
Friberg, Christian; Haase, Knut

Working Paper — Digitized Version

An exact algorithm for the vehicle and crew scheduling
problem

Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel, No. 416

Provided in Cooperation with:
Christian-Albrechts-University of Kiel, Institute of Business Administration

Suggested Citation: Friberg, Christian; Haase, Knut (1996) : An exact algorithm for the vehicle
and crew scheduling problem, Manuskripte aus den Instituten für Betriebswirtschaftslehre der
Universität Kiel, No. 416, Universität Kiel, Institut für Betriebswirtschaftslehre, Kiel

This Version is available at:
https://hdl.handle.net/10419/149047

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/149047
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

Manuskripte

aus den

Instituten für Betriebswirtschaftslehre

der Universität Kiel

Manuskripte

aus den

Instituten für Betriebswirtschaftslehre

der Universität Kiel

Nr. 416

An Exact Algorithm for the

Vehicle and Crew Scheduling Problem

Christian Friberg and Knut Haase

28. Oktober 1996

Christian Friberg
Institut für Informatik und Praktische Mathematik, Christian-Albrechts-
Universität zu Kiel, Preußerstraße 1-9, 24105 Kiel, Germany
Knut Haase
Lehrstuhl für Produktion und Logistik, Institut für Betriebswirtschaftslehre,
Christian-Albrechts-Universität zu Kiel, Olshausenstraße 40, 24118 Kiel,
Germany
email: Friberg@ramses.informatik.uni-kiel.de
email: Haase@bwl.uni-kiel.de
URL: http://www.wiso. uni-kiel.de/bwIinstitute/Prod

ftp://ftp.wiso.uni-kiel.de/pub/operations-research

http://www.wiso

Zusammenfassung

We present a model for the vehicle and crew scheduling problem in urban public
transport Systems by combining modeis for vehicle and crew scheduling that cover a great
variety of real world aspects, especially constraints for crews resulting from wage agree-
ments and internal regulations. The main part of the model consists of a set partitioning
formulation to cover the desired trips of the schedule. Because of the great number of
columns, e.g. more than 5 million for a problem with 30 trips, a column generation algo-
rithm is implemented to use all columns implicitly for the calculation of the continuous
relaxation of the set partitioning problem. The column generation algorithm is embedded
in a brauch and bound approach to generate an exact Solution for the problem. To gen-
erate even better lower bound, polyhedral cuts basing on clique detection and a variant
of the column generation algorithm that suits the cuts were tested.

(Crew Scheduling, Vehicle Scheduling, Column Generation, Set Partitioning, Polyhe­
dral Cuts)

1 Introduction

A main problem in urban public transport is the scheduling of vehicles and crews to serve trips

at minimal cost. Even though public transport companies have for many years solved problems

of this type manually, the use of Operations research methods is increasing.

The usual procedure in the planning process is to solve the vehicle and the crew scheduling

problem sequentially, i.e. first assign the busses to the trips and then assign the drivers to the

busses. This approach is strongly criticized by Bodin et al. [Bodin et.al. 1983], because in most

cases the crew costs dominate the vehicle costs, and so it should be useful to consider the crew

scheduling when the vehicle scheduling is being done. An example of such a relationship can

be a vehicle that goes back to the depot instead of reaching the next trip because it is cheaper

for the driver who has finished bis workday to transfer the bus to the depot and leave it to his

follower, than changing at the end of the trip and going to the depot on foot.

A first idea to modify the Solution process is to schedule crews first. Unfortunately, this is

not a good idea either, because it can increase the cost for vehicles dramatically. The greatest

lack of this approach is the increase in the number of vehicles. In a first-crew-then-vehicle

approach more busses can be needed to serve the crew schedule. Because of the high fixed cost

of a vehicle this can be very expensive.

To solve these problems several approaches to schedule vehicles and crews simultaneously have

been proposed (see [Ball et.al. 1983] and [Patrikalakis and Xerocostas 1990]). The simultane-

ous formulation is known as the vehicle and crew scheduling problem (VCSP). Because of the

great complexity of the problem the cited publications are all heuristics.

1

In [Freiing et al. 1995] Freiing, Boender and Paixäo gave the only mathematical formulation

for exact Solutions of the VCSP we are aware of. They propose a model similar to the VCSP

of this work, but using a quasi-assignment problem instead of set partitioning to describe the

vehicle scheduling. To calculate the lower bound, two algorithms are presented. One approach

uses a two step column generation method to solve the crew scheduling part while the other

one is a Lagrangian relaxation without column generation. Roth are tested with an example

composed of 7 trips and without an embedding in a branch and bound scheine.

All those articles mentioned do not consider the complexity of real crew scheduling problems

such as wage agreements and internal regulations, or extensions like multiple depots. For

those problems many solutions for either crew or vehicle scheduling are published (see e.g.

[Desrochers and Soumis 1989] and [Ribeiro and Soumis 1994]). In this paper we want to give

a formulation for the vehicle and crew scheduling problem that combines those approaches and

so Covers most aspects of reality and we will give algorithms to find an optimal Solution. To

handle the great amount of variables and to model the different types of constraints the vehicle

and crew scheduling problem is formulated as a set partitioning problem where the columns

represent different workdays of crews or vehicles. The Solution is then obtained in a column

generation approach to solve the linear relaxation in the nodes of a branch and bound scheme.

The subproblems to generate columns appear as resource restricted shortest path problems on

scheduling graphs.

To obtain even better lower bounds for the brauch and bound algorithm, an approach basing

on polyhedral cuts for the set partitioning problem as described by Hoffman and Padberg

[Hoffman and Padberg 1993] is taken. As these cuts do not easily match with the column

generation algorithm, an additional branch and bound algorithm to generate the new pivot

column is presented.

The rest of the paper is organized as follows: In Section 2 a description of the vehicle and crew

scheduling problem in a set partitioning formulation is given. Section 3 presents an overview

of the Solution algorithms, especially the branch and bound scheme. In Section 4 the Solution

of the continuous relaxation of the VCSP by a column generation algorithm with suitable

subproblems is shown. To get even better lower bounds, we use an algorithm to generate

polyhedral cuts as defined in Section 5. Section 6 presents the computational results.

2

2 The Vehicle and Crew Scheduling Problem (VCSP)

To cover a great variety of real world as-

pects, we use the approach of [Desrochers and Soumis 1989] for crew scheduling. The most

important part of [Desrochers and Soumis 1989] is their careful modeling of the crew schedul­

ing graph for the subproblem of the column generation algorithm. An important decision is

whether the driven parts are assigned to the nodes (as in [Ball et.al. 1983]) or to the arcs (as

in [Desrochers and Soumis 1989]). In this work we will follow the approach of Desrochers et al.

[Desrochers and Soumis 1989] because it facilitates the solving of the crew scheduling problem

which is the harder part of the two. As the vehicle scheduling is the easier part, we will describe

it before the crew scheduling.

2.1 Timetable and Vehicle Scheduling Graph

The obvious information that can be seen after the Strategie planning is that part of the

timetable that is handed out to the public. Basically it is a collection of trips which are defined

as the serving of a line at a certain time. Therefore the parameters of a trip are the beginning

of the trip (BT), the end of the trip (ET), and the halting points, all determined by their time.

Some of the stops are called relief points (RP) because the crews are allowed to change. Note

that we can take the beginning and the end of each trip as a relief point, too.

The interesting pieces of a trip are those that have to be served by the vehicle and the

crew without changes. These parts from one relief point to the following are called dtrips

(as in [Ball et.al. 1983]). In crew scheduling those parts are often called tasks, see e.g.

[Desrochers and Soumis 1989]. We dehne for every trip i a corresponding sequence of relief

points rp^-,0 < j < nh where rpi0 and rpin. denote the beginning and the end of the trip,

respectively. The relief points rp^_i and rp^- dehne dtrip j for all j, each supplied with the

costs for a vehicle Vdj and a crew c%. Note that the costs are given and not calculated from

the trip itself in any way. This will become important in Section 4, where we can assume them

to be marginal costs instead of real ones. The parts driven between relief points and transfers

to or from the depot will be called travels in this paper. The starting and the ending time of

the dtrips can be taken from the complete timetable.

To complete the required arguments for the timetable, we need to know several supplementary

Parameters: For all vehicles and crews the costs and the times to go from the depot to the

beginning of every trip i (vedbi, ccdbi, tdbi)1 from the end of every trip i to the depot (veedi,

3

0700 dtripjl 0720 dtrip_i2 0750 dtripJS 08|°

BT

rpiO

vcjl

ccjl rpil

RP

cc_i2

vc_i2 RP vc_i3 ET

rpi2 cc_i3 rpi3

Abbildung 1: Trip in a timetable

ccedi, tedi), from the end of trip i to the beginning of trips j (vcebi7-, ccebij, tebij), plus the

waiting costs at the depot between two trips i and j for vehicles (vwcdij) and for crews (cwcdij)

or two relief-points rp^ and rpkl for crews cwcdiju)-

Additionally for the crew scheduling (defining all begin and end points as relief points) the costs

and times to go from the depot to every relief point rp^ (cdrptdrp^), from every relief point

rp^- to the depot (crpd^, trpd^), from relief point rp^ to rpkl for every possible combination

(crPijkh trPijki)' These costs can be interpreted as costs needed to get a crew from one point

to another without driving a vehicle. Finally we need the constant costs for vehicles and crews

to start and finish the day (e.g. fixed costs of a vehicle, basic payment for crews) which will be

termed as vsignon, vsignoff, csignon, and csignofF.

Now we can derive the graphs for vehicles and crews from the timetable taking into consideration

additional constraints. If we assume a hornogeneous fleet of vehicles at a Single depot with no

extra constraints on their use (e.g. refueling) we can easily dehne a network for the vehicle

scheduling, just reducing the information of the timetable. At first we have to add the costs of

all dtrips to get the aggregated cost of the trips

and then dehne a graph where the nodes are beginning and end of trips, arrival or departures

at the depot and the start and the end of the day, and where the arcs are annotated with the

costs from the timetable. With the selection of the arcs we can model obvious constraints, like

no vehicle can go back in time to serve two trips simultaneously.

Definition 2.1 (vehicle scheduling graph) Let VG = (VN, VA) be a graph with nodes

VN = {start, end} U {bti} etj, bdepot^ edepot^ | V tripj

where start and end are the source and the sink of the network, respectively. The arcs in VA

are defined by the feasible stages supplied with their costs. The feasibility is defined relating to

the time constraints, i.e. a vehicle can not leap back into time and should not exceed a maximal

waiting time vwmax.

VCi := YLVCi3
i=1

4

The arcs of the vehicle scheduling graph are (start,bdepotj with cost vsignon, (bdepot^bt»)

with cost vcdbi, (bt^et*) with cost vci, (et^edepotj with cost vcedi, (edepot^end) with cost

vsignoff, (et^btj) with cost vcebij if tebij 6 [0, vwmax] and (edepot^bdepot^) with cost vwcdij

if (tdbj 4- tedi) € [0, vwmax].

The last two sorts of arcs belong to direct or indirect (over the depot) stages, respectively, from

one trip to another. Note that the times for these stages may be negative if a trip starts before

the other one begins. So the constraints in building the arcs ensure that all times are positive

and do not exceed a maximal waiting time. For every arc a its cost will be denoted c(a). •

The depot nodes corresponding to the beginning and the end of each trip are used to model a

vehicle starting from or coming back to its depot at a certain point of time. The Importance

of this approach will be seen in the combination with the crew scheduling.

To illustrate the definition we give a small example: In the graph in Figure 2, a vehicle is

Abbildung 2: Example of a vehicle scheduling graph

allowed to start the day with trip 1, come back to the depot afterwards to go to trip 3 and then

close the day. Another possibility is to go from the end of trip 1 directly to the beginning of

trip 2 or 3. After serving this trip one can decide to go directly to trip 4 or close the day by

driving back to the depot. Note that there is no arc from the end of trip 1 to the beginning of

trip 4 even though both can be served by one vehicle if trip 2 is taken between them. This can

be explained by an expansion of the waiting time between those trips.

In the remainder of the work it will be Important to know the schedule for one vehicle during

a day. This is exactly what is described with a path from node start to node end. Such a path

is called a block (see [Desrochers and Soumis 1989]).

Definition 2.2 (block) A block b in the vehicle scheduling graph VG is defined as a fi­

nita sequence nodeQ,.. .,nodeTb of nodes £ VN, where node0 = start, noden = end and

5

(nodei, nodei+i) € VA for all i. Its cost is defined as

rb—1
c(b) — ^2 c((nodei,nodei+1)).

i=0

A cost minimal block is a block b such that c(b) < c(br) holds for every other block br. •

2.2 The Crew Scheduling Graph

In [Desrochers and Soumis 1989] and [Desrochers et.al. 1990] the authors propose a clever crew

scheduling graph that includes resources and special subsumptions of arcs to cover a great

variety of real world constraints. To combine their approach with the vehicle scheduling of the

previous subsection, we will formalize it in two steps: first a simple crew scheduling graph as an

extension of the vehicle scheduling graph and then an improvement of it, covering all aspects

of [Desrochers and Soumis 1989], with an exact formal relationship between them.

In a first approach the crew scheduling graph can be described in a similar way as the vehicle

scheduling graph. The only extension necessary is the consideration of the relief points where

the crew is allowed to change. At this points the crew can stay at the vehicle, go to another

vehicle, go to the depot, or end the workday. A graph containing such Information will be

called a simple crew scheduling graph.

Definition 2.3 (simple crew scheduling graph) Let SCG = (CA, SCA) be a graph with

nodes

CN = {start, end} U (rp^, btj, et%, bdepot^, edepotf, bdepot^, edepot^ | V t ripi5 j = 1,..., n*}

where start and end are the source and the sink of the network, respectively. The different

types of depot nodes belong to begin and end of trips (single index) or of travels from relief

points (double index). The arcs in SCA are all feasible stages associated with their costs. The

feasibility is defined relating to the time constraints, i.e. a crew can not leap back into time

and should not exceed a maximal waiting time cwmax.

The crew scheduling graph has the following arcs: (start,bdepot^) with cost csignon,

(start,bdepot^) with cost csignon, (bdepot^,rp^) with cost cdrp,(bdepot^btj) with cost

ccdbi (*), (bti,rpi0) with cost 0, (rp^.^rp^-) with cost cc#, (rp^edepot^) with cost crpdip

(et^edepotj with cost ccedi (*), (rpin.,et^) with cost 0, (edepot^,end) with cost csignoff,

(edepot,,end) with cost csignoff, (rp^,rp&,) with cost crpijkl if trpijkl € [0, cwmax],

(edepotjj,bdepot&;) with cost cwcdijki \i{tdrp^ + trpdki) € [0, cwmax], (et%,btj) with cost cceb^j

if tebij € [0, cwmax] (*) and (edepot,-,bdepot;) with cost cwcdij if (tdbj Atedi) e [0, cwmax].

6

The last 4 sorts of arcs belong to direct or indirect (over the depot) stages, respectively, from

one relief point to another in a different trip. The first two represent travels of a crew without

the vehicle, the third means the transport of the bus while the fourth describes waiting time at

a depot. The arcs that are marked with an asterisk (*) combine vehicle and crew scheduling

and therefore will be called linking arcs. In Section 2.3 it will be enforced that these arcs are

taken if and just if the same stage is served by a vehicle, i.e. a crew has to do the transfer of

this vehicle. For every arc a its cost will be called c(a). O

Even in a simple example we can see how many arcs have to be used to model the description.

In Figure 3 two trips with one or two additional relief points, respectively, are connected with

depot depot

Abbildung 3: A simple crew scheduling graph

the arcs allowed. Every relief point is associated with two depot nodes that model a travel to

the depot without a vehicle. The beginning and the end of each trip is connected with a second

depot node to describe the stage to the depot with the vehicle. Note that a crew is allowed to

drive a vehicle from the end of trip 1 to the beginning of trip 2 but may not go there alone,

even if an arbitrary relief point is chosen. This can be used to model time differences between

driving the vehicle or Walking from one relief point to another.

Even if this approach covers most Information needed for a simple scheduling there is still a lack

of reality in it. Unlike the vehicle scheduling, the crew scheduling is strongly determined by

wage agreements and internal regulations. So there are restrictions on the length of a workday,

the length of work without a break, or other resources.

There are two ways to model these restrictions in a graph: with path feasibility constraints,

7

and in the definition of the arcs. Both ways will be used in this approach, following

[Desrochers and Soumis 1989].

The first idea used here is the introduction of a piece of work. A piece of work is a sequence of

tasks done by a crew on the same vehicle. So every block can be splitted into several pieces of

work. The wage agreements usually restrict the number of pieces on a workday and the number

of tasks in a piece, so it is useful to form the graph mainly with such arcs. In Figure 4 we

depot

Start

depot

end

Abbildung 4: Pieces of work

see an example of pieces of work derived from Figure 3, where one piece may consist of 3 to 5

tasks. The graph is still simplified by taking into account that a vehicle must be driven by a

crew all the time. So all pieces that arrive at nodes where no arc departs (and vice versa) can

be eliminated. Note that for example the arc from the beginning depot of trip 1 to the first

relief point of trip 2 symbolizes a piece of work that covers the complete first trip, the stage

to, and the first dtrip of trip 2, all served by one vehicle. The corresponding arcs of the simple

scheduling graph are represented in a dotted version. In practical situations also the amount

of time available for some piece of work will be restricted, so even more arcs can be eliminated.

The remaining arcs are used to model sign on, sign off (all connected with start respectively

end), and breaks. In use, most of these arcs can be eliminated because of restrictions such as

the length of breaks.

As this approach can model time restrictions of parts of the graph as pieces of work, we

still have to integrate global constraints such as the total working time or the number of

pieces on a day. These constraints can be modeled as path feasibility constraints. These

are formulated as resource constraints at each node and resource consumptions on each arc.

Thereby resource constraints are formulated as feasibility Windows that restrict the use of the

8

resource consumptions on the arcs.

To explain this approach we will look at some examples from [Desrochers et.al. 1990]: If the

number of pieces of work are restrioted to two, each arc representing such a piece has a piece

consumption of 1, while all other arcs have a consumption of 0. The start node has the

feasibility window [0,0], while all other nodes have the window [0,2] for pieces. If the wage

agreements guarantee a minimal break time mbt, every arc considered to be a break (e.g. the

waiting arcs at the depot) has a break time consumption of the time of the arc. The sink of

the graph, representing the end of the day, then has a feasibility window [mbt, oo], Similar

constraints e.g. for number of breaks, total working time, etc. can be formulated in a similar

way, each associated with another set of resource constraints and consumptions in the graph.

Many examples for this approach can be found in [Desrochers et.al. 1990].

With these requirements we can now formulate the crew scheduling graph that will be used in

the remainder of the work.

Definition 2.4 (crew scheduling graph) Let CG = (CN,CA) be a graph. CG is called

a crew scheduling graph if there exists a simple crew scheduling graph SCG = (CN, SCA)

with a mapping 0 from CA to the set of sequences of SCAy such that for every arc a in CA

the sequence $(o) is a path in SCG.

The costs of each arc a of CA are determined by

c(a) = 51 c((nodei,nodei+i))
(node* ,node*+i) €<&(&)

as the sum of the covered arcs of the simple graph.

CG is called a resource restricted crew scheduling graph if there exists a number rcG > 1 of

resources so that for every node we have the resource constraint Windows [dlnode^hode] an<^ &>r

every arc we have k resource consumptions dlk with 1 < l < rcG> n

Further we will just use resource restricted crew scheduling graphs and so will call them crew

scheduling graphs to simplify the notation. Note that from the current formulation many

different combinations of arcs and resources are allowed if they are needed to cover special

aspects.

In the remainder of the work it will be Important to know the scheduie for one crew during a

day. This is exactly what is described with a path from node start to node end. Such a path is

called a workday (see [Desrochers and Soumis 1989]).

9

Definition 2.5 (workday) A workday w in the crew scheduling graph CG is defined as a

finite sequence nodeo,. •., nodeSw of nodes € CN where nodeo = start, nodeSw = end and

(:node^nodci+i) G CA for all i.

A workday is feasible if for all t € {0,..., and all Z G rcc}

t ^ ^
^{nodei— i ,nodei) ^ [®nodej' ̂ nodei]

i=l

holds.

Its cost is defined as
rw—1

c(w) = ^2 c((nodei,nodei+i)).
t=0

A cost minimal workday is a workday w such that c(tu) < c(w') holds for every other feasible

workday w'. a

2.3 The Set Partitioning Problem

In the last subsections we have seen how the scheduling demands for vehicles and crews can be

coded using graphs. Now we have to define the formulation of the optimization problem to get

a cost minimal vehicle and crew schedule, which will be given in a binary linear program.

In general this can be done by a set partitioning approach. In this approach we have binary

variables for every trip or dtrip in the graph and try to minimize the costs while the variables

cover the arcs exactly once. A problem that arises in this approach is how to model the

constraints that are coded in the graph, such as path constraints or the structure of the networks.

So a favored procedure is to define the sets of feasible blocks (vehicle paths, VP) and workdays

(crew paths, CP) and to cover the network with them. The problem of generating feasible

paths can then be solved by special algorithms using the graphs directly.

For this approach we define binary variables Xi for every feasible vehicle path vpand yj for

every feasible crew path cpj, where Xk — 1 (%/& = I) means that path pk is used in the Solution.

To describe the paths in the LP-formulation they are coded with binary constants:

• vtripik: vehicle path vpi serves trip k

• cdtripjp crew path cp3- serves dtrip l

• varcik: vehicle path vpi serves arc k

• carcjk: crew path cpj serves arc k

10

where constant=l means that the corresponding arc is covered by the path. The constants

varak and carcjk describe the linking arcs in the vehicle and the crew scheduling graph which

represent the transfer of a vehicle by a crew. Note that the paths are taken from the crew

scheduling graph while the covered arcs originate from the simple crew scheduling graph using

a mapping $ as in definition 2.4. (Look again at the dotted path in Figure 4.)

The formulation of the vehicle and crew scheduling problem as a set partitioning model with

additional constraints then is given in the next definition:

Definition 2.6 (vehicle and crew scheduling problem) Let VP and CP be the sets of

all feasible vehicle and crew paths.

Min Y c(m)xi+ Y c(%)% (1)
vpiGVP cpj€CP

Y vtripikXi = 1 V t rips k (2)
vpi€VP

Y cdtriPjiVj = 1 V dtrips l (3)
cpj € CP

vardkXi Y1 carcjkVj = 0 V l inking arcs k (4)
vpi€VP cpj€CP •

Xu Vj €{0,1} V ij (5)

•

As stated above the objective function (1) is the sum of the costs for vehicle and crew schedules.

The constraints (2) and (3) ensure that all trips and dtrips are covered, while restriction (4)

links vehicle and crew schedules together so that every vehicle is driven by exactly one crew on

the linking arcs. To substantiate the definition of the linking condition, we have to show that

if condition (4) is fulfilled every stage is either served by exactly one vehicle and one crew or

by none of them.

Remark 2.7 (linking) Let (%*,%/*) be a feasible Solution for the set partitioning model.

Then for every linking arc k, E varakxf = 0 (and therefore E carcjky*j = 0) or
vpiEVP cpj^CP

E varcikx\ = 1 (and therefore E carcjkyj =1).
vpi€VP cPj€CP

Proof: Let k be a linking arc. Based on the definition of vehicle scheduling graphs and simple

crew scheduling graphs it is evident, that if the first node k is the end of a trip et* it has not

more than one predecessor. (Note that this does not hold for an arbitrary crew scheduling

graph, but the set partitioning formulation uses the simple version of it.) Because of constraint

11

(2) (or (3)) and the definition of a path (in 2.2 or 2.5) it is is easy to verify that our claim holds

in this case.

So let k be (bdepotj, btj). Similar to the other cases the node bt, has just one successor. Again

because of constraint (2) and the definition of a path the Statement holds. •

With these definitions we have a useful formulation of the vehicle and crew scheduling problem

with a set partitioning approach. In the next subsection we will show some extensions to the

problem and how they can be modeled. The remainder then deals with methods to find optimal

solutions.

2.4 Extensions

So far we have concentrated on an undoubted complex problem, but there is still a lack of

reality in the model. Many of the articles cited above deal with extensions of the model. For a

survey of different problems in vehicle scheduling see [Bodin et.al. 1983].

An often analyzed improvement of the vehicle scheduling problem is the multiple depot vehicle

scheduling problem. In this formulation all vehicles have to go back to the depot they departed

from. Additionally, all the costs on the arcs, including fix costs using sign on, depend on

the used depot. Besides the modeling of real depots, this approach is also useful to describe

different types of vehicles with different costs, i.e. every type of vehicle is associated with a

special depot.

To embed the multiple depots in our current model we can define a set of vehicle scheduling

graphs, where each graph carries the costs of a Single depot. With this approach we can e.g.

force the use of a special type of vehicle on a trip by not including the corresponding arc in the

other graphs. The combination of the different schedules is very simple in our set partitioning

model. As usual, every path is coded in the constants vtrip and varc and so we do not have

to change the LP-formulation. A detailed description of such an approach can be seen in

[Ribeiro and Soumis 1994].

One problem of this approach is the combination with the crew scheduling. As we have seen,

the vehicles always have to be driven, so we must distinguish between the different depots in

the crew scheduling, too. This can be done by adding several depot nodes to the relief points

of the graph, one for every vehicle scheduling graph belonging to a certain depot that covers

the arc between the relief point and the depot (see Figure 5). Note that there is no arc between

the depot nodes because both represent the arrival at a depot. Of course there can be arcs

between arrival and starting nodes of different depots, so that the same crew can drive different

depot type 1

depot type 2

Abbildung 5: Relief point with two depots

types of vehicles.

Other aspects as a restricted number of vehicles or special sorts of workdays, such as trippers,

straights and splits and their incorporation in the column generation algorithm are explained

in detail in [Ribeiro and Soumis 1994] and [Desrochers and Soumis 1989].

In summary, we combined the most sophisticated approaches for vehicle and crew scheduling

into a Single problem (VCSP) that Covers nearly all real world aspects of the operational plan-

ning step of the urban public transport Systems. The next sections will demonstrate how such

Problems can be attacked.

3 The Branch and Bound Algorithm

In this article we present an approach that solves the VCSP within a branch and bound al­

gorithm. The lower bounds are calculated by dropping the integral constraints of the set

partitioning formulation and solving the continuous linear program with column generation.

The application of this special approach is explained in detail in the following sections, so we

will now concentrate on the branching.

Definition 3.1 (branching in the VCSP) Let S = {x \ Ax = 6, x € Z+} be the set

of feasible integral solutions of the VCSP as in Definition 2.6. Dehne for every index set I of

columns the set

S1 = {x 6 S | i € I => Xi = 0}

Obviously we have S1 C S for all I and S*0 = S. A Solution for the continuous relaxation can

be found easily by solving the relaxation of S with the simplex algorithm without considering

the columns in I.

Now let x be an optimal feasible Solution of cx for the relaxation of S1. Then calculate for

13

every linking arc linki its violation

n
Vi — 0.5— | 0.5 — •Eföi+nt+naj I

j=l, Pj block

(with nt and the number trips and dtrips, respectively) and detect the maximal violation

vmax = niaxvi with a corresponding linking arc linkk- If vmax ^ 0, then x is not integral, i.e.

the problem is not leveled for this branch, and there is at least one column Pj, j £ I and Xj ^ 0

that Covers link k. Let F be IU {j ± I | Pj Covers link k} and J" be IU {j ^ / | Pj Covers

link IJ ^ kjinki € Ray{linkk)}, where Ray(a) is the set of arcs that have the same starting

point as the arc o. Dehne

p(S') = {SV}

as the (binary) branching function. •

To justify the deßnition we have to show that x is integral if vmax = 0. This can only be shown

for the components of x that correspond to a feasible path of the vehicle scheduling graph.

Theorem 3.2 Let S, /, and x be as in Definition 3.1. If vmax = 0, the Solution x is integral in

every component Xj, with column Pj representing a block.

Proof: Let vmax = 0, and assume that there exists a column Pj with Xj ^ 0 and Xj ^ 1 that

corresponds to a block. Let link l be the last link on the block before the end node. Because

Vmax = 0, there exists at least another column Pt with xt ^ 0 and xt ^ 1 that also Covers link

1. Obviously, the Start node of link l represents the arrival at a depot. From the deßnition of

the vehicle scheduling graph it is easy to conclude that the depot has an unique predecessor,

the end of a trip, so Pj and Pt both cover this trip. Now we have three different cases:

Case 1 Pj covers a link from the end of another trip to the beginning of the current one. As

Vmax = we have 23r=l, PT block xral'+nt+n<ir = 1 an^ Er=l, Pr block %r&l"+nt+ridr = 0 for all

other links l" that arrive at the beginning node. So Pt covers link V, too.

Case 2 Pj covers a link from a start at a depot to the beginning of the current trip and a link

from an arrival at another depot to the current one. Analogous to Case 1 Pt covers both

links.

Case 3 Pj covers a link from a start at a depot to the beginning of the current trip and an arc

from the start of the day to the depot. As in Case 1 and 2 one can show that Pt covers

the arcs.

14

In Gase 3 Pj and Pt are obviously derived from the same block. In Gase 1 and 2 a simple

induction shows the same conclusion. So we have Pj = Pt, which is a contradiction, that shows

that the assumption Xj ^ 0 and Xj ^ 1 is false. •

To extend the approach to get an integral Solution for all columns including the workdays, the

violation of the breaks and travels on foot have to be calculated. The branching mechanism

and the proof then follow the same lines as for vehicles. Afterwards, a branching Function p is

defined that obviously defines a finite tree whose leaves are the integral Solutions of 5.

So far we have described how columns that have already been generated can be eliminated.

Now we have to consider the explicit columns that are coded into the feasible paths of the

scheduling graphs. As the index set I is derived from sets of linking arcs, this can be done by

removing arcs from the graph. In the implementation the arcs are simply marked to reuse them

in other branches.

4 The Column Generation Approach

As stated in Ribeiro and Soumis [Ribeiro and Soumis 1994], one main advantage of the set

partitioning formulation is the Observation that the gap between the optimal Solution for the

integral problem and the relaxed problem is often very small and unnecessary branches are very

likely been cut from the bounding rules. So the most important task in developing algorithms for

the VCSP is to create efficient solvers for linear programs with respect to the special structure

of the VCSP. This subsection presents an overview of the algorithms described in füll length in

the following sections.

The complexity of the VCSP is determined by the number of arcs, mainly the trips, dtrips,

and links, of the scheduling graphs. This number corresponds to the number of rows of the

constraint matrix A. Some of them can be dropped, by using a pivot and probe algorithm

[Sethi and Thompson 1984] to solve the linear program. "Unfortunately, the number of columns

is equivalent to the number of feasible paths which is increasing exponential on the number

of arcs. So the time to search for the pivot column is exponential, too. Moreover, if the number

of columns is to big (more than 5 million columns for 30 trips!) they can not be stored in main

memory and so reduce the Performance of the cornputation. The column generation algorithm

now makes use of the relationship between the columns and the feasible paths of the graphs.

Instead of enumerating all columns before the Start of the simplex algorithm, only a small initial

matrix is taken. Then successively the smaller problems are solved, and instead of searching

the pivot column in the large matrix, it is generated using a subproblem and added to the

15

small matrix. This Iteration is done until the subproblem can not find a negative marginal cost

column. At this point the whole linear program is solved under implicit consideration of the

complete set of columns.

To generate columns the simplex multipliers of the small linear programs optimal Solution are

subtracted from the costs of the corresponding trips, dtrips, and links (note that the rows of

the matrix are constraints for the partitioning of these arcs). The pivot column of the complete

matrix then is equivalent to a shortest path in one of the scheduling graphs. If the pivot

and probe algorithm is used to solve the linear program, only the multipliers of the active rows

are subtracted from the costs of the arcs. The costs that are not represented by an active row

are just added to the cost of the path (as are the costs of other arcs like travels on foot or

signon/signoff that are neither represented in the set partitioning formulation). In Subsection

4.2 solutions for the shortest path problems of the vehicle and the crew scheduling graphs are

represented. If one of the shortest paths is negative, it is translated into a new column of the

constraint matrix with entries 1 or -1 as described in Definition 2.6 if the row corresponds to a

trip, dtrip, or link.

4.1 Column Generation Principle

The idea of column generation is easy to understand if the revised simplex algorithm is used as

its basis (see Lasdon [Lasdon 1970]). In Definition 2.6 the constraint matrix was defined such

that every column corresponds to a feasible path of the vehicle scheduling graph, i.e. a block, or

of the crew scheduling graph, i.e. a workday. This can be formalized by using two bijections <j>v

and <f>c t hat map the set of blocks VP to the set of vehicle columns VC = Pnb} and the

set of workdays CP to the set of crew columns CC = {Pnb+I, • - • > fnt+n*,}, respectively, where

n& a nd nw are the number of blocks and workdays, respectively. Define further the number of

trips rit, dtrips n^, and linking arcs The vehicle mapping is defined as

cj>v : VP i-> VC, <j>v (b) = Pj : a v

1 if 1 < i < nt and tripi e b

or nt + nd < i <nt + nd + nt and link, € b

0 otherwise

while the crew mapping is

1 if nt < i < nt + nd and dtrip^ € b

<j>c : CP CC, (ßc(b) = Pj : <Hj = i —1 if nt H- < i < nt + nd + m and link; € b

0 otherwise

where just the entry for the linking arcs is different from <f>v to couple vehicles and crews.

16

The main idea of the column generation algorithm is now to replace in the simplex algorithm

the calculation of the marginal costs for all columns and the search for the minimal marginal

cost column (pivot column), by a generation of this column, if possible. This is done by first

solving a smaller linear program with a submatrix A! of A, using the normal revised simplex

method, and then generating a column Pj not in Ar with

C{ = min ck = min(ck-7rPk)
k k

This generation is done by solving a subproblem. As every column corresponds to a feasible

path of a scheduling graph, the generation process can be done by a shortest path problem

where the simplex multipliers 7r* ar e added to the costs of the arcs.

Definition 4.1 (marginal cost graphs) Let VG = (VN,VA,Cv) be a vehicle scheduling

graph and CG = (CN, CA, cc) be a crew scheduling graph with arc costs cv and cc as described

in Section 2. Further let 7Ti,..., 7rm be simplex multipliers of the linear program.

Now dehne the marginal cost graphs VG} = (VN, VA, dv) with

cv(a) - 7Ti if a = tripj

Cy(a) - 7Tj+nt+n^ if a — link *

^(a) otherwise

and CG' = (CN, CA, c'c) with the costs

Cc(a) = Cc{a) — ^ ^+nt+n<i
dtripi€$(a) linki£$(a)

calculated with the simple crew scheduling graph (see Definition 2.4 in Subsection 2.2). •

With these definitions we can now formulate the column generation algorithm.

Definition 4.2 (column generation) Let A' be a nonsingular submatrix of A and P(A')

be the linear program for the VCSP restricted to A' and the corresponding subvector d of c.

1. Solve the linear program P(A')

2. Calculate the marginal cost graphs VG' and CG' as in Definition 4.1. Let b be a shortest

feasible path (cost minimal block) in VG' and w be a shortest feasible path (cost minimal

workday) in CG'.

3. If both dv(b) and dc(w) are nonnegative, stop. The current Solution is optimal for P(A).

17

4. If dv(b) < 0, redefine A' as

A' <— (Af,(j)v(b))

and d as (c% Cu(b)). If dc(w) < 0, redefine A! as

A! <r- (A% </>c(w))

and d as (</, cc(w)).

5. Continue with Step 1.

In Step 4 the matrix A' can be expanded by more than one column to accelerate the algorithm

(multiple pricing). •

Theorem 4.3 The column generation algorithm stops with an optimal Solution x' iff the Sim­

plex algorithm stops with an optimal Solution x, and in this case cx! — cx holds.

Proof Let xr be a Solution of the column generation algorithm and 1r b e the vector of simplex

multipliers after Step 1. Obviously, x' is also a basic feasible Solution for P(A). We just have

to prove that there exists no column Pj of A with Cj — irP j negative to show that x' is also

optimal for P(A). Assume that there exists such a column. Then there exists the feasible path

(j)~~l{Pj). W.l.o.g. assume that this path is a block b. Then we have

c'v{b) = E dv(tripi)+ E dv{Unh)+ E 4M
tripi^b UnkiEb other arc a €fe

= E Cv(tripi) — E E Cvilinki)- E ^i+n,+nd + E c'v(a)
tripi£b tripi€b linkiEb UnkiZb other arc a€&
cv{b) — E — E ^i+nt+rid

Oij — 1 a»+nf

= Cj ~ TTPJ

which contradicts the assumption because no block with negative costs was found in Step 3.

Now let x be an optimal Solution for P(A). As every feasible Solution for P(Ar) is also a

feasible Solution for P(A)y the problem P(A') is bounded by cx. Especially there exists an

optimal Solution xf that is found by the column generation algorithm because it starts with a

feasible Solution. So by the first case xf is also an optimal Solution for P{A). •

4-2 The Subproblems

As we have seen in the previous section, an important step in the scheduling process is the

efficient Solution of the subproblems to generate new columns for the LP-relaxation. The

subproblems appear as shortest path problems with various side conditions in the graphs.

18

A shortest path in the vehicle scheduling graph can be found very easily, because the vehi-

cle scheduling graph is acyclic and therefore can be sorted topological. Moreover, a natural

topological sorting is given by the time points associated with the nodes. A shortest path can

then be calculated by a dynamic programming approach, that Starts at the source node and

check for all nodes following the topological sorting each predecessor to find the shortest path

that starts at the sink. Obviously, such an algorithm has a complexity of 0(| A\) and can be

performed rather rapidly.

The crew scheduling graph can as well be sorted topological. However, the shortest path

problem turns out to be very hard because of the resource constraints. To find a feasible shortest

path as defined in Definition 2.5, we have to test if for all nodes the summed consumptions

of the different resources on the arcs on this path fit in the resource constraint window of the

node. Since in the general formulation of the problem we can make no assumptions on the

resource consumptions of the arcs, we have to collect for every node in the topological sorted

list all paths from node no, unless they have the same combination of resource consumptions.

The number of paths that have to be collected - and thereby the complexity of a shortest path

algorithm - will be exponential. Therefore it is likely that every algorithm is NP-hard.

The main development of Desrochers [Desrochers 1988] is to restrict the problem in a way that

still keeps all aspects of reality. They assume, that all possible resource consumptions are

discrete, for example minutes of working time or number of breaks. Then one can störe the

possible paths for every resource combination, a number that does not grow exponentially if

all Windows are finite. (The problem of infinite windows is solved later by window reduction.)

A shortest path can be calculated as for the vehicle scheduling graph but for every resource

combination instead of just every node. So if on a node a working time of 6 to 8 hours with a

granuality of 1 minute and one or two pieces of work are allowed, the shortest paths for 120x2

= 240 resource combinations have to be stored.

The complexity of the algorithm is

0(E(lfWlfK-O).
neN t=i

so to accelerate the computation and to ensure finite resource windows, a resource window

reduction as in [Desrochers et.al. 1992], that cuts parts of the Windows by comparison with

successors and predecessors, is implemented in the current program. A detailed description of

the algorithm can be found in [Desrochers 1988] and [Desrochers et.al. 1992].

19

5 Polyhedral Cuts

The linear relaxation of the set partitioning problem already provides very good lower bounds

for the branch and bound algorithm. Nevertheless, methods that use polyhedral cuts obtain

lower bounds that are higher, thereby allowing to cut more branches of the search tree, and

give Solutions that are "more integer". Ideally, they will generate the integer Solution without

a branch. In this section we will describe the overall approach of generating polyhedral cuts

and explain a cutting algorithm of Hoffman and Padberg [Hoffman and Padberg 1993] for the

set partitioning problem.

5.1 Set Partitioning and Polyhedral Cuts

In the formulation of the vehicle and crew scheduling problem the set of feasible Solutions in

the set partitioning formulation was

SPP(A) = conv({x e JRn | Ax = e, x € {0,1}})

To make use of the developments of [Hoffman and Padberg 1993], we will divide the set par­

titioning equalities into two sets of inequalities and get the set packing polytope and the set

covering polytope:

Definition 5.1 (set packing and set covering polytope) Let A be a n x m matrix with

coefficients 0 and 1, and em be (1,..., 1) € JRm. Then the set packing polytope is defined as

SP(A) = conv({x e IRn | Ax < em, x € {0,1}})

and the set covering polytope as

SC(A) = conv({x € JRn | Ax > em,x € {0,1}}).

•

Obviously we have SPP(A) = SP(A) n SC(A) and so every valid inequality of SP(A) or

SC(A) is also valid for SPP(A).

The set SPP(A) is a polyhedron, so it can be described by linear equalities and inequalities.

Given the set of them allows to calculate the optimal Solution of the VCSP by solving the

linear program of minimizing cx on SPP(A). Every extreme point of SPP(A) is integer and

so the optimal Solution is feasible for the VCSP. Unfortunately, the inequalities are not easy to

calculate and so we need some theory (see e.g. [Nemhauser and Wolsey 1988]):

20

Definition 5.2 (faces and facets) Let F C]Rn be a polyhedron, and (7r,7r0) € IRn x 1R

define a linear inequality TTX < 7To. (?r, 7To) is called a valid inequality for P if it is satisfied by

all points in P.

Let F = {x € P | 7TX < 7r0} be the intersection of the halfspace defined by (7r,7To) with P. If

(7r, 7T0) i s valid, then F is called a face of P. A face F is called proper if F ^ 0, P.

A face F of F is called a facet if dim(F) = dim(F)-l. •

Obviously, F is a polyhedron that is described by certain inequalities. Every polyhedron F can

be defined by the inequalities of its facets. Moreover, at least one inequality of F is necessary

to describe F.

For the iteration of the algorithm we need to define special inequalities that are valid for

5FF(A), but cut away a Solution that is feasible in the continuous relaxation of the VCSP.

Definition 5.3 (polyhedral cut) Define S(A) as the continuous relaxation of the VCSP. Let

x be feasible Solution of S(A) and (7r,7ro) be a valid inequality of SPP(Ä) with 7xx > 7To- Then

(7r,7r0) is called a polyhedral cut for the VCSP.

In an algorithm the polyhedral cuts (ideally facets of SPP(A)) are subsequently added to the

problem such that the Interim Solutions are eliminated.

The main disadvantage of the polyhedral approach is the problem of finding the facets of

SPP(A). This is a complicated task and for NP-hard integer problems of course also NP-hard.

Nevertheless it is also a great advantage to generate a subset of the facets to get a better lower

bound and a Solution that is more integral than the pure Solution of the linear program with

F(A). In the next section we will give some methods to find facets for the set partitioning

problem.

5.2 Intersection Graph

One way to calculate facets of a set partitioning polytope uses a graph derived from the con-

straint matrix as described in [Hoffman and Padberg 1993] to calculate facets of the set packing

polytope SP(A) and therefore for SPP(A), too.

Definition 5.4 (intersection graph) Let A — (a^)mxn be the constraint matrix of the set

partitioning problem. Then define the intersection graph ({1,... ,n}, E) with (ju j2) € E iff

the columns ah and aj2 intersect, i.e., there exists an i € {1,..., m} such that = aij2 = 1.

•

21

Definition 5.5 (cliques) Let G = (N,E) be a graph and K C N. K is a clique of G iffit

induces a maximal complete subgraph. •

These definitions allow to describe all facets of set packing type [Hoffman and Padberg 1993]:

Theorem 5.6 An inequality Y*j£Kxj < 1 defines a facet of SP(A) iff K is the node set of a

clique of the intersection graph. •

To detect cliques of the intersection graph, Hoffman and Padberg [Hoffman and Padberg 1993]

present several algorithms. The one implemented in this work proceeds by concentrating on

a subset of the column indices F = {j € {1,.. . ,n} | 0 < Xj < 1} that correspond to the

fractionally valued variables of the current Solution vector x. The subgraph of the intersection

graph that is induced by F is observed to find cliques. This is done by starting with initial

sets of column indices Mr C F such that Orj = 1 for all j € Mr. Obviously Mr is a complete

subgraph. Now the set K C F \ Mr of columns in F that intersect with all columns of MT is

constructed. Any clique that contains Mr can now be build by complete enumeration on the

(small) set K. Every clique C C F with xj > 1 defines a polyhedral cut that invalidates

the current fractional Solution. The maximal violated constraint (or a number of most violated

constraints) is added to the linear program. Note that such cliques only define facets for the

subproblem ApXp- = 1 with A and x restricted to the column indices in F. A facet for the

complete set partitioning problem has to be generated by a lifting procedure as described in

[Hoffman and Padberg 1993].

In this algorithm on each step back in the branch and bound scheme the rows for the polyhedral

cuts are invalidated and reinserted by the pivot and probe algorithm. This implements a pool

of cuts as suggested by Hoffman and Padberg [Hoffman and Padberg 1993].

5.3 Polyhedral Cuts and Column Generation

The excellent effects of polyhedral cuts, especially on the depth of the branch and bound tree

(see Subsection 6.2), suggest to use them in combination with the column generation algorithm

of Chapter 4. Unfortunately, the cuts are additional rows of the linear program that do not

correspond to Single arcs of the scheduling graphs as the set partitioning and linking constraints,

but to whole paths from the Start to the end node. So there is no natural technique to assign

the simplex multipliers to a shortest path problem.

One possibility to combine both approaches is to ignore the information provided by the simplex

multipliers of the new rows and generate new columns with the set partitioning and linking

22

constraints. Obviously, for all implicit columns not being generated by the algorithm, their

entry in all polyhedral cuts is 0. So if the simplex algorithm terminates no column with an

entry other than 0 in a cutting row is the pivot column.

The main idea is to generate a shortest block or workday that is not represented by a column

already existing and take it as a candidate for the pivot column. This approach leads to an

exact algorithm that combines both polyhedral cuts and column generation. This is achieved

by a branch and bound scheme similar to a kth shortest path problem as in [Lawler 1972]. It

calculates the current shortest path and if the corresponding column already exists, the branch

step is performed as follows:

Definition 5.7 (branching on paths) Let p = (n^... ,nr) be the actual shortest path. Let

M = (77*!,..., ms), 1 < mx <ms <r

be the set of indices of nodes in p that have more than one successor (usually the end of a trip

with a number of possible links or a relief point with several possibilities to continue on foot).

If M = 0 no branching is possible and hence no feasible shortest path exists and the current

branching node is leveled. Otherwise, s subproblems are generated (instead of two in the binary

global branch and bound algorithm) as in [Lawler 1972]. Subproblem i (1 < i < s) is defined

by:

1. forbid arc (nmi,nmi+1)

2. for all j <i force arc (nmj:nmj+1) by forbidding all other arcs that start on node nmj.

The algorithm is extended by taking the value of the current shortest path as a lower bound

for the desired path not coded in the LP matrix. •

To detect if the current shortest path corresponds to an existing column, all paths are coded

into a set binary variables each denoting a trip or a link, respectively. This can be easily

incorporated into the shortest path and column generation algorithms. The sets are hashed by

adding the numbers of the arc and let the final sum modulo 512 be the index for the hashqueue.

So a test of the actual path results in just a few Operations in the respective hash queue and

therefore is very cheap.

6 Computational Results

Now we can give some measurements of the Performance of the Implementation. We first

describe the parameters of the instances and the different compilations of algorithms that are

23

used to solve them. Then fche results for all combinations of examples and algorithms are

presented.

6.1 Examples and Algorithms

The main characteristics of the examples are the number of trips and dtrips (the latter defined

by the number of extra relief points) and the size of resource windows, especially driving and

waiting times as they lead to great windows in contrast to numbers of breaks or tasks. The

number of arcs for travels on foot and breaks is determined by the maximum waiting time for

vehicles and crews and the number of (relief) points where the driver is allowed to leave his

vehicle.

The problems observed in the next section have two resources, the working time and the number

of breaks, and are varied by the following characteristics:

pl 3 lines, 10 trips, 16 dtrips, 38 links, 51 breaks, and 95 travels on foot. The drivers can leave

their vehicle at the depot, at a central Station, and at the end of every trip. The vehicle

graph is composed of 42 nodes and 94 arcs, and the crew graph of 120 nodes and 391

arcs.

plrw As problem pl, but with the window size reduced by 5.

plrt As problem pl, but the drivers are only allowed to leave their vehicle at the depot and the

central Station. So the number of travels on foot is reduced to 47, and the total number

of arcs in the crew graph is 319.

p2 3 lines, 20 trips, 34 dtrips, 92 links, 300 breaks, and 229 travels on foot. The drivers can

leave their vehicle at the depot, at a central Station, and at the end of every trip. The

vehicle graph is composed of 82 nodes and 258 arcs, and the crew graph of 244 nodes and

1161 arcs.

p2rty As problem p2, but with the window size reduced by 5.

p2rt As problem p2, but the drivers are only allowed to leave their vehicle at the depot and

the central Station. So the number of travels on foot is reduced to 112, the number of

breaks to 190, and the total number of arcs in the crew graph is 866.

p20/ As problem p2, but all costs set to 0 except the fixed costs of vehicles and crews which

are set to 1. This assignment leads to the minimization of blocks and workdays and so

24

P, A cont % time % irrst % time % best time

pl, al 2747.8 100 38 100 2747.8 100 38 100 2747.8 38

plrt, al 2745.6 100 26 100 2745.6 100 26 100 2745.6 26

plruj) al 2582.6 98.06 9 14.06 2633.6 100 14 21.9 2633.6 64

p2, al 4278.2 98 1433 25 4322.5 100 2564 45 4322.5 5693

p2ru al 4304.7 98.8 844 5 4371.4 100.3 1712 10 4356.6 16541

p al 3993.1 - 1198 - 4244.4 - 3784 - - -

p2o/, al 8.6 - 1335 - 11.0 - 5246 - - -

p3, al 3546.6 100 2555 50 3546.6 100 4001 78 3546.6 5066

p4, al 5716.9 - 21112 - - - - - - -

plruM a2 2597.4 98.625 21 15.7 2649.8 100.6 45 33.6 2633.6 134

Tabelle 1: Computational results

to a feasible covering of the trips and dtrips with a minimal set. Such a problem can be

solved much more efficiently with special algorithms and it is used to test the flexibility

of the general algorithm presented here.

p3 2 lines, 20 trips, 40 dtrips, 86 links, 352 breaks, and 243 travels on foot. The drivers can

leave their vehicle at the depot, at a central Station, and at the end of every trip. The

vehicle graph is composed of 82 nodes and 245 arcs, and the crew graph of 262 nodes and

1182 arcs.

p4 3 lines, 30 trips, 54 dtrips, 142 links, 616 breaks, and 374 travels on foot. The drivers can

leave their vehicle at the depot, at a central Station, and at the end of every trip. The

vehicle graph is composed of 122 nodes and 429 arcs, and the crew graph of 374 nodes

and 2007 arcs.

The composition of algorithms used as described in Chapter 4 are:

al Column generation, pivot and probe for all constraints.

a2 As al, with polyhedral cuts based on clique detection.

6.2 Results

In Tables 1 and 2 the following aspects of the calculations are covered:

25

P, A simplex time % it cspth time % no. clms no. rows depth

pl, al 14.8 38 885 22.8 60 321 64 0

plyfj al 7.1 27 660 18.8 72 289 63 0

plrtoi al 43.3 67.7 3278 13.1 20.5 457 60 10

p2, al 4715 82 36187 908 15 2268 145 3

p2TU al 14960 90.4 142412 1339 8 3790 135 9

P^"TW> al - - - - - - - >40

p20/, al - - - - - - - >40

plrtü) a2 111.1 82.9 4326 14.7 10.97 443 98 3

Tabelle 2: Additional results

P, A The number of the problem with the composition of algorithms as mentioned above.

cont Value of the first continuous Solution without branching. (For Algorithm a2 this is the

Solution affcer cut generation but before branching. The pure continuous Solution is as

for Algorithm a2.)

first Value of the first integer Solution.

best Value of the best integer Solution.

% Percentage, compared with the final integer Solution.

time Time to compute the Solution. For the best Solution the time for the termination of the

program and therefore the proof for the best Solution is given.

simplex time Overall time spent for the iteration of the simplex algorithm.

it Number of iterations of revised simplex algorithm.

cspth time Overall time spent for the generation of shortest paths in the crew scheduling

graph.

no. clms Number of columns at the end of the calculation.

no. rows Number of rows at the end of the calculation.

depth Length of a maximum path from the root to a leave in the brauch and bound tree.

26

Problem v-z* c-z* sum % time %

Pl 1254.8 • - - 3 7

Plrt 1254.8 ~k - - 3 7

pl rw 1254.8 k - - 1 2

P2 1479.4 •k - - 33 1

P2 rt 1479.4 k - - 33 1

P^rtu 1479.4 k - - 17 -

P^o/ 3.0 k - - 68 -

p3 1177.0 2624.0 3801 107 36 1

p4 1874.8 k - - 96 -
•: no feasible Solution

Tabelle 3: First vehicle then crew scheduling

As the results in Table 1 show, the limit of the current algorithm turns out to be around

20 trips. If an optimal Solution is found, the lower bound by the first continuous Solution is

excellent (over 98 per cent of the optimal Solution) and the first integer Solution comes close or

even is the final Solution.

To calculate the first continuous Solution the time used by the simplex algorithm is significantly

shorter than the shortest path time (Table 2, Rows 1 and 2). If some brauch steps are needed,

this ratio changes to the disadvantage of the simplex algorithm because all generated columns

are reused and so only few new columns have to be calculated on deeper nodes of the brauch

and bound tree. As all problems with depth greater than 0 show, this approach leads to a

much faster generation of the lower bounds on the nodes as if all columns are erased and must

be calculated again. Nevertheless, the algorithm to solve the linear programs is just a simple

reversed simplex, and as for greater problems nearly 80 to 90 per cent of the time are consumed

by it, a faster algorithm could improve the implementation very much.

The simultaneous application of polyhedral cuts and column generation reduces the depth of

the brauch and bound tree from 10 to 3 for the small instance plrw (Table 2, Rows 3 and 8).

At first sight this is a very promising result. As for larger instances the computation time for

the generation of shortest paths in the crew scheduling graph increases drastic, no Solution was

obtained in reasonable time.

Tables 3 and 4 give the results for the problems above solved with a two stage algorithm:

27

Problem v-z* C-Z* sum % time %

Pl 1462.3 1356.5 2818.3 102 7 2

Plrf 1555.8 1299.4 2855.2 104 10 2

plrtü :k * - - - -

P2 2347.3 - - 103 2

P2 Tt ~k * - - - -

P^rw ~k ~k - - - -

P2 of ~k ~k - - - -

p3 1801.3 2071.4 3872 109 144 3

p4 :k ~k - - - -
*: no feasible Solution

Tabelle 4: First crew then vehicle scheduling

vehicles before crews or crews before vehicles, respectively. Both tables present the objective

Function values for the Single problems, the summation of the values to get the (feasible but not

necessary optimal) Solution of the VCSP, and the time to solve both problems independently.

Value and time are compared with the optimal Solution of the VCSP.

One of the main problems of the simple sequentialization used here is the fact that the second

scheduling problem often has no feasible Solution because of the constraints required by the

Solution of the first one. If the vehicles are scheduled first the resource restrictions might

prevent the generation of a feasible set of workdays, e.g. that blocks are too long. This problem

becomes less important in bigger examples with more possible workdays to cover the blocks. If

the crews are scheduled first it is possible that the links to or from the depot are not covered,

and so some vehicles have no drivers to their trips. This must be overcome by extra flow

constraints on the begin and end node and is not discussed here.

Another problem that may come up if the crews are scheduled first seems to be that the

branching rule is not as appropriate for the CSP as for the VCSP. In almost all cases that could

not be solved the solver finds a first feasible integer Solution on a step deeper than 40 in the

branch and bound tree. So the tree becomes too large to be leveled in a reasonable time.

If a feasible Solution is found, the average loss compared with an optimal Solution to the VCSP

is 5 per cent and varies from 2 to 9 per cent. The time needed to generale the result is about

2 per cent.

28

7 Conclusions and Further Research

In this paper we presented a mathematical formulation of the vehicle and crew scheduling

problem (VCSP). It is defined as a combination of the set partitioning formulations for the

vehicle scheduling problem and the crew scheduling problem with resource Windows on the

scheduling graph as proposed in [Desrochers and Soumis 1989]. By using this technique to

model constraints for crew schedules, a great variety of different real world problems is achieved.

Moreover, the VCSP presented here is easy to extend to cover multiple depot problems and

additional constraints like limited numbers of vehicles or duty typ es (see Section 2.4).

The VCSP is solved by a column generation approach for both the vehicle and the crew schedul­

ing part. The simplex multipliers of the set partitioning constraints for trips, dtrips, and links

are subtracted from the costs of the corresponding arcs of the vehicle or crew scheduling graph,

respectively. To generate the new pivot column, shortest path algorithms for both typ es of arcs

are presented.

The column generation approach provides a good lower bound for the branching algorithm. For

10 trips the Solution time is below one minute, for 20 trips above one hour, and sometimes no

Solution is found in an acceptable ränge of time. For 30 trips only the continuous relaxation

could be solved. To estimate the usefulness of column generation, the branch and bound scheme

was tested with all columns calculated in advance. Because of the exploding number of columns

only examples containing at most 10 trips could be solved. Nevertheless the time to calculate

the Solution is significantly shorter without column generation.

As some examples show, the lower bound given by the continuous Solution of the set partitioning

problem is often not good enough to guarantee a short branching tree. To obtain lower bounds

that are higher and closer to an integer Solution, polyhedral cuts for the set partitioning poly-

hedron as described by Hoffman and Padberg [Hoffman and Padberg 1993] are incorporated in

the branch and bound scheme without column generation. Even the small part of the algorithm

that is implemented in this work, using only a simple clique detection mechanism and no lifting,

provides lower bounds that cut the branching tree from a depth of 9 to a depth of 2.

Polyhedral cuts are combined with column generation. To satisfy that no already existing

column is generated a branch and bound algorithm is developed. This algorithm increases the

overall computation as much that only very small instances are solvable in reasonable time.

There are a lot of tasks which can be done in the future. As most of the computation time

is required for the simplex iterations we will integrate the powerful simplex algorithm of the

29

state-of-the-art solver CPLEX [CPLEX]. Even if then the computation time will be shorten

substantially we do not expect to solve large problems which appear in practice. Therefore to

derive lower bounds we will consider graph theoretic relaxations of the set-partitioning matrix

(cf. e.g. [EL-Darzi and Mitra 1995]). Additionally to obtain upper bounds truncated brauch

and bound algorithm will be developed.

Literatur

[Ball et.al. 1983] M. Ball, L. Bodin and R. Dial: A Matching Based Heuristic for Scheduling

Mass Transit Crews and Vehicles, Transportation Science 17, No. 1 (1983) 4-31.

[Bertossi et.al. 1987] A.A. Bertossi, P. Carraresi and G. Gallo: On Some Matching Problems

Arising in Vehicle Scheduling Models, Networks 17 (1987) 271-281.

[Bodin et.al. 1983] L. Bodin, B. Golden, A, Assad, M. Ball: Routing and Scheduling of Vehicles

and Crews: The State of the Art, Computers and Operations Research 10, No. 2 (1983)

63-211.

[CPLEX] Using the CPLEX Callable Library, Version 4.0, CPLEX Optimization, Inc. (1995).

[DeH'Allmico et.al. 1993] M. DeH'Allmico, M. Fischetti and P. Toth: Heuristic Algorithms for

the Multiple Depot Vehicle Scheduling Problem, Management Science 39, No. 1 (1993)

115-125.

[Desrochers 1988] M. Desrochers: An Algorithm for the Shortest Path Problem with Resource

Constraints, Cahiers du GERAD G-88-27, Ecole des H.E.C., Montreal, Canada (1988).

[Desrochers et.al. 1992] M. Desrochers, J. Desrosiers, M. Solomon: A New Optimization Algo­

rithm for the Vehicle Routing Problem with Time Windows, Operations Research 40, No.

2 (1992) 342-354.

[Desrochers et.al. 1990] M. Desrochers, J. Gilbert, M. Sauve, F. Soumis: CREW-OPT: Sub-

problem Modeling in a Column Generation Approach to Urban Crew Scheduling, in

[Desrochers and Rousseau 1990] (1990) 395-406.

[Desrochers and Rousseau 1990] M. Desrochers, J.M. Rousseau (eds): Computer-aided Transit

Scheduling, Lecture Notes in Economic and Mathematical Systems 386, Springer (1990).

30

[Desrochers and Soumis 1989] M. Desrochers and F. Soumis: A Column Generation Approach

to the Urban Transit Crew Scheduling Problem, Transportation Science 23, No. 1 (1989)

1-13.

[Freiing et al. 1995] R. Freiing, G. Boender, A. Paixäo: An Integrated Approach to Vehicle and

Crew Scheduling, Report 9503/A, Erasmus University Rotterdam, 1995.

[Hoffman and Padberg 1993] K.L. Hoffman, M. Padberg: Solving Airline Crew Scheduling

Problems by Brauch-and-Cut, Management Science 39 No.6 (1993) 657-682.

[Lasdon 1970] L.S. Lasdon: Optimization Theory for Large Systems, MacMillan, New York

(1970).

[Lawler 1972] E.L. Lawler: A Procedure for Computing the the K Best Solutions to Discrete

Optimization Problems and its Application to the Shortest Path Problem, Management

Science 18, No. 7 (1972) 401-405.

[EL-Darzi and Mitra 1995] E. El-Darzi, G. Mitra: Graph Theoretic Relaxations of Set Covering

and Set Partitioning Problems, European Journal of Operational Research 87, No. 87

(1995) 109-121.

[Nemhauser and Wolsey 1988] G.L. Nemhauser, L.A. Wolsey: Integer and Combinatorial Op­

timization, John Wiley and Sons, New York (1988).

[Patrikalakis and Xerocostas 1990] I. Patrikalakis and D. Xerocostas: A New Decomposition

Scheme of the Urban Public Transport Scheduling Problem, in

[Desrochers and Rousseau 1990] (1990) 407-425.

[Ribeiro and Soumis 1994] C.C. Ribeiro and F. Soumis: A Column Generation Approach to the

Multiple-Depot Vehicle Scheduling Problem, Operations Research 42, No. 1, (1994) 41-52.

[Sethi and Thompson 1984] A.P. Sethi, G.L. Thompson: The Pivot and Probe Algorithm for

solving a Linear Program, Mathematical Programming 29 (1984) 219-233.

31

