~ A Service of
’. b Leibniz-Informationszentrum

.j B I l I Wirtschaft
) o o o Leibniz Information Centre
Make YOUT PUbllCCltlonS VZSlble. h for Economics ' '

Kimms, Alf

Working Paper — Digitized Version
A genetic algorithm for multi-level, multi-machine lot
sizing and scheduling

Manuskripte aus den Instituten flr Betriebswirtschaftslehre der Universitat Kiel, No. 415

Provided in Cooperation with:
Christian-Albrechts-University of Kiel, Institute of Business Administration

Suggested Citation: Kimms, Alf (1996) : A genetic algorithm for multi-level, multi-machine lot sizing
and scheduling, Manuskripte aus den Instituten fir Betriebswirtschaftslehre der Universitat Kiel,
No. 415, Universitat Kiel, Institut fir Betriebswirtschaftslehre, Kiel

This Version is available at:
https://hdl.handle.net/10419/149046

Standard-Nutzungsbedingungen: Terms of use:

Die Dokumente auf EconStor durfen zu eigenen wissenschaftlichen Documents in EconStor may be saved and copied for your personal
Zwecken und zum Privatgebrauch gespeichert und kopiert werden. and scholarly purposes.

Sie durfen die Dokumente nicht fiir 6ffentliche oder kommerzielle You are not to copy documents for public or commercial purposes, to
Zwecke vervielféltigen, 6ffentlich ausstellen, 6ffentlich zugénglich exhibit the documents publicly, to make them publicly available on the
machen, vertreiben oder anderweitig nutzen. internet, or to distribute or otherwise use the documents in public.
Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen If the documents have been made available under an Open Content
(insbesondere CC-Lizenzen) zur Verfiigung gestellt haben sollten, Licence (especially Creative Commons Licences), you may exercise
gelten abweichend von diesen Nutzungsbedingungen die in der dort further usage rights as specified in the indicated licence.

genannten Lizenz gewahrten Nutzungsrechte.

Mitglied der

WWW.ECONSTOR.EU é@“}

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/149046
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

Manuskripte
aus den
Instituten fUr Betriebswirtschaftslehre
der Universitat Kiel

No. 415 _

A Genetic Algorithm for Multi-Level,

Multi-Machine Lot Sizing and Scheduling

No. 415

A Genetic Algorithm for Multi-Level,
Multi-Machine Lot Sizing and Scheduling

A. Kimms

October 1996

Alf Kimms

Lehrstuhl fiir Produktion und Logistik, Institut fiir Betriebswirtschaftslehre,

Christian—Albrechts—Universitit zu Kiel, Olshausenstr. 40, 24118 Kiel, Germany

email: Kimms@bwl.uni-kiel.de '

URL: http://www wiso.uni-kiel.de/bwlinstitute/Prod
ftp://ftp.wiso.uni—kiel.de/pub/operations—research

Abstract

This contribution introduces a mixed-integer programming formula-
tion for the multi-level, multi-machine proporticnal lot sizing and schedul-
ing problem. |t also presents a genetic algorithm to solve that problem.
The efficiency of that algorithm is due to an encoding of solutions which
uses a two-dimensional matrix representation with non-binary entries
rather than a simple bitstring. A computational study reveals that the pro-
posed procedure works amazingly fast and competes with a tabu search
approach that has recently been published.

Keywords: Multi-level lot sizing, scheduling, genetic algorithms, PLSP

1 Introduction

The problem we are concerned about can be described as follows: Several items
are to be produced in order to meet some known (or estimated) dynamic demand
without backlogs and stockouts. Precedence relations among these iterns define
an acyclic gozinto—structure of the general type. In contrast to many authors
who allow demand for end items only, now, demand may occur for all items
including component parts. The finite planning horizon is subdivided into a
number of discrete time periods. Positive lead times are given due to techno-
logical restrictions such as cooling or transportation for instance. Furthermore,
itemns share common resources. Some (maybe all) of them are scarce. The capa-
cities may vary over time. Producing one item requires an item-specific amount
of the available capacity. All data are assumed to be deterministic.

Iterns which are produced in a period to meet some future demand must be
stored in inventory and thus cause item-specific holding costs. Most authors
assume that the holding costs for an item must be greater than or equal to the
sum of the holding costs for all immediate predecessors. They argue that holding
costs are mainly opportunity costs for capital which occurs no matter a compon-
ent part Is assembied or not. Two reasons persuade us to make no particular
assurnptions for holding costs. First, as it is usual in the chemical industry for
instance, keeping some component parts in storage may require ongoing addi-
tional effort such as cooling, heating, or shaking. While these parts need no
special treatment when processed, storing component parts might be more ex-
pensive than storing assembled items. Second, operations such as cutting tin
mats for instance make parts smalier and often easier to handle. The remaining
“waste” can often be sold as raw material for other manufacturing processes.
Hence, opportunity costs may decrease when component parts are assembled.
However. it should be made clear that the assumption of general holding costs
is the most unrestrictive one. All models and methods developed under this
assumption work for more restrictive cases as well.

Each item requires at least one resource for which a setup state has to be
taken into account. Production can only take place if a proper state is set

up. Setting a resource up for producing a particular item incurs item-specific
setup costs which are assurmed to be sequence independent. Setup times are not
considered. Once a certain setup action is performed, the setup state is kept
up until another setup changes the current state. Hence, same items which are
produced having some idle time in-between do not enforce more than one setup
action. To get things straight, note that some anthors use the word changeover
instead of setup in this context.

The most fundamental assumption here is that for each resource at most
one setup may occur within one period. Hence, at most two items sharing a
common resource for which a setup state exists may be produced per period.
Due to this assumnption, the problem is known as the proportional lot sizing and
scheduling problemn (PLSP) [6, 12, 22]. By choosing the length of each time
period appropriately small, the PLSP is a good approximation to a continuous
time axis. [t refines the well-known discrete lot sizing and scheduling problem
(DLSP) [4, 8, 15, 24, 30] as well as the continuocus setup lot sizing problem
(CSLP) [1, 18, 17]. Both assume that at most one item may be produced per
period. All three models could be classified as small bucket models since only
a few (one or two) items are produced per period. In contrast to this, the
well-known capacitated lot sizing problem (CLSP) [3, 7, 10, 14, 23, 26, 27)
represents a large bucket model since many items can be produced per period.
Remember, the CLSP does not include sequence decisions and is thus a much
“easier” problermn. An extension of the single-level CLSP with partial sequence
decisions can be found in [11]. In [13] a large bucket single-level lot sizing and
scheduling model is discussed.

A comprehensive review of the multi-level lot sizing literature is given in [22]
where it is shown that most authors do not take capacity restrictions into account
and that they make restrictive assumptions such as linear or assembly gozinto~
structures. If scarce capacities are considered, the work is mostly confined to
single-machine cases. The most general methods are described in [31, 32) where
the muiti-level CLSP is attacked.

The text is organized as follows: Section 2 gives a precise description of
the problem by means of a mixed-integer program. A generic construction
procedure is then presented in Section 3. Section 4 refines this procedure and
introduces a genetic algorithm, [n Section 5 a computational study is performed.
Finally, Section 6 summarizes the work.

2 Multi-Level PLSP with Multiple Machines

An important variant of the PLSP is the one with multiple machines (PLSP-
MM). Several resources (machines) are available and each item is produced on
an item-specific machine. This is to say that there is an unambiguous mapping
from iterus to machines. Of course, some items may share a common machine.
Special cases are the single-machine problem for which models and methods

are given in [20, 21], and the problem with dedicated machines where items do
not share a common machine. For the latter optimal solutions can be easily
computed with a lot~for-lot policy [19].

Let us first introduce some notation. In Table 1 the decision variables are
defined. Likewise, the parameters are explained in Table 2. Using this notation,
we are now able to present a MIP-model formulation.

Symbol Definition

1 Inventory for item j at the end of period %.

g5t Production quantity for item j in period £.

Zj Binary variable which indicates whether a setup for
item j occurs in period ¢ (z;, = 1} or not (x;; = 0).

Yit Binary variable which indicates whether machine m;

is set up for itemn 7 at the end of period ¢ {y;; = 1)
or not {y;; = 0).

Table 1: Decision Variables for the PLSP-MM

J T
minZZ(SJ‘Itjt + hj]jt))

j=11t=1
subject to
Lo = Loy + G50 — dju — > ajidie
€85
min{t+v; T}

2> S auer iiéiﬁ’_l ®)

iES; T=4 1

m=1,...,.M
dowsl L Tn 4)
FE€Tm , ,
j=1,...,J
Tjt Z Yje = Yie-1) 121.. T)
i=1,...,J
Pitit < Cmt(yie-1) + Yit) i: 1,...,T (6)
m=1....M
D B0 SCme T @
= Yoo
f=1,...,J
yje € {0,1} g::l. T 8)

Svmbol Definition

o4 “Gozinto” —factor. Its value is zero if 1tem 7 1s not an
immediate successor of item j. Otherwise, it is the
quantity of item j that is directly needed to
produce one item 1.

Cne Available capacity of machine m in period ¢.

dit External demand for item j in period ¢.

h; Non-negative holding cost for having one unit of
item j one period in inventory.

L Initial inventory for item j.

TIm Set of all items that share the machine m,

e Jn E {je{l,.. .0} | m =m}.

J Number of itemns.

M Number of machines.

™ Machine on which item 7 is produced.

i Capacity needs for producing one unit of item j.

55 Non-negative setup cost for item j.

S; Set, of immediate successors of item 7,

e & Y {ie 1, J}) au >0}

T Number of periods.

v Positive and integral lead time of item j.

Yic Unique initial setup state.

Table 2: Parameters for the PLSP-MM

L5ty gt 2t 20 f::ll,r.'.-..,’i{ (9)

The objective (1) is to minimize the sum of setup and holding costs. Equa-
tions (2) are the inventory balances. At the end of a period t we have in inventory
what was in there at the end of period ¢t — 1 plus what is produced minus ex-
ternal and internal demand. To fulfill internal demand we must respect positive
lead times. Restrictions (3) guarantee so. Constraints (4) make sure that the
setup state of wis uniquely defined at the end of each period. Those
periods in which a setup happens are spotted by (5). Note that . 1dle periods
may occur in order to save setup costs. Due to (6) production can only take
~ place if there is a proper setup state either at the beginning or at the end of
a particular period. Hence, at most two items can be manufactured on each
machine per period. Capacity constraints are formulated in (7). Since the right
hand side is a constant, overtimne is not available. (8) define the binary-valued
setup state variables, while (9} are simple non-negativity conditions. The reader
may convince himself that due to (5) in combination with (1) setup variables z;;

are indeed zero-one valued. Hence, non-negativity conditions are sufficient for
these. For letting inventory variables I;; be non-negative backlogging cannot
occur.

3 Construction Principles

There is a generic construction scheme that forms the basis of our heuristic.
It is a backward oriented procedure which schedules items period by period
starting with period T" and ending with period one. We choose here a recurrent
representation which enables us to develop the underlying ideas in a stepwise
fashion. Now, let us assume that construct(t, At,m) is the procedure to be
defined and t + At is the period and m is the machine under concern. Again,
At € {0.1} where At = 1 indicates that the setup state for machine m at the
beginning of period ¢ + 1 is to be fixed next and At = 0 indicates that we
already have chosen a setup state at the end of period . The symbol j,, will
denote the setup state for machine m at the end of period ¢. Assume j,; = 0
form=1,...,Mandt=1,...,7 initially.

Note, from the problem parameters we can easily derive P;, the set of the
irnmediate predecessors of item 7, and 731-, the set of all predecessors of item j.
Also, nr;, the net requirement of item j, and d;;, the internal demand for item
i that is directly or indirectly caused by producing one unit of item j, are easy
to compute. .

Before the construction mechanism starts, the decision variables y;; and g;,
are assigned zeroforj=1,...,/,m=1,...,M,and t = 1,...,7. Remember,
given the values for y;; and ¢;; the values for 2;; and Ij; are implicitly defined.
Furthermore, assume auxiliary variables a?jt and CDy; for j = 1,...,J and
¢t =1,...,T. The former ones represent the entries in the demand matrix and
thus are initialized with d;; = d;;. The latter ones stand for the cumulative future
demand for itern j which is not been met yet. As we will see, the cumulative
demand can be efficiently computed while moving on from peried to period,
For the sake of convenience we introduce CDjir41y =0 for j = 1,...,J. The
remaining capacity of machine m in period ¢ is denoted as RCp:. Initially,
RCopt =Cppform=1,.... Mandt=1,...,T.

The initial call is consiruct(T, 1,1) and initiates the fixing of setup states at
the end of period 7. Table 3 gives all the details.

The choice of j,r needs to be refined, but at this point we do not need any
further insight and suppose that the selection is done somehow. All we need to
know is that Zp,; € Jn U{0}form =1,..., M and t = 1,...,T is the set of
items among which items are chosen. Item 0 is a dummy item which will be
needed for some methods that will be discussed. We will return for a precise
discussion in subsequent sections. As one can see, once a setup state is chosen
for all machines at the end of period T, a call of construct(T,0, 1) is made. Table
4 provides a recipe of how to evaluate such calls.

choose jpr € Lt

if (jmr # 0)

YimrT = 1.
if (m=M)

construct(T, 0, 1).
else

construct(T,1,m + 1).

Table 3: Evaluating construct(T, 1,-)

fOl'_;" € Jm

CD; = min{CDj(Hl) + th;max{ﬂ, nry — EZ’___H_I qj,}}.

if (Fme # 0)

Ujmet += 1IN {CDjm,t, %%L}

CD.‘imtt = CDjmit = QGamat-

Rcmt = RCmt —pjm‘q_jm”,.

for i € Pj,,

if(t—vi >0andgj,.:>0)
dit—v,) = dit—v;) + Cijp Timet-

if (m = M)

construct(t—~1,1,1}.
else

construct(t,0,m+ 1)

Table 4: Evaluating construct(t;0,-) where 1 <t <T

The situation when calling construct{t, 0, m) is that the setup state j,,; has
already been chosen. Remarkable to note, how easy it is to take initial inventory
into account. This is due to the backward oriented scheme. Evaluating

T
rnin-{CDj(t+1)+ dj, max{0, nr; — Z qj,-}} (10)

r=t41

makes sure that for an itemn j no more than the net requirement nr; is produced.
Note, curnulating the production quantities is an easy task which can be done
very efficiently. Given the curmulative demand CDj .., production quantities
i ¢ can be determined with respect to capacity constraints. Afterwards, we
simply update the ermatrix to take internal demand into account and proceed.
Table 5 describes how to evaluate construct(t, 1,)—calls.

choose jint € Ims.
if (jm: # 0)
y.'jmin = l'
if (Jmt # Jm(t41))
qjmi(t"'l) = rﬂin CDjm.i(:+1)7
CDj,. 241y = CDj i (441) = Limalt+1)-
m(t+1) = RCn(t41) = DimeTjme(t41)-
for i € P,
if (t+ I-v>0 and g¢;,.,(e+1) > 4]
ditea1-v.) '= i(tt1vs) T Qijms Gma(t41)-

Rcmgt-b-l) }

Pime

if (m = M)
construct(t, 0, 1).
else
construct(t, 1, m+ 1).

Table 5: Evaluating construct(t,1,-) where 1 <t <T

These lines closely relate to what is defined in Table 4. Differences lie in the
fact that a setup state is chosen for the end of period 1 but items are scheduled
in period £41. For computing production quantities we must therefore take into
account that item j,(;41) may already be scheduled in period ¢ + 1.

Note, the combination of what is given in Tables 4 and 5 enforces that every
item j,n; that is produced at the beginning of a period t + 1 is also produced at
the end of period t if there is any positive cumulative demand left. In preliminary
tests not reported here we also found out that if capacity is exhausted, i.e. if
RCrt+1) = 0 and CDjmu.m(tH) > 0, it is best to choose jmt = Jm(t41) In
Table 5. In other words, lots are not split.! The reason why this turned out to
be advantageous is that the setup state tends to flicker otherwise and thus the
total surn of setup costs tends to be high. In the rest of this chapter we assume
that lots are not split.

Turning back to the specification of the construct-procedure, it remains to
explain what shall happen when the first period is reached. Table 6 describes
how to schedule those items in period 1 for which the machines are initially set
up for. In contrast to what is given in Table 5 the initial setup state is known
and thus needs not to be chosen.

A call to construct(0, 0, -) terminates the construction phase. What is left is

It is worth to be stressed that lot splitting could be easily integrated by not checking for
exhausted capacity. All methods based on the described construction scheme may thus be
adapted for lot splitting with minor modifications only.

if (Jmo # Jm1)
Qjml'l] == min {CDjmol . i—;-?—":‘-}
CDjn = CDj 1 — G-
if (m = M)
construct(0, 0, 1).
else
construct(G,1,m+ 1).

Table 6: Evaluating construct(0,1,)

a final feasibility test where
T
nry = Z 45t (11)
t=1

must hold for j = 1, ..., J for being a feasible-solution. Eventually, the objective
function value of a feasible solution can be determined.
To terminate a run of the construction procedure before period 1 is reached,

we can perform a capacity check testing

t+AL

Z Z 'piidj,'CDj(t+At) > Z Cmnr (12)
F€Tmie{P;u{j}InTu, r=1

which must be false form = 1, ..., M if period ¢+ At is under concern and thus,

when true, indicates an infeasible solution (if there is no initial inventory}.

It should be emphasized again, that the construction scheme described above
does not necessarily generate an optirnum solution. It does not even guarantee
to find a feasible solution if there exists one.

4 Genetic Algorithms

A key element of what is assumed to be intelligence is the capability to learn
from past experience. Especially when things are done repeatedly, intelligent
behavior would avoid doing a mistake more than once and would prefer making
advantageous decisions again.

For optimization a class of today’s most popular heuristic approaches is
known as genetic algorithms. Due to its widespread use and the vast amount
of literature dealing with genetic algorithms, e.g. [2, 9, 16, 25, 28, 29, 33], a
comprehensive review of research activities is doomed to failure. Thus, we stick
to an outline of the fundamental ideas.

The adjective genetic reveals the roots of these algorithms, Adapting the
evolution strategy from natural life forms, the basic idea is to start with a set

of (feasible) solutions and to compute a set of new solutions by applying some
well-defined operators on the old ones. Then, some solutions (new and/or old
ones) are selected to form a new set with which another iteration is started,
and so on until some stopping criterion is met. Solutions are represented by
sets of attributes, and different solutions are represented by different collections
of attribute values. The decision which solutions are dismissed and which are
taken over fo form a new starting point for the next iteration is made on the
basis of a priority rule.

Most authors use notions from evolution theory in this context. The set of
solutions an iteration starts with is usually called the parent population while
the set of new solutions is the child population. Each iteration represents a
generation. A member of a population is an individual or a chromosome, thus
we have parent and child individuals (or chromosomes). The atiribute values
that belong to an individual are called genes. This coins the name of this type
of algorithm. The operations for procreating new individuals are applications
of so-called genetic operators. Attached to each individual is a fitness value
which functions as a priority rule to select the parent individuals for the next
generation. This mechanism should simulate what is observed in nature where
only the fittest survive and the weak die, good characteristics are inherited and
bad ones become extinct.

Up to here, there are many degrees of freedom and thus genetic algorithms are
often called meta-heuristics. To develop a method based on the ideas of genetic
algorithms for a specific problem, we need to provide some more ingredients.
First, we need to specify how to encode a solution of the problem as a set of
attributes. Furthermore, a definition of how to compute fitness values needs to
be given. Also, we need to define genetic operators. Eventually, the way to select
a new parent population must be described. Of minor importance, but not to
forget, is a stopping criterion, e.g. a total number of iterations, set by the user.
The population sizes denoted as PARENT for the size of the parent population
and CHILD for the number of child individuals, respectively, are specified by
the user, too.

4.1 Problem Representation

Traditionally, a solution of a given problem is represented as a bitstring, 1.e. a
sequence of binary values [9]. For many problems this gives not a very compact
representation of solutions. So, in sorne applications genes are chosen to be
more complex rather than being binary-valued only. See for instance [5] for an
application to job shop scheduling where a gene represents a rule to select a job
for scheduling.

For representing a solution of the PLSP, we have chosen a two—dimensional
matrix with M rows and T" columns. Since we consider a population of matrices,

let each matrix be identified by a unique label
ke{l,..., PARENT,PARENT +1,...,PARENT + CHILD}. (13)

An entry in row m and column ¢ in the matrix k is a rule 9y € © for selecting
the setup state for machine m at the end of period ¢ out of the set Z,,,. Here,
© denotes the set of all selection rules which is to be defined. To get things
straight, recall that the matrices are the individuals now, and that selection
rules are genes.

4.2 Setup State Selection Rules

Though tlie rules to select setup states is a detail that can be skipped on first
reading, it certainly is a significant aspect for the performance of the construction
scheme. We will now suggest several rules for selecting a setup state for machine
m at the end of period t where m=1,...,M and¢t =1,...,T. In the following,
let us assume that whenever ties are to be broken, we favor items with a low
index by arbitration. If Z,,: = @ given the definitions below, then we choose the
dummy item jm; = 0.

Rule 8 : Maximum Holding Costs

Consider those items for which there is demand in period ¢ + 1, i.e.

de .
Tt & {§ € T | CDje41) > 0} (14)

T
{j € Tm [s — 37 g5, > 0}.
T=t+1

When setting machine m up for an item i,
> hiCDjeny
FE€Tm2\{i}

are the holding costs that are charged to keep the remaining items in inventory.
Note, this is just an estimate which assumes that all CD;(;41) items can indeed
be scheduled in period t+ 1. If this is not true, item 7 would incur holding costs,
too. To keep these costs low we should choose an item causing high holding
costs, l.e.

Jmt € {i € Lmne | hiC’D.'(g.H) = j??xt{hjCDj(t+l)}} . (15)

Rule 65 Minimum Setup Costs
In order to keep setup costs low, we choose

Jme = jm(t+1): (16)

10

if jm(e+1) # 0 and dj, ¢ > 0. If this does not hold, we consider the iters
with demand in period ¢ or period t + 1, i.e.

T & {j € T | CDjeany + dje > 0} (17)

T
{j € Tm {nr; = 3 a5r >0}
T=t+1
and choose the one with lowest setup costs. That is,
Jmt € {t €Zm: | 5 = min {Sj}}- (18)
JEImf

Rule 5. Introduce Idle Periods
To enforce keeping a machine idle we allow to choose items for which there

is demand in periods prior to . In this case,

d) LA™
Toi & {5 € T | CDjie41y + > dir > 0} (19)

T
N{j € Tm [nr; = 37 5= >0}
T=t+1

is the item set under consideration. For j € Z,,: we determine

15 def t+1 -) if CDj(t.{_l) >0 (20)
Y7 | max{r|1<r<tAdj, >0} ,otherwise

which is the latest period less than or equal to t + 1 with demand for item j.
Since idle periods bear the risk to lead to an infeasible result, idle periods should
not last too long. Hence, we choose

o € {1 €T 11 = max (1)} (21)
Jezmt

Rule 8,: Maximum Depth

To avoid infeasibility, it might be a good idea to choose items with a large
depth. Thus, taking the items given by (17} into account, the setup state should
be chosen using .

Jme € {7 €T | dep; = lé}:?,x {depj}} . (22)
J mt
Rule 65: Maxirnum Number of Predecessors
Quite similar to rule 64 is the rule proposed now. This time, we take the

total number of predecessors intc account. Again, consider the items defined by
(17) and choose

s € {z eImt(|7 |= max (1 1}}. (23)

11

Rule 85: Maximum Demand for Capacity
Determining the capacity utilization of the bottleneck machine also tends

to avoid infeasible solutions. Focusing on the items defined in (17) again, we
compute

cap; % (CDje4ny + th) (24)

mr

DUl iy, Pt
-ma.x{zse(gfthn ,Jm - !mE{l,...,M}}

r=1

for j € Z,,:. Afterwards, we choose
Jmt € {7 € Lpne | capi = jrglgx {capj}} 3 (25)

Rule 67: Pure Random Choice
Last, jm: can be chosen out of the set given by (17) with a pure random
choice to give items with no extreme characteristic a chance to be selected.
In sumrmary, we have
def
© = {8,04,04,04,05,06,07} (26)
and sets of itemns Ty, to choose among as defined above. This is what is used in
our tests. Note, following our arguments for choosing composite priority values
for the regret based method in Section 6.3, we have introduced both, rules that
tend to give cheap production plans and rules that tend to give feasible plans.
In contrast to a composite criterion, the rules given here need less effort to be
evaluated. All rules but 8; operate deterministically.

4.3 Fitness Values

To compute a fitness value fitness; for an individual k we call the construction
scheme using the selection rules 9z € © for choosing the setup states. Let
Fitnessy be the objective function value of the production plan that is construc-
ted when matrix k is used (and let fitness, = oo, if no feasible plan was found
using matrix k). It should be clear that due to this definition searching for an
individual with utrnost fitness in fact means to lock for an individual with lowest
possible fitness value.

4.4 Genetic Operators

In order to generate a new parent population out of an old one, we employ three
different operators. First, a so—called crossover combines two parent individuals
to procreaie one child individual. Second, mutation introduces non-determinism

12

into the inheritance. And third, a selection filters the new parent population out
of the last generation. The details of these operators shall be given now.

The crossover operates on two matrices, say k1 and ka2 where ky, k2 € {1,.. .,
PARENT?Y}. Applying a crossover then cuts the two matrices into four pieces
each and puts some of the submatrices together yielding a new matrix k3 €
{PARENT +1,..., PARENT 4+ CHILD} of the same size. For doing so,
suppose that two numbers 7ng, € {1,..., M} and #x, € {1,...,T} are given.
More formaily, the resulting matrix k3 is defined as

Yonrk, if < iy, and £ < T,

def Vi, if m <y, and t > ¥
Pontr, = ¢« 07 = e) 27
ek Ymte, 1 m > 1y, and t < 2, (27)

Uik, ifm >y, andt > &,

form=1,.... Mandi=1,...,T.

The mutation stochastically changes some entries of a matrix k. Let MUTA—
TION € [0,1] be a (small) probability to change an entry. Furthermore,
suppose probm: € [0,1] is drawn at random with uniform distribution where
m=1,...,Mandt=1,...,T. Then, the mutation of matrix k is defined as

Fppue, if proby,, > MUTATION
97 _ Yintk 1 pProdme 2
Vanuse = { f: , otherwise (28)
form=1....Mandt=1,...,T, where 6+ is drawn at random out of © with

uniform distribution.

The selection of PARENT individuals which form a new parent population
is done deterministically choosing those matrices with the highest fitness val-
ues. Ties are broken randomly. The effort to find these is the effort of sorting
PARENT+CHILD objects. Without loss of generality, we assumne the selected
individuals be relabeled having unique indices k= 1,..., PARENT.

4.5 The Working Principle in a Nutshell

initially, the genetic algorithm starts with a parent population that is randomly
generated by drawing a rule ¥, for each position (m,t) in the matrix k with

uniform distribution out of the set of rules @ wherem=1,...,M,t=1,...,T,
andk=1,..., PARENT. Then, we compute the fitness values for the matrices
k=1,..,PARENT. To do so, we have to execute the construction scheme a

total of PARENT times.

Afterwards, a population of CHILD individuals with unique indices k =
PARENT +1,...,PARENT + CHILD is generated using the crossover op-
eration. The two parent individuals that are combined to create a new child
individual k are randomly chosen out of {1,..., PARENT} with uniform dis-
tribution. The values rax and f; used as parameters for the crossover op-
erators are integral random numbers which are drawn out of [1,..., M] and

13

[1,...,7], respectively, with uniform distribution. Mutation of all child in-
dividuals is done next. Eventually, the fitness values for the matrices & =
PARENT +1,..., PARENT+CHILD are compuied executing the construc-
tion scheme CHILD times. Finally, the parent population for the next gen-
eration is selected having (new) indices ¥ = 1,..., PARENT. The process is
repeated starting with the generation of new child individuals until some stopping
criterion is met, '

The production plan with the lowest objective function value found during
all iterations is given as a result.

4.6 An Example

Consider the gozinto-structure given in Figure 1 and the parameters in Table 7.
Furthermore, assume M = 2, m; =mg =1, my =mz = 2, and Cy; = Cy = 15
for ¢t = 1,...,10. Let us suppose that sz < s3 holds. For illustrating the
construction of a production plan we do not need any information about holding
costs. Furthermore, assume a matrix & filled with selection rules as given in

Table 8.

TN
Cpo

Figure 1: A Gozinto-Structure with Four Items

A protocol of running the construction scheme is shown in Table 9. Figure 2
depicts a plan that could be the outcome when completing the protocol.

Some interesting points shall be explained in a little more detail.

Step 2: The set of items Z9r to choose among is empty. Hence, we choose
the dummy item 0.

Step 5: Iter 1 is chosen again, because lot splitting is not allowed.

14

djf, t=1 ... 5 8 7 8 9 10 1] Y50 Ijo
j=1 20 201 1 1 0
Jj= 1 1 1 0
J= 1 1 0 0
i =4 5 1 1 9 0

Table 7: Parameters of the Example

Ve t=1 2 3 4 5 6 7 & 9 10
m=1 97 6'4 91 97 93) 95 96 93 95 64
m=2 92 95 94 9] 97 33 95 31 32 97

Table 8: A Matrix of Setup State Selection Rules

Step 6: Item 2 is chosen due to the selection rule ¥29x = #2 which chooses
the item with the lowest setup costs. Remember, we have assumed s; < s3.

Step 9: To set machine 1 up at the end of period 8, we use the selection rule
¥1ak = 04 which may introduce idle periods. In the item set I3 we have both,
item 1 and item 4, because there is dernand for item I in period 7 and demand
for itern 4 in period 8. Since idle time is kept as short as possible, item 4 is
chosen.

Step 10: The selection rule to be employed is d2gx = 8; which chooses the
item with the maximum holding costs. For item 3 being the only one with
curnulative demand, Z23 = {3} and no other item is contained in the item set.
As one can see, the capacity of machine 2 in period § is used up by item 2 which
was scheduled in Step 8. Thus, itern 3 cannot be scheduled in period 9, but in
period 8 (Step 12).

5 Experimental Evaluation

To test the performance, the genetic algorithm is applied to the small PLSP-
MM-instances which are defined in [22]. All tests are conducted running a
C-implementation on a Pentium computer with 120 MHz. This test-bed con-
sists of a collection of 1,080 instances with J = 5 and T = 10 which is small
enough to be solved optimally with standard solvers and large enough to con-
struct non~-trivial instances. A full factorial experimental design is used where
different levels of the following parameters are combined: M (the nurnber of ma-
chine), C (the complexity of the gozinto—structure), (Tinacro, Imicro, Tidle) (the
demand pattern), COSTRATIO (the ratio of setup and holding costs), and U

15

Step (&, At,m) dj: CDjirny Imt Jmt Qim(t+at)

T (oLl (20,000) (0,000} {1F 1

3 (10,1,2) (20,000) (0,000 © 0

3 (100,1) (20,00,0) (20,0,0,0) @ =15
4 (1002) (20,0,0,0) (5,0,0,0)
5

(9,1,1} (0,15,15,0) {5,00,0) {1} 1
6 (9,1,2) (0,15,15.0) (5,0,0,0) {23} 2 qr=290
7 {9,0,1) (0,15,15,0) (5,0,0,0) qig =5
8 (9,0,2) (0,15,15,0) (0,15,15,0) g2e = 15
9 {8,1,1) (0,55,20) (0,0,15,0) {1,4} 4 @qQs=0
0 (81.,2) (05520 (0,0,150) {3} 3 ga=0
11 (801) (0,5,520) (0,0,15,20) gss = 15
12 (8,0,2) (0,5,5,20) (0,5,20,5) gz =15

13 (7,1,1) (20,0,0,15) (0,555 {4} 4
14 (7,1,2) (20,0,0,15) (0,555) {3} 3

Table 9: A Protocol of the Construction Scherne of the Genetic Algorithm

(the capacity utilization). For each parameter level combination, 10 instances
are generated using common random numbers. It turned out that 1,033 out of
the 1,080 instances have a feasible solution. For more details about the test—bed,
we refer to [22]. The mutation probability is chosen to be 0.1. The method para-
meters are chosen as PARENT = 20, CHILD = 10, and 98 being the number
of generations. This gives a total of 1,000 runs of the construction phase.

To find out which parameter levels have what effect on the performance, we
aggregate the data. Table 10 focuses on the number of machines. As we can
see, additional machines increase the average deviation from the optimum, but
reduce the infeasibility ratio. In both cases, the effect is remarkably large. Only
small changes are measured for the run~time performance.

M=1 M=2
Average Deviation 17.72 21.90
Infeasibility Ratio 20.39 14.67
Average Run—Time (.08 0.11

Table 10: The Impact of the Number of Machines on the Performance

Table 11 examines the impact of the gozinto—structure complexity on the
performance. It becomnes clear that a high complexity has a drastic negative
effect on both, the average deviation from the optimum as well as the infeasibility

16

3

Figure 2: A Possible Outcome of the Run in the Protocol

ratio. The run~time performance is not affected.

=02 C=08
Average Deviation 18.21 21.80
Infeasibility Ratio 13.71 21.46
Average Run-Time 0.10 0.10

Table 11: The Impact of the Gozinto~Structure Complexity on the Performance

For different demand patterns, Table 12 shows that many positive entries
in the demand matrix have a dramatic effect on the average deviation from the
optimum and on the infeasibility ratioc. The results turn out to be very poor.
The run-time performance, however, does not change.

(Tmcxcro: Tmicro: fE’cﬁe) =

(10,1,5) (5,2,2) (1,10,0)
Average Deviation 36.68 22.19 6.69
Infeasibility Ratio 32.19 18.21 2.51
Average Run-Time 0.10 0.10 0.10

Table 12: The [mpact of the Demand Pattern on the Performance

An investigation of different cost structures is performed in Table 13. Clearly,
this parameter level has a significant impact on the average deviation from the
optimum. While low setup costs give the worse result, high setup costs give
only second best results. The best average deviation is reached for a balanced
cost structure. The infeasibility ratio and the run-time performance are almost
unaffected by different costs.

17

COSTRATIO =

5 150 900
Average Deviation 26.20 15.78 17.66
Infeasibility Ratio 17.39 17.68 17.49
Average Run—Time 0.10 010 0.10

Table 13: The Impact of the Cost Structure on the Performance

The capacity utilization is studied in Table 14. The best average deviation
from the optimum is gained for a high utilization. However, the infeasibility
ratio grows quickly when the capacity utilization is increased. For U = 70, four
out of ten instances cannot be solved. Once more, the run—time performance
remains stable.

U=30 U=50 U="10
Average Deviation 19.75 21.41 17.60
Infeasibility Ratio 0.00 13.13 42.01
Average Run-Time 0.10 0.10 0.10

Table 14: The Impact of the Capacity Utilization on the Performance

In summary, the genetic algorithm is unable to solve 181 out of the 1,033
instances in the test—-bed. This corresponds to ap overall infeasibility ratio of
17.52%. The average run—time is 0.10 CPU-seconds. The average deviation
from the optimurm objective function value is 19.89%.

The most important method pararmeters of the genetic algorithm are the sizes
of the parent and the child population. Hence, Table 15 gives some insight into
what happens if these values are varied. All other parameters are kept as they
are.

PARENT CHILD Average Infeasibility Average

Deviation Ratio Run-Time
20 10 19.89 17.52 0.10
200 10 113.73 0.87 0.26
200 100 14.75 8.71 1.10

Table 15: The Impact of the Population Sizes on the Performance

It turns out that increasing the population sizes reduces the infeasibility ratio

18

remarkably. Only nine out of 1,033 instances are left unresolved when we choose
PARENT = 200 and CHILD = 10. With respect to the average deviation from
the optimurn, it becornes clear that the parent population should not be chosen
too large in comparison with the child population. Since the genetic algorithm
works very fast, it is no problem to evaluate a large number of calls to the
construction scherme. For 98 generations where the parent population contains
200 individuals and each child population contains 100 individuals we have to
execute the construction scheme 10,000 times which can be done in round about
one second.

To prove that the genetic algorithm indeed makes a contribution, we briefly
report about the results of a disjunctive arc based tabu search which has recently
been described in [21] where the single-machine case is considered only. A
straightforward extension to multiple machines is presented in [22]. Applying
the tabu search procedure to the same test-bed and evaluating 1,000 production
plans gives the results provided in Table 16.

Average Infeasibility Average
Deviation Ratio Run-Time

Disjunctive Arc Based
Tabu Search 17.59 35.62 0.50

Table 16: Results of the Disjunctive Arc Based Tabu Search

We can see that the genetic algorithm clearly dominates the tabu search
procedure in terms of run-time performance and in terms of the ability to find
feasible solutions. The average deviation from the optimum result is slightly
better for the tabu search if both procedures evaluate the same number of pro-
duction plans. But, since the genetic algorithm is much faster, it offers the
opportunity to evaluate more plans within the same computation time which
may reduce the deviation from the optirmum. For a fair comparison we run the
genetic algorithm with PARENT = 20 and CHILD = 10 again evaluating
500 generations this time. Also, we used the parameters PARENT = 200 and
CHILD = 100 evaluating 40 generations. In both cases the average run—time
of the genetic algorithm is 0.48 which is almiost the same computational effort
that is spent on the tabu search. In the former case, the average deviation from
the optimurn result is 19.89 which means that nothing changes for such a small
population. In the latter case the average deviation increases to 30.65 which is
rather poor. Hence, we cannot state that the genstic algorithm dominates the
tabu search with respect to the deviation from the optimum result.

19

6 Conclusion

We have presented a mixed—-integer programming model for multi-level, multi-
machine lot sizing and scheduling. A heuristic for this problem has been intro-
duced using the idea of genetic algorithms. Rather than working on bitstrings,
the proposed genetic algorithm operates on two—dimensional matrices with non-
binary entries. The genetic algorithm was proven to dominate a recently pro-
posed tabu search method in terms of run—time performance and in terms of
the ability to find feasible solutions. In terms of the average deviation from
the optimumn objective function value, the genetic algorithm gives competitive

results.

Acknowledgement

This work was done with partial support from the DFG-project Dr 170/4-1.
We are indebted to Andreas Drex! for his insightful comments.

References

[1) Bitran, G.R., MaTsuo, H., (1986), Approximation Formulations for the
Single-Product Capacitated Lot Size Problem, Operations Research, Vol.

34, pp. 63-74

[2] Davis, L., (ed.}, (1991), Handbook of Genetic Algorithms, New York, van
Nostrand Reinhold

[3] DiaBY, M., Banr, H.C., Karwan, M.H., ZI1oNTs, S., (1992), A Lagran-
gean Relaxation Approach for Very-Large—Scale Capacitated Lot~Sizing,
Management Science, Vol. 38, pp. 1329-1340

[4] DINKELBACH, W., (1964), Zum Problem der Produktionsplanung in Ein-
und Mehrproduktunternehmen, Wiirzburg, Physica, 2nd edition

(5] DornNpORF, U., PESCH, E., (1995), Evolution Based Learning in a Job
Shop Scheduling Environment, Computers & Operations Research, Vol. 22,

pp- 25640

[6] DrEXL, A., Haase, K., (1995), Proportional Lotsizing and Scheduling,
International Journal of Production Economics, Vol. 40, pp. 73-87

[71 ErPEN, G.D., MarTIN, R.K., (1987), Solving Multi-Item Capacitated
Lot—Sizing Probleins Using Variable Redefinition, Operations Research,
Vol. 33, pp. 832-848 '

{8] FLEIscHMANN, B.. (1990), The Discrete Lot-Sizing and Scheduling Prob-
fem, European Journal of Operational Research, Vol. 44, pp. 337-348

20

[9] GoLpBERG, D.E., (1989), Genetic Algorithms in Search, Optimization,
and Machine Learning, Reading, Addison-Wesley

[10] GUNTHER. [.0O.. (1987), Planning Lot Sizes and Capacity Requirements
in a Single-Stage ’roduction Systern, European Journal of Operational Re-
search, Vol. 31, pp. 223-231

[11] Haasg, K., (1993), Capacitated Lot—Sizing with Linked Production Quant-
ities of Adjacent Periods, Working Paper No. 334, University of Kiel

{12] Haase, K., (1994), Lotsizing and Scheduling for Production Planning,
Lecture Notes in Economics and Mathematical Systems, Vol. 408, Berlin,
Springer

[13] Haase, K., Kimms, A., (1996), Lot Sizing and Scheduling with Sequence

Dependent Setup Costs and Times and Efficient Rescheduling Opportunit-
les, Working Paper No. 393, University of Kiel

[14] HinpI, K.5.. (1996), Solving the CLSP by a Tabu Search Heuristic, Journal
of the Operational Research Society, Vol. 47, pp. 151-161

[15] vaN HoBseL, S.. KoLEN, A., (1994), A Linear Description of the Discrete
Lot-Sizing and Scheduling Problem, European Journal of Operational Re-
search, Vol. 75, pp. 342-353

(16) HorLanp, J.H., (1975), Adaptation in Natural and Artificial Systems, Ann
Arbor, The University of Michigan Press

[17] KarmaRKAR, U.S., KEKRE, S., KEKRE, S., {1987), The Deterministic
Lotsizing Problem with Startup and Reservation Costs, Operations Re-
search. Vol. 35, pp. 389-598

(18] KARMARKAR, U.S., SCHRAGE, L., (1985), The Deterministic Dynamic
Product Cycling Problem, Operations Research, Vol. 33, pp. 326-345

[19] Kimms, A., (1994), Optimal Multi-Level Lot Sizing and Scheduling with
Dedicated Machines, Working Paper No. 351, University of Kiel

[20) Kimms, A., (1996), Multi-Level, Single-Machine Lot Sizing and Scheduling
(with Initial Inventory), European Journal of Operational Research, Vol. 89,
pp- 86-99

[21] Kmmms. A.. (1996}, Competitive Methods for Multi-Level Lot Sizing and
Scheduling: Tabu Search and Randomized Regrets, International Journal
of Production Research, Vol. 34, pp. 2279-2298

[22] Kimms. AL (1996), Multi~Level Lot Sizing and Scheduling — Methods
for Capacitated. Dypamic, and Deterministic Models, Ph.D. dissertation,
University of Kiel

21

[23] Kirca, O., KOKTEN, M., (1994), A New Heuristic Approach for the
Multi-Itern Dynamic Lot Sizing Problem, European Journal of Operational
Research. Vol. 75, pp. 332-341

[24] Laspoxn, L.S.. TeriuNG, R.C., (1971), An Efficient Algorithm for Multi-
Itern Scheduling. Operations Research, Vol. 19, pp. 946-969

[25]) Lierins, G.E., HiLLIARD, M.R., (1989), Genetic Algorithms: Foundations
and Applications, Annals of Operations Research, Vol. 21, pp. 31-58

[26] Lorr1, V., CHEN, W.H., (1991), An Optimal Algorithm for the Multi-
Itern Capacitated Production Planning Problem, European Journal of Op-
erational Research, Vol. 52, pp. 179-193

[27) MaEs, J, vaN WassENHOVE, L.N., (1988), Multi-Item Single-Level Ca-
pacitated Dyuamic Lot-Sizing Heuristics: A General Review, Journal of
the Operational Research Society, Vol. 39, pp. 991-1004

(28] MUHLENBEIN, [.. GORGES—SCHLEUTER, M., KRAMER, O., (1988}, Evol-
ution Algorithrms in Combinatorial Optimization, Parallel Computing, Vol.
7, pp. H55-8

[29] REEVES, C.. (1993), Modern Heuristic Techniques for Combinatorial Prob-
lerns, Oxford, Blackwell

[30] SaLomon, M., Kroon, L.G., Kuik, R., VAN WASSENHOVE, L.N.,
{1991), Some Extensions of the Discrete Lotsizing and Scheduling Prob-
lem, Management Science, Vol. 37, pp. 801-812

[31] TEMPELMEIER, [, DERSTROFF, M., (1996), A Lagrangean—Based Heur-
istic for Dynamic Multi-Level Multi-Item Constrained Lotsizing with Setup
Tirmes, Managermieut Science, Vol. 42, pp. 738-757

[32] TempeLMEIER, ., HELBER, S., (1994), A Heuristic for Dynamic Multi—
Item Multi-Level Capacitated Lotsizing for General Product Structures,
European .Journal of Operational Research, Vol. 75, pp. 296-311

[33] WarTLEY, D., (1993), Foundations of Genetic Algorithms 2, Morgan
Kaufmann

22

