depending on the holding costs, the different DLSP variants are solved as
BSP(DLSP) or BSPUT(DLSP) instances. With the exception of reference [18], the DLSP procedures are
tested with equal holding costs, so that regenerative schedules are optimal in [4] and [8].

Table 11: Solving Different DLSP Variants as a BSP

DLSP BSP

Autbor Variant Holding Costs Algorithm Instances Properties of

Schedules

Cattrysse
et al. [4]

SISTSC hi = 1 DACGP BSP(DLSP) EDDWF and
regenerative

Fleisch­
mann [8]

SDSC ht = 1 TSPOROPT BSP(DLSP) EDDWF and
regenerative

Salomon
et al. [18]

SDSTSC kt >0

hi = 0

TSPTWA

TSPTWA

BSPUT(DLSP)

BSP(DLSP)

EDDWF

EDDWF and
one block

7.1 Sequence Independent Setup Times and Setup Costs (SISTSC)

In Cattrysse et al. [4], a mathematical programming based procedura to solve SISTSC is proposed.
Cattrysse et al. [4] refer to their procedura as dual ascent and column generation procedura (DACGP).
The DLSP is first formulated as a sei partitioning problem (SPP) where the columns represent the
production schedule for one item i; the costs of each column can be calculated separately because setups
are sequence independent. DACGP then computes a lower bound for the SPP by column generation, new
columns can be generated solving a single item subproblem by a (polynomial) DP recursion. In DACGP
a feasible schedule, i.e. an upper bound, may be found in the column generation step, or is calculated
by an enumerative algorithm with the columns generated so far. If in neither case a feasible schedule is
found, an attempt is made with a simplex based procedure.

19

The (heuristic) DACGP generates an Upper and a lower bound, SABSP solves BSP(DLSP) to optim-
ality. DACGP is coded in FORTRAN. SABSP is coded in C. DACGP was run on an IBM-PS2 Model
80 PC (80386 processor) with a 80387 mathematical coprocessor, we i mplemented SABSP on the same
machine to make computation times comparable.

Computational results for the DACGP are reported only for i dentical Holding costs (hi — 1) for all
items. Consequently, we solve DLSP as BSP(DLSP) and only need to consider regenerative schedules,
cf. Theorem 4. Furthermore, the timetabling procedure requires fewer co mputations in equation (17) as
setups are sequence independent.

The DLSP instances with nonzero setup times are provided by the authors of [4]. They generated
instances for i tem-period combinations {(N, T)} = {(2,20), (2,40), (4,40), (2, 60),
(4, 60), (6, 60)}. We refer only to instances with T = 60 because s maller instances are solved much faster
by SABSP than by DACGP. The DLSP instances have setup times st9ii of either 0, 1 or 2 periods.
The average setup-time per item (over all i nstances) is (approximately) 0.5, making setup times not very
signihcant. For each item-period combination instances with different (approximate) capacity utilizations
p were generated: low (L) capacitated (p < 0.55), medium (M) (0.55 < p < 0.75) and high (H) capacitated
instances (p > 0.75). Approximate capacity utilization is defined as p — (1 /T) t Q i,t- 30 instances were
generated for each (TV, T, p) combin ation, amounting to 3 • 3 • 30 = 270 in stances in total.

In Table 12, we use to denote the average number ofjobs in BSP(DLSP) for the instance size (N, T)
of the DLSP. For DACGP we use Aavg to denote the average gap (in percent) between upper and lower
bound. #*n/ is the number of instances found infeasible by the different procedures and Ravg denotes the
average time (in seconds) needed for the 30 instances in each class. For DACGP, all values in Table 12
are taken from [4].

In the comparison between DACGP and SABSP, the B&cB algorithm solves problems with N = 2 and
N = 4 much faster; the number of sequences t o examine is relatively small. For N = 6 computation times
of SABSP are in the same order of magnitude than for DACGP. In (6,60,M) the simplex based procedure
in DACGP finds a feasible integer Solution for one of the 10 instances claimed infeasible by DACGP.
Thus, in (6,60,M), 9 instances remain unsolved by DACGP, whereas SABSP finds only 7 infeasible
instances. DACGP also fails to find exi sting feasible schedules for (N,T,p) =(2,60,H), (4,60,M). Recall
that SABSP takes advantage of a small Solution Space, keeping the enumeration tree small and thus
detecting infeasibility or a feasible schedule quite quickly. DACGP tries to improvethe lower and upper
bound, which is diffi cult without an initial feasible schedule. Therefore the (heuristic Solution procedure)
DACGP may fail to detect feasible schedules if th e Solution space is small.

For the same problemsize (N,T) in DLSP, the number ofjobs J in BSP(DLSP) may be very different.
Therefore, Solution times differ considerably for SABSP. Table 13 presents the frequency distribution of
Solution times. In every problem class the m ajority of instances is solved in less than the average time for
DACGP.

7.2 Sequence Dependent Setup Costs (SDSC)

An algorithm for solving SDSC is proposed by Fleischmann [8]. Fleischmann transforms the DLSP into
a traveling salesman problem with time Windows (TSPTW), where a tour corresponds to a production
schedule in SDSC. Fleischmann calculates a lower bound by lagrangean relaxation; the condition that

20

Table 12: Comparison of DLSP and BSP Algorithms for SISTSC

DLSP BSP

DACGP SABSP

(N>T) P 2^avg Ravg #xn/ Ravg nf

(2,60) 19 L 0.17 25.8 2 0.1 2

25 M 0.20 76.3 7 0.2 7

29 H 1.22 274.9 10 0.1 9

(4,60) 21 L 0.15 38.9 3 4.2 3

31 M 0.47 120.8 6 11.8 5

35 H 1.43 268.7 11 7.1 10

(6,60) 22 L 0.13 56.2 1 36.9 1

33 M 0.70 264.9 10 149.0 7

35 H 0.99 274.1 10 98.7 10

(386 PC with coprocessor)

Table 13: Frequency Distribution of Solution Times of SABSP

(N,T) < 0.1 < 1

Number of instances solved faster than

<10 <30 <100 < 300 <1000

... [sec]

> 1000 < Ravg (DACG P)

(2,60) L 10 20 30

M 4 26 30

H 13 17 30

(4,60) L 4 23 3 30

M 2 16 10 2 30

H 3 4 13 10 30

(6,60) L 1 4 5 10 8 2 25

M 1 1 3 5 12 5 2 1 26

H 1 4 5 10 8 2 28

(386 PC with coprocessor)

21

each node is to be v isited exactly once, is relaxed. An upper bound is calculated by a heuristic, that first
constructs a tour for the TSPTW and then tries to improve the schedule using an Or-opt Operation. In
Or-opt, pieces of the initial tour are exchanged to obtain an improved schedule. Or-opt is repeated until
no more improvements are found. We refer to Fleischmann's algorithm as TSPOROPT. TSPOROPT
was coded in Fortran, experiments were per formed on a 486DX2/66 PC with the original code provided

by Fleischmann.
Fleischmann divides the time axis into micro and macro periods. Holding costs arise only between

macro periods, and demand occurs only at the end of macro periods. Thus a direct comparison of
TSPOROPT and SABSP using Ffeischmann's instantes is not viable; instead, we use ra ndomly generated
BSP instances which are then transformed into DLSP instances. We generated 30 instances for A' =
5 families and low (L) (p % 0.75) or high (H)(p « 0.97) capacity utilization. Note that for zero setup
times, p does not depend on the schedule; the feasibility problem is polynomially solvable. In BSP, we
have an average number = 33 of jobs with a processing time out of the interval [1,4]. In DLSP, we
have an average T = 73 for high (H) and T = 100 for low (L) capacitated instances. Holding costs are
identical, and we solve BSP(DLSP). From [8] we select the 2 setup cost matrices S4 and S6 which satisfy
the triangle inequality: in S4 costs equal 100 for g < i and 500 for g > i. For S6 we have only two
kinds of se tups: items {1,2,3} and {4,5} form two setup-groups, with minor setup costs of 100 within
the setup-groups and major setup costs of 500 from one setup-group to the other.

In Table 14 results are aggregated over the 30 instances in each class. We use Aavg to denote the
average gap between lower and upper bound in % for TSPOROPT and Ravg (Ravg) to denote the aver­
age time for TSPOROPT (SABSP) in seconds. We denote by A Zt,eft the average deviation in % of the
objective function value of the heuristic TSPOROPT from the optimal one found by SABSP. Table 14

Table 14: Comparison of DLSP and BSP Algorithms for SDSC

setup cost TSPOROPT SABSP

matrix (N:T) P A avg A Zbeft Ravg Ravg

S4
(5,75) 33 H 5.2 4.1 3.8 0.1

S4
(5,100) 33 L 15.9 15.3 38.2 24.6

S6
(5,75) 33 H 3.7 2.0 3.4 0.2

S6
(5,100) 33 L 39.2 15.8 33.9 107.8

(486DX2/66 PC)

shows that Aavg can be quite large for TSPOROPT. Solution times of SABSP are short for high capacit­
ated instances and long for low ones. For S4, TSPOROPT generates a very good lower bound, we have
AaVg % AZbest and the deviation from the optimal objective is due to the poor heuristic upper bound.
On the other hand, for S6 both the lower and the upper bound are not very close to the optimum. Note
that SABSP does not solve large instances of SDSC with 8 or 10 items whereas Fleischmann reports
computational experience for instances of this size as well. T he feasibility bound is much weaker for zero

22

setup times, or, equivalently, the Solution space is much larger, making SABSP less effective. For th e
instances in Table 14, however, SABSP yields a better Performance.

7.3 Sequence Dependent Setup Times and Setup Costs (SDSTSC)

In Salomonet ab [18], Fleischmann'stransformationofthe DLSP intoaTSP with time Windows (TSPTW)
is extended for nonzero setup times in order to solve SDSTSC. Nodes in the TSP network represent positive
demands, and all nodes must be visited within a certain time window. The transformed DLSP is solved
by a dynamic programming approach designed for TSPTW problems (cf. Dumas et ab [6]), we refer to
the procedure in [18] as TSPTWA. Paths in the TSP network correspond to partial schedules. Similarto
the dominance rule for SABSP, in TSPTWA paths may dominate other paths via a cost dominance, or
they may be eliminated because they cannot be extended, which corresponds to the feasibility bound.

TSPTWA is coded in C and run on a HP9000/730 Workstation (76 mips, 22 M h ops). SABSP runs
on a 486DX2/66 PC. In order to test TSPTWA Salomen et ab [18] use ra ndomly generated instances,
in which. similar to [4], se tup times st9ii E { 0,1,2}. Unfortunately, the setup times do not satisfy the
triangle inequality. A ''triangularization'' (e.g. with the Floyd/Warshall algorithm) often results in setup
times equal to zero. So we a djusted the setup times "upwards" (which is possible in this case because
stg i E {0. 1, 2}) and as a result, setup times are rarelv zero. We added 4 (8) unit s to the planning horizon
for N = 3 and N = 5 (N = 10) in order to obtain the same (medium) capacity utilization as in [18].
In t his way, instances are supposed to have the same degree of difficulty for TSPTWA and SABSP: the
smaller Solution space due to correcting st9ji upwards is compensated by a longer planning horizon.

In [18] instances are generated for T = 20, 40,60, and we take the (bärgest) instances for the item-period
combination {(#,T)} = {(10.40), (3, 60), (5,60), (10,60)}. The instances have a medium (M) capacity
utilization 0.5 < p < 0.75 because setup times are nonzero. For each (AT,T) combinat ion, 30 instances
with and without holding costs are generated. Holding cos ts differ among the items. Consequently, we
solve BSPUT(DLSP) if h { > 0 and BSP(DLSP) if hi = 0. Furthermore, we need not apply the timetabling
procedure in the latter case because the optimal schedule is one block. In Table 15, $F (#F) denotes
the number of problems solved by TSPTWA (SABSP) within a time limit of 1200 sec (1200 sec) and
a memory limit of 20 MB (10 MB). denotes the average number of Jobs for the BSP. RaVg (-%g)
denotes the average time SABSP requires to solve the instances (considering only regenerative schedules).
The average time is calculated over all instances which a re solved within the time limit, Ravg is put in
brackets if no t all instances are solved. The last column shows the results if we co nsider only regenerative
schedules during enumeration for > 0: AZ^ax provides the maximal deviation in % from the optimal

schedule (which may be n on-regenerative).
Table 15 demonstrates that SABSP sueeeeds in solving some of the problems which remained unsolved

by T SPTWA. Solution times of SABSP are relatively short compared with TSPTWA for N — Z and
N = 5. Solution times increase for N = 10, and instances can only be solved if t he number of Jobs is
relatively smalh Instances become difhcult for nonzero, especially for unequal holding costs. If we only
enumerate over regenerative schedules, Solution t imes for SABSP decrease. Moreover, only one instance
is not solved to optimality for (IV, T) = (3, 64). Thus, even for unequal holding costs optimal schedules

regenerative in most cases. Furthermore, for (N, T) = (10,48) ((10,68)), 29 (3) ins tances would have
been solved within the time limit of 1200 sec if only regenerative schedules would have bee n considered.

23

Table 15: Comparison ofDZSf and BSP Algpritkmslbr SDSTSC

(JV.T) #J hi

TSPTWA

^F &avg

SJ

&>avg

\BSP

ÜB A 7B
avg

25 =0

t10'48' 25 >0

21 < 1200

1 < 1200

30 3.5

21 (489.8) (373.1) 0.0

38 =0

(3'M) 38 >0

30 < 1200

30 < 1200

30 0.8

30 5.1 1.4 0.4

38 =0

(5'64^ 38 >0

25 < 1200

0

30 28.0

30 140.3 36.3 0.0

38 = 0

(10'68) 38 >0

4 < 1200

0

14 (41.6)

2 (438.6) (488.4) 0.0

(486DX2/66 PC)

8 Summary and Conclusions

in this paper, we examined both the discrete lotsizing and scheduling problem (DLSP) and the batch
sequencing problem (BSP).

We p resented model formulations for the DLSP and for the BSP. In the DLSP, decisions regarding
what is to be done are made in each individual period, while in the BSP, we decide how to schedule Jobs.
The DLSP can be solved as a BSP if the DLSP instances are transformed. For each schedule of one
model there is a corresponding Solution for the other model. We pro ved the equivalence of both models,
meaning that for an optimal schedule of the BSP the corresponding Solution of t he DLSP is also an optimal
schedule, and vice versa.

In order to solve the BSP elfectively, we trie d to restrict the search to only a subset of all possible
schedules. We found out that Jobs of one family can be preordered according to their deadlines. Further-
more, for equal hol ding costs, it is optimal to start production for a family only if there is no inventory of
this family.

When solving the BSP with a branch & bound algorithm to optimality, we f ace the difficulty that
already the feasibility problem is difficult. We must maintain feasibility and minimize costs at the same
time. Compared with other scheduling models, the objective function is rather difficult for the BSP- A
tight lower bound could thus not be developed. We therefore used dominance rules to prune the search
tree. Again, the difficult objective function complicates the dominance rules and forces us to distinguish
different cases.

In order to evaluate our approach, we tested it against (speciaiized) procedures for solving variants
of the DLSP. Despite the fact that we have no effective lower bound, our approach proved to be more
efficient if (i) the number of items is small, and (ü) instances are hard to solve, i.e. capacity utilization is

24

high and setup times are significant. It is then "more appropriate" to schedule jobs than to decide what
to do in each individual period.

in the DLSP, the time horizon is divided into small periods and all parameters are based on the period
length. In the BSP, all parameters can also be real numbers: setup times, in particuäar, are not restricted
to being m ultiples of a period length. The different models also result in different problem sizes for DLSP
and BSP: the problem size for DLSP is essentialia the number of items N and periods T while the problem
size for th e BSP depends on the number of families and jobs.

We c onjecture that our approach is advantageous for instances with few items and a small Solution
space (i.e. long setup times and high capacity utilization), where the job sequence is the main characteristic
of a Solution. In such cases we managed to solve i nstances with 10 (5) families and 30 (50) jobs on a
PC. DLSP Solution procedures are thought to be bett er suited for lower capacitat ed instances with many
items, setup times that are not very significant, and parameters which differ among the periods. It is then
appropriate to decide anew for each individual period.

In the future we will extend the BSP to multilevel struktures and multiple machines.

Acknowledgments

We are indebted to Dirk Cattrysse and Marc Solomon who made available their instances, and to
Bernhard Fleischmann who made available his code. Furthermore, we would like to thank three an- 1

onymous referees for their valuable comments on earlier versions of this paper.

References

[1] AHN, B.H. AND J.H. HYUN, 1990. Single facility multi-class job scheduling. Computers and Ope­
rations Research, Vol. 17, pp. 265-272.

[2] BRUNO, J. AND P. DOWNEY, 1978. Complexity of task sequencing with deadlines, setup-times and
changeover costs. SIAM Journal on Computing, Vol. 7, pp. 393-404.

[3] BRÜGGEMANN, W. AND H . JAHNKE, 1994. Remarks on: "Some extensions of the discrete lotsizing
and scheduling problem" by Salomon, M., L.G. Kroon, R. Kuik and L.N. Van Wassenhove. Working
Paper, Institut für Logistik and Transport, University Hamburg, Germany.

[4] CATTRYSSE, D., M. SALOMON, R. KUIK AND L.N. VAN WA SSENHOVE, 1993. A du al ascent and
column generation heuristic for the discrete lotsizing and scheduling problem with setup-times. Man­
agement Science, Vol. 39, pp. 477-486.

[5] DREXL, A. AND A . KIMMS, 1996. Lot sizing and scheduling: survey and extensions. Working Paper,

University Kiel, to appear in European Journal of Operational Research.

[6] DUMAS, Y., J. DESROSIERS, E. GELINAS AND M .M. SOLOMON, 1995. Technical Note: An optimal
algorithm for the traveling salesman problem with time Windows. Operations Research, Vol. 43,
PP- 367-3 71.

M FLEISCHMANN, B., 1990. The discrete lot-sizing and scheduling problem. European Journal of Op­
erational Research, Vol. 44, p p. 337-348.

25

[8] FLEISCHMANN, B., 1994. The discrete lot-sizing and scheduling problem with sequence-dependent
setup-costs. European Journal of Operational Research, Vol. 75, pp. 395-404.

[9] JORDAN, C., 1995. Batching and Scheduling - Models and Methods for Several Problem Classes.
Lecture Notes in Economics and Mathematical Systems No. 437, Springer, Berlin 1996.

[10] GAREY, M.R. AND D.S. JOHNSON, 1979. Computers and in tractability — a guide to the theory of
NP-completeness. Freeman, San Francisco.

[11] HAASE, K ., 1996. Capacitated lot-sizing with sequence dependent setup costs. OR Spektrum, Vol. 18,
pp. 51-59.

[12] HAASE, K. AND A. KIMMS, 1996. Lot sizing and scheduling with sequence dependent setup costs
and times and efficient rescheduling opportunities. Working Paper, University Kiel.

[13] LASDON L. S. AND R .C. TERJUNG, 1971. An efficient algorithmfor multi-itemscheduling. Operations
Research, Vol. 19 , pp. 946-969.

[14] MASON, A.J. AND E.J. ANDERSON, 1991. Minimizingflow timeon asingle machine with job classes
and setup times. Naval Research Lo gistics, Vol. 38, pp. 333-350.

[15] MONMA, C.L. AND C.N. POTTS, 19 89. On the complexity of scheduling with batch setup-times.
Operations Research, Vol. 37, p p. 798-804.

[16] POTTS, C.N. AND L.N. VAN WASSENHOVE, 1992. Integrating scheduling with batching and lot-
sizing: a review of algorithms and complexity. Journal of the Operational Research Society, Vol. 43,
pp. 395-406.

[17] SALOMON, M., L G . KROON, R. KUIK A ND L .N. VAN W ASSENHOVE, 1991. Som e extensions of the
discrete lotsizing and scheduling problem. Management Science, Vol. 37, pp. 801-812.

[18] SALOMON, M., M.M. SOLOMON, L.N. VAN WASSENHOVE, Y.D. DUMAS, S. DAUZERE-PERES,
1995. Discrete lotsizing and scheduling with sequence dependent setup times and costs. Working
Paper, to appear in European Journal of Operational Research.

[19] SANTOS, C. AND M. MAGAZINE, 1985. B atching in single Operation manufacturing Systems. Opera­
tions Research Letters, Vol. 4, p p. 99-103

[20] SCHÜTTEN, J.M.J., S.L. VAN D E VE LDE AN D W .H.M. ZIJM, 1996. Single-machine scheduling with
release dates, due dates and family setup times. Management Science, Vol. 42, pp. 1165-1174.

[21] UNAL, A. AND A.S. KIRAN, 1992. Bat ch sequencing. IIE Transactions, Vol. 24, pp. 73-83.

[22] VICKSON, R.G., M. MAGAZINE A ND C . SANTOS, 1993. Batching and sequencing of components at
a single facility. IIE Transactions, Vol. 25, p p. 65-70.

[23] WAGNER, H.M. AND T.M. WHITIN, 1958. Dynamic version of the economic lot size model. Man­
agement Science, Vol. 5, pp. 89-96.

[24] WEBSTER, S. AND K.R. BAKER, 1995. Scheduling groups of jo bs on a single machine. Operations
Research, Vol. 43, pp. 692-704.

26

