
Kimms, Alf

Working Paper — Digitized Version

A genetic algorithm for multi-level, multi-machine lot
sizing and scheduling

Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel, No. 415

Provided in Cooperation with:
Christian-Albrechts-University of Kiel, Institute of Business Administration

Suggested Citation: Kimms, Alf (1996) : A genetic algorithm for multi-level, multi-machine lot sizing
and scheduling, Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel,
No. 415, Universität Kiel, Institut für Betriebswirtschaftslehre, Kiel

This Version is available at:
https://hdl.handle.net/10419/149046

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/149046
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

Manuskripte

aus den

Instituten für Betriebswirtschaftslehre

der Universität Kiel

No. 415

A Genetic Algorithm for Multi-Level,
Multi-Machine Lot Sizing and Scheduling

A. Kimms

October 1996

Alf Kimms
Lehrstuhl für Produktion und Logistik, Institut für Betriebswirtschaftslehre,
Christian-Albrechts-Universitätzu Kiel, Olshausenstr. 40, 24118 Kiel, Germany
email: Kimms@bwl.uni-kiel.de
URL: http://www.wiso.uni-kiel.de/bwlinstitute/Prod

ftp://ftp.wiso.uni-kiel.de/pub/operations-research

Abstract
This contribution introduces a mixed-integer programming formula-

tion for the multi-level, multi-machine proportional lot sizin g and schedul-
ing problem. It also presents a genetic algorithm to solve that problem.
The efficiency of that algorithm is due to an encoding of so lutions which
uses a two-dimensional matrix representation with non-binary entries
rather than a simple bitstring. A computational study reveals that the pro -
posed procedura works amazing ly fast and competes with a tabu search
approach that has recently been published.

Keywords: Multi-level lot sizing, scheduling, genetic algorithms, PLSP

1 Introduction

The problem we are concerned about can be described as follows: Several items
are to be produced in order to meet. some known (or estimated) dynamic demand
without backlogs and stockouts. Precedence relations among these items dehne
an acyclic gozinto-structure of the general type. In contrast to many authors
who allow demand for end items only, now, demand may occur for all items
including component parts. The finite planning horizon is subdivided into a
number of discrete time periods. Positive Iead times are given due to techno-
logical restrictions such as cooling or transpqrtation for instance. Furthermore,
items share common resources. Some (maybe all) of them are scarce. The capa-
cities may vary over time. Producing one item requires an item-specific amount
of the available capacity. All data are assumed to be deterministic.

Iterris which a re produced in a period to meet some future demand must be
stored in inventory and thus cause item-specific holding costs. Most authors
assume that the holding costs for an item must be greater than or equal to the
sum of the holding costs for all irnmediate predecessors. They argue that holding
costs are rriainly opportunity costs for capital which occurs no matter a compon
ent part is assembled or not. Two reasons persuade us to make no particular
assumptions for holding costs. First, as it is usual in the chemical industry for
instance, keeping some component parts in storage may require ongoing addi-
tional efFort such as cooling, heating, or shaking. While these parts need no
special treatment when processed, storing component parts might be more ex-
pensive than storing assembled items. Second, Operations such as cutting tin
mats for instance make parts smaller and often easier to handle. The remaining
"waste" can often be sold as raw material for other manufacturing processes.
Hence, opportunity costs may decrease when component parts are assembled.
However. it should be made clear that the assumption of general holding costs
is the rnost unrestrictive one. All models and methods developed under this
assumption work for more restrictive cases as well.

Each item requires at least one resource for which a setup State has to be
taken into account. Production can only take place if a proper State is set

1

up. Setting a resource up for producing a particular item incurs item-specific
setup costs which are assumed to be sequence independent. Setup times are not
considered. Once a certain setup action is performed, the setup state is kept
up untii another setup changes the current State. Hence, same items which are
produced having some idle time in-between do not enforce more than one setup
action. To get things straight, note that. some authors use the word changeover
instead of setup in this context.

The most. fundamental assumpt.ion here is that for each resource at most
one setup may occur within one period. Hence, at most two items sharing a
common resource for which a setup state exists may be produced per period.
Due to this assumption, the problem is known as the proportional lot sizing and
scheduling problem (PLSP) [6, 12, 22]. By choosing the length of each time
period appropriately small, the PLSP is a good approximation to a continuous
time axis. It refines the well-known discrete lot sizing and scheduling problem
(DLSP) [4, 8, 15, 24, 30] as well as the continuous setup lot sizing problem
(CSLP) [1, 1 8, 17]. Both assume that at most one item may be produced per
period. All three rnodels could be classified as small bücket models since only
a few (one or two) items are produced per period. In contrast to this, the
well-known capacitated lot sizing problem (CLSP) [3, 7, 10, 14, 23, 26, 27]
represents a large bücket model since many items can be produced per period.
Remember, the CLSP does not include sequence decisions and is thus a much
"easier" problem. An extension of th e single-level CLSP with partial sequence
decisions can be found in [11]. In [13] a large bücket single-level lot sizing and
scheduling model is discussed.

A cornprehensive review of the multi-level lot sizing literature is given in [22]
where it is shown that most authors do not take capacity restrictions into account
and that they make restrictive assumptions such as linear or assembly gozinto-
structures. If sca rce capacities are considered, the work is mostly confined to
single-machine cases. The most general methods are described in [31, 32] where
the multi-level CLSP is attacked.

The t.ext is organized as foliows: Section 2 gives a precise description of
the problem by rneans of a mixed-integer program. A generic construction
procedura is then presented in Section 3. Section 4 refines this procedura and
introduces a genetic algorithm. In Section 5 a computational study is performed.
Finally, Section 6 summarizes the work.

2 Multi-Level PLSP with Multiple Machines

An important. variant of the PLSP is the one with multiple machines (PLSP-
MM). Severa] resources (machines) are available and each item is produced on
an item-specific machine. This is to say that there is an unambiguous mapping
from items to machines. Of c ourse, some items may share a common machine.
Special cases are the single-machine problem for which models and methods

2

are given in [20, 21], and the problem with dedicated machines where items do
not share a common machine. For the latter optimal Solutions can be easily
computed with a lot-for-lot policv [19].

Let us first introduce some notation. In Table 1 the decision variables are
defined. Likewise, the parameters are explained in Table 2. Using this notation,
we are now able to present a MlP-model formulation.

Symbol Definition
Ijt Inventory for item j at the end of period t.
qjt Production quantity for item j in period t.
Xjt. Binary variable which indicates whether a setup for

item j occurs in period t (xjt = 1) or not (xjt = 0).
yjt Binary variable which indicates whether machine rrij

is set up for item j at the end of period t = 1)
or not (yjt — 0),

Table 1: Decision Variables for the PLSP-MM

J T
min YhYi(sixit + hiI3<)

j=i
subject to

Ijt = Ij{t~i) 4- cijt - djt ~ ^2 a3^t
i£Sy

min-{ t+Vj,T}
^ ~ 53 aji9iT

ieSj r=jf+l

J2 Vi* ^ 1

j€J"rn

xjt >

Pjqjt < +

53 Pi ̂ 31 — Cmt
j€Jm

yjt £ {o, 1}

(i)

j =
< = i,...,r

j ~ i j • • • j J
i = 0,...,T-1

m = 1,..M

j =
t =

j = i,•.J

m = 1,..., M
t = 1,.. .,T

j =
t = i,...,r

(2)

(3)

(4)

(5)

(6)

(7)

(8)

3

Symbol Definition
aji "Gozinto"-factor. Its value is zero if item i is not an

imrnediate successor of item j. Otherwise, it is the
quantity of item j that is directly needed to
produce one item i.

Cmt Available capacity of m achine m in period t.
djt. Externa! demand for item j in period t.
h3 Non-negative holding cost for having one unit of

item j one period in inventory.
lio Initial inventory for item j.
3m Set of all items that share the machine m,

i.e. 3m ~• *{3 ^ • • • i J} | "^j ~ .
J Number of items.
M Numher of m achines.
m.j Machine on which item j is produced.
Pj Capacity needs for producing one unit of it em j.
»;i Non-negative setup cost for item j.
4 Set of imrnediate successors of item j>

i.e. Sj d= {i G {I,..., J} | aji > 0}.
T Number of periods.
v.i Positive and integral lead time of item j.
y.i o Unique initial setup state.

Table 2: Parameters for the PLSP-MM

h ti 9jt, Zjt >0 f — 1' V (^)

The objective (1) is to minimize the suxn of s etup and Holding costs. Equa-
tions (2) are the inventory balances. At the end of a period t we have in inventory
what was in there at the end of period t — 1 plus what is produced minus ex-
ternal and internal demand. To fulfill internal demand we must respect positive
lead times. Restrictions (3) guarantee so. Constraints (4) make sure that the
setup stat.e of each rriachinejs uniquely defined at the end of each period. Those
periods in which a setup happens are spotted by (5). Note that idle periods
rrtay occur in order to save setup costs. Due to (6) production can only take
place if there is a proper setup State either at the beginning or at the end of
a particular period. Hence. at most two items can be manufactured on each
machine per period. Capacity constraints are formulated in (7). Since the right
band side is a constant, overtirne is no t available. (8) dehne the binary-valued
setup state variables, while (9) are simple non-negativity conditions. The reader
may convince himself that due to (5) in co mbination with (1) setup variables Xjt

4

are indeed zero-one valued. Hence, non-negativity conditions are sufficient for
these. Foi- lefct ing inventory variables Ijt be non-negative backlogging cannot
occur.

3 Construction Principles

There is a generic construction scheme that forms the basis of our heuristic.
It is a backward oriented procedura which schedules items period by period
starting with period T and ending with period one. We choose here a recurrent
representation which enables us to develop the underlying ideas in a stepwise
fashion. Now, let us assume that construct(t, At, m) is the procedura to be
defined and t 4- At is the period and m is the machine under concern. Again,
At 6 {0.1} where At = 1 indicates that the setup State for machine m at the
beginning of period t + 1 is to be fixed next and At = 0 indicates that we
already have chosen a setup State at the end of period t. The symbol jmt will
denote the setup State for machine m at the end of period t. Assume jmt = 0
for m ~ 1,.... M and t = 1,..., T initially.

Note, frorn the problem Parameters we c an easily derive Vj-, the set of the
irnmediate predecessors of item j, and Vj> the set of al l predecessors of item j.
Also, nrj. the net requirement of item j, and idji, the internal demand for item
i that is directly or indirectly caused by pr oducing one unit of item j, are easy
to compute.

Before the construction mechanism starts, the decision variables yjt and qjt
are assigried zero for j = 1, m = 1,..., Asf, and t = 1,..., T. Remember,
given the values for ;y ?t and qjt the values for Xjt and Ijt are implicitly defined.
Furthermore, assume auxiliary variables djt and CDjt for j = 1 and
t = 1,.. ., T. The former ones represent the entries in the demand matrix and
thus are iuitialized with djt = djt. The latter ones stand for the cumulative future
demand for item j which is not been met yet. As we will see, the cumulative
demand can be efficiently computed while moving on from period to period.
For the sake of convenience we in troduce CDj(r+1) = 0 for j = 1,..J. The
remaining capacity of machine m in period t is denoted as RCmt• Initially,
RCmt = Cmt for m = 1,..., M and t = 1,..., T.

The initial call is construct(T, 1,1) and initiates the fixing of setup states at
the end of period T. Table 3 gives all the details.

The choice of ; mT needs to be refined, but at this point we do not need any
further insight and suppose that the selection is done somehow. All we need to
know is that 2^ C Jm U {0} for rn ~ 1,..., M and t = 1,..., T is the set of
items arnong which items are chosen. Item 0 is a dummy item which will be
needed for sorne methods that will be discussed. We will return for a precise
discussion in subsequent sections. As one can see, once a setup state is chosen
for all machines at the end of period T, a call of construct(T, 0,1) is made. Table
4 provides a recipe of how to evaluate such calls.

5

choose jrnT E ZrnT-
if(3mr/0)

%,„TT •"= 1-
if (m — M)

construct{T, 0,1).
eise

constritct(T, 1, m 4- 1).

Table 3: Evaluating construct(T, 1, •)

for j 6 Jm
CDjt ••= mi n{cDj(t+l) + djt, max{0, nrj - jfT=t+l

:=rnin{cD^.„^}.
GDjmtt — 9jinlj-

RCmt := R,Cmt — PjmtQjmtt-
for i e ̂ jml

if (t - Vi > 0 and qjmit > 0)
di(t-vt) := di(t~Vi) d" ÖijntQjmit-

if (m = M)
construct(t — 1,1,1).

eise
construct(t,0. rn + 1).

Table 4: Evaluating construct{t\ 0, •) where 1 < t < T

The Situation when calling consiruct(t, 0, m) is that the setup State jmt has
already been chosen. Remarkable to note, how easy it is to take initial inventory
into account. This is due to the backward oriented scheme. Evaluating

mm-<CDj{t+1) + djt,ma.x{0,nrj- ^ qjr}\ (10)
l r=c+i J

makes sure that for an item j no rnore than the net requirement nrj is produced.
Note, cumulating the production quantities is an easy task which caa be done
very efficientlv. Given the cumulative demand CDjmit, production quantities
qjmtt can be det-ermined with respect to capacity constraints. Afterwards, we
simply update the d^-matrix to take internal demand into account and proceed.
Table 5 describes how to evaluate construct(t, 1, -J-calls.

6

choose jrnt S •
if (.jmt # 0)

V:i^t := 1.
if {jmt 7^ Jm (t+1))

} *?>(< + !) I
Wl J*

CD3mt[t + \) '•= CDj,ni(t +1) - +1)-

for t E "P-

if (m = M)
constructft, 0,1).

eise
construct(t} 1, m -f 1).

Table 5: Evaluating consfruct(t, 1, •) where 1 < t < T

These lines dosely relate to what is defined in Table 4. DifFerences li e in the
fact thafc a setup State is chosen for the end of period t but items are scheduled
in period t + 1. For Computing production quantities we must therefore take into
account that item jm(t+i) may already be scheduled in period t + 1.

Note, the cornbination of what is given in Tables 4 and 5 enforces that every
item jmt that is produced at the beginning of a period t + 1 is also produced at
the end of period t if there is any positive cumulative demand left. In preliminary
tests not reported here we also found out that if c apacity is exhausted, i.e. if
RCm(t+1) = 0 and CDjMi+l)(kt+1) > 0, it is best to choose jmt = im(t+i) in
Table 5. In other words, lots are not split.1 The reason why this turned out to
be advantageous is that the setup state tends to flicker otherwise and thus the
total surn of setup costs tends to be high. In the rest of this chapter we assume
that lots are not split.

Turning back to the specification of the construct-procediire, it remains to
explain what shall happen when the first period is reached. Table 6 describes
how to schedule those items in period 1 for which the machines are initially set
up for. In contrast to what is given in Table 5 the initial setup state is known
and thus needs not to be chosen.

A call to construct(0, 0, •) terminates the construction phase. What is left is
1 It is worth to be stressed that lo t Splitting could be e asiiy integrated by not c hecking for

exhausted capacity. All meth ods based on the describ ed construction scheine may thus be
adapted for lot Splitting with minor modifications only.

7

tf(jmO £ 3ml)
?j™oi := rnin{CDJ™o*'7T^}-

if (m = Af)
construct(0, 0,1).

eise
construct(0, l,m+ 1).

Table 6: Evaluating construct(0,1, •)

a final feasibility test where
T

nr3 = 52^ (11)
t=i

must hold for j = 1,..., J for being a feasible Solution. Eventually, the objective
function value of a feasible Solution can be determined.

To terrninate a run of the construction procedure before period X is reached,
we can perform a capacity check te sting

t+At
^2 52/ PiidjiCDj(t.+At) > 5* 2 CmT (12)

which must be false for m = 1,.... M if period £-f At is under concern and thus,
when true, indicates an infeasible Solution (if there is no initial inventory).

It. should be emphasized again, fehat the construction scheme described above
does not necessarily generate an optimum Solution. It does not even guarantee
to find a feasible Solution if there exists one.

4 Genetic Algorithms

A key element of what is assumed to be intelligence is the capability to learn
from past experience. Especiallv when things are done repeatedly, intelligent
behavior would avoid doing a mistake more than once and would prefer making
advantageous decisions again.

For optimization a class of today's most populär heuristic approaches is
known as genetic algorithms. Due to its widespread use and the vast amount
of literature dealing with genetic algorithms, e.g. [2, 9, 16, 25, 28, 29, 33], a
comprehensive review of research activities is doomed to failure. Thus, we stick
to an outline of the fundamental ideas.

The adjective genetic reveals the roots of these algorithms. Adapting the
evolution strategy from natural life forms, the basic idea is to start with a set

8

of (feasible) solutions and to compute a set of new s olutions by a pplying some
well-defined Operators on the old ones. Then, some solutions (new and/or old
ones) are selected to form a new se t with which another Iteration is started,
and so on until some stopping criterion is met. Solutions are represented by
sets of attributes, and different solutions are represented by different collections
of attribute values. The decision which solutions are dismissed and which are
taken over to form a new starting point for the next iteration is made on the
basis of a priority rule.

Most authors use notions from evolution theory in this context. The set of
solutions an iteration Starts with is usually called the parent population while
the set of new s olutions is the child population. Each iteration represents a
generation. A rnember of a population is an individual or a chromosome, thus
we have parent and child individuals (or chromosomes). The attribute values
that belong to an individual are called genes. This coins the name of this type
of algorithm. The Operations for procreating new individuals are applications
of so-called genetic Operators. Attäched to each individual is a fitness value
which functions as a priority rule to select the parent individuals for the next
generation. This mechanism should simulate what is observed in natura where
only the Attest s urvive and the weak die, good characteristics are inherited and
bad ones become extinct.

Up to here, there are many degrees of freedom and thus genetic algorithms are
often called meta-heuristics. To develop a method based on the ideas of genetic
algorithms for a specific problern, we need to provide some more ingredients.
First, we need to specify how to encode a Solution of the problem as a set of
attributes. Furthermore, a definition of how to compute fitness values needs to
be given. Also, we need to define genetic Operators. Eventually, the way to select
a new parent population must. be described. Of minor importance, but not to
forget, is a stopping criterion, e.g. a total number of ite rations, set by the user.
The population sizes denoted as PARENT for the size of the parent population
and CHILD for the number of child individuals, respectively, are specified by
the user, too.

4.1 Problem Representation

Ttaditionallv, a Solution of a given problem is represented as a bitstring, i.e. a
sequence of binary values [9]. For many problems this gives not a very compact
representation of solutions. So, in some applications genes are chosen to be
more cornplex rather than being binary-valued only. See for instance [5] for an
application to Job shop scheduling where a gene represents a rule to select a job
for scheduling.

For representing a Solution of t he PLSP, we have chosen a two-dimensional
matrix with M rows and T columns. Since we consider a population of matrices,

9

Iet each matrix be identified by a unique labe!

k e {1,... f P ARE NT, P ARE NT + 1,..., PARENT + CHILD}. (13)

An entry in row m and column t in the matrix k is a rule € 0 for selecting
the Setup state for machine m at the end of period t out of the set Zmt. Here,
0 denotes the set of all selection rules which is to be defined. To get things
straight, recall that the matrices are the individuals now, and that selection
rules are genes.

4.2 Setup State Selection Rules

Though the rules to select setup stat.es is a detail that can be skipped on first
reading, it certainly is a significant aspect- for the Performance of the construction
scheme. IVe will now suggest several rules for selecting a setup State for machine
m at the end of period t where m= 1 and i = 1,..., T. In the following,
let us assume that whenever ties are to be broken, we fa vor items with a low
index by arbitration. If 2mt = 0 g iven the dehnitions below, then we choose the
dummy item jmt = 0.
Rule : Maximum Holding Costs

Consider those items for which there is demand in period t + 1, i.e.

{j<=JWCD,-(,+i)>0} (14)

T
n{j€Jm\nrj- X) 9jr> 0}.

r=t+l

When setting machine m up for an item i,

22 hJCDj(t+i)

are the holding costs that are charged to keep the remaining items in inventory.
Note, this is just an estimate which assumes that all CDt-(t+l) items can indeed
be scheduled in period t +1. If this is not true, item i would incur holding costs,
too. To keep these costs low we should choose an item causing high holding
costs, i.e.

jm.t ^ i ^ E Tmt [hiCZh(£+I) — max r * (15)
L jsZyn t J

Rule $2: Minimum Setup Costs
In Order to keep setup costs low, we choose

jmt — 3m(t +l)i (16)

10

if jm(t+1) ^ 0 and > 0. If this does not hold, we c onsider the items
with demand in period t or period t + 1, i.e.

Im« ^ Ü E Jm I CD,(«+1) + «ij« > 0} (17)

T
n{y € Jm 1 nrj - 53 ?JV > 0},

r=£+1

and choose the one with lowest setup costs. That is,

jmt £ | i £ %mt | si — {Sj} f •
f jEZm, J

Rule O3: Intro duce Idle Periods
To enforce keeping a machine idle we allow to choose items for which there

is demand in periods prior to t. In this case,

Im« U E Jm I C%,+i) + E > 0} (19)
T —1

T
0{i € Jm | nrj - J3 qjT > 0}

T=t + 1

is the itern set under consideration. For j € 1-mt we determine

. d£/ / t + 1 _ ' if ^D3(t + l) > 0
\ max{r | 1 < r < t A djT > 0} , other wise

which is the latest period less than or equal to t -f 1 with demand for item j.
Since idle periods bear the risk to lead to an infeasible result, idle periods should
not last too long. Hence, we choose

jmt € j« € Tmt | U = max {tj}|. (21)

Rule 04: Maximum Depth
To avoid infeasibility, it might be a good idea to choose i tems with a large

depth. Thus, taking the items given by (17) into account, the setup State should
be chosen using

\ i 6 Xmt | depi = max {depj} > - (22)
l jelmt J

jmt 6 | i & Z,

Rule $5: Maximum Number of Predecessors
Quite similar to rule 64 i s the rule proposed now. This time, we t ake the

total number of prede cessors into account. Again, consider the items defined by
(17) and choose

jmt e lielmt 1 Vi |= max {| Vj |} } .
L j€Zmi J

(23)

11

Rule 0$: Maximum Demand for Capacity
Determining the capacity utilization of the bottleneck machine also tends

to avoid infeasible solutions. Focusing on the items defined in (17) again, we
compute

capj dä (CDj(t+i) + djt) (24)

max

for j € Xmt.- Afterwards, we choose

jmt e lielmt | capi = max {capj} > . (25)
f J

Rule $7: Pure Random Choice
Last, jmt can be chosen out of the set given by (17) with a pure random

choice to give items with no extreme characteristic a chance to be selected.
In summary, we have

Bd= {01,02=03,04,05,06,07} (26)

and sets of items Tmt to choose arriong as defined above. This is what is used in
our tests. Note, following our argurnents for choosing composite priority values
for the regret based rnethod in Section 6.3, we have in troduced both, rules that
tend to give cheap production plans and rules that tend to give feasible plans.
In contrast to a composite criterion, the rules given here need Iess e ffort to be
evaluated. All rules but 67 ope rate deterministically.

4.3 Fitness Values

To compute a fitness value fitnessk for an individual k we c all the construction
scheme using the selection rules 0mtk 6 0 for choosing the setup states. Let
fitnessk be the objective function value of the production plan that is construc-
ted when rnatrix k is used (and let fitnessk = 00, if no feasible plan was found
using matrix k). It should be clear that due to this definition searching for an
individual with utmost fitness in fact means to look for an individual with lowest
possible fitness value.

4.4 Genetic Operators

In order to generale a new parent population out of an old one, we employ three
different Operators. First, a so-called crossover combines two parent individuals
to procreate one child individual. Second, mutation introduces non-determinism

12

into the inheritance. And t hird, a selection Alters the new parent population out
of the last generation. The details of these Operators shall be given now.

The crossover operates on two matrices, say k\ and A2 where &i ,&2 E
PARENT}. Applying a crossover then cuts the two matrices into four pieces
each and puts some of the submatrices together yieiding a new matrix A3 6
{PARENT 4-1,..PARENT 4- CHILD) of the same size. For doing so,
suppose that two numbers rn^ € M} and 4S € T} are given.
More formally, the resulting matrix A3 is defined as

for m = 1,..., M and t = 1,..., T.
The mutation stochastically changes someentries of a matrix A. Let MUTA

TION £ [0,1] be a (small) probability to change an entry. Furthermore,
suppose probmt € [0,1] is drawn at random with uniform distribution where
m = 1,..., M and t = 1,..., T. Then, the mutation of m atrix A is defined as

for m = 1,.... M and t = 1,..., T, where 0mt is drawn at random out of 0 with
uniform distribution.

The selection of PARENT individuals which form a new parent population
is done deterministically choosing those matrices with the highest fitness vai-
ues. Ties are Bröken randomly. The effort to find these is the effort of sorting
PARENT4-CHILD objects. Without loss of generality, we assume the selected
individuals be relabeled having unique indices k = X,..., PARENT.

4.5 The Working Principle in a Nutshell

Initially, the genetic algorithrn Starts with a parent population that is randomly
generated bv dra wing a rule x!)mtk for each position (m,t) in the matrix A with
uniform distribution out of the set of rules 0 where m — 1,..., M, t = 1,..., T,
and A = 1...., PARENT. Then. we compute the fitness values for the matrices
A = 1,..., PARENT. To do so, we ha ve to execute the construction scheine a
total of PARENT times.

Afterwards, a population of C HILD individuals with unique indices A =
PARENT4- 1, • -PARENT4- CHILD is generated using the crossover Op
eration. The two parent individuals that are combined to create a new child
individual k are randomly chosen out of PARENT} with uniform dis
tribution. The values rhk and 4 used as parameters for the crossover Op
erators are integral random numbers which are drawn out of [1,..., M] and

(27)

drntk , if probmt > MUTATION
@m.t , othe rwise (28)

13

respectively, with uniform distribution. Mutation of all child in-
dividuals is done next. Eventually, the fitness values for the matrices k =
P ARE NT +1,..., PARBNT+CHILD are computed executing the construc-
tion scheme CHILD times. Finally. the parent population for the next gen-
eration is selected having (new) indices k = 1,PARENT. The process is
repeated starting with the generation of new child individuals until some stopping
criterion is rnet.

The production plan with the lowest objective function value found during
all iterations is given as a result.

4.6 An Example

Consider the gozinto-structure given in Figure 1 and the parameters in Table 7.
Furthermore, assume M = 2, rn\ = m4 = 1, ==?%3 = 2, and Cu = Cgg = 15
for t = Let us suppose that S2 < 53 holds. For illustrating the
construction of a production plan we do not need any Information about holding
costs. Furthermore, assume a matrix k filled with selection rules as given in

A p rotocol of running the construction scheme is shown in Table 9. Figure 2
depicts a plan that could be the outcome when completing the protocol.

Some interesting points shall be explained in a little rnore detail.
Step 2: The set of it ems X^T to choose among is empty. Hence, we choose

the dummy item 0.
Step 5: Item 1 is chosen again, because lot Splitting is not allowed.

Table 8.

Figure 1: A Gozinto-Structure with Four Items

14

djt t — 1 ..5 6 7 8 9 10 P.7 V3 Vjo IjO
j = 1 20 20 1 1 1 0
j = 2 1 1 1 0
3 = 3 1 1 0 0
j = 4 5 1 1 0 0

Table 7: Parameters of the Example

lU f = 1 2 3 4 5 6 7 8 9 10
rn =1 07 04 0i 07 03 05 06 03 05 04
m = 2 02 06 04 0i 07 03 05 01 02 07

Table 8: A Matrix of Setup State Selection Rules

Step 6: Itern 2 is chosen due to the selection rule ^29k = 02 which chooses
the item with the lowest. setup costs. Remember, we have assumed s2 < 53.

Step .9: To set machine 1 up at the end of peri od 8, we use t he selection rule
8k = 03 which may introduce idle periods. In the item set Tis we hav e both,

item 1 and item 4, because there is dernand for item 1 in period 7 and demand
for itern 4 in period 8. Since idle time is kept as short as possible, item 4 is
chosen.

Step 10: The selection rule to be employed is t?28* = 01 which chooses the
item with the maximum holding costs. For item 3 being the only one with
cumulative dernand, Z28 = {3} and no other item is contained in the item set.
As one can see, the capacity of machine 2 in period 9 is used up by item 2 which
was scheduled in Step 8. Thus, itern 3 cannot be scheduled in period 9, but in
period 8 (Step 12).

5 Experimental Evaluation

To test the Performance, the genetic algorithxri is applied to the small PLSP-
MM-instances which are defined in [22]. All tests are conducted running a
C-implementation on a Pentium Computer with 120 MHz. This test-bed con-
sists of a collection of 1 ,080 instances with J = 5 and T — 10 whic h is small
enough to be solved optimally with Standard solvers and large enough to con-
struct non-trivial instances. A füll f actorial experimental design is used where
different levels of the followin g parameters are combined: M (the number of m a
chine), C (the complexity of the gozinto-structure), (Tmacro, Tmicr0, Tidu) (the
demand pattern), COSTRATIO (the ratio of setup and holding costs), and U

15

Step (t, At,m) djt Cß>(t+At) 7mt jmt 9jm*(t+At)
1 (10,1,1) (20,0,0,0) (0,0,0,0) {1} 1
2 (10,1,2) (20,0,0,0) (0,0,0,0) 0 0
3 (10,0,1) (20,0,0,0) (20,0,0,0) 9lT = 15
4 (10,0,2) (20,0,0,0) (5,0,0,0)
5 (9,1,1) (0,15,15,0) (5,0,0,0) {1} 1
6 (9,1,2) (0,15,15,0) (5,0,0,0) {2,3) 2 q2r = 0
7 (9,0,1) (0,15,15,0) (5,0,0,0) = 5
8 (9,0,2) (0,15,15,0) (0,15,15,0) 929 = 15
9 (8,1,1) (0,5,5,20) (0,0,15,0) {1,4} 4 949 = 0
lü (8,1,2) (0,5,5,20) (0,0,15,0) {3} 3

0
 II 1

11 (8,0,1) (0,5,5,20) (0,0,15,20) 948 = 15
12 (8,0,2) (0,5,5,20) (0,5,20,5) 938 = 15
13 (7,1,1) (20,0,0,15) (0,5,5,5) {4} 4
14 (7,1,2) (20,0,0,15) (0,5,5,5) {3} 3

Table 9: A Protocol of the Construction S eherne of the Genetic Algorithm

(the capacity utilization). For each parameter level co mbination, 10 instances
are generated using common random numbers. It turned out that 1,033 out of
the 1,080 instances have a feasible Solution. For more details about the test-bed,
we refer to [22]. The mutation probability is chosen to be 0.1. The method Para
meters are chosen as PARENT = 20, CHILD = 10, and 98 being the number
of generations. This gives a total of 1,000 runs of the construction phase.

To find out which parameter levels have what effect on the Performance, we
aggregate the data. Table 10 focuses on the number of machines. As we can
see, additional machines increase the average deviation from the Optimum, but
reduce the infeasibility ratio. In both cases, the effect is remarkably large. Only
small changes are measured for the run-time Performance.

M = 1 M~ 2
Average Deviation 17.72 21.90
Infeasibility Ratio 20.39 14.67
Average Run-Time 0.08 0.11

Table 10: The Impact of the Number of Machines on the Performance

Table 11 examines the impact of the gozinto-strueture complexity on the
Performance. It becornes clear that a high complexity has a drastic negative
effect on both, the average deviation from the optimum as well as the infeasibility

16

m

4 1 4 1

3 2 2 3 2
123456789 10 '

Figure 2: A Possible Outcome of th e Run in the Protocol

ratio. The run-time Performance is not affected.

C = 0.2 II o

bo

Average Deviation 18.21 21.80
Infeasibility Ratio 13.71 21.46
Average Run-Time 0.10 0.10

Table 11: The Irnpact of the Gozinto-Structure Complexity on the Performance

For different- dernand patterns, Table 12 shows that many positive entries
in the demand matrix have a dramatic effect on the average deviation from the
Optimum and on the infeasibility ratio. The results turn out to be very poor.
The run-time Performance, however, does not change.

(3~rnacr(>, Tmicroi Tau) =
(10,1,5) (5,2,2) (1,10,0)

Average Deviation 36.68 22.19 6.69
Infeasibility Ratio 32.19 18.21 2.51
Average Run-Time 0.10 0.10 0.10

Table 12: The Irnpact of the Demand Pattern on the Performance

An investigation of different cost structures is performed in Table 13. Clearly,
this parameter level has a significant irnpact on the average deviation from the
Optimum. While low s etup costs give the worse result, high setup costs give
only second best results. The best average deviation is reached for a balanced
cost structure. The infeasibility ratio and the run-time Performance are almost
unaffected bv d ifferent costs.

17

COSTRATIO =
5 150 900

Average Deviation 26.20 15.78 17.66
Infeasibility Ratio 17.39 17.68 17.49
Average Run-Time 0.10 0.10 0.10

Table 13: The Impact. of the Cost Structure on the Performance

The capacity utilization is studied in Table 14. The best average deviation
from the optimum is gained for a high utilization. However, the infeasibility
ratio grows quickly when the capacity utilization is increased. For U = 70, four
out of ten instances cannot be solved. Once more, the run—time Perfo rmance
remains stable.

U = 30 17 = 50 U - 70
Average Deviation 19.75 21.41 17.60
Infeasibility Ratio 0.00 13.13 42.01
Average Run-Time 0.10 0.10 0.10

Table 14: The Impact of the Capacity Utilization on the Performance

In sumrnary, the genetic algorithm is unable to solve 181 out of the 1,033
instances in the test-bed. This corresponds to an overall infeasibility ratio of
17.52%. The average run-time is 0.10 CPU-seconds. The average deviation
from the optimum objective function value is 19.89%.

The rrjost irnportant method pararneters of the genetic algorithm are the sizes
of the parent and the child population. Hence, Table 15 gives some insight into
what happens if these values are varied. All o ther pararneters are kept as they
are.

PARENT CHILD Average
Deviation

Infeasibility
Ratio

Average
Run-Time

20 10 19.89 17.52 0.10
200 10 113.73 0.87 0.26
200 100 14.75 8.71 1.10

Table 15: The Irnpact of the Population Sizes on the Performance

Jt tui'jis out that increasing the population sizes reduces the infeasibility ratio

18

remarkably. Only nine out of 1,033 instances are left unresolved when we choose
PARENT = 200 and CHILD = 10. With respect to the average deviation from
the Optimum, it becornes clear that the parent population should not be chosen
too large in cornparison with the child population. Since the genetic algorithm
works very fast, it is no problem to evaluate a large number of calls to the
construction seherne. For 98 generations where the parent population contains
200 individuals and each child population contains 100 individuals we have to
execute the construction scheme 10,000 times which can be done in round about
one second.

To prove that the genetic algorithm indeed makes a contribution, we brie fly
report about the results of a disjunetive arc based tabu search which has recently
been described in [21] where the single-machine case is considered only. A
straightforward extension to multiple machines is presented in [22]. Applying
the tabu search procedure to the same test-bed and evaluating 1,000 produetion
plans gives the results provided in Table 16.

Average
Deviation

Infeasibility
Ratio

Average
Run-Time

Disjunetive Arc Based
Tabu Search 17.59 35.62 0.50

Table 16: Results of the Disjunetive Arc Based Tabu Search

We can see that the genetic algorithm clearly dominates the tabu search
procedure in terms of run-time Performance and in terms of the ability to find
feasible solutions. The average deviation from the Optimum result is slightly
better for the tabu search if both procedures evaluate the same number of p ro
duetion plans. But, since the genetic algorithm is much faster, it offers the
opportunity to evaluate more plans within the same computation time which
may reduce the deviation from the Optimum. For a fair cornparison we run the
genetic algorithm with PARENT = 20 and CHILD = 10 again evaluating
500 generations this time. Also, we used the parameters PARENT = 200 and
CHILD = 100 evaluating 40 generations. In both cases the average run-time
of the genetic algorithm is 0.48 which is alrriost the same computational effort
that is spent on the tabu search. In the former case, the average deviation from
the optimum result is 19.89 which means that nothing changes for such a small
population. In the latter case the average deviation increases to 30.65 which is
rather poor. Hence, we cannot state that the genetic algorithm dominates the
tabu search with respect. to the deviation from the optimum result.

19

6 Conclusion

We have presented a mixed-integer programming model for multi-level, multi-
machine lot sizing and scheduling. A h euristic for this problem has been intro-
duced using the idea of gene tic algorithms. Rather than working on bitstrings,
the proposed genetic algorithm operates on t.wo-dimensional matrices with non-
binary entries. The genetic algorithm was proven to dominate a recently pro
posed tabu search method in terms of run-time Performance and in terms of
the ability to find feasible solutions. In terms of the average deviation from
the optimurn objective function value. the genetic algorithm gives competitive
results.

Acknowledgement

This work was done with partial support from the DFG-project Dr 170/4-1.
We are indebted t.o Andr eas Drexl for his insightful comments.

References

[1] BITRAN, G .R., MATSUO, H-, (1986), Approximation Formulationsfor the
Single-Product Capacitated Lot Size Problem, Operations Research, Vol.
34, pp. 63-74

[2] DAVIS, L., (ed.), (1991), Handbook of Genetic Algorithms, New York, van
Nostrand Reinhold

[3] DIABY, M ., BAHL, H.C., KARWAN, M.H., ZIONTS, S. , (1992), A Lagran-
gean Relaxation Approach for Very-Large-Scale Capacitated Lot-Sizing,
Management Science, Vol. 38, pp. 1329-1340

[4] DINKELBACH, W.. (1964), Zum Problem der Produktionsplanung in Ein-
und Mehrproduktunternehmen, Würzburg, Physica, 2nd edition

[5] DORNDORF, U.. PESCH, E., (1995), Evolution Based Learning in a Job
Shop Scheduling Environment, Computers &, Operations Research, Vol. 22,
pp. 25-40

[6] DREXL, A., HAASE, K-, (1995), Proportional Lotsizing and Scheduling,
International Journal of Production Economics, Vol. 40, pp. 73-87

[7] EPPEN, G.D., MARTIN, R.K., (1987), Solving Multi-Item Capacitated
Lot-Sizing Problems Using Variable Redeflation, Operations Research,
Vol. 35, pp. 832-848

[8] FLEISCHMANN, B.. (1990), The Discrete Lot-Sizing and Scheduling Prob
lem. European Journal of Operational Research, Vol. 44, pp. 337-348

20

[9] GOLDBERG, D.E., (1989), Genetic Algorithms in Search, Optimization,
and Machine Leaming, Reading, Addison-Wesley

[10] GÜNTHER. H.O.. (1987), Flanning Lot Sizes and Capacity Requirements
in a Single-Stage Production System, European Journal of Operational Re
search, Vol. 31. pp. *223-231

[11] HAASE, K., (1993), Capacitated Lot-Sizing with Linked Production Quant-
ities of A djacent Periods, Working Paper No. 334, University of Kiel

[12] HAASE, K., (1994), Lotsizing and Scheduling for Production Flanning,
Lecture Notes in Economics and Mathernatical Systems, Vol. 408, Berlin,
Springer

[13] HAASE, K.. KIMMS, A ., (1996). Lot Sizing and Scheduling with Sequence
Dependent Setup Costs and Times and Efficient Rescheduling Opportunit-
ies, Working Paper No. 393, University of Kiel

[14] HINDI, K .S.. (1996), Solvingthe CLSP by aTabu Search Heuristic, Journal
of the Operational Research Society, Vol. 47, pp. 151-161

[15] VAN HOE SEL, S ., KOLEN, A ., (1994), A Linear Description of the Discrete
Lot-Sizing and Scheduling Problem, European Journal of Operational Re
search, Vol. 75, pp. 342-353

[16] HOLLAND, .1.1 1., (1975), A daptation in Natural and Artificial Systems, Ann
Arbov, The University of Mic higan Press

[17] KARMARKAR, U.S., KEKRE, S., KEKRE, S., (1987), The Deterministic
Lotsizing Problem with Startup and Reservation Costs, Operations Re
search, Vol. 35. pp. 389-398

[18] KARMARKAR, U.S., SCHRÄGE, L., (1985), The Deterministic Dynamic
Product Cycling Problem, Operations Research, Vol. 33, pp. 326-345

[19] KIMMS, A., (1994), Optimal Multi-Level Lot Sizing and Scheduling with
Dedicated Machines, Working Paper No. 351, University of Kiel

[20] KIMMS. A ., (1996), Multi-Level, Single-Machine Lot Sizing and Scheduling
(with Initial Inventory), European Journal of Operational Research, Vol. 89,
pp. 86-99

[21] KIMMS, A.. (1996). Competitive Methods for Multi-Level Lot Sizing and
Scheduling: Tabu Search and Randornized Regrets, International Journal
of P roduction Research, Vol. 34, pp. 2279-2298

[22] KIMMS. A.. (1996), Multi-Level Lot Sizing and Scheduling — Methods
for Capacitated. Dynamic, and Deterministic Models, Ph.D. dissertation,
University of Kiel

21

[23] KIRCA, Ö., KOKTEN, M., (1994), A New Heuristic Approach for the
Multi-Item Dynamic Lot Sizing Problem, European Journal of Operational
Research. Vol. 75. pp. 332-341

[24] LASDON. L.S.. TEIUUNG, R .C., (1971), An Efficient Algorithmfor Multi-
Item Scheduling. Operations Research, Vol. 19, pp. 946-969

[25] LIEPINS. G.E., HILLIARD, MR., (1989)", Genetic Algorithms: Foundations
and Applications. Annais of Operations Research, Vol. 21, pp. 31-58

[26] LOTFI, V., CHEN, W.H., (1991), An Optimal Algorithm for the Multi-
Item Capacitated Production Flanning Problem, European Journal of Op
erational Research, Vol. 52, pp. 179-193

[27] MAES, J. VAN WASSENHOVE, L.N., (1988), Multi-Item Single-Level Ca
pacitated Dynamic Lot-Sizing Heuristics: A General Review, Journal of
the Operat ional Research Society. Vol. 39, pp. 991-1004

[28] MÜHLENHEIN, II.. GORGES-SCHLEUTER, M., KRÄMER, O ., (1988), Evol
ution Algorithms in Combinatorial Optimization, Parallel Computing, Vol.
7, pp. 65-85

[29] REEVES, C.. (1993), Modern Heuristic Techniques for Combinatorial Prob
lems, Oxford, Blackwell

[30] SAL OMON, M., KROON, L.G., KUIK, R., VAN WASSENHOVE, L.N.,
(1991). Sorne Extensions of the Discrete Lotsizing and Scheduling Prob
lem, Management Science, Vol. 37, pp. 801-812

[31] TEMPELMEIER, II.. DERSTROFF, M., (1996), A L agrangean-Based Heur
istic for Dynamic Multi-Level Multi-Item Constrained Lotsizing with Setup
Times. Management Science, Vol. 42, pp. 738-757

[32] TEMPELMEIER, 11., HELBER, S., (1994), A Heuristic for Dynamic Multi-
Item Multi-Level Capacitated Lotsizing for General Product Structures,
European Journal of Operational Research, Vol. 75, pp . 296-311

[33] WHITLEY, D-, (1993), Foundations of Genetic Algorithms 2, Morgan
Kaufmann

22

