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Abstract 
Where Standard MlP-solvers fail to compute optimu m objective func-

tion values for certain MlP-model formulations, lower bounds may be used 
as a point of refe rence for evaiuating heuristics. In this paper, w e compute 
lower bounds for the multi-level proportional lot sizing and scheduling 
Problem with multiple machin es (PLSP -MM). Four approaches are com-
pared: Solving LP-relaxations of tw o different model f ormulations, solving 
a relaxed MlP-model formulat ion optim ally, and solving a Lagrangean re-
laxation. 

Keywords: Multi-level lot sizing, scheduling, lower bo unds, PLSP 

1 Introduction 

The problem we are focussing at, can be described as follows: Several items are 
to be produced in order to meet some known (or estimated) dynamic demand 
without backlogs and stockouts. Precedence relations among these items dehne 
an acyclic gozinto-structure of the general type. In contrast to many authors 
who allow demand for end items only, now, demand may occur for all items 
including component parts. The finite planning horizon is subdivided into a 
number of discrete time periods. Positive lead times are given due to techno-
logical restrictions such as cooling or transportation for instance. Furthermore, 
items share common resources. Some (maybe all) of them are scarce. The capa-
cities may vary over time. Producing one item requires an item-specific amount 
of the available capacity. All data are assumed to be deterministic. 

Items which are produced in a period to meet some future demand must be 
stored in inventory and thus cause item-specific holding costs. Most authors 
assume that the holding costs for an item must be greater than or equal to the 
sum of the holding costs for all immediate predecessors. They argue that holding 
costs are rnainly opportunity costs for capital which occurs no matter a compon
ent part. is assembled or not. Two reasons persuade us to make no particular 
assumptions for holding costs. First, as it. is usual in the chemical industry for 
instance, keeping some component parts in storage may require ongoing addi-
tional eflfort such as cooling, heating, or shaking. While these parts need no 
special treatment when processed, storing component parts might be more ex-
pensive than storing assembled items. Second, Operations such as cutting tin 
mats for instance make parts smaller and often easier to handle. The remaining 
"waste" can often be sold as raw material for other manufacturing processes. 
Hence, opportunity costs may decrease when component parts are assembled. 
However, it should be made clear that the assumption of genera l holding costs 
is the most unrestrictive one. All models and methods developed under this 
assumption work for more restrictive cases as well. 

Each item requires one resource for which a setup state has to be taken into 
account. Production can only t.ake place if a proper state is set up. Setting 
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a resource up for producing a particular item incurs item-specific setup costs 
which are assumed to be sequence independent. Setup times are not considered. 
Once a certain setup action is performed, the setup State is kept up until another 
setup changes the current State. Hence, same items which are produced having 
some idle time in-between do not enforce more than one setup action. To get 
things straight, note that some authors use the word changeover instead of setup 
in this context. 

The most fundamental assurnption here is that for each resource at most 
one setup may occur within one period. Hence, at most two items sharing a 
common resource for which a setup state exists may be produced per period. 
Due to this assurnption, the problem is known as the proportional lot sizing and 
scheduling problem (PLSP) [4, 12, 23]. By choosing the length of each time 
period appropriately small, the PLSP is a good approximation to a continuous 
time axis. It refines the well-known discrete lot sizing and scheduling problem 
(DLSP) [3, 8, 17, 25, 31] as well as the continuous setup lot sizing problem 
(CSLP) [1, 18, 19]. Both assume that at most one item may be produced per 
period. All three models could be classified as small bücket models since only 
a few (one or two) items are produced per period. In contrast to this, the 
well-known capacitated lot sizing problem (CLSP) [2, 5, 10, 16, 24, 28, 29] 
represents a large bücket model since many items can be produced per period. 
Remember, the CLSP does not include sequence decisions and is thus a much 
"easier" problem. An e xtension of the single-level CLSP with partial sequence 
decisions can be found in [11]. In [14] a large bücket single-level lot sizing and 
scheduling model is discussed. 

A comprehensive review of the multi-level lot sizing literature is given in [23] 
where it is shown that most authors do not take capacity restrictions into account 
and that they make restrictive assumptions such as linear or assembly gozinto-
structures. If scarce capacities are considered, the work is mostly confined to 
single-machine cases. The most general methods are described in [35, 36] where 
the multi-level CLSP is attacked. 

The text is organized as follows: Section 2 gives a MlP-model formulation of 
the PLSP-MM. Solving the LP-relaxation of a PLSP-MM-model optimally is 
a straightforward idea. Hence, Section 3 deals with this approach and discusses 
a network reformulation of the model. Another way to get lower bounds is to 
ignore some of the constraints and to solve the remaining problem optimally. 
This path is followed in Section 4 where a B&B-procedure is used to attack 
the uncapacitated, multi-level, multi-machine lot sizing and scheduling problem. 
Note, solving an uncapacitated lot sizing and scheduling problem is far more than 
just finding a value less than or equal to the Optimum objective function value 
of a PLSP-MM~instance, or lower bound for short. It also provides a Solution 
for the uncapacitated problem which may appear in distribution networks and 
supply chams for instance [26, 27, 32]. On the basis of this, Section 5 introduces 
a method to solve a Lagrangean relaxation of the capacity constraints. Finally, 
Section 6 summarizes the lower bounds obtained. 
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2 Multi-Level PLSP with Multiple Machines 

An important variant of the PLSP is the one with multiple machines (PLSP-
MM). Several resources (machines) are available and each i tem is produced on 
an item-specific machine. This is to say that there is an unambiguous mapping 
from items to machines. Of course, some items may share a common machine. 
Special cases are the single-machine problem for which models and methods are 
given in [21, 22], an d the problem with dedicated machines where items do not 
share a common machine. For the latter optimal Solutions can be easily computed 
with a lot-for-lot policy [20]. Heuristics for the PLSP-MM are described in [23]. 

Let us first introduce some notation. In Table 1 the decision variables are 
defined. Likewise, the parameters are explained in Table 2. From these Para
meters, we ca n easily derive Sj the set of all successors and Vj the set of all 
predecessors, respectively, of item j which will be needed in later sections. Us-
ing this notation, we are now able to present a MlP-model formulation. 

Symbol Definition 
Ijt Inventory for item j at the end of p eriod t. 
qjt Production quantity for i tem j in period t. 
Xjt Binary variable which indicates whether a setup for 

item j occurs in period t (Xjt = 1) or not (xjt = 0). 
yjt Binary variable which indicates whether machine rrij 

is set up for item j at the end of p eriod t (yjt = 1) 
or not (yjt = 0). 

Table 1: Decision Variables for the PLSP-MM 

J T 
+ (1) 

j=1t=l 
subject to 

ht = + Qjt - djt - ̂ 2 a3iqit t~ i' V ^ 
ieSj 

min {t+vj,T} 

J2 aiiqiT t = 0,'.. .,'T — 1 
leSj r=t+I 

j€Jn 

. j 1,...,«/ 
xjt > Vjt — Vj(t-1) t = lt ..,T 



Symbol Definition 
dji "Gozinto"-factor. Its vaiue is zero if item i is not an 

immediate successor of item j. Otherwise, it is the 
quantity of it em j that is directly needed to 
produce one item i. 

Cmt Available capacity of machine m in period t. 
djt External demand for item j in period t. 
h.j Non-negative Holding cost for having one unit of 

item j one period in inventory. 
Ijo Initial inventory for item j. 
Jm Set of all items that share the machine m, 

i.e. Jm d= {j e J} | rrij = m}. 
J Number of items. 
M Number of machines. 
rrij Machine on which item j is produced. 
pj Capacity needs for producing one unit of item j. 
üj Non-negative setup cost for item j. 
Sj Set of immediate successors of item j, 

i.e.J, ^ {« 6 >0}. 
T Number of periods. 
vj Positive and integral lead time of item j. 
yjo Unique initial setup State. 

Table 2: Parameters for the PLSP-MM 

PjQjt < Cm.t(yj(t-1) + yjt) , _ i ' V 

E El ' T (?) 
j€Jm 

3 = 1,-
t = 1?.. -,T 
m = 1, 
t = 1,.. 

3 - !>• ..,J 
t = 1,.. •T 
j = 1,. 
t = 1,.. .,T 

wte{°, i) («) 

>0 t = l' 'T (^) 

The objective (1) i s to minimize the sum of setup and Holding costs. Equa-
tions (2) are the inventory balances. At the end of a period t we have in inventory 
what was in there at the end of p eriod t — 1 plus what is produced minus ex
ternal and internal demand. To fulfill internal demand we must respect positive 
lead times. Resfcrictions (3) guarantee so. Constraints (4) make sure that the 
setup state of each machine is uniquely defined at the end of each period. Those 
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periods in which a setup happens are spotted by (5). Note that idle periods 
may occur in order to save setup costs. Due to (6) production can only take 
place if there is a proper setup State either .at the beginning or at the end of 
a particular period. Hence, at most two items can be manufactured on each 
machine per period. Capacity constraints are formulated in (7). Since the right 
hand side is a constant, overtime is not available. (8) dehne the binary-valued 
setup st.ate variables, while (9) are simple non-negativity conditions. The reader 
may convince himself that due to (5) in combination with (1) setup variables Xjt 

are indeed zero-one valued. Hence, non-negativity conditions are sufficient for 
these. For letting inventory variables Ijt be non-negative backlogging cannot 
occur. 

3 Network Representation 

Some researchers have introduced network representations for lot sizing problems 
to derive "tighter" reformulations, i.e. new m odels where the LP-relaxation of 
an instance has an Optimum objective function value that is greater than the 
optimum objective function value of the LP-relaxations of the straightforward 
model formulation [5, 30, 33, 34]. 

3.1 A Simple Plant Location Representation 

For the multi-level CLSP, a computational study in [33] reveals that a simple 
plant location representation adapted from [30] gives th e same lower bounds as 
a shortest route representation adapted from [5]. 

In here, we thus confine our focus of attention to a simple plant location 
representation of the PLSP-MM. Table 3 gives a new decision variable where 
the computation of th e gross demand is defined as: 

Table 3: A New Decision Variable for the PLSP-MM Network Representation 

All o ther notation is as defined in Section 2. 

Symbol Definition 
ZjtT Fraction of the gross demand d^L for item j 

produced in period t where Zjtr E [0, !]• 
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J T 
mm 

j=it~\ 
subject to 

in ^2^(sjZjt + hjIjt) t11) 

Ijt= Jj(t-i) + E Zjtrtij?L djt t=\,...,T 

- E «ü E ̂ r4r4L 
iesj r=t 

min{t+vj,T} T j = 1, . . J 
u.> E E »E-»^ o» 

ie5, r=«+i 

j6 Jrn 

> yjt - {- . . 

j - 1,..J 
zjtr <yj(t-\) + yjt <=i,...,r (16) 

r = T 

jeJm r=t 

j>.<i <•«> 
r=l 

/ju^>0 i = 1,r (20) 

j = 1,..., J 
%jtT >0 * = 1,.. .,X (21) 

r = T 

To get this model formulation we simply replaced the decision variables qjt in 
the PLSP-MM model given in Section 2 with ET=t zjtrd^L. Furthermore, we 
added the constraints (18) which reflect the fact that the new decision variable 
represents a fraction of gross demand. Noteworthy to say that Er=i zjrt = 1 
for j = 1,..., J and t = 1,..., T is not valid in the presence of initial inventory. 
This, by th e wav, allows us to simplify the constraints (6) now stated as (16). 
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3.2 Experimental Evaluation 

In a computational study we compare the LP-relaxation of the original PLSP-
model with the LP-relaxation of the simple plant location model for the PLSP. As 
a test-bed we use the small PLSP-instances given in [23]. This test-bed consists 
of a total of 1,033 instances for which a feasible Solution exists. These instances 
were generated using a füll factorial experimental design where five pa rameters 
are systematically varied: U (the capacity utilization), M (the number of ma-
chines), C (t he gozinto-structure complexity as defined in [23]), COSTRATIO 
(the ratio of s etup and holding costs), and (Xmacro,Tmicro,Ti£tfe) (the demand 
pattern). For all these instances we have J — 5 and T = 10 which is small 
enough to compute Optimum Solutions and large enough to give non-trivial in
stances. Our measure of Per formance is the so-called integrality gap. For each 
instance this deviation is computed as 

deviation d= 100 ̂ (22) 

where LB is the lower bound determined by means of the LP-relaxation and 
OPT is the Optimum objective function value of the PLSP-instance. Note, a 
deviation close to zero is desired. 

To ease an analysis of these results we aggre gate the data. Table 4 reveals 
the impact of the parameter M and provides the average integrality gap. Appar-
ently, increasing the number of machines reduces the deviation from the optimum 
results decidedly. This matches a former result given in [20] where it was shown 
that, if M = J which i s the maximum number of machines in a multi-machine 
setting, the problem of optimizing the PLSP-MIP-model formulation reduces to 
be an LP-problem. 

M = 1 M = 2 
PLSP-Model -55.49 -40.96 
Simple Plant Location Model -47.70 -37.30 

Table 4: The Impact of the Number of Machines on the Integrality Gap 

Whether or not the complexity of the gozinto-structure plays a role can 
be read in Table 5. Though the impact of the complexity is not dramatic, it 
seems that gozinto-structures with a high complexity give an average gap that 
is slightly closer for th e original PLSP-model formulation. When solving a plant 
location model, gozinto-structure complexity has almost no effect. 

In Table 6 we see what happens to the lower bound if t he demand pattern 
changes. While for the original PLSP-model a sparsely-filled demand matrix 
gives the best result, for the plant location model a demand matrix with many 
non-zeroes turns out to be advantageous on average. The original PLSP-model 
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C — 0.2 C= 0.8 
PLSP-Model -49.48 -46.88 
Simple Plant Location Model -42.68 -42.29 

Table 5: The Impact of the Gozinto-Structure Complexity on the Integrality 
Gap 

{Tmacri > 7 Tmicrof II ES 

(10,1,5) (5,2,2) (1,10,0) 
PLSP-Model -48.52 -51.72 -44.71 
Simple Plant Location Model -40.47 -44.43 -42.71 

Table 6: The Impact of the Demand Pattern on the Integrality Gap 

seems to be m ore sensitive to different demand patterns, because the variance 
of the average results is greater than for the simple plant location modal. 

The ratio of se tup and holding costs significantly affects the quality of the 
lower bounds as can be seen in Table 7. Low setup costs result in small integrality 
gaps for both, the original PLSP-model and the simple plant location model. 
The higher the setup costs are, the greater the gap. The explanation for this 
phenomenon is that in an LP-relaxation only a small fraction of the actual setup 
costs are charged. If setup costs are low, the optimum objective function value 
of a PLSP-instance mainiy is a sum of holding costs. If setup costs are large, 
the objective function value in large parts is a sum of setup costs. Hence, LP-
relaxations perform better when setup costs are low. However, even if setup costs 
would be zero the LP-relaxation would not necessarily give a zero integrality 
gap. This is, because in a Solution of the LP-relaxation the setup State of a 
machine is no longer uniquely defined, by definition. As a consequence, more 
than two items may be produced per period which leads to infeasible production 
plans and to an underestimation of tot al holding costs. 

COSTRATIO = 
5 150 900 

PLSP-Model -24.72 -50.72 -69.29 
Simple Plant Location Model -18.70 -44.66 -64.23 

Table 7: The Impact. of the Cost Strukture on the Integrality Gap 

The capacitv utiüzation is assumed to be of gr eat importance for the per-
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formance of lot sizing and scheduling. For Computing Iower bounds via an LP-
relaxation, however, Table 8 shows that the capacity utilization is not the reason 
for dramatic Performance diiferences. For the original PLSP-model varying the 
capacity utilization gives no significant changes. For the simple plant location 
model there is a tendency that the quality of the lower b ounds decreases if th e 
capacity utilization increases. 

V = 30 <3
 

II Cn
 

O
 

U = 70 
PLSP-Model -47.97 -48.53 -48.10 
Simple Plant Location Model -40.10 -42.59 -45.04 

Table 8: The Impact of the Capacity Utilization on th e Integrality Gap 

Using LINGO to solve the LP-relaxations takes on average less than a minute 
per instance running on a Pentium P120 Computer no matter what model is used. 

In summary, we can State that the Performance of the simple plant location 
model formulation slightly outperforms the original PLSP-model formulation. 
The overall average result for the former is a -42.49% integrality gap, while 
the latter yields a gap of -48.20% on ave rage. In contrast to lot sizing without 
scheduling. a plant location reformulation for lot sizing and scheduling does not 
give a sharp lower bound by solving the LP-reiaxation. Hence, we need other 
ways to determine lower bounds. 

4 Capacity Relaxation 

4.1 Motivation for Relaxing Capacity Constraints 

Many hard-to-solve problems, and so the PLSP-MM, can be modelled as an 
easier-to-solve problem complicated by a set of constraints. Removing this set 
of constraints frorn the PLSP-model yields a model which defines a n optimum 
objective function value that is a Iower bound for the PLSP. So, we should 
find out which constraints make instances of the PLSP-MM-model hard to 
solve, remove these constraints, and develop an exact Solution procedura for 
the remaining problem which may then be used to find lower bounds. The 
fundamental motivation here is that a tailor-made method is much more efficient 
(primarily in terms of run-t.ime) than a Standard MlP-solver. 

As we have learned in the preceding section, violating the binary conditions 
for the setup State variables gives poor results. Thus, more promising approaches 
should respect integrality. To see what eise makes the PLSP-MM be a hard-
to-solve problern, suppose that all binary variables are fixed, say, to the values 
that occur in an optimum Solution. What is left then is a linear program still 
not easy to solve (optimally). Of course, Standard LP-solvers may be used, 
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but, as we sha]l see we requ ire more efficient p rocedures. For example, as it is 
discussed in [23], lot Splitting may need to occur which makes the computation 
of production quantities a non-trivial task. So, the question is which constraints 
must be dropped to give a problem in which lot Splitting does not occur any 
more. Let us drop the capacity constraints of the PLSP-MM and assume that 
initial inventory is zero. The latter assumption is restrictive. But, remember 
that lower bounds will later on be used to test the Performance of PLSP-MM-
heuristics. As we expect the initial inventory to have no significant impact on 
the Performance of these heuristics, a test-bed with no initial inventory seems 
to be sufficient. The resulting uncapacitated PLSP-MM is denoted as U-PLSP 
for short. 

Under these assumptions Optimum pro duction quantities equal the sum of 
subsequent order sizes. More formally, in an Optimum Solution of an U-PLSP-
instance we either have qjt = 0 or 

t min{i+tj,T} 
qjt = CDjt d= a3i9i(r+vj) (23) 

T = t ieSj T = t + Vj 

for j = 1,..., J, t = 1,..., T, and some i for which t < i < T holds. CDjt 
denotes the curnulative future demand for item j in period t not been met by 
production in periods later than t. Thus, the matrix of production quantities 
can also be re presented by a n integer matrix 

:S3£>! (24) 

to which we will refer to as a production mask. 
On the other hand. given a mas&jf-matrix the ^(-matrix can uniquely be 

restored using the following rule for each pair of indice s j = 1 and t = 
1,.,., T: If m .askjt = 0 the n qjt = 0. If m askjt > 0 t-he n qjt is computed using 
formula (23) with 

i = rnin({r 11 < r < T A maskj(T+1) > 0} U {T}). (25) 

Bringing things together, to solve an U-PLSP-instance optimally, we may 
enumerate all y3t-matrices where (4) must hold. Given a y^-matrix, a Xjt-
matrix that causes minimum setup costs can easiiy be derived by setting Xjt = 1 
if yj{t—i) — 0 and yjt — 1 to fulfill (5). Otherwise, xjt = 0. Due to the results 
given in [23], optimum schedules need n ot be semi-active. Hence, for each setup 
state matrix we must then enumerate all masAjt—matrices where 

magt,, < %(«_ i, + %« < 2 ( = j" T (26) 

must be valid because of (6). Having both, a setup state matrix and a production 
mask (which is a representation of the production quantities), we mu st test for 
feasibilitv using forrnulae (2), (3) and Jjt > 0 for j = 1,..., J and t = l,.,T. 
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In summary, it. turns out that solving an U-PLSP-instance essentially re-
duces to enumerating integer matrices which, when guided by problem specific 
insight. promises to be much rriore efficient than using Standard MlP-solvers. 

4.2 Basic Enumeration Seherne 

The basic working p rinciple for enumerating setup states and produetion masks 
is a back ward oriented depth-first search moving on from period T to period 1. 
Let period t be the current focus of atten tion. We first choose the setup State for 
each machine where jmt 6 Jm is the item machine m is set up for at the end of 
period t. Then, we decide for maskjmt(t+1) indicating whether or not item jmt 
is produced in period t + 1 which would be allowed, because the setup state at 
the beginning of peri od t + 1 (equal to the setup state at the end of period t) is 
properlv set. Once this is done, rnaskjmtt is set. Next, period i — 1 is concerned 
followirig the sarne lines. 

More formally. a recursive procedure uplsp(t, At, m,p) defines the details. 
Four parameters are passed to this method: t £ {!,..., T} the period under 
concern. At 6 {0,1} indicating whether the setup state in period t should (At = 
1) or should not. ( At = 0) be set, m £ ., M} the machine under concern, 
and p £ {0,1} the value to be used for Computing a produetion mask entry. 
The idea is to consider the produetion mask in period t + At. The initial call 
is uplsp(T, 1,1,1) where all rnaskjt- and t/^-values are initialized with zero for 
.7 = 1,...,«/ and t = 1,..., T. How to eva luate a call of th e form uplsp(T} 1, •, •) 
is defined in Table 9. 

ITEMSETm-r := Jm-
while (ITEMSET^r £ 0) 

clioose jrnT 6 ITEMSETmT-
JTEMSETmr := ITEMSETmT\{jmT}. 
VämrT := 1-
if (rn = M) 

uplsp(T, 0,1,1). 
eise 

uplsp(T, 1, m+ 1,1). 
Vj,nrT : = 0. 

Table 9: Evaluating uplsp(T, 1, •) 

If uplsp(T, 1, -, •) is called, the paramet.er p is of no relevance, because choos-
ing a produetion mask for period T + 1 does not make sense. It is important 
to understand that once we retu rn from a recursive call to the uplsp-procedure, 
the calling procedure loops back choosing another setup state and starting all 
over again until all setup states are enumerated. Moving stepwise f rom m = 1 
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to m = A/, we assign a setup State to every machine at the end of p eriod T. 
Afterwards, a call to uplsp(T, 0,1,1) is made to decide for the production mask 
in period T. Table 10 gives more details. 

ma-f:= maskjm(£ + p. 
if ( m = M) 

uplsp(t - 1,1,1,1). 
eise 

uplsp(t,Q,m + 1,1). 
maskjrnit := maskjmtt -p. 
if (p= 1) 

uplsp(t, 0, m, 0). 

Table 10: Evaluating uplsp(t, 0, •) where 1 <t<T 

Note, evaluating uplsp(t, 0, •, •) does not require to choose a setup state. The 
recursive call to uplsp(t,0,m,0) irnplements the enumeration for the values of 
the parameter p. What is new in this scheme is the call to uplsp(t — 1,1, •, •) 
to enumerate the setup states at the end of period t — 1. Table 11 provides an 
Implementation of its evaluation. 

ITEMSETmt := Jm-
while (ITEMSETmt ± 0) 

choose jmt e ITEMSETmt-
ITEMSETmt := ITEMSETmt\{jmt}. 
yjm.it •'= 1. 
maslV.i(i+i) •= +p-
if ( m = M) 

uplsp(t, 0,1,1). 
eise 

uplsp(t, l,m-f 1,1). 
rnask3mt{t+1) •= -P-
Vjmit "= 0. 

if ( p = 1) 
uplsp(t, 1, m, 0). 

Table 11: Evaluating uplsp(t, 1, •) where 1 < t < T 

For the special case t = 0 the evaluation of u pl$p(t, 1, •, •) is given in Table 
12. The difference to what is given in Table 11 is that for t = 0 we have no choice 
for the setup state, because yj Q is given as a parameter for j = 1,..., J. Let 
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jm0 denote the unique item machine m is initially set up for (assume jm0 = 0 if 
machine rn is initially setup for no it em). 

if (jmO + 0) 
maskjmol := maskjmQi + p. 

if (m = M) 
uplsp(0, 0,1,1). 

eise 
uplsp(0,1, m+ 1,1). 

if (jmO # 0) 
rnaskjmol := maskjniol - p. 

Table 12: Evaluating uplsp(0,1, •) 

A call to uplsp(0, 0, •, •) indicates a terminal node in which a setup state 
matrix and a production mask matrix are completely defined. If such a node 
is reached. we simply have to check feasibility and evaluate the corresponding 
production plan as described in Subsection 4.1. If this plan is feasible and it 
improves the current best plan, we memorize it. After a cornplete enumeration 
we t hus have found an Optimum Solution for an U-PLSP-instance. 

4.3 Branching Rules 

We perform a depth-first search. So, a degree of freedom that remains for 
branching is the sequence in which setup states are enumerated which is repres-
ented by the iine 

choose jmt €= lTEMSETmt 
in Tables 9 an d 11 where 1 <t <T. 

Using sorne priority rule which assigns a priority value priorityjt to each 
item j € lTEMSETmt, items may be chosen in decreasing order with respect 
to their priority values (ties might be broken with respect to the item index for 
example). 

Two different kinds of p riority rules are worth to be discriminated. On the 
one hand, we may use static rules which depend on the item indices and/or period 
indices only. On the other hand, we m ay use dynamic rules which depend on 
the history of the execution as well. The advantage of the former ones is that 
items mav be sorted before the enumeration Starts while the latter ones cause 
additional overhead for sorting items over and over again whenever the code 
represented by Tables 9 and 11 is called. 

Sorne exarnples for static priority rules are the item index itself 

priorüyjt y, (27) 
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a setup cost based rule 
priorityjt d— —, (%&) 

sj 
or a capacity demand oriented rule 

priorityjt d= (^9) 
r=1 

A dynamic rule can be given as 

rr,ora%» ^ (30) 
sj 

where CDjt is defined as in (23) using (25) to determine i. Note, CDjt and 
hence priorityjt cannot be cornputed before the enumeration starts. But, since 
CDjt is a curnulative value, it can efficiently be cornputed while moving stepwise 
from period to period adding up those demands which are not scheduled. 

We use the dynamic rule (30) to compute priority values in our Implement
ation. Its Interpretation is that for not fulfilling future demand extra Holding 
costs are charged. If setup costs are low, th is tends to give bad Solutions. But, 
if setup costs are high, building lots tends to be a good idea. 

4.4 Bounding Rules 

The enumeration scheme presented in Subsection 4.2 performs a complete enu
meration and uses no insight. information to prune the search tree. Hence, we 
should develop some bounding rules to reduce the computational efFort. 

First, let us consider the set of items to choose a mong in order to fix the 
setup State of a mach ine m. Both, in Table 9 and in Table 11, we defined 
ITEMSETmt = Jm for initialization. Since switching the setup State is neces-
sary only if produc tion takes place, this item set can usually be chosen smaller. 
At the end of period T (Table 9) a machine m is set up for the item that is pro-
duced last on that machine. Any item for which ex ternal demand occurs could 
be that item. If no external demand occurs for an item, it can only be the last 
one on a machine if there is no successor item sharing the same machine. Hence, 

(31) 
u {j £ Jm | {i G Sj I rrii = rrij} - 0} 

is a valid choice. For p eriods t where 1 < t < T (Table 11) it is sufficient to 
consider those items only for which demand occurs in period t or in period t +1, 
or for which the machine is also set up in period t + 1. The latter condition 
allows keeping the setup state up. More formally, 

ITEM SETmt = {j £ Jm I CDjt > 0} U {jm(t+i)} (32) 

14 

defines the initialization of ITEMSETmt-
The production mask rnatrix is c ompletely enumerated when following the 

lines ol the uplsp-procedure. But, since a positive entry maskjt must only be 
considered if there is (future) demand for item j that is not been met, we ca n 
reduce the computational efFort as follows: In Table 10 we add 

if (p = 1 and CDjmtt = 0) p = 0 
at the very beginning to skip the consideration of the value p = 1. In Table 11 
we simply add 

if (p = 1) ITEMSETmt := ITEMSETmt 
\{j G Jm | CDj(t+i) = 0} 

right behind the initialization of ITEMSETmt • As a consequence, the produc
tion masks being enumerated actually are binary1 matrices now where positive 
entries in periods 1 < t < T do indeed re present that production takes place. 

Another wav to speed up the enumeration is to detect intermediate states 
which cannot lead to any feasible Solution. For notational convenience, let 

{; e 0} (33) 

denote the set of items which share machine m and for which there exists a 
positive curnulative demand in period t. On the basis of this, 

M 
J+,+ E Jnn% IiE (J (34) 

m = l 

defines a set of item s which will have to be scheduled on machine m in periods 
1 to t. This is true, because we have assumed no initial inventory. Owing to a 
unique setup state at the end of each period, at the beginning of the procedure 
given in Table 10 we therefo re test 

i i> <+1 (35) 

which when true indicates that no feasible Solution can be found any more. 
Similarly, when entering the code given in Tables 11 and 12 we check for 

I #(:+!) l>< 4-1 (36) 

and initiate a backtracking step depending on its outcome. Since we face multi-
level gozinto-structures, it may happen that items causing internal demand for 
preceding items with respect to positive lead times do not fit into the remaining 
time window. More precisely, if we enter the code given in Table 10 an d if there 
is an item M 

je (J JX.t where dePi ^1 (3?) 
m — 1 

1 Only in pe riod 1 p roduction mask entries may have the value 2 which is due to the scheme 
in Table 12. Note , this d oes not mean unnecessary overhead in period 1, because the code in 
Table 12 does not enumerate the values for the parameter p. 
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a setup cost based rule 
. def 1 priorityjt = — > 

s3 
(28) 

or a capacity demand oriented rule 

priorityjt d= ^^pjdf?L (29) 
T = 1 

A dynamic rule can be given as 

. def hjCDjt priorityjt = 
S3 

(30) 

where CDjt is defined as in (23) using (25) to determine i. Note, CDjt and 
hence priorityjt cannot be cornputed before the enumeration starts. But, since 
CDjt is a curnulative value, it can efficiently be cornputed while moving stepwise 
from period to period adding up those demands which are not scheduled. 

We use the dynamic rule (30) to compute priority values in our Implement
ation. Its Interpretation is that for not fulfilling future demand extra holding 
costs are charged. If setup costs are low, th is tends to give bad Solutions. But, 
if setup costs are high, building lots tends to be a good idea. 

4.4 Bounding Rules 

The enumeration scheme presented in Subsection 4.2 performs a complete enu
meration and uses no insight. information to prune the search tree. Hence, we 
should develop some bounding rules to reduce the computational efFort. 

First, let us consider the set of items to choose a mong in order to fix the 
setup State of a mach ine m. Both, in Table 9 and in Table 11, we defined 
ITEMSETmt = Jm for initialization. Since switching the setup State is neces-
sary only if produc tion takes place, this item set can usually be chosen smaller. 
At the end of period T (Table 9) a machine m is set up for the item that is pro-
duced last on that machine. Any item for which ex ternal demand occurs could 
be that item. If no external demand occurs for an item, it can only be the last 
one on a machine if there is no successor item sharing the same machine. Hence, 

is a valid choice. For p eriods t where 1 < t < T (Table 11) it is sufficient to 
consider those items only for which demand occurs in period t or in period t +1, 
or for which the machine is also set up in period t + 1. The latter condition 
allows keeping the setup State up. More formally, 

= (j E .%* I EL: 4' > o} 
u {j £ Jm | {i € Sj I TTli — TTlj } — 0} 

(31) 

ITEMSETmt = {j £ Jm I CDjt > 0} U {jm(t+i)} (32) 

14 



defines the initialization of ITEMSETmt-
The production mask matrix is c ompletely enumerated when following the 

Iines ol the uplsp-procedure. But, since a positive entry maskjt must only be 
considered if there is (future) demand for item j that is not been met, we c an 
reduce the computational effort as follows: In Table 10 we add 

if (p = 1 and CDjmtt = 0) p = 0 
at. the verv beginning to skip the consideration of the value p = 1. In Table 11 
we simply add 

if (p = 1) ITEMSETmt := ITEMSETmt 
\{j E J m | CDj(t+i) = 0} 

right behind the initialization of ITEMSETmt • As a consequence, the produc
tion masks being enumerated actually are binary1 matrices now where positive 
entries in periods 1 < t < T do indeed re present that production takes place. 

Another way to speed up the enumeration is to detect intermediate states 
which carinot lead to any feasible Solution. For notational convenience, let 

e.%» | CD,, > 0} (33) 

denote the set of items which share machine m and for which there exists a 
positive cumulative demand in period t. On the basis of this, 

M 
(34) 

171 — 1 
defines a sei of item s which will have to be scheduled on machine m in periods 
1 to t. This is true, because we have assumed no initial inventory. Owing to a 
unique setup State at the end of each period, at the beginning of the procedure 
given in Table 10 we therefore test 

I ^ l> < + 1 (35) 

which when true indicates that no feasible Solution can be found any more. 
Similarly, when entering the code given in Tables 11 and 12 we check for 

i i> <+1 (so) 

and initiale a backtracking step depending on its outcome. Since we face multi-
level gozinto-structures, it may happen that items causing internal demand for 
preceding items with respect to positive lead times do not fit into the remaining 
time window. More precisely, if we enter the code given in Table 10 an d if there 
is an item M 

je (J JXt where dePi ^1 (3?) 
171 — 1 

1 Only in pe riod 1 p roduction mask entries may have the value 2 which is due to the seherne 
in Table 12. Note , this d oes not mean unnecessary overhead in period 1, because the code in 
Table 12 does not enumerate the values for the parameter p. 
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then the current node is fathomed. Analogously, when the code in Tables 11 and 
12 is entered and if there is an item 

M 
j € |J j£t where deP3 > 1 (38) 

m —1 

then the current node is fathomed, too. 
Eventuallv, we can prune the search tree on the basis of c ost criteria. Let 

costsps be the sum of setup and Holding costs for a partial schedule ranging from 
periods t + ltoT. When initialized with zero when we start the enumeration, 
i.e. costsps = 0, i t can easily be computed as we pass through the search tree. 
More precisely, consider what is done in Table 11. After jmt is selected, we 
compute 

costsps := costsps + sjm{t+l) (39) 

if im« # im(t+i), because a setup then takes place in period t+ 1. Having added 
p to rnaskjmt(t+i)- we compute 

costsFS := costsFS + ^ (40) 

for holding the cumulative demand one (more) period in inventory. Note, if 
p — 1 and thus > 0, then CDjmi(t+1) evaluates to zero. Since 
backtracking may occur, we must not forget to perform the reverse Operations 

costsps := costsPS - Sj„(1+1) - ^ hjCDHt+l). (41) 

A valid position to execute this Operation is, for example, right before the 
value p is subtracted from rnaskjmi(t+iy The same Operations can be performed 
within the code given in Table 12. The only difference i s that there is no choice 
for jmo which is the initial setup State. But, this does not affect the determination 
of costsps. Irnagine that we have a lower bound for the minimum costs incurred 
in periods 1 to t, say, lowerboundu. Furthermore, suppose that we have an 
upper bound for the Optimum Solution of the overall instance, say, upperbound. 
Then, once we have increas ed costsps, we evaluate 

lowerboundu + costsps > upperbound (42) 

which when true indicates that the choice of jmt does not give an Optimum 
Solution. Hence, we can im mediately loop back to seiect another setup State (or, 
if t — 0, initiate backtracking). What is left now is the discussion of determining 
upperbound and lowerboundu. The former follows Standard ideas. Starting 
with an initial value (which might be infin ity) we upd ate its value whenever we 
reach a terminal node that improves the current best upper bound. A better 
initial value than infinity can be computed with any of the heuristics for the 
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PLSP-MM which will be described in Chapter 6. For Computing low erboundn 

we use a new though simple idea. We just solve t.he U-PLSP-instance that 
emerges frorn the original U-PLSP-instance when restricting our attention to 
the first i periods only. As a Solution method we use the B&B-procedure again. 
Since this idea can be carried on recursively, we have to solve a sequence of U-
PLSP-instances. The working principle should be made a bit more clear now: 
Set lowerboundio = 0. First, we solve a U-PLSP-instance which is the instance 
that emerges from the original instance when we consider period 1 only. The 
result gives lowerboundu. Then, we solve a U-PLSP-instance which consists 
of the first two periods of the original instance which yields lowerboundu• This 
goes on until an instance with T periods is eventually solved. The instance 
with T periods is the original instance which gives the desired result. The 
remarkable point to note here is that when we a re about to solve an instance 
with, say, t periods, we make use of lowerboundn,. • -, lowerboundx^^ which 
are previouslv computed. Since many instances have some periods with no 
external demand (see the discussion of macro and micro periods in Chapter 
4), the stepwise procedure can be accelerated in most cases. If period t is a 
period with no external demand then solving the instance consisting of the first t 
periods gives the same objective function value as solving the instance consisting 
of the first t — 1 periods. Hence, if djt = 0 then choose lowerboundu = 
lowerboundlt 

4.5 Experimental Evaluation 

To study the Performance of th e presented JB&B-procedure, we solve the s mall 
PLSP-instances again by running a C-implementation on a Pentium Computer 
with 120 MHz. 

For a detailed analvsis of the deviation data, we aggregate the results to 
see whether or not certain parameter levels have a significant impact on the 
Performance. To start with, let us consider the number of machines first. Table 
13 gives more insight. As we can see, increasing the number of machines reduces 
the average Performance remarkably. The reason for this is not obvious. A 
possible explanation might be the following: On the one band, producing a iot 
to fulfill a demand may last several periods if capacities are scarce, but takes one 
period if the capacity constraints are relaxed. Hence, the total holding costs tend 
to be underestimated. On the other hand, more machines tend to result in lower 
total holding costs, because items which do not share a common machine may be 
produced in parallel and need not be sequenced. Both together might explain 
the observed result, because the underestimation of holding costs is relatively 
high if t otal holding costs are low. 

Next , we a re interested in the impact of the gozinto-structure complexity. 
Table 14 shows the results. We cannot state that there is any effect. 

Table 15 reveals whether or not the demand pattern plays a role in Perform
ance changes. It. can be seen that sparse demand matrices give poor results. 
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M - 1 M = 2 
-9.70 -15.19 

Table 13: The Impact of the Number of Machines on the Lower Bound 

C = 0.2 C = 0.8 
-12.34 -12.57 

Table 14: The Impact. of the Gozinto-Structure Complexity on the Lower Bound 

Demand matrices with many non-zero entries give the best results with less 
than a 10% deviation on average. A reason for this phenomenon seems to be 
the fact that lot sizing is more important if there are many demands which can 
be grouped together in order to form a lot and thus to safe setup costs. These 
saving opportunities are detected by the B&B-method, too. 

{Tmacroi ^micro) ̂ idle) — 
(10,1,5) (5,2,2) (1,10,0) 

-9.88 -11.20 -16.11 

Table 15: The Impact of the Demand Pattern on the Lower Bound 

If the cost structure is important for a good Performance can be read in 
Table 16. Though differences are not dramatic, there is a tendency for instances 
with high setup costs to have a better lower bound than instances with low setup 
costs. 

Since we relax the capacity constraints, the capacity utilization is expected 
to have a significant impact on the Performance of th e B&B-method. As Table 
17 indicates, this is indeed the case. For U — 30 we have an average deviation 
of-5.29% which is a fairly good result. But, for U = 70 the average deviation is 
-21.27% which is quite poor, although it is still better than the LP-relaxation. 
As a result, we have that the capacity utilization is the most significant factor 
for the computation of a lower bound via a capacity relaxation. Remarkable to 
note, the average deviation for U = 30 is not very close to zero which indicates 
that even a low capacity utilization does not make the multi-level lot sizing and 
scheduling problem be an easy-to-solve problem. 

The run-time Performance of the B&B-method varies very much. For the 
instances with M — 1, it takes between 0 to 53 CPU-seconds to solve them 
where zero time actually means that the run-time is too small to be measured. 
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COSTRATIO = 
5 150 900 

-13.42 -12.05 -11.89 

Table 16: The Impact of the Cost Structure on the Lower Bound 

U ~ 30 U = 50 U = 70 
-5.29 -11.73 -21.27 

Table 17: The Impact of the Capacity Utilization on the Lower Bound 

Most of the instances with M = 2 can also be solved within 60 CPU-seconds. 
Almost all instances can be solved with a time limit of 900 CPU-seconds. Three 
outliers need a bit less than 3.600 CPU-seconds. 

In surnrnary, the overall average deviation from the optimum results is a 
-12.46% deviation for our test-bed. This result decidedly outperforms the 
outcome of the LP-relaxation approaches. Hence, the proposed B&B-method 
provides a means to compute lower bounds for small instances within reasonable 
time. Lower bounds for medium- to large-size instances can, however, not be 
determined due to the exponential growth of the computational effort. 

5 Lagrangean Relaxation 

In the preceding section we removed the set of capacity constraints which com-
plicate solving a PLSP-MM-instance. For th e resulting problem we the n de-
veloped a tailor-made procedura to find lower bounds. A bit more sophisticated 
than just removing complicating constraints is the general idea of replacing con
straints with a penalty term in the objective function. The trick is to dehne 
a penalty term which — for minimization problems — increases the objective 
function value if the removed constraints are violated. Such an approach which 
additionally guarantees to give lower bounds for the original problem is known 
as Lagrangean relaxation. A nice introdu ction to it is given in [7] (see also [9, 6]). 

Subsequently, we will describe how to apply a Lagrangean relaxation to the 
PLSP-MM in order to get a lower bound. Again, the capacity constraints are 
considered as the complicating constraints. We can therefore use the B&B-
procedure described in the preceding section. In contrast what was done above, 
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we now rriinirriize the objec tive function 

.) T M T 
Y Y(sixit + hjljt) ~YJ2*£t&capacity£} (43) 
j=l(=1 m=1 ( = 1 

where 
Acapacityf£} d= Cmt - ^ p^qft £ = 1, '.., T ^ 

j&Jra. 
gives a negative vaiue, if the capacity of a machine m in period t is exhaustively 
required. For the moment it suffices here to know that the values A^ are non
negative parameters — so-called Lagrangean multipliers. 

A procedure based on Lagrangean relaxation proceeds iteratively and the 
upper index (k) simply counts the iterations. Roughly speaking, starting with 
initial values for the Lagrangean multipliers, the resulting instance is solved. 
Afterwards, the multipliers are modified and a new Iteration starts to solve the 
instance again, This goes on until a stopping criterion is met. 

In our context, we begin with 

which actuallv means that we solve an U-PLSP-instance which is exactly the 
same as the orie concerned in the preceding section. 

After each Iteration k we update the Lagrangean multipliers using 

1461 

for m = 1 and £ = 1,..., T as it is adviced in [15]. ÜB* and LB* are 
used to denote the smallest known upper bound and the largest known lower 
bound, respectively, for the PLSP-MM-instance under concern. Note, UB* can 
be deterrnined with one of the heuristics described in later chapters. LB* can 
be chosen zero in itially, and be updated after each Iteration that gives a higher 
objective function value than LB*. The parameter 5^ is a positive value where, 
again, [15] helps: Initially, 

<*(1) = 2. (47) 

For k > 1, if LB* has not increased within the last, say, DELTAITER 
iterations then 

= (4% 

otherwise, 
S(k+D =<y(fc). (49) 
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The parameter DELTAITER is chosen by the user. 
The stopping rule to terminate the Iteration process depends on several user 

specified pararneters which are defined in Table 18 and which are tested after 
each Iteration. If one of these criteria is fulfilled, the Lagrangean relaxation 
procedura stops giving LB* as a lower bound. By construction, this lowerbound 
is greater than or equal to the lower bound computed in the preceding sect ion 
when we solved U-PLSP-instances. 

Symbol Definition 
MAXGAP Terminate if U B * — LB* < MAXGAP. 
MAXITER Terminate if MAX1TER iterations are 

performed. 
MINLAMBDA Terminate if A ^+1) < MINLAMBDA for 

all TTI — 1,.... M and t = 1,..., T. 
TIMELIM IT Terminate if the total run-time is greater 

than TIM ELIM IT seconds. 

Table 18: Stopping Criteria for the Lagrangean Relaxation Approach 

It should be stressed that the B&B-method described in the preceding section 
can be used alrriost unchanged as a submodule. All tha t needs to be modified 
is the evaluation of production plans which now must use formula (43). The 
application of the cost-oriented bounding rule needs to compute 

costsFS := costsps + (hiCD3(t+1) ~~ ^mt^capacity^) (50) 
j£Jrn 

instead of (40). The reverse Operations (41) must be adapted likewise. Re-
member Subsection 4.1 for determining the values ?j^(= Qjt) which in t urn are 
needed for Computing the values Acapacity^}. 

5.1 Experimental Evaluation 

To study the Performance of the Lagrangean relaxation procedura we solve th e 
1,033 srnall PLSP-MM-instances on the Pentium P120 Computer a gain. The 
method pararneters are chosen as follows: DELTAITER = 5, MAXGAP — 
0.001, MAXITER = 1,000, MINLAMBDA = 0.0001, and TIMELIMIT ~ 
3,600. 

The discussion of the results on the basis of aggregated data begins with 
the impact of th e number of machines on th e Performance. Table 19 shows the 
numbers. As for the U-PLSP Solution, the findings are that the average gap is 
positivelv correlated with the number of machines. 
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M = 1 M = 2 
-3.82 -7.34 

Table 19: The Impact of the Number of Machines on the Lower Boun d 

The effect- o f changing the complexity of the gozinto-structure is analyzed in 
Table 20. Although differences are not dramatic, gozinto-structures which are 
more complex tend to result in slightly 1 arger deviations. 

C = 0.2 C = 0.8 
-5.26 -5.92 

Table 20: The Impact of the Gozinto-Structure Complexity on the Lower Bound 

The demand pattern is the focus of interest in Table 21. While there is 
a strong tendency for the U-PLSP to yield large deviations if the demand 
matrix is sparsely filled, the Lagrangean relaxation remedies this phenomenon 
and now gives best results for this case. However, there is not a clear tend
ency that more demand entries reduce the Performance, because the results 
for the parameter level (Tmacr&,Tmicro,T^e) = (10,1,5) are better than for 
(Tmacrö • Tmicroi ^idle) — (5,2,2). 

(Tmacro , Tmicroi ^ nidle) = 
(10,1,5) (5,2,2) (1,10,0) 

-5.59 -6.11 -5.11 

Table 21: The Impact of the Demand Pattern on the Lower Bound 

Table 22 reveals the impact of the cost structure on the Performance. In 
contrast to the results in the preceding section, we now hav e that low setup costs 
give the best results on average. The average deviation is positively correlated 
with the ratio of setup and holding costs. 

For the capacity utilization we observe again that a high utilization results 
in a significantly worse deviation on average than a low utilization. Table 23 
makes this apparent. 

The average deviation for all 1,033 instances is -5.59% which is a satisfying 
result. 
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COSTRATIO = 
5 150 900 

-4.58 -5.18 -7.00 

Table 22: T he Impact of the Cost Structure on the Lower Bound 

U = 30 [7 = 50 U = 70 
-2.20 -4.81 -10.23 

Table 23: The Impact of the Capacity Utilization on the Lower Bound 

6 Summary of Evaluation 

The cornputational study reveals that the we obtain no satisfying lower bounds 
by solving the LP-relaxation of the original PLSP-model formulation or a simple 
plant location formulation. Hence, a B&B-method is proposed to solve the un-
capacitated PLSP optimally. The lower b ound that we get this way is decidedly 
better. A Lagrangean relaxation of the capacity constraints improves these 
bounds. Table 24 summarizes the overall a verage results. 

Average Gap 
LP-Relaxation of 
the PLSP-Model 
LP-Relaxation of 
the Simple Plant Location Model 
Solution of 
the Uncapacitated PLSP 
Lagrangean Relaxation of 
the Capacity Constraints 

Table 24: Summary of Lower Bo unding Methods 
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