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Zusammenfassung 

We present a model for the vehicle and crew scheduling problem in urban public 
transport Systems by combining modeis for vehicle and crew scheduling that cover a great 
variety of real world aspects, especially constraints for crews resulting from wage agree-
ments and internal regulations. The main part of the model consists of a set partitioning 
formulation to cover the desired trips of the schedule. Because of the great number of 
columns, e.g. more than 5 million for a problem with 30 trips, a column generation algo-
rithm is implemented to use all columns implicitly for the calculation of the continuous 
relaxation of the set partitioning problem. The column generation algorithm is embedded 
in a brauch and bound approach to generate an exact Solution for the problem. To gen-
erate even better lower bound, polyhedral cuts basing on clique detection and a variant 
of the column generation algorithm that suits the cuts were tested. 

(Crew Scheduling, Vehicle Scheduling, Column Generation, Set Partitioning, Polyhe­
dral Cuts) 

1 Introduction 

A main problem in urban public transport is the scheduling of vehicles and crews to serve trips 

at minimal cost. Even though public transport companies have for many years solved problems 

of this type manually, the use of Operations research methods is increasing. 

The usual procedure in the planning process is to solve the vehicle and the crew scheduling 

problem sequentially, i.e. first assign the busses to the trips and then assign the drivers to the 

busses. This approach is strongly criticized by Bodin et al. [Bodin et.al. 1983], because in most 

cases the crew costs dominate the vehicle costs, and so it should be useful to consider the crew 

scheduling when the vehicle scheduling is being done. An example of such a relationship can 

be a vehicle that goes back to the depot instead of reaching the next trip because it is cheaper 

for the driver who has finished bis workday to transfer the bus to the depot and leave it to his 

follower, than changing at the end of the trip and going to the depot on foot. 

A first idea to modify the Solution process is to schedule crews first. Unfortunately, this is 

not a good idea either, because it can increase the cost for vehicles dramatically. The greatest 

lack of this approach is the increase in the number of vehicles. In a first-crew-then-vehicle 

approach more busses can be needed to serve the crew schedule. Because of the high fixed cost 

of a vehicle this can be very expensive. 

To solve these problems several approaches to schedule vehicles and crews simultaneously have 

been proposed (see [Ball et.al. 1983] and [Patrikalakis and Xerocostas 1990]). The simultane-

ous formulation is known as the vehicle and crew scheduling problem (VCSP). Because of the 

great complexity of the problem the cited publications are all heuristics. 
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In [Freiing et al. 1995] Freiing, Boender and Paixäo gave the only mathematical formulation 

for exact Solutions of the VCSP we are aware of. They propose a model similar to the VCSP 

of this work, but using a quasi-assignment problem instead of set partitioning to describe the 

vehicle scheduling. To calculate the lower bound, two algorithms are presented. One approach 

uses a two step column generation method to solve the crew scheduling part while the other 

one is a Lagrangian relaxation without column generation. Roth are tested with an example 

composed of 7 trips and without an embedding in a branch and bound scheine. 

All those articles mentioned do not consider the complexity of real crew scheduling problems 

such as wage agreements and internal regulations, or extensions like multiple depots. For 

those problems many solutions for either crew or vehicle scheduling are published (see e.g. 

[Desrochers and Soumis 1989] and [Ribeiro and Soumis 1994]). In this paper we want to give 

a formulation for the vehicle and crew scheduling problem that combines those approaches and 

so Covers most aspects of reality and we will give algorithms to find an optimal Solution. To 

handle the great amount of variables and to model the different types of constraints the vehicle 

and crew scheduling problem is formulated as a set partitioning problem where the columns 

represent different workdays of crews or vehicles. The Solution is then obtained in a column 

generation approach to solve the linear relaxation in the nodes of a branch and bound scheme. 

The subproblems to generate columns appear as resource restricted shortest path problems on 

scheduling graphs. 

To obtain even better lower bounds for the brauch and bound algorithm, an approach basing 

on polyhedral cuts for the set partitioning problem as described by Hoffman and Padberg 

[Hoffman and Padberg 1993] is taken. As these cuts do not easily match with the column 

generation algorithm, an additional branch and bound algorithm to generate the new pivot 

column is presented. 

The rest of the paper is organized as follows: In Section 2 a description of the vehicle and crew 

scheduling problem in a set partitioning formulation is given. Section 3 presents an overview 

of the Solution algorithms, especially the branch and bound scheme. In Section 4 the Solution 

of the continuous relaxation of the VCSP by a column generation algorithm with suitable 

subproblems is shown. To get even better lower bounds, we use an algorithm to generate 

polyhedral cuts as defined in Section 5. Section 6 presents the computational results. 
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2 The Vehicle and Crew Scheduling Problem (VCSP) 

To cover a great variety of real world as-

pects, we use the approach of [Desrochers and Soumis 1989] for crew scheduling. The most 

important part of [Desrochers and Soumis 1989] is their careful modeling of the crew schedul­

ing graph for the subproblem of the column generation algorithm. An important decision is 

whether the driven parts are assigned to the nodes (as in [Ball et.al. 1983]) or to the arcs (as 

in [Desrochers and Soumis 1989]). In this work we will follow the approach of Desrochers et al. 

[Desrochers and Soumis 1989] because it facilitates the solving of the crew scheduling problem 

which is the harder part of the two. As the vehicle scheduling is the easier part, we will describe 

it before the crew scheduling. 

2.1 Timetable and Vehicle Scheduling Graph 

The obvious information that can be seen after the Strategie planning is that part of the 

timetable that is handed out to the public. Basically it is a collection of trips which are defined 

as the serving of a line at a certain time. Therefore the parameters of a trip are the beginning 

of the trip (BT), the end of the trip (ET), and the halting points, all determined by their time. 

Some of the stops are called relief points (RP) because the crews are allowed to change. Note 

that we can take the beginning and the end of each trip as a relief point, too. 

The interesting pieces of a trip are those that have to be served by the vehicle and the 

crew without changes. These parts from one relief point to the following are called dtrips 

(as in [Ball et.al. 1983]). In crew scheduling those parts are often called tasks, see e.g. 

[Desrochers and Soumis 1989]. We dehne for every trip i a corresponding sequence of relief 

points rp^-,0 < j < nh where rpi0 and rpin. denote the beginning and the end of the trip, 

respectively. The relief points rp^_i and rp^- dehne dtrip j for all j, each supplied with the 

costs for a vehicle Vdj and a crew c%. Note that the costs are given and not calculated from 

the trip itself in any way. This will become important in Section 4, where we can assume them 

to be marginal costs instead of real ones. The parts driven between relief points and transfers 

to or from the depot will be called travels in this paper. The starting and the ending time of 

the dtrips can be taken from the complete timetable. 

To complete the required arguments for the timetable, we need to know several supplementary 

Parameters: For all vehicles and crews the costs and the times to go from the depot to the 

beginning of every trip i (vedbi, ccdbi, tdbi)1 from the end of every trip i to the depot (veedi, 
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Abbildung 1: Trip in a timetable 

ccedi, tedi), from the end of trip i to the beginning of trips j (vcebi7-, ccebij, tebij), plus the 

waiting costs at the depot between two trips i and j for vehicles (vwcdij) and for crews (cwcdij) 

or two relief-points rp^ and rpkl for crews cwcdiju)-

Additionally for the crew scheduling (defining all begin and end points as relief points) the costs 

and times to go from the depot to every relief point rp^ (cdrptdrp^), from every relief point 

rp^- to the depot (crpd^, trpd^), from relief point rp^ to rpkl for every possible combination 

(crPijkh trPijki)' These costs can be interpreted as costs needed to get a crew from one point 

to another without driving a vehicle. Finally we need the constant costs for vehicles and crews 

to start and finish the day (e.g. fixed costs of a vehicle, basic payment for crews) which will be 

termed as vsignon, vsignoff, csignon, and csignofF. 

Now we can derive the graphs for vehicles and crews from the timetable taking into consideration 

additional constraints. If we assume a hornogeneous fleet of vehicles at a Single depot with no 

extra constraints on their use (e.g. refueling) we can easily dehne a network for the vehicle 

scheduling, just reducing the information of the timetable. At first we have to add the costs of 

all dtrips to get the aggregated cost of the trips 

and then dehne a graph where the nodes are beginning and end of trips, arrival or departures 

at the depot and the start and the end of the day, and where the arcs are annotated with the 

costs from the timetable. With the selection of the arcs we can model obvious constraints, like 

no vehicle can go back in time to serve two trips simultaneously. 

Definition 2.1 (vehicle scheduling graph) Let VG = (VN, VA) be a graph with nodes 

VN = {start, end} U {bti} etj, bdepot^ edepot^ | V tripj 

where start and end are the source and the sink of the network, respectively. The arcs in VA 

are defined by the feasible stages supplied with their costs. The feasibility is defined relating to 

the time constraints, i.e. a vehicle can not leap back into time and should not exceed a maximal 

waiting time vwmax. 

VCi := YLVCi3 
i=1 
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The arcs of the vehicle scheduling graph are (start,bdepotj with cost vsignon, (bdepot^bt») 

with cost vcdbi, (bt^et*) with cost vci, (et^edepotj with cost vcedi, (edepot^end) with cost 

vsignoff, (et^btj) with cost vcebij if tebij 6 [0, vwmax] and (edepot^bdepot^) with cost vwcdij 

if (tdbj 4- tedi) € [0, vwmax]. 

The last two sorts of arcs belong to direct or indirect (over the depot) stages, respectively, from 

one trip to another. Note that the times for these stages may be negative if a trip starts before 

the other one begins. So the constraints in building the arcs ensure that all times are positive 

and do not exceed a maximal waiting time. For every arc a its cost will be denoted c(a). • 

The depot nodes corresponding to the beginning and the end of each trip are used to model a 

vehicle starting from or coming back to its depot at a certain point of time. The Importance 

of this approach will be seen in the combination with the crew scheduling. 

To illustrate the definition we give a small example: In the graph in Figure 2, a vehicle is 

Abbildung 2: Example of a vehicle scheduling graph 

allowed to start the day with trip 1, come back to the depot afterwards to go to trip 3 and then 

close the day. Another possibility is to go from the end of trip 1 directly to the beginning of 

trip 2 or 3. After serving this trip one can decide to go directly to trip 4 or close the day by 

driving back to the depot. Note that there is no arc from the end of trip 1 to the beginning of 

trip 4 even though both can be served by one vehicle if trip 2 is taken between them. This can 

be explained by an expansion of the waiting time between those trips. 

In the remainder of the work it will be Important to know the schedule for one vehicle during 

a day. This is exactly what is described with a path from node start to node end. Such a path 

is called a block (see [Desrochers and Soumis 1989]). 

Definition 2.2 (block) A block b in the vehicle scheduling graph VG is defined as a fi­

nita sequence nodeQ,.. .,nodeTb of nodes £ VN, where node0 = start, noden = end and 
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(nodei, nodei+i) € VA for all i. Its cost is defined as 

rb—1 
c(b) — ^2 c((nodei,nodei+1)). 

i=0 

A cost minimal block is a block b such that c(b) < c(br) holds for every other block br. • 

2.2 The Crew Scheduling Graph 

In [Desrochers and Soumis 1989] and [Desrochers et.al. 1990] the authors propose a clever crew 

scheduling graph that includes resources and special subsumptions of arcs to cover a great 

variety of real world constraints. To combine their approach with the vehicle scheduling of the 

previous subsection, we will formalize it in two steps: first a simple crew scheduling graph as an 

extension of the vehicle scheduling graph and then an improvement of it, covering all aspects 

of [Desrochers and Soumis 1989], with an exact formal relationship between them. 

In a first approach the crew scheduling graph can be described in a similar way as the vehicle 

scheduling graph. The only extension necessary is the consideration of the relief points where 

the crew is allowed to change. At this points the crew can stay at the vehicle, go to another 

vehicle, go to the depot, or end the workday. A graph containing such Information will be 

called a simple crew scheduling graph. 

Definition 2.3 (simple crew scheduling graph) Let SCG = (CA, SCA) be a graph with 

nodes 

CN = {start, end} U (rp^, btj, et%, bdepot^, edepotf, bdepot^, edepot^ | V t ripi5 j = 1,..., n*} 

where start and end are the source and the sink of the network, respectively. The different 

types of depot nodes belong to begin and end of trips (single index) or of travels from relief 

points (double index). The arcs in SCA are all feasible stages associated with their costs. The 

feasibility is defined relating to the time constraints, i.e. a crew can not leap back into time 

and should not exceed a maximal waiting time cwmax. 

The crew scheduling graph has the following arcs: (start,bdepot^) with cost csignon, 

(start,bdepot^) with cost csignon, (bdepot^,rp^) with cost cdrp,(bdepot^btj) with cost 

ccdbi (*), (bti,rpi0) with cost 0, (rp^.^rp^-) with cost cc#, (rp^edepot^) with cost crpdip 

(et^edepotj with cost ccedi (*), (rpin.,et^) with cost 0, (edepot^,end) with cost csignoff, 

(edepot,,end) with cost csignoff, (rp^,rp&,) with cost crpijkl if trpijkl € [0, cwmax], 

(edepotjj,bdepot&;) with cost cwcdijki \i{tdrp^ + trpdki) € [0, cwmax], (et%,btj) with cost cceb^j 

if tebij € [0, cwmax] (*) and (edepot,-,bdepot;) with cost cwcdij if (tdbj Atedi) e [0, cwmax]. 
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The last 4 sorts of arcs belong to direct or indirect (over the depot) stages, respectively, from 

one relief point to another in a different trip. The first two represent travels of a crew without 

the vehicle, the third means the transport of the bus while the fourth describes waiting time at 

a depot. The arcs that are marked with an asterisk (*) combine vehicle and crew scheduling 

and therefore will be called linking arcs. In Section 2.3 it will be enforced that these arcs are 

taken if and just if the same stage is served by a vehicle, i.e. a crew has to do the transfer of 

this vehicle. For every arc a its cost will be called c(a). O 

Even in a simple example we can see how many arcs have to be used to model the description. 

In Figure 3 two trips with one or two additional relief points, respectively, are connected with 

depot depot 

Abbildung 3: A simple crew scheduling graph 

the arcs allowed. Every relief point is associated with two depot nodes that model a travel to 

the depot without a vehicle. The beginning and the end of each trip is connected with a second 

depot node to describe the stage to the depot with the vehicle. Note that a crew is allowed to 

drive a vehicle from the end of trip 1 to the beginning of trip 2 but may not go there alone, 

even if an arbitrary relief point is chosen. This can be used to model time differences between 

driving the vehicle or Walking from one relief point to another. 

Even if this approach covers most Information needed for a simple scheduling there is still a lack 

of reality in it. Unlike the vehicle scheduling, the crew scheduling is strongly determined by 

wage agreements and internal regulations. So there are restrictions on the length of a workday, 

the length of work without a break, or other resources. 

There are two ways to model these restrictions in a graph: with path feasibility constraints, 
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and in the definition of the arcs. Both ways will be used in this approach, following 

[Desrochers and Soumis 1989]. 

The first idea used here is the introduction of a piece of work. A piece of work is a sequence of 

tasks done by a crew on the same vehicle. So every block can be splitted into several pieces of 

work. The wage agreements usually restrict the number of pieces on a workday and the number 

of tasks in a piece, so it is useful to form the graph mainly with such arcs. In Figure 4 we 

depot 

Start 

depot 

end 

Abbildung 4: Pieces of work 

see an example of pieces of work derived from Figure 3, where one piece may consist of 3 to 5 

tasks. The graph is still simplified by taking into account that a vehicle must be driven by a 

crew all the time. So all pieces that arrive at nodes where no arc departs (and vice versa) can 

be eliminated. Note that for example the arc from the beginning depot of trip 1 to the first 

relief point of trip 2 symbolizes a piece of work that covers the complete first trip, the stage 

to, and the first dtrip of trip 2, all served by one vehicle. The corresponding arcs of the simple 

scheduling graph are represented in a dotted version. In practical situations also the amount 

of time available for some piece of work will be restricted, so even more arcs can be eliminated. 

The remaining arcs are used to model sign on, sign off (all connected with start respectively 

end), and breaks. In use, most of these arcs can be eliminated because of restrictions such as 

the length of breaks. 

As this approach can model time restrictions of parts of the graph as pieces of work, we 

still have to integrate global constraints such as the total working time or the number of 

pieces on a day. These constraints can be modeled as path feasibility constraints. These 

are formulated as resource constraints at each node and resource consumptions on each arc. 

Thereby resource constraints are formulated as feasibility Windows that restrict the use of the 
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resource consumptions on the arcs. 

To explain this approach we will look at some examples from [Desrochers et.al. 1990]: If the 

number of pieces of work are restrioted to two, each arc representing such a piece has a piece 

consumption of 1, while all other arcs have a consumption of 0. The start node has the 

feasibility window [0,0], while all other nodes have the window [0,2] for pieces. If the wage 

agreements guarantee a minimal break time mbt, every arc considered to be a break (e.g. the 

waiting arcs at the depot) has a break time consumption of the time of the arc. The sink of 

the graph, representing the end of the day, then has a feasibility window [mbt, oo], Similar 

constraints e.g. for number of breaks, total working time, etc. can be formulated in a similar 

way, each associated with another set of resource constraints and consumptions in the graph. 

Many examples for this approach can be found in [Desrochers et.al. 1990]. 

With these requirements we can now formulate the crew scheduling graph that will be used in 

the remainder of the work. 

Definition 2.4 (crew scheduling graph) Let CG = (CN,CA) be a graph. CG is called 

a crew scheduling graph if there exists a simple crew scheduling graph SCG = (CN, SCA) 

with a mapping 0 from CA to the set of sequences of SCAy such that for every arc a in CA 

the sequence $(o) is a path in SCG. 

The costs of each arc a of CA are determined by 

c(a) = 51 c((nodei,nodei+i)) 
(node* ,node*+i) €<&(&) 

as the sum of the covered arcs of the simple graph. 

CG is called a resource restricted crew scheduling graph if there exists a number rcG > 1 of 

resources so that for every node we have the resource constraint Windows [dlnode^hode] an<^ &>r 

every arc we have k resource consumptions dlk with 1 < l < rcG> n 

Further we will just use resource restricted crew scheduling graphs and so will call them crew 

scheduling graphs to simplify the notation. Note that from the current formulation many 

different combinations of arcs and resources are allowed if they are needed to cover special 

aspects. 

In the remainder of the work it will be Important to know the scheduie for one crew during a 

day. This is exactly what is described with a path from node start to node end. Such a path is 

called a workday (see [Desrochers and Soumis 1989]). 
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Definition 2.5 (workday) A workday w in the crew scheduling graph CG is defined as a 

finite sequence nodeo,. •., nodeSw of nodes € CN where nodeo = start, nodeSw = end and 

(:node^nodci+i) G CA for all i. 

A workday is feasible if for all t € {0,..., and all Z G rcc} 

t ^ ^ 
^{nodei— i ,nodei) ^ [®nodej' ̂ nodei ] 

i=l 

holds. 

Its cost is defined as 
rw—1 

c(w) = ^2 c((nodei,nodei+i)). 
t=0 

A cost minimal workday is a workday w such that c(tu) < c(w') holds for every other feasible 

workday w'. a 

2.3 The Set Partitioning Problem 

In the last subsections we have seen how the scheduling demands for vehicles and crews can be 

coded using graphs. Now we have to define the formulation of the optimization problem to get 

a cost minimal vehicle and crew schedule, which will be given in a binary linear program. 

In general this can be done by a set partitioning approach. In this approach we have binary 

variables for every trip or dtrip in the graph and try to minimize the costs while the variables 

cover the arcs exactly once. A problem that arises in this approach is how to model the 

constraints that are coded in the graph, such as path constraints or the structure of the networks. 

So a favored procedure is to define the sets of feasible blocks (vehicle paths, VP) and workdays 

(crew paths, CP) and to cover the network with them. The problem of generating feasible 

paths can then be solved by special algorithms using the graphs directly. 

For this approach we define binary variables Xi for every feasible vehicle path vpand yj for 

every feasible crew path cpj, where Xk — 1 (%/& = I) means that path pk is used in the Solution. 

To describe the paths in the LP-formulation they are coded with binary constants: 

• vtripik: vehicle path vpi serves trip k 

• cdtripjp crew path cp3- serves dtrip l 

• varcik: vehicle path vpi serves arc k 

• carcjk: crew path cpj serves arc k 

10 



where constant=l means that the corresponding arc is covered by the path. The constants 

varak and carcjk describe the linking arcs in the vehicle and the crew scheduling graph which 

represent the transfer of a vehicle by a crew. Note that the paths are taken from the crew 

scheduling graph while the covered arcs originate from the simple crew scheduling graph using 

a mapping $ as in definition 2.4. (Look again at the dotted path in Figure 4.) 

The formulation of the vehicle and crew scheduling problem as a set partitioning model with 

additional constraints then is given in the next definition: 

Definition 2.6 (vehicle and crew scheduling problem) Let VP and CP be the sets of 

all feasible vehicle and crew paths. 

Min Y c(m)xi+ Y c(%)% (1) 
vpiGVP cpj€CP 

Y vtripikXi = 1 V t rips k (2) 
vpi€VP 

Y cdtriPjiVj = 1 V dtrips l (3) 
cpj € CP 

vardkXi Y1 carcjkVj = 0 V l inking arcs k (4) 
vpi€VP cpj€CP • 

Xu Vj €{0,1} V ij (5) 

• 

As stated above the objective function (1) is the sum of the costs for vehicle and crew schedules. 

The constraints (2) and (3) ensure that all trips and dtrips are covered, while restriction (4) 

links vehicle and crew schedules together so that every vehicle is driven by exactly one crew on 

the linking arcs. To substantiate the definition of the linking condition, we have to show that 

if condition (4) is fulfilled every stage is either served by exactly one vehicle and one crew or 

by none of them. 

Remark 2.7 (linking) Let (%*,%/*) be a feasible Solution for the set partitioning model. 

Then for every linking arc k, E varakxf = 0 (and therefore E carcjky*j = 0) or 
vpiEVP cpj^CP 

E varcikx\ = 1 (and therefore E carcjkyj =1). 
vpi€VP cPj€CP 

Proof: Let k be a linking arc. Based on the definition of vehicle scheduling graphs and simple 

crew scheduling graphs it is evident, that if the first node k is the end of a trip et* it has not 

more than one predecessor. (Note that this does not hold for an arbitrary crew scheduling 

graph, but the set partitioning formulation uses the simple version of it.) Because of constraint 
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(2) (or (3)) and the definition of a path (in 2.2 or 2.5) it is is easy to verify that our claim holds 

in this case. 

So let k be (bdepotj, btj). Similar to the other cases the node bt, has just one successor. Again 

because of constraint (2) and the definition of a path the Statement holds. • 

With these definitions we have a useful formulation of the vehicle and crew scheduling problem 

with a set partitioning approach. In the next subsection we will show some extensions to the 

problem and how they can be modeled. The remainder then deals with methods to find optimal 

solutions. 

2.4 Extensions 

So far we have concentrated on an undoubted complex problem, but there is still a lack of 

reality in the model. Many of the articles cited above deal with extensions of the model. For a 

survey of different problems in vehicle scheduling see [Bodin et.al. 1983]. 

An often analyzed improvement of the vehicle scheduling problem is the multiple depot vehicle 

scheduling problem. In this formulation all vehicles have to go back to the depot they departed 

from. Additionally, all the costs on the arcs, including fix costs using sign on, depend on 

the used depot. Besides the modeling of real depots, this approach is also useful to describe 

different types of vehicles with different costs, i.e. every type of vehicle is associated with a 

special depot. 

To embed the multiple depots in our current model we can define a set of vehicle scheduling 

graphs, where each graph carries the costs of a Single depot. With this approach we can e.g. 

force the use of a special type of vehicle on a trip by not including the corresponding arc in the 

other graphs. The combination of the different schedules is very simple in our set partitioning 

model. As usual, every path is coded in the constants vtrip and varc and so we do not have 

to change the LP-formulation. A detailed description of such an approach can be seen in 

[Ribeiro and Soumis 1994]. 

One problem of this approach is the combination with the crew scheduling. As we have seen, 

the vehicles always have to be driven, so we must distinguish between the different depots in 

the crew scheduling, too. This can be done by adding several depot nodes to the relief points 

of the graph, one for every vehicle scheduling graph belonging to a certain depot that covers 

the arc between the relief point and the depot (see Figure 5). Note that there is no arc between 

the depot nodes because both represent the arrival at a depot. Of course there can be arcs 

between arrival and starting nodes of different depots, so that the same crew can drive different 



depot type 1 

depot type 2 

Abbildung 5: Relief point with two depots 

types of vehicles. 

Other aspects as a restricted number of vehicles or special sorts of workdays, such as trippers, 

straights and splits and their incorporation in the column generation algorithm are explained 

in detail in [Ribeiro and Soumis 1994] and [Desrochers and Soumis 1989]. 

In summary, we combined the most sophisticated approaches for vehicle and crew scheduling 

into a Single problem (VCSP) that Covers nearly all real world aspects of the operational plan-

ning step of the urban public transport Systems. The next sections will demonstrate how such 

Problems can be attacked. 

3 The Branch and Bound Algorithm 

In this article we present an approach that solves the VCSP within a branch and bound al­

gorithm. The lower bounds are calculated by dropping the integral constraints of the set 

partitioning formulation and solving the continuous linear program with column generation. 

The application of this special approach is explained in detail in the following sections, so we 

will now concentrate on the branching. 

Definition 3.1 (branching in the VCSP) Let S = {x \ Ax = 6, x € Z+} be the set 

of feasible integral solutions of the VCSP as in Definition 2.6. Dehne for every index set I of 

columns the set 

S1 = {x 6 S | i € I => Xi = 0} 

Obviously we have S1 C S for all I and S*0 = S. A Solution for the continuous relaxation can 

be found easily by solving the relaxation of S with the simplex algorithm without considering 

the columns in I. 

Now let x be an optimal feasible Solution of cx for the relaxation of S1. Then calculate for 
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every linking arc linki its violation 

n 
Vi — 0.5— | 0.5 — •Eföi+nt+naj I 

j=l, Pj block 

(with nt and the number trips and dtrips, respectively) and detect the maximal violation 

vmax = niaxvi with a corresponding linking arc linkk- If vmax ^ 0, then x is not integral, i.e. 

the problem is not leveled for this branch, and there is at least one column Pj, j £ I and Xj ^ 0 

that Covers link k. Let F be IU {j ± I | Pj Covers link k} and J" be IU {j ^ / | Pj Covers 

link IJ ^ kjinki € Ray{linkk)}, where Ray(a) is the set of arcs that have the same starting 

point as the arc o. Dehne 

p(S') = {SV} 

as the (binary) branching function. • 

To justify the deßnition we have to show that x is integral if vmax = 0. This can only be shown 

for the components of x that correspond to a feasible path of the vehicle scheduling graph. 

Theorem 3.2 Let S, /, and x be as in Definition 3.1. If vmax = 0, the Solution x is integral in 

every component Xj, with column Pj representing a block. 

Proof: Let vmax = 0, and assume that there exists a column Pj with Xj ^ 0 and Xj ^ 1 that 

corresponds to a block. Let link l be the last link on the block before the end node. Because 

Vmax = 0, there exists at least another column Pt with xt ^ 0 and xt ^ 1 that also Covers link 

1. Obviously, the Start node of link l represents the arrival at a depot. From the deßnition of 

the vehicle scheduling graph it is easy to conclude that the depot has an unique predecessor, 

the end of a trip, so Pj and Pt both cover this trip. Now we have three different cases: 

Case 1 Pj covers a link from the end of another trip to the beginning of the current one. As 

Vmax = we have 23r=l, PT block xral'+nt+n<ir = 1 an^ Er=l, Pr block %r&l"+nt+ridr = 0 for all 

other links l" that arrive at the beginning node. So Pt covers link V, too. 

Case 2 Pj covers a link from a start at a depot to the beginning of the current trip and a link 

from an arrival at another depot to the current one. Analogous to Case 1 Pt covers both 

links. 

Case 3 Pj covers a link from a start at a depot to the beginning of the current trip and an arc 

from the start of the day to the depot. As in Case 1 and 2 one can show that Pt covers 

the arcs. 
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In Gase 3 Pj and Pt are obviously derived from the same block. In Gase 1 and 2 a simple 

induction shows the same conclusion. So we have Pj = Pt, which is a contradiction, that shows 

that the assumption Xj ^ 0 and Xj ^ 1 is false. • 

To extend the approach to get an integral Solution for all columns including the workdays, the 

violation of the breaks and travels on foot have to be calculated. The branching mechanism 

and the proof then follow the same lines as for vehicles. Afterwards, a branching Function p is 

defined that obviously defines a finite tree whose leaves are the integral Solutions of 5. 

So far we have described how columns that have already been generated can be eliminated. 

Now we have to consider the explicit columns that are coded into the feasible paths of the 

scheduling graphs. As the index set I is derived from sets of linking arcs, this can be done by 

removing arcs from the graph. In the implementation the arcs are simply marked to reuse them 

in other branches. 

4 The Column Generation Approach 

As stated in Ribeiro and Soumis [Ribeiro and Soumis 1994], one main advantage of the set 

partitioning formulation is the Observation that the gap between the optimal Solution for the 

integral problem and the relaxed problem is often very small and unnecessary branches are very 

likely been cut from the bounding rules. So the most important task in developing algorithms for 

the VCSP is to create efficient solvers for linear programs with respect to the special structure 

of the VCSP. This subsection presents an overview of the algorithms described in füll length in 

the following sections. 

The complexity of the VCSP is determined by the number of arcs, mainly the trips, dtrips, 

and links, of the scheduling graphs. This number corresponds to the number of rows of the 

constraint matrix A. Some of them can be dropped, by using a pivot and probe algorithm 

[Sethi and Thompson 1984] to solve the linear program. "Unfortunately, the number of columns 

is equivalent to the number of feasible paths which is increasing exponential on the number 

of arcs. So the time to search for the pivot column is exponential, too. Moreover, if the number 

of columns is to big (more than 5 million columns for 30 trips!) they can not be stored in main 

memory and so reduce the Performance of the cornputation. The column generation algorithm 

now makes use of the relationship between the columns and the feasible paths of the graphs. 

Instead of enumerating all columns before the Start of the simplex algorithm, only a small initial 

matrix is taken. Then successively the smaller problems are solved, and instead of searching 

the pivot column in the large matrix, it is generated using a subproblem and added to the 
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small matrix. This Iteration is done until the subproblem can not find a negative marginal cost 

column. At this point the whole linear program is solved under implicit consideration of the 

complete set of columns. 

To generate columns the simplex multipliers of the small linear programs optimal Solution are 

subtracted from the costs of the corresponding trips, dtrips, and links (note that the rows of 

the matrix are constraints for the partitioning of these arcs). The pivot column of the complete 

matrix then is equivalent to a shortest path in one of the scheduling graphs. If the pivot 

and probe algorithm is used to solve the linear program, only the multipliers of the active rows 

are subtracted from the costs of the arcs. The costs that are not represented by an active row 

are just added to the cost of the path (as are the costs of other arcs like travels on foot or 

signon/signoff that are neither represented in the set partitioning formulation). In Subsection 

4.2 solutions for the shortest path problems of the vehicle and the crew scheduling graphs are 

represented. If one of the shortest paths is negative, it is translated into a new column of the 

constraint matrix with entries 1 or -1 as described in Definition 2.6 if the row corresponds to a 

trip, dtrip, or link. 

4.1 Column Generation Principle 

The idea of column generation is easy to understand if the revised simplex algorithm is used as 

its basis (see Lasdon [Lasdon 1970]). In Definition 2.6 the constraint matrix was defined such 

that every column corresponds to a feasible path of the vehicle scheduling graph, i.e. a block, or 

of the crew scheduling graph, i.e. a workday. This can be formalized by using two bijections <j>v 

and <f>c t hat map the set of blocks VP to the set of vehicle columns VC = Pnb} and the 

set of workdays CP to the set of crew columns CC = {Pnb+I, • - • > fnt+n*,}, respectively, where 

n& a nd nw are the number of blocks and workdays, respectively. Define further the number of 

trips rit, dtrips n^, and linking arcs The vehicle mapping is defined as 

cj>v : VP i-> VC, <j>v (b) = Pj : a v 

1 if 1 < i < nt and tripi e b 

or nt + nd < i <nt + nd + nt and link, € b 

0 otherwise 

while the crew mapping is 

1 if nt < i < nt + nd and dtrip^ € b 

<j>c : CP CC, (ßc(b) = Pj : <Hj = i —1 if nt H- < i < nt + nd + m and link; € b 

0 otherwise 

where just the entry for the linking arcs is different from <f>v to couple vehicles and crews. 
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The main idea of the column generation algorithm is now to replace in the simplex algorithm 

the calculation of the marginal costs for all columns and the search for the minimal marginal 

cost column (pivot column), by a generation of this column, if possible. This is done by first 

solving a smaller linear program with a submatrix A! of A, using the normal revised simplex 

method, and then generating a column Pj not in Ar with 

C{ = min ck = min(ck-7rPk) 
k k 

This generation is done by solving a subproblem. As every column corresponds to a feasible 

path of a scheduling graph, the generation process can be done by a shortest path problem 

where the simplex multipliers 7r* ar e added to the costs of the arcs. 

Definition 4.1 (marginal cost graphs) Let VG = (VN,VA,Cv) be a vehicle scheduling 

graph and CG = (CN, CA, cc) be a crew scheduling graph with arc costs cv and cc as described 

in Section 2. Further let 7Ti,..., 7rm be simplex multipliers of the linear program. 

Now dehne the marginal cost graphs VG} = (VN, VA, dv) with 

cv(a) - 7Ti if a = tripj 

Cy(a) - 7Tj+nt+n^ if a — link * 

^(a) otherwise 

and CG' = (CN, CA, c'c) with the costs 

Cc(a) = Cc{a) — ^ ^+nt+n<i 
dtripi€$(a) linki£$(a) 

calculated with the simple crew scheduling graph (see Definition 2.4 in Subsection 2.2). • 

With these definitions we can now formulate the column generation algorithm. 

Definition 4.2 (column generation) Let A' be a nonsingular submatrix of A and P(A') 

be the linear program for the VCSP restricted to A' and the corresponding subvector d of c. 

1. Solve the linear program P(A') 

2. Calculate the marginal cost graphs VG' and CG' as in Definition 4.1. Let b be a shortest 

feasible path (cost minimal block) in VG' and w be a shortest feasible path (cost minimal 

workday) in CG'. 

3. If both dv(b) and dc(w) are nonnegative, stop. The current Solution is optimal for P(A). 
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4. If dv(b) < 0, redefine A' as 

A' <— (Af,(j)v(b)) 

and d as (c% Cu(b)). If dc(w) < 0, redefine A! as 

A! <r- (A% </>c(w)) 

and d as (</, cc(w)). 

5. Continue with Step 1. 

In Step 4 the matrix A' can be expanded by more than one column to accelerate the algorithm 

(multiple pricing). • 

Theorem 4.3 The column generation algorithm stops with an optimal Solution x' iff the Sim­

plex algorithm stops with an optimal Solution x, and in this case cx! — cx holds. 

Proof Let xr be a Solution of the column generation algorithm and 1r b e the vector of simplex 

multipliers after Step 1. Obviously, x' is also a basic feasible Solution for P(A). We just have 

to prove that there exists no column Pj of A with Cj — irP j negative to show that x' is also 

optimal for P(A). Assume that there exists such a column. Then there exists the feasible path 

(j)~~l{Pj). W.l.o.g. assume that this path is a block b. Then we have 

c'v{b) = E dv(tripi)+ E dv{Unh)+ E 4M 
tripi^b UnkiEb other arc a €fe 

= E Cv(tripi) — E E Cvilinki)- E ^i+n,+nd + E c'v(a) 
tripi£b tripi€b linkiEb UnkiZb other arc a€& 
cv{b) — E — E ^i+nt+rid 

Oij — 1 a»+nf 

= Cj ~ TTPJ 

which contradicts the assumption because no block with negative costs was found in Step 3. 

Now let x be an optimal Solution for P(A). As every feasible Solution for P(Ar) is also a 

feasible Solution for P(A)y the problem P(A') is bounded by cx. Especially there exists an 

optimal Solution xf that is found by the column generation algorithm because it starts with a 

feasible Solution. So by the first case xf is also an optimal Solution for P{A). • 

4-2 The Subproblems 

As we have seen in the previous section, an important step in the scheduling process is the 

efficient Solution of the subproblems to generate new columns for the LP-relaxation. The 

subproblems appear as shortest path problems with various side conditions in the graphs. 
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A shortest path in the vehicle scheduling graph can be found very easily, because the vehi-

cle scheduling graph is acyclic and therefore can be sorted topological. Moreover, a natural 

topological sorting is given by the time points associated with the nodes. A shortest path can 

then be calculated by a dynamic programming approach, that Starts at the source node and 

check for all nodes following the topological sorting each predecessor to find the shortest path 

that starts at the sink. Obviously, such an algorithm has a complexity of 0(| A\) and can be 

performed rather rapidly. 

The crew scheduling graph can as well be sorted topological. However, the shortest path 

problem turns out to be very hard because of the resource constraints. To find a feasible shortest 

path as defined in Definition 2.5, we have to test if for all nodes the summed consumptions 

of the different resources on the arcs on this path fit in the resource constraint window of the 

node. Since in the general formulation of the problem we can make no assumptions on the 

resource consumptions of the arcs, we have to collect for every node in the topological sorted 

list all paths from node no, unless they have the same combination of resource consumptions. 

The number of paths that have to be collected - and thereby the complexity of a shortest path 

algorithm - will be exponential. Therefore it is likely that every algorithm is NP-hard. 

The main development of Desrochers [Desrochers 1988] is to restrict the problem in a way that 

still keeps all aspects of reality. They assume, that all possible resource consumptions are 

discrete, for example minutes of working time or number of breaks. Then one can störe the 

possible paths for every resource combination, a number that does not grow exponentially if 

all Windows are finite. (The problem of infinite windows is solved later by window reduction.) 

A shortest path can be calculated as for the vehicle scheduling graph but for every resource 

combination instead of just every node. So if on a node a working time of 6 to 8 hours with a 

granuality of 1 minute and one or two pieces of work are allowed, the shortest paths for 120x2 

= 240 resource combinations have to be stored. 

The complexity of the algorithm is 

0(E(lfWlfK-O). 
neN t=i 

so to accelerate the computation and to ensure finite resource windows, a resource window 

reduction as in [Desrochers et.al. 1992], that cuts parts of the Windows by comparison with 

successors and predecessors, is implemented in the current program. A detailed description of 

the algorithm can be found in [Desrochers 1988] and [Desrochers et.al. 1992]. 
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5 Polyhedral Cuts 

The linear relaxation of the set partitioning problem already provides very good lower bounds 

for the branch and bound algorithm. Nevertheless, methods that use polyhedral cuts obtain 

lower bounds that are higher, thereby allowing to cut more branches of the search tree, and 

give Solutions that are "more integer". Ideally, they will generate the integer Solution without 

a branch. In this section we will describe the overall approach of generating polyhedral cuts 

and explain a cutting algorithm of Hoffman and Padberg [Hoffman and Padberg 1993] for the 

set partitioning problem. 

5.1 Set Partitioning and Polyhedral Cuts 

In the formulation of the vehicle and crew scheduling problem the set of feasible Solutions in 

the set partitioning formulation was 

SPP(A) = conv({x e JRn | Ax = e, x € {0,1}}) 

To make use of the developments of [Hoffman and Padberg 1993], we will divide the set par­

titioning equalities into two sets of inequalities and get the set packing polytope and the set 

covering polytope: 

Definition 5.1 (set packing and set covering polytope) Let A be a n x m matrix with 

coefficients 0 and 1, and em be (1,..., 1) € JRm. Then the set packing polytope is defined as 

SP(A) = conv({x e IRn | Ax < em, x € {0,1}}) 

and the set covering polytope as 

SC(A) = conv({x € JRn | Ax > em,x € {0,1}}). 

• 

Obviously we have SPP(A) = SP(A) n SC(A) and so every valid inequality of SP(A) or 

SC(A) is also valid for SPP(A). 

The set SPP(A) is a polyhedron, so it can be described by linear equalities and inequalities. 

Given the set of them allows to calculate the optimal Solution of the VCSP by solving the 

linear program of minimizing cx on SPP(A). Every extreme point of SPP(A) is integer and 

so the optimal Solution is feasible for the VCSP. Unfortunately, the inequalities are not easy to 

calculate and so we need some theory (see e.g. [Nemhauser and Wolsey 1988]): 
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Definition 5.2 (faces and facets) Let F C ]Rn be a polyhedron, and (7r,7r0) € IRn x 1R 

define a linear inequality TTX < 7To. (?r, 7To) is called a valid inequality for P if it is satisfied by 

all points in P. 

Let F = {x € P | 7TX < 7r0} be the intersection of the halfspace defined by (7r,7To) with P. If 

(7r, 7T0) i s valid, then F is called a face of P. A face F is called proper if F ^ 0, P. 

A face F of F is called a facet if dim(F) = dim(F)-l. • 

Obviously, F is a polyhedron that is described by certain inequalities. Every polyhedron F can 

be defined by the inequalities of its facets. Moreover, at least one inequality of F is necessary 

to describe F. 

For the iteration of the algorithm we need to define special inequalities that are valid for 

5FF(A), but cut away a Solution that is feasible in the continuous relaxation of the VCSP. 

Definition 5.3 (polyhedral cut) Define S(A) as the continuous relaxation of the VCSP. Let 

x be feasible Solution of S(A) and (7r,7ro) be a valid inequality of SPP(Ä) with 7xx > 7To- Then 

(7r,7r0) is called a polyhedral cut for the VCSP. 

In an algorithm the polyhedral cuts (ideally facets of SPP(A)) are subsequently added to the 

problem such that the Interim Solutions are eliminated. 

The main disadvantage of the polyhedral approach is the problem of finding the facets of 

SPP(A). This is a complicated task and for NP-hard integer problems of course also NP-hard. 

Nevertheless it is also a great advantage to generate a subset of the facets to get a better lower 

bound and a Solution that is more integral than the pure Solution of the linear program with 

F(A). In the next section we will give some methods to find facets for the set partitioning 

problem. 

5.2 Intersection Graph 

One way to calculate facets of a set partitioning polytope uses a graph derived from the con-

straint matrix as described in [Hoffman and Padberg 1993] to calculate facets of the set packing 

polytope SP(A) and therefore for SPP(A), too. 

Definition 5.4 (intersection graph) Let A — (a^)mxn be the constraint matrix of the set 

partitioning problem. Then define the intersection graph ({1,... ,n}, E) with (ju j2) € E iff 

the columns ah and aj2 intersect, i.e., there exists an i € {1,..., m} such that = aij2 = 1. 

• 
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Definition 5.5 (cliques) Let G = (N,E) be a graph and K C N. K is a clique of G iffit 

induces a maximal complete subgraph. • 

These definitions allow to describe all facets of set packing type [Hoffman and Padberg 1993]: 

Theorem 5.6 An inequality Y*j£Kxj < 1 defines a facet of SP(A) iff K is the node set of a 

clique of the intersection graph. • 

To detect cliques of the intersection graph, Hoffman and Padberg [Hoffman and Padberg 1993] 

present several algorithms. The one implemented in this work proceeds by concentrating on 

a subset of the column indices F = {j € {1,.. . ,n} | 0 < Xj < 1} that correspond to the 

fractionally valued variables of the current Solution vector x. The subgraph of the intersection 

graph that is induced by F is observed to find cliques. This is done by starting with initial 

sets of column indices Mr C F such that Orj = 1 for all j € Mr. Obviously Mr is a complete 

subgraph. Now the set K C F \ Mr of columns in F that intersect with all columns of MT is 

constructed. Any clique that contains Mr can now be build by complete enumeration on the 

(small) set K. Every clique C C F with xj > 1 defines a polyhedral cut that invalidates 

the current fractional Solution. The maximal violated constraint (or a number of most violated 

constraints) is added to the linear program. Note that such cliques only define facets for the 

subproblem ApXp- = 1 with A and x restricted to the column indices in F. A facet for the 

complete set partitioning problem has to be generated by a lifting procedure as described in 

[Hoffman and Padberg 1993]. 

In this algorithm on each step back in the branch and bound scheme the rows for the polyhedral 

cuts are invalidated and reinserted by the pivot and probe algorithm. This implements a pool 

of cuts as suggested by Hoffman and Padberg [Hoffman and Padberg 1993]. 

5.3 Polyhedral Cuts and Column Generation 

The excellent effects of polyhedral cuts, especially on the depth of the branch and bound tree 

(see Subsection 6.2), suggest to use them in combination with the column generation algorithm 

of Chapter 4. Unfortunately, the cuts are additional rows of the linear program that do not 

correspond to Single arcs of the scheduling graphs as the set partitioning and linking constraints, 

but to whole paths from the Start to the end node. So there is no natural technique to assign 

the simplex multipliers to a shortest path problem. 

One possibility to combine both approaches is to ignore the information provided by the simplex 

multipliers of the new rows and generate new columns with the set partitioning and linking 
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constraints. Obviously, for all implicit columns not being generated by the algorithm, their 

entry in all polyhedral cuts is 0. So if the simplex algorithm terminates no column with an 

entry other than 0 in a cutting row is the pivot column. 

The main idea is to generate a shortest block or workday that is not represented by a column 

already existing and take it as a candidate for the pivot column. This approach leads to an 

exact algorithm that combines both polyhedral cuts and column generation. This is achieved 

by a branch and bound scheme similar to a kth shortest path problem as in [Lawler 1972]. It 

calculates the current shortest path and if the corresponding column already exists, the branch 

step is performed as follows: 

Definition 5.7 (branching on paths) Let p = (n^... ,nr) be the actual shortest path. Let 

M = (77*!,..., ms), 1 < mx <ms <r 

be the set of indices of nodes in p that have more than one successor (usually the end of a trip 

with a number of possible links or a relief point with several possibilities to continue on foot). 

If M = 0 no branching is possible and hence no feasible shortest path exists and the current 

branching node is leveled. Otherwise, s subproblems are generated (instead of two in the binary 

global branch and bound algorithm) as in [Lawler 1972]. Subproblem i (1 < i < s) is defined 

by: 

1. forbid arc (nmi,nmi+1) 

2. for all j <i force arc (nmj:nmj+1) by forbidding all other arcs that start on node nmj. 

The algorithm is extended by taking the value of the current shortest path as a lower bound 

for the desired path not coded in the LP matrix. • 

To detect if the current shortest path corresponds to an existing column, all paths are coded 

into a set binary variables each denoting a trip or a link, respectively. This can be easily 

incorporated into the shortest path and column generation algorithms. The sets are hashed by 

adding the numbers of the arc and let the final sum modulo 512 be the index for the hashqueue. 

So a test of the actual path results in just a few Operations in the respective hash queue and 

therefore is very cheap. 

6 Computational Results 

Now we can give some measurements of the Performance of the Implementation. We first 

describe the parameters of the instances and the different compilations of algorithms that are 
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used to solve them. Then fche results for all combinations of examples and algorithms are 

presented. 

6.1 Examples and Algorithms 

The main characteristics of the examples are the number of trips and dtrips (the latter defined 

by the number of extra relief points) and the size of resource windows, especially driving and 

waiting times as they lead to great windows in contrast to numbers of breaks or tasks. The 

number of arcs for travels on foot and breaks is determined by the maximum waiting time for 

vehicles and crews and the number of (relief) points where the driver is allowed to leave his 

vehicle. 

The problems observed in the next section have two resources, the working time and the number 

of breaks, and are varied by the following characteristics: 

pl 3 lines, 10 trips, 16 dtrips, 38 links, 51 breaks, and 95 travels on foot. The drivers can leave 

their vehicle at the depot, at a central Station, and at the end of every trip. The vehicle 

graph is composed of 42 nodes and 94 arcs, and the crew graph of 120 nodes and 391 

arcs. 

plrw As problem pl, but with the window size reduced by 5. 

plrt As problem pl, but the drivers are only allowed to leave their vehicle at the depot and the 

central Station. So the number of travels on foot is reduced to 47, and the total number 

of arcs in the crew graph is 319. 

p2 3 lines, 20 trips, 34 dtrips, 92 links, 300 breaks, and 229 travels on foot. The drivers can 

leave their vehicle at the depot, at a central Station, and at the end of every trip. The 

vehicle graph is composed of 82 nodes and 258 arcs, and the crew graph of 244 nodes and 

1161 arcs. 

p2rty As problem p2, but with the window size reduced by 5. 

p2rt As problem p2, but the drivers are only allowed to leave their vehicle at the depot and 

the central Station. So the number of travels on foot is reduced to 112, the number of 

breaks to 190, and the total number of arcs in the crew graph is 866. 

p20/ As problem p2, but all costs set to 0 except the fixed costs of vehicles and crews which 

are set to 1. This assignment leads to the minimization of blocks and workdays and so 

24 



P, A cont % time % irrst % time % best time 

pl, al 2747.8 100 38 100 2747.8 100 38 100 2747.8 38 

plrt, al 2745.6 100 26 100 2745.6 100 26 100 2745.6 26 

plruj) al 2582.6 98.06 9 14.06 2633.6 100 14 21.9 2633.6 64 

p2, al 4278.2 98 1433 25 4322.5 100 2564 45 4322.5 5693 

p2ru al 4304.7 98.8 844 5 4371.4 100.3 1712 10 4356.6 16541 

p al 3993.1 - 1198 - 4244.4 - 3784 - - -

p2o/, al 8.6 - 1335 - 11.0 - 5246 - - -

p3, al 3546.6 100 2555 50 3546.6 100 4001 78 3546.6 5066 

p4, al 5716.9 - 21112 - - - - - - -

plruM a2 2597.4 98.625 21 15.7 2649.8 100.6 45 33.6 2633.6 134 

Tabelle 1: Computational results 

to a feasible covering of the trips and dtrips with a minimal set. Such a problem can be 

solved much more efficiently with special algorithms and it is used to test the flexibility 

of the general algorithm presented here. 

p3 2 lines, 20 trips, 40 dtrips, 86 links, 352 breaks, and 243 travels on foot. The drivers can 

leave their vehicle at the depot, at a central Station, and at the end of every trip. The 

vehicle graph is composed of 82 nodes and 245 arcs, and the crew graph of 262 nodes and 

1182 arcs. 

p4 3 lines, 30 trips, 54 dtrips, 142 links, 616 breaks, and 374 travels on foot. The drivers can 

leave their vehicle at the depot, at a central Station, and at the end of every trip. The 

vehicle graph is composed of 122 nodes and 429 arcs, and the crew graph of 374 nodes 

and 2007 arcs. 

The composition of algorithms used as described in Chapter 4 are: 

al Column generation, pivot and probe for all constraints. 

a2 As al, with polyhedral cuts based on clique detection. 

6.2 Results 

In Tables 1 and 2 the following aspects of the calculations are covered: 
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P, A simplex time % it cspth time % no. clms no. rows depth 

pl, al 14.8 38 885 22.8 60 321 64 0 

plyfj al 7.1 27 660 18.8 72 289 63 0 

plrtoi al 43.3 67.7 3278 13.1 20.5 457 60 10 

p2, al 4715 82 36187 908 15 2268 145 3 

p2TU al 14960 90.4 142412 1339 8 3790 135 9 

P^"TW> al - - - - - - - >40 

p20/, al - - - - - - - >40 

plrtü) a2 111.1 82.9 4326 14.7 10.97 443 98 3 

Tabelle 2: Additional results 

P, A The number of the problem with the composition of algorithms as mentioned above. 

cont Value of the first continuous Solution without branching. (For Algorithm a2 this is the 

Solution affcer cut generation but before branching. The pure continuous Solution is as 

for Algorithm a2.) 

first Value of the first integer Solution. 

best Value of the best integer Solution. 

% Percentage, compared with the final integer Solution. 

time Time to compute the Solution. For the best Solution the time for the termination of the 

program and therefore the proof for the best Solution is given. 

simplex time Overall time spent for the iteration of the simplex algorithm. 

it Number of iterations of revised simplex algorithm. 

cspth time Overall time spent for the generation of shortest paths in the crew scheduling 

graph. 

no. clms Number of columns at the end of the calculation. 

no. rows Number of rows at the end of the calculation. 

depth Length of a maximum path from the root to a leave in the brauch and bound tree. 
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Problem v-z* c-z* sum % time % 

Pl 1254.8 • - - 3 7 

Plrt 1254.8 ~k - - 3 7 

pl rw 1254.8 k - - 1 2 

P2 1479.4 •k - - 33 1 

P2 rt 1479.4 k - - 33 1 

P^rtu 1479.4 k - - 17 -

P^o/ 3.0 k - - 68 -

p3 1177.0 2624.0 3801 107 36 1 

p4 1874.8 k - - 96 -
•: no feasible Solution 

Tabelle 3: First vehicle then crew scheduling 

As the results in Table 1 show, the limit of the current algorithm turns out to be around 

20 trips. If an optimal Solution is found, the lower bound by the first continuous Solution is 

excellent (over 98 per cent of the optimal Solution) and the first integer Solution comes close or 

even is the final Solution. 

To calculate the first continuous Solution the time used by the simplex algorithm is significantly 

shorter than the shortest path time (Table 2, Rows 1 and 2). If some brauch steps are needed, 

this ratio changes to the disadvantage of the simplex algorithm because all generated columns 

are reused and so only few new columns have to be calculated on deeper nodes of the brauch 

and bound tree. As all problems with depth greater than 0 show, this approach leads to a 

much faster generation of the lower bounds on the nodes as if all columns are erased and must 

be calculated again. Nevertheless, the algorithm to solve the linear programs is just a simple 

reversed simplex, and as for greater problems nearly 80 to 90 per cent of the time are consumed 

by it, a faster algorithm could improve the implementation very much. 

The simultaneous application of polyhedral cuts and column generation reduces the depth of 

the brauch and bound tree from 10 to 3 for the small instance plrw (Table 2, Rows 3 and 8). 

At first sight this is a very promising result. As for larger instances the computation time for 

the generation of shortest paths in the crew scheduling graph increases drastic, no Solution was 

obtained in reasonable time. 

Tables 3 and 4 give the results for the problems above solved with a two stage algorithm: 
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Problem v-z* C-Z* sum % time % 

Pl 1462.3 1356.5 2818.3 102 7 2 

Plrf 1555.8 1299.4 2855.2 104 10 2 

plrtü :k * - - - -

P2 2347.3 - - 103 2 

P2 Tt ~k * - - - -

P^rw ~k ~k - - - -

P2 of ~k ~k - - - -

p3 1801.3 2071.4 3872 109 144 3 

p4 :k ~k - - - -
*: no feasible Solution 

Tabelle 4: First crew then vehicle scheduling 

vehicles before crews or crews before vehicles, respectively. Both tables present the objective 

Function values for the Single problems, the summation of the values to get the (feasible but not 

necessary optimal) Solution of the VCSP, and the time to solve both problems independently. 

Value and time are compared with the optimal Solution of the VCSP. 

One of the main problems of the simple sequentialization used here is the fact that the second 

scheduling problem often has no feasible Solution because of the constraints required by the 

Solution of the first one. If the vehicles are scheduled first the resource restrictions might 

prevent the generation of a feasible set of workdays, e.g. that blocks are too long. This problem 

becomes less important in bigger examples with more possible workdays to cover the blocks. If 

the crews are scheduled first it is possible that the links to or from the depot are not covered, 

and so some vehicles have no drivers to their trips. This must be overcome by extra flow 

constraints on the begin and end node and is not discussed here. 

Another problem that may come up if the crews are scheduled first seems to be that the 

branching rule is not as appropriate for the CSP as for the VCSP. In almost all cases that could 

not be solved the solver finds a first feasible integer Solution on a step deeper than 40 in the 

branch and bound tree. So the tree becomes too large to be leveled in a reasonable time. 

If a feasible Solution is found, the average loss compared with an optimal Solution to the VCSP 

is 5 per cent and varies from 2 to 9 per cent. The time needed to generale the result is about 

2 per cent. 
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7 Conclusions and Further Research 

In this paper we presented a mathematical formulation of the vehicle and crew scheduling 

problem (VCSP). It is defined as a combination of the set partitioning formulations for the 

vehicle scheduling problem and the crew scheduling problem with resource Windows on the 

scheduling graph as proposed in [Desrochers and Soumis 1989]. By using this technique to 

model constraints for crew schedules, a great variety of different real world problems is achieved. 

Moreover, the VCSP presented here is easy to extend to cover multiple depot problems and 

additional constraints like limited numbers of vehicles or duty typ es (see Section 2.4). 

The VCSP is solved by a column generation approach for both the vehicle and the crew schedul­

ing part. The simplex multipliers of the set partitioning constraints for trips, dtrips, and links 

are subtracted from the costs of the corresponding arcs of the vehicle or crew scheduling graph, 

respectively. To generate the new pivot column, shortest path algorithms for both typ es of arcs 

are presented. 

The column generation approach provides a good lower bound for the branching algorithm. For 

10 trips the Solution time is below one minute, for 20 trips above one hour, and sometimes no 

Solution is found in an acceptable ränge of time. For 30 trips only the continuous relaxation 

could be solved. To estimate the usefulness of column generation, the branch and bound scheme 

was tested with all columns calculated in advance. Because of the exploding number of columns 

only examples containing at most 10 trips could be solved. Nevertheless the time to calculate 

the Solution is significantly shorter without column generation. 

As some examples show, the lower bound given by the continuous Solution of the set partitioning 

problem is often not good enough to guarantee a short branching tree. To obtain lower bounds 

that are higher and closer to an integer Solution, polyhedral cuts for the set partitioning poly-

hedron as described by Hoffman and Padberg [Hoffman and Padberg 1993] are incorporated in 

the branch and bound scheme without column generation. Even the small part of the algorithm 

that is implemented in this work, using only a simple clique detection mechanism and no lifting, 

provides lower bounds that cut the branching tree from a depth of 9 to a depth of 2. 

Polyhedral cuts are combined with column generation. To satisfy that no already existing 

column is generated a branch and bound algorithm is developed. This algorithm increases the 

overall computation as much that only very small instances are solvable in reasonable time. 

There are a lot of tasks which can be done in the future. As most of the computation time 

is required for the simplex iterations we will integrate the powerful simplex algorithm of the 
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state-of-the-art solver CPLEX [CPLEX]. Even if then the computation time will be shorten 

substantially we do not expect to solve large problems which appear in practice. Therefore to 

derive lower bounds we will consider graph theoretic relaxations of the set-partitioning matrix 

(cf. e.g. [EL-Darzi and Mitra 1995]). Additionally to obtain upper bounds truncated brauch 

and bound algorithm will be developed. 
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