
Kimms, Alf

Working Paper — Digitized Version

Improved lower bounds for the proportional lot sizing and
scheduling problem

Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel, No. 414

Provided in Cooperation with:
Christian-Albrechts-University of Kiel, Institute of Business Administration

Suggested Citation: Kimms, Alf (1996) : Improved lower bounds for the proportional lot sizing and
scheduling problem, Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität
Kiel, No. 414, Universität Kiel, Institut für Betriebswirtschaftslehre, Kiel

This Version is available at:
https://hdl.handle.net/10419/149045

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/149045
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

Manuskripte

aus den

Instituten für Betriebswirtschaftslehre

der Universität Kiel

No. 414

Improved Lower Boünds for the
Proportional Lot Sizing and Scheduling Problem

A. Kimms

October 1996

Alf Kimms
Lehrstuhl für Produktion und Logistik, Institut für Betriebswirtschaftslehre,
Christian-AIbrechts-Universitat zu Kiel, Olshausenstr. 40, 24118 Kiel, Germany
email: Kimms@bwl.uni-kiel.de
URL: http://www.wiso.uni-kiel.de/bwlinstitute/Prod

ftp://ftp. wiso. uni-kiel .de / pub/operations-research

ftp://ftp

Abstract
Where Standard MlP-solvers fail to compute optimu m objective func-

tion values for certain MlP-model formulations, lower bounds may be used
as a point of refe rence for evaiuating heuristics. In this paper, w e compute
lower bounds for the multi-level proportional lot sizing and scheduling
Problem with multiple machin es (PLSP -MM). Four approaches are com-
pared: Solving LP-relaxations of tw o different model f ormulations, solving
a relaxed MlP-model formulat ion optim ally, and solving a Lagrangean re-
laxation.

Keywords: Multi-level lot sizing, scheduling, lower bo unds, PLSP

1 Introduction

The problem we are focussing at, can be described as follows: Several items are
to be produced in order to meet some known (or estimated) dynamic demand
without backlogs and stockouts. Precedence relations among these items dehne
an acyclic gozinto-structure of the general type. In contrast to many authors
who allow demand for end items only, now, demand may occur for all items
including component parts. The finite planning horizon is subdivided into a
number of discrete time periods. Positive lead times are given due to techno-
logical restrictions such as cooling or transportation for instance. Furthermore,
items share common resources. Some (maybe all) of them are scarce. The capa-
cities may vary over time. Producing one item requires an item-specific amount
of the available capacity. All data are assumed to be deterministic.

Items which are produced in a period to meet some future demand must be
stored in inventory and thus cause item-specific holding costs. Most authors
assume that the holding costs for an item must be greater than or equal to the
sum of the holding costs for all immediate predecessors. They argue that holding
costs are rnainly opportunity costs for capital which occurs no matter a compon
ent part. is assembled or not. Two reasons persuade us to make no particular
assumptions for holding costs. First, as it. is usual in the chemical industry for
instance, keeping some component parts in storage may require ongoing addi-
tional eflfort such as cooling, heating, or shaking. While these parts need no
special treatment when processed, storing component parts might be more ex-
pensive than storing assembled items. Second, Operations such as cutting tin
mats for instance make parts smaller and often easier to handle. The remaining
"waste" can often be sold as raw material for other manufacturing processes.
Hence, opportunity costs may decrease when component parts are assembled.
However, it should be made clear that the assumption of genera l holding costs
is the most unrestrictive one. All models and methods developed under this
assumption work for more restrictive cases as well.

Each item requires one resource for which a setup state has to be taken into
account. Production can only t.ake place if a proper state is set up. Setting

1

a resource up for producing a particular item incurs item-specific setup costs
which are assumed to be sequence independent. Setup times are not considered.
Once a certain setup action is performed, the setup State is kept up until another
setup changes the current State. Hence, same items which are produced having
some idle time in-between do not enforce more than one setup action. To get
things straight, note that some authors use the word changeover instead of setup
in this context.

The most fundamental assurnption here is that for each resource at most
one setup may occur within one period. Hence, at most two items sharing a
common resource for which a setup state exists may be produced per period.
Due to this assurnption, the problem is known as the proportional lot sizing and
scheduling problem (PLSP) [4, 12, 23]. By choosing the length of each time
period appropriately small, the PLSP is a good approximation to a continuous
time axis. It refines the well-known discrete lot sizing and scheduling problem
(DLSP) [3, 8, 17, 25, 31] as well as the continuous setup lot sizing problem
(CSLP) [1, 18, 19]. Both assume that at most one item may be produced per
period. All three models could be classified as small bücket models since only
a few (one or two) items are produced per period. In contrast to this, the
well-known capacitated lot sizing problem (CLSP) [2, 5, 10, 16, 24, 28, 29]
represents a large bücket model since many items can be produced per period.
Remember, the CLSP does not include sequence decisions and is thus a much
"easier" problem. An e xtension of the single-level CLSP with partial sequence
decisions can be found in [11]. In [14] a large bücket single-level lot sizing and
scheduling model is discussed.

A comprehensive review of the multi-level lot sizing literature is given in [23]
where it is shown that most authors do not take capacity restrictions into account
and that they make restrictive assumptions such as linear or assembly gozinto-
structures. If scarce capacities are considered, the work is mostly confined to
single-machine cases. The most general methods are described in [35, 36] where
the multi-level CLSP is attacked.

The text is organized as follows: Section 2 gives a MlP-model formulation of
the PLSP-MM. Solving the LP-relaxation of a PLSP-MM-model optimally is
a straightforward idea. Hence, Section 3 deals with this approach and discusses
a network reformulation of the model. Another way to get lower bounds is to
ignore some of the constraints and to solve the remaining problem optimally.
This path is followed in Section 4 where a B&B-procedure is used to attack
the uncapacitated, multi-level, multi-machine lot sizing and scheduling problem.
Note, solving an uncapacitated lot sizing and scheduling problem is far more than
just finding a value less than or equal to the Optimum objective function value
of a PLSP-MM~instance, or lower bound for short. It also provides a Solution
for the uncapacitated problem which may appear in distribution networks and
supply chams for instance [26, 27, 32]. On the basis of this, Section 5 introduces
a method to solve a Lagrangean relaxation of the capacity constraints. Finally,
Section 6 summarizes the lower bounds obtained.

2

2 Multi-Level PLSP with Multiple Machines

An important variant of the PLSP is the one with multiple machines (PLSP-
MM). Several resources (machines) are available and each i tem is produced on
an item-specific machine. This is to say that there is an unambiguous mapping
from items to machines. Of course, some items may share a common machine.
Special cases are the single-machine problem for which models and methods are
given in [21, 22], an d the problem with dedicated machines where items do not
share a common machine. For the latter optimal Solutions can be easily computed
with a lot-for-lot policy [20]. Heuristics for the PLSP-MM are described in [23].

Let us first introduce some notation. In Table 1 the decision variables are
defined. Likewise, the parameters are explained in Table 2. From these Para
meters, we ca n easily derive Sj the set of all successors and Vj the set of all
predecessors, respectively, of item j which will be needed in later sections. Us-
ing this notation, we are now able to present a MlP-model formulation.

Symbol Definition
Ijt Inventory for item j at the end of p eriod t.
qjt Production quantity for i tem j in period t.
Xjt Binary variable which indicates whether a setup for

item j occurs in period t (Xjt = 1) or not (xjt = 0).
yjt Binary variable which indicates whether machine rrij

is set up for item j at the end of p eriod t (yjt = 1)
or not (yjt = 0).

Table 1: Decision Variables for the PLSP-MM

J T
+ (1)

j=1t=l
subject to

ht = + Qjt - djt - ̂ 2 a3iqit t~ i' V ^
ieSj

min {t+vj,T}

J2 aiiqiT t = 0,'.. .,'T — 1
leSj r=t+I

j€Jn

. j 1,...,«/
xjt > Vjt — Vj(t-1) t = lt ..,T

Symbol Definition
dji "Gozinto"-factor. Its vaiue is zero if item i is not an

immediate successor of item j. Otherwise, it is the
quantity of it em j that is directly needed to
produce one item i.

Cmt Available capacity of machine m in period t.
djt External demand for item j in period t.
h.j Non-negative Holding cost for having one unit of

item j one period in inventory.
Ijo Initial inventory for item j.
Jm Set of all items that share the machine m,

i.e. Jm d= {j e J} | rrij = m}.
J Number of items.
M Number of machines.
rrij Machine on which item j is produced.
pj Capacity needs for producing one unit of item j.
üj Non-negative setup cost for item j.
Sj Set of immediate successors of item j,

i.e.J, ^ {« 6 >0}.
T Number of periods.
vj Positive and integral lead time of item j.
yjo Unique initial setup State.

Table 2: Parameters for the PLSP-MM

PjQjt < Cm.t(yj(t-1) + yjt) , _ i ' V

E El ' T (?)
j€Jm

3 = 1,-
t = 1?.. -,T
m = 1,
t = 1,..

3 - !>• ..,J
t = 1,.. •T
j = 1,.
t = 1,.. .,T

wte{°, i) («)

>0 t = l' 'T (^)

The objective (1) i s to minimize the sum of setup and Holding costs. Equa-
tions (2) are the inventory balances. At the end of a period t we have in inventory
what was in there at the end of p eriod t — 1 plus what is produced minus ex
ternal and internal demand. To fulfill internal demand we must respect positive
lead times. Resfcrictions (3) guarantee so. Constraints (4) make sure that the
setup state of each machine is uniquely defined at the end of each period. Those

4

periods in which a setup happens are spotted by (5). Note that idle periods
may occur in order to save setup costs. Due to (6) production can only take
place if there is a proper setup State either .at the beginning or at the end of
a particular period. Hence, at most two items can be manufactured on each
machine per period. Capacity constraints are formulated in (7). Since the right
hand side is a constant, overtime is not available. (8) dehne the binary-valued
setup st.ate variables, while (9) are simple non-negativity conditions. The reader
may convince himself that due to (5) in combination with (1) setup variables Xjt

are indeed zero-one valued. Hence, non-negativity conditions are sufficient for
these. For letting inventory variables Ijt be non-negative backlogging cannot
occur.

3 Network Representation

Some researchers have introduced network representations for lot sizing problems
to derive "tighter" reformulations, i.e. new m odels where the LP-relaxation of
an instance has an Optimum objective function value that is greater than the
optimum objective function value of the LP-relaxations of the straightforward
model formulation [5, 30, 33, 34].

3.1 A Simple Plant Location Representation

For the multi-level CLSP, a computational study in [33] reveals that a simple
plant location representation adapted from [30] gives th e same lower bounds as
a shortest route representation adapted from [5].

In here, we thus confine our focus of attention to a simple plant location
representation of the PLSP-MM. Table 3 gives a new decision variable where
the computation of th e gross demand is defined as:

Table 3: A New Decision Variable for the PLSP-MM Network Representation

All o ther notation is as defined in Section 2.

Symbol Definition
ZjtT Fraction of the gross demand d^L for item j

produced in period t where Zjtr E [0, !]•

5

J T
mm

j=it~\
subject to

in ^2^(sjZjt + hjIjt) t11)

Ijt= Jj(t-i) + E Zjtrtij?L djt t=\,...,T

- E «ü E ̂ r4r4L
iesj r=t

min{t+vj,T} T j = 1, . . J
u.> E E »E-»^ o»

ie5, r=«+i

j6 Jrn

> yjt - {- . .

j - 1,..J
zjtr <yj(t-\) + yjt <=i,...,r (16)

r = T

jeJm r=t

j>.<i <•«>
r=l

/ju^>0 i = 1,r (20)

j = 1,..., J
%jtT >0 * = 1,.. .,X (21)

r = T

To get this model formulation we simply replaced the decision variables qjt in
the PLSP-MM model given in Section 2 with ET=t zjtrd^L. Furthermore, we
added the constraints (18) which reflect the fact that the new decision variable
represents a fraction of gross demand. Noteworthy to say that Er=i zjrt = 1
for j = 1,..., J and t = 1,..., T is not valid in the presence of initial inventory.
This, by th e wav, allows us to simplify the constraints (6) now stated as (16).

6

3.2 Experimental Evaluation

In a computational study we compare the LP-relaxation of the original PLSP-
model with the LP-relaxation of the simple plant location model for the PLSP. As
a test-bed we use the small PLSP-instances given in [23]. This test-bed consists
of a total of 1,033 instances for which a feasible Solution exists. These instances
were generated using a füll factorial experimental design where five pa rameters
are systematically varied: U (the capacity utilization), M (the number of ma-
chines), C (t he gozinto-structure complexity as defined in [23]), COSTRATIO
(the ratio of s etup and holding costs), and (Xmacro,Tmicro,Ti£tfe) (the demand
pattern). For all these instances we have J — 5 and T = 10 which is small
enough to compute Optimum Solutions and large enough to give non-trivial in
stances. Our measure of Per formance is the so-called integrality gap. For each
instance this deviation is computed as

deviation d= 100 ̂ (22)

where LB is the lower bound determined by means of the LP-relaxation and
OPT is the Optimum objective function value of the PLSP-instance. Note, a
deviation close to zero is desired.

To ease an analysis of these results we aggre gate the data. Table 4 reveals
the impact of the parameter M and provides the average integrality gap. Appar-
ently, increasing the number of machines reduces the deviation from the optimum
results decidedly. This matches a former result given in [20] where it was shown
that, if M = J which i s the maximum number of machines in a multi-machine
setting, the problem of optimizing the PLSP-MIP-model formulation reduces to
be an LP-problem.

M = 1 M = 2
PLSP-Model -55.49 -40.96
Simple Plant Location Model -47.70 -37.30

Table 4: The Impact of the Number of Machines on the Integrality Gap

Whether or not the complexity of the gozinto-structure plays a role can
be read in Table 5. Though the impact of the complexity is not dramatic, it
seems that gozinto-structures with a high complexity give an average gap that
is slightly closer for th e original PLSP-model formulation. When solving a plant
location model, gozinto-structure complexity has almost no effect.

In Table 6 we see what happens to the lower bound if t he demand pattern
changes. While for the original PLSP-model a sparsely-filled demand matrix
gives the best result, for the plant location model a demand matrix with many
non-zeroes turns out to be advantageous on average. The original PLSP-model

7

C — 0.2 C= 0.8
PLSP-Model -49.48 -46.88
Simple Plant Location Model -42.68 -42.29

Table 5: The Impact of the Gozinto-Structure Complexity on the Integrality
Gap

{Tmacri > 7 Tmicrof II ES

(10,1,5) (5,2,2) (1,10,0)
PLSP-Model -48.52 -51.72 -44.71
Simple Plant Location Model -40.47 -44.43 -42.71

Table 6: The Impact of the Demand Pattern on the Integrality Gap

seems to be m ore sensitive to different demand patterns, because the variance
of the average results is greater than for the simple plant location modal.

The ratio of se tup and holding costs significantly affects the quality of the
lower bounds as can be seen in Table 7. Low setup costs result in small integrality
gaps for both, the original PLSP-model and the simple plant location model.
The higher the setup costs are, the greater the gap. The explanation for this
phenomenon is that in an LP-relaxation only a small fraction of the actual setup
costs are charged. If setup costs are low, the optimum objective function value
of a PLSP-instance mainiy is a sum of holding costs. If setup costs are large,
the objective function value in large parts is a sum of setup costs. Hence, LP-
relaxations perform better when setup costs are low. However, even if setup costs
would be zero the LP-relaxation would not necessarily give a zero integrality
gap. This is, because in a Solution of the LP-relaxation the setup State of a
machine is no longer uniquely defined, by definition. As a consequence, more
than two items may be produced per period which leads to infeasible production
plans and to an underestimation of tot al holding costs.

COSTRATIO =
5 150 900

PLSP-Model -24.72 -50.72 -69.29
Simple Plant Location Model -18.70 -44.66 -64.23

Table 7: The Impact. of the Cost Strukture on the Integrality Gap

The capacitv utiüzation is assumed to be of gr eat importance for the per-

8

formance of lot sizing and scheduling. For Computing Iower bounds via an LP-
relaxation, however, Table 8 shows that the capacity utilization is not the reason
for dramatic Performance diiferences. For the original PLSP-model varying the
capacity utilization gives no significant changes. For the simple plant location
model there is a tendency that the quality of the lower b ounds decreases if th e
capacity utilization increases.

V = 30 <3

II Cn

O

U = 70
PLSP-Model -47.97 -48.53 -48.10
Simple Plant Location Model -40.10 -42.59 -45.04

Table 8: The Impact of the Capacity Utilization on th e Integrality Gap

Using LINGO to solve the LP-relaxations takes on average less than a minute
per instance running on a Pentium P120 Computer no matter what model is used.

In summary, we can State that the Performance of the simple plant location
model formulation slightly outperforms the original PLSP-model formulation.
The overall average result for the former is a -42.49% integrality gap, while
the latter yields a gap of -48.20% on ave rage. In contrast to lot sizing without
scheduling. a plant location reformulation for lot sizing and scheduling does not
give a sharp lower bound by solving the LP-reiaxation. Hence, we need other
ways to determine lower bounds.

4 Capacity Relaxation

4.1 Motivation for Relaxing Capacity Constraints

Many hard-to-solve problems, and so the PLSP-MM, can be modelled as an
easier-to-solve problem complicated by a set of constraints. Removing this set
of constraints frorn the PLSP-model yields a model which defines a n optimum
objective function value that is a Iower bound for the PLSP. So, we should
find out which constraints make instances of the PLSP-MM-model hard to
solve, remove these constraints, and develop an exact Solution procedura for
the remaining problem which may then be used to find lower bounds. The
fundamental motivation here is that a tailor-made method is much more efficient
(primarily in terms of run-t.ime) than a Standard MlP-solver.

As we have learned in the preceding section, violating the binary conditions
for the setup State variables gives poor results. Thus, more promising approaches
should respect integrality. To see what eise makes the PLSP-MM be a hard-
to-solve problern, suppose that all binary variables are fixed, say, to the values
that occur in an optimum Solution. What is left then is a linear program still
not easy to solve (optimally). Of course, Standard LP-solvers may be used,

9

but, as we sha]l see we requ ire more efficient p rocedures. For example, as it is
discussed in [23], lot Splitting may need to occur which makes the computation
of production quantities a non-trivial task. So, the question is which constraints
must be dropped to give a problem in which lot Splitting does not occur any
more. Let us drop the capacity constraints of the PLSP-MM and assume that
initial inventory is zero. The latter assumption is restrictive. But, remember
that lower bounds will later on be used to test the Performance of PLSP-MM-
heuristics. As we expect the initial inventory to have no significant impact on
the Performance of these heuristics, a test-bed with no initial inventory seems
to be sufficient. The resulting uncapacitated PLSP-MM is denoted as U-PLSP
for short.

Under these assumptions Optimum pro duction quantities equal the sum of
subsequent order sizes. More formally, in an Optimum Solution of an U-PLSP-
instance we either have qjt = 0 or

t min{i+tj,T}
qjt = CDjt d= a3i9i(r+vj) (23)

T = t ieSj T = t + Vj

for j = 1,..., J, t = 1,..., T, and some i for which t < i < T holds. CDjt
denotes the curnulative future demand for item j in period t not been met by
production in periods later than t. Thus, the matrix of production quantities
can also be re presented by a n integer matrix

:S3£>! (24)

to which we will refer to as a production mask.
On the other hand. given a mas&jf-matrix the ^(-matrix can uniquely be

restored using the following rule for each pair of indice s j = 1 and t =
1,.,., T: If m .askjt = 0 the n qjt = 0. If m askjt > 0 t-he n qjt is computed using
formula (23) with

i = rnin({r 11 < r < T A maskj(T+1) > 0} U {T}). (25)

Bringing things together, to solve an U-PLSP-instance optimally, we may
enumerate all y3t-matrices where (4) must hold. Given a y^-matrix, a Xjt-
matrix that causes minimum setup costs can easiiy be derived by setting Xjt = 1
if yj{t—i) — 0 and yjt — 1 to fulfill (5). Otherwise, xjt = 0. Due to the results
given in [23], optimum schedules need n ot be semi-active. Hence, for each setup
state matrix we must then enumerate all masAjt—matrices where

magt,, < %(«_ i, + %« < 2 (= j" T (26)

must be valid because of (6). Having both, a setup state matrix and a production
mask (which is a representation of the production quantities), we mu st test for
feasibilitv using forrnulae (2), (3) and Jjt > 0 for j = 1,..., J and t = l,.,T.

10

In summary, it. turns out that solving an U-PLSP-instance essentially re-
duces to enumerating integer matrices which, when guided by problem specific
insight. promises to be much rriore efficient than using Standard MlP-solvers.

4.2 Basic Enumeration Seherne

The basic working p rinciple for enumerating setup states and produetion masks
is a back ward oriented depth-first search moving on from period T to period 1.
Let period t be the current focus of atten tion. We first choose the setup State for
each machine where jmt 6 Jm is the item machine m is set up for at the end of
period t. Then, we decide for maskjmt(t+1) indicating whether or not item jmt
is produced in period t + 1 which would be allowed, because the setup state at
the beginning of peri od t + 1 (equal to the setup state at the end of period t) is
properlv set. Once this is done, rnaskjmtt is set. Next, period i — 1 is concerned
followirig the sarne lines.

More formally. a recursive procedure uplsp(t, At, m,p) defines the details.
Four parameters are passed to this method: t £ {!,..., T} the period under
concern. At 6 {0,1} indicating whether the setup state in period t should (At =
1) or should not. (At = 0) be set, m £ ., M} the machine under concern,
and p £ {0,1} the value to be used for Computing a produetion mask entry.
The idea is to consider the produetion mask in period t + At. The initial call
is uplsp(T, 1,1,1) where all rnaskjt- and t/^-values are initialized with zero for
.7 = 1,...,«/ and t = 1,..., T. How to eva luate a call of th e form uplsp(T} 1, •, •)
is defined in Table 9.

ITEMSETm-r := Jm-
while (ITEMSET^r £ 0)

clioose jrnT 6 ITEMSETmT-
JTEMSETmr := ITEMSETmT\{jmT}.
VämrT := 1-
if (rn = M)

uplsp(T, 0,1,1).
eise

uplsp(T, 1, m+ 1,1).
Vj,nrT : = 0.

Table 9: Evaluating uplsp(T, 1, •)

If uplsp(T, 1, -, •) is called, the paramet.er p is of no relevance, because choos-
ing a produetion mask for period T + 1 does not make sense. It is important
to understand that once we retu rn from a recursive call to the uplsp-procedure,
the calling procedure loops back choosing another setup state and starting all
over again until all setup states are enumerated. Moving stepwise f rom m = 1

11

to m = A/, we assign a setup State to every machine at the end of p eriod T.
Afterwards, a call to uplsp(T, 0,1,1) is made to decide for the production mask
in period T. Table 10 gives more details.

ma-f:= maskjm(£ + p.
if (m = M)

uplsp(t - 1,1,1,1).
eise

uplsp(t,Q,m + 1,1).
maskjrnit := maskjmtt -p.
if (p= 1)

uplsp(t, 0, m, 0).

Table 10: Evaluating uplsp(t, 0, •) where 1 <t<T

Note, evaluating uplsp(t, 0, •, •) does not require to choose a setup state. The
recursive call to uplsp(t,0,m,0) irnplements the enumeration for the values of
the parameter p. What is new in this scheme is the call to uplsp(t — 1,1, •, •)
to enumerate the setup states at the end of period t — 1. Table 11 provides an
Implementation of its evaluation.

ITEMSETmt := Jm-
while (ITEMSETmt ± 0)

choose jmt e ITEMSETmt-
ITEMSETmt := ITEMSETmt\{jmt}.
yjm.it •'= 1.
maslV.i(i+i) •= +p-
if (m = M)

uplsp(t, 0,1,1).
eise

uplsp(t, l,m-f 1,1).
rnask3mt{t+1) •= -P-
Vjmit "= 0.

if (p = 1)
uplsp(t, 1, m, 0).

Table 11: Evaluating uplsp(t, 1, •) where 1 < t < T

For the special case t = 0 the evaluation of u pl$p(t, 1, •, •) is given in Table
12. The difference to what is given in Table 11 is that for t = 0 we have no choice
for the setup state, because yj Q is given as a parameter for j = 1,..., J. Let

12

jm0 denote the unique item machine m is initially set up for (assume jm0 = 0 if
machine rn is initially setup for no it em).

if (jmO + 0)
maskjmol := maskjmQi + p.

if (m = M)
uplsp(0, 0,1,1).

eise
uplsp(0,1, m+ 1,1).

if (jmO # 0)
rnaskjmol := maskjniol - p.

Table 12: Evaluating uplsp(0,1, •)

A call to uplsp(0, 0, •, •) indicates a terminal node in which a setup state
matrix and a production mask matrix are completely defined. If such a node
is reached. we simply have to check feasibility and evaluate the corresponding
production plan as described in Subsection 4.1. If this plan is feasible and it
improves the current best plan, we memorize it. After a cornplete enumeration
we t hus have found an Optimum Solution for an U-PLSP-instance.

4.3 Branching Rules

We perform a depth-first search. So, a degree of freedom that remains for
branching is the sequence in which setup states are enumerated which is repres-
ented by the iine

choose jmt €= lTEMSETmt
in Tables 9 an d 11 where 1 <t <T.

Using sorne priority rule which assigns a priority value priorityjt to each
item j € lTEMSETmt, items may be chosen in decreasing order with respect
to their priority values (ties might be broken with respect to the item index for
example).

Two different kinds of p riority rules are worth to be discriminated. On the
one hand, we may use static rules which depend on the item indices and/or period
indices only. On the other hand, we m ay use dynamic rules which depend on
the history of the execution as well. The advantage of the former ones is that
items mav be sorted before the enumeration Starts while the latter ones cause
additional overhead for sorting items over and over again whenever the code
represented by Tables 9 and 11 is called.

Sorne exarnples for static priority rules are the item index itself

priorüyjt y, (27)

13

a setup cost based rule
priorityjt d— —, (%&)

sj
or a capacity demand oriented rule

priorityjt d= (^9)
r=1

A dynamic rule can be given as

rr,ora%» ^ (30)
sj

where CDjt is defined as in (23) using (25) to determine i. Note, CDjt and
hence priorityjt cannot be cornputed before the enumeration starts. But, since
CDjt is a curnulative value, it can efficiently be cornputed while moving stepwise
from period to period adding up those demands which are not scheduled.

We use the dynamic rule (30) to compute priority values in our Implement
ation. Its Interpretation is that for not fulfilling future demand extra Holding
costs are charged. If setup costs are low, th is tends to give bad Solutions. But,
if setup costs are high, building lots tends to be a good idea.

4.4 Bounding Rules

The enumeration scheme presented in Subsection 4.2 performs a complete enu
meration and uses no insight. information to prune the search tree. Hence, we
should develop some bounding rules to reduce the computational efFort.

First, let us consider the set of items to choose a mong in order to fix the
setup State of a mach ine m. Both, in Table 9 and in Table 11, we defined
ITEMSETmt = Jm for initialization. Since switching the setup State is neces-
sary only if produc tion takes place, this item set can usually be chosen smaller.
At the end of period T (Table 9) a machine m is set up for the item that is pro-
duced last on that machine. Any item for which ex ternal demand occurs could
be that item. If no external demand occurs for an item, it can only be the last
one on a machine if there is no successor item sharing the same machine. Hence,

(31)
u {j £ Jm | {i G Sj I rrii = rrij} - 0}

is a valid choice. For p eriods t where 1 < t < T (Table 11) it is sufficient to
consider those items only for which demand occurs in period t or in period t +1,
or for which the machine is also set up in period t + 1. The latter condition
allows keeping the setup state up. More formally,

ITEM SETmt = {j £ Jm I CDjt > 0} U {jm(t+i)} (32)

14

defines the initialization of ITEMSETmt-
The production mask rnatrix is c ompletely enumerated when following the

lines ol the uplsp-procedure. But, since a positive entry maskjt must only be
considered if there is (future) demand for item j that is not been met, we ca n
reduce the computational efFort as follows: In Table 10 we add

if (p = 1 and CDjmtt = 0) p = 0
at the very beginning to skip the consideration of the value p = 1. In Table 11
we simply add

if (p = 1) ITEMSETmt := ITEMSETmt
\{j G Jm | CDj(t+i) = 0}

right behind the initialization of ITEMSETmt • As a consequence, the produc
tion masks being enumerated actually are binary1 matrices now where positive
entries in periods 1 < t < T do indeed re present that production takes place.

Another wav to speed up the enumeration is to detect intermediate states
which cannot lead to any feasible Solution. For notational convenience, let

{; e 0} (33)

denote the set of items which share machine m and for which there exists a
positive curnulative demand in period t. On the basis of this,

M
J+,+ E Jnn% IiE (J (34)

m = l

defines a set of item s which will have to be scheduled on machine m in periods
1 to t. This is true, because we have assumed no initial inventory. Owing to a
unique setup state at the end of each period, at the beginning of the procedure
given in Table 10 we therefo re test

i i> <+1 (35)

which when true indicates that no feasible Solution can be found any more.
Similarly, when entering the code given in Tables 11 and 12 we check for

I #(:+!) l>< 4-1 (36)

and initiate a backtracking step depending on its outcome. Since we face multi-
level gozinto-structures, it may happen that items causing internal demand for
preceding items with respect to positive lead times do not fit into the remaining
time window. More precisely, if we enter the code given in Table 10 an d if there
is an item M

je (J JX.t where dePi ^1 (3?)
m — 1

1 Only in pe riod 1 p roduction mask entries may have the value 2 which is due to the scheme
in Table 12. Note , this d oes not mean unnecessary overhead in period 1, because the code in
Table 12 does not enumerate the values for the parameter p.

15

a setup cost based rule
. def 1 priorityjt = — >

s3
(28)

or a capacity demand oriented rule

priorityjt d= ^^pjdf?L (29)
T = 1

A dynamic rule can be given as

. def hjCDjt priorityjt =
S3

(30)

where CDjt is defined as in (23) using (25) to determine i. Note, CDjt and
hence priorityjt cannot be cornputed before the enumeration starts. But, since
CDjt is a curnulative value, it can efficiently be cornputed while moving stepwise
from period to period adding up those demands which are not scheduled.

We use the dynamic rule (30) to compute priority values in our Implement
ation. Its Interpretation is that for not fulfilling future demand extra holding
costs are charged. If setup costs are low, th is tends to give bad Solutions. But,
if setup costs are high, building lots tends to be a good idea.

4.4 Bounding Rules

The enumeration scheme presented in Subsection 4.2 performs a complete enu
meration and uses no insight. information to prune the search tree. Hence, we
should develop some bounding rules to reduce the computational efFort.

First, let us consider the set of items to choose a mong in order to fix the
setup State of a mach ine m. Both, in Table 9 and in Table 11, we defined
ITEMSETmt = Jm for initialization. Since switching the setup State is neces-
sary only if produc tion takes place, this item set can usually be chosen smaller.
At the end of period T (Table 9) a machine m is set up for the item that is pro-
duced last on that machine. Any item for which ex ternal demand occurs could
be that item. If no external demand occurs for an item, it can only be the last
one on a machine if there is no successor item sharing the same machine. Hence,

is a valid choice. For p eriods t where 1 < t < T (Table 11) it is sufficient to
consider those items only for which demand occurs in period t or in period t +1,
or for which the machine is also set up in period t + 1. The latter condition
allows keeping the setup State up. More formally,

= (j E .%* I EL: 4' > o}
u {j £ Jm | {i € Sj I TTli — TTlj } — 0}

(31)

ITEMSETmt = {j £ Jm I CDjt > 0} U {jm(t+i)} (32)

14

defines the initialization of ITEMSETmt-
The production mask matrix is c ompletely enumerated when following the

Iines ol the uplsp-procedure. But, since a positive entry maskjt must only be
considered if there is (future) demand for item j that is not been met, we c an
reduce the computational effort as follows: In Table 10 we add

if (p = 1 and CDjmtt = 0) p = 0
at. the verv beginning to skip the consideration of the value p = 1. In Table 11
we simply add

if (p = 1) ITEMSETmt := ITEMSETmt
\{j E J m | CDj(t+i) = 0}

right behind the initialization of ITEMSETmt • As a consequence, the produc
tion masks being enumerated actually are binary1 matrices now where positive
entries in periods 1 < t < T do indeed re present that production takes place.

Another way to speed up the enumeration is to detect intermediate states
which carinot lead to any feasible Solution. For notational convenience, let

e.%» | CD,, > 0} (33)

denote the set of items which share machine m and for which there exists a
positive cumulative demand in period t. On the basis of this,

M
(34)

171 — 1
defines a sei of item s which will have to be scheduled on machine m in periods
1 to t. This is true, because we have assumed no initial inventory. Owing to a
unique setup State at the end of each period, at the beginning of the procedure
given in Table 10 we therefore test

I ^ l> < + 1 (35)

which when true indicates that no feasible Solution can be found any more.
Similarly, when entering the code given in Tables 11 and 12 we check for

i i> <+1 (so)

and initiale a backtracking step depending on its outcome. Since we face multi-
level gozinto-structures, it may happen that items causing internal demand for
preceding items with respect to positive lead times do not fit into the remaining
time window. More precisely, if we enter the code given in Table 10 an d if there
is an item M

je (J JXt where dePi ^1 (3?)
171 — 1

1 Only in pe riod 1 p roduction mask entries may have the value 2 which is due to the seherne
in Table 12. Note , this d oes not mean unnecessary overhead in period 1, because the code in
Table 12 does not enumerate the values for the parameter p.

15

then the current node is fathomed. Analogously, when the code in Tables 11 and
12 is entered and if there is an item

M
j € |J j£t where deP3 > 1 (38)

m —1

then the current node is fathomed, too.
Eventuallv, we can prune the search tree on the basis of c ost criteria. Let

costsps be the sum of setup and Holding costs for a partial schedule ranging from
periods t + ltoT. When initialized with zero when we start the enumeration,
i.e. costsps = 0, i t can easily be computed as we pass through the search tree.
More precisely, consider what is done in Table 11. After jmt is selected, we
compute

costsps := costsps + sjm{t+l) (39)

if im« # im(t+i), because a setup then takes place in period t+ 1. Having added
p to rnaskjmt(t+i)- we compute

costsFS := costsFS + ^ (40)

for holding the cumulative demand one (more) period in inventory. Note, if
p — 1 and thus > 0, then CDjmi(t+1) evaluates to zero. Since
backtracking may occur, we must not forget to perform the reverse Operations

costsps := costsPS - Sj„(1+1) - ^ hjCDHt+l). (41)

A valid position to execute this Operation is, for example, right before the
value p is subtracted from rnaskjmi(t+iy The same Operations can be performed
within the code given in Table 12. The only difference i s that there is no choice
for jmo which is the initial setup State. But, this does not affect the determination
of costsps. Irnagine that we have a lower bound for the minimum costs incurred
in periods 1 to t, say, lowerboundu. Furthermore, suppose that we have an
upper bound for the Optimum Solution of the overall instance, say, upperbound.
Then, once we have increas ed costsps, we evaluate

lowerboundu + costsps > upperbound (42)

which when true indicates that the choice of jmt does not give an Optimum
Solution. Hence, we can im mediately loop back to seiect another setup State (or,
if t — 0, initiate backtracking). What is left now is the discussion of determining
upperbound and lowerboundu. The former follows Standard ideas. Starting
with an initial value (which might be infin ity) we upd ate its value whenever we
reach a terminal node that improves the current best upper bound. A better
initial value than infinity can be computed with any of the heuristics for the

16

PLSP-MM which will be described in Chapter 6. For Computing low erboundn

we use a new though simple idea. We just solve t.he U-PLSP-instance that
emerges frorn the original U-PLSP-instance when restricting our attention to
the first i periods only. As a Solution method we use the B&B-procedure again.
Since this idea can be carried on recursively, we have to solve a sequence of U-
PLSP-instances. The working principle should be made a bit more clear now:
Set lowerboundio = 0. First, we solve a U-PLSP-instance which is the instance
that emerges from the original instance when we consider period 1 only. The
result gives lowerboundu. Then, we solve a U-PLSP-instance which consists
of the first two periods of the original instance which yields lowerboundu• This
goes on until an instance with T periods is eventually solved. The instance
with T periods is the original instance which gives the desired result. The
remarkable point to note here is that when we a re about to solve an instance
with, say, t periods, we make use of lowerboundn,. • -, lowerboundx^^ which
are previouslv computed. Since many instances have some periods with no
external demand (see the discussion of macro and micro periods in Chapter
4), the stepwise procedure can be accelerated in most cases. If period t is a
period with no external demand then solving the instance consisting of the first t
periods gives the same objective function value as solving the instance consisting
of the first t — 1 periods. Hence, if djt = 0 then choose lowerboundu =
lowerboundlt

4.5 Experimental Evaluation

To study the Performance of th e presented JB&B-procedure, we solve the s mall
PLSP-instances again by running a C-implementation on a Pentium Computer
with 120 MHz.

For a detailed analvsis of the deviation data, we aggregate the results to
see whether or not certain parameter levels have a significant impact on the
Performance. To start with, let us consider the number of machines first. Table
13 gives more insight. As we can see, increasing the number of machines reduces
the average Performance remarkably. The reason for this is not obvious. A
possible explanation might be the following: On the one band, producing a iot
to fulfill a demand may last several periods if capacities are scarce, but takes one
period if the capacity constraints are relaxed. Hence, the total holding costs tend
to be underestimated. On the other hand, more machines tend to result in lower
total holding costs, because items which do not share a common machine may be
produced in parallel and need not be sequenced. Both together might explain
the observed result, because the underestimation of holding costs is relatively
high if t otal holding costs are low.

Next , we a re interested in the impact of the gozinto-structure complexity.
Table 14 shows the results. We cannot state that there is any effect.

Table 15 reveals whether or not the demand pattern plays a role in Perform
ance changes. It. can be seen that sparse demand matrices give poor results.

17

M - 1 M = 2
-9.70 -15.19

Table 13: The Impact of the Number of Machines on the Lower Bound

C = 0.2 C = 0.8
-12.34 -12.57

Table 14: The Impact. of the Gozinto-Structure Complexity on the Lower Bound

Demand matrices with many non-zero entries give the best results with less
than a 10% deviation on average. A reason for this phenomenon seems to be
the fact that lot sizing is more important if there are many demands which can
be grouped together in order to form a lot and thus to safe setup costs. These
saving opportunities are detected by the B&B-method, too.

{Tmacroi ^micro) ̂ idle) —
(10,1,5) (5,2,2) (1,10,0)

-9.88 -11.20 -16.11

Table 15: The Impact of the Demand Pattern on the Lower Bound

If the cost structure is important for a good Performance can be read in
Table 16. Though differences are not dramatic, there is a tendency for instances
with high setup costs to have a better lower bound than instances with low setup
costs.

Since we relax the capacity constraints, the capacity utilization is expected
to have a significant impact on the Performance of th e B&B-method. As Table
17 indicates, this is indeed the case. For U — 30 we have an average deviation
of-5.29% which is a fairly good result. But, for U = 70 the average deviation is
-21.27% which is quite poor, although it is still better than the LP-relaxation.
As a result, we have that the capacity utilization is the most significant factor
for the computation of a lower bound via a capacity relaxation. Remarkable to
note, the average deviation for U = 30 is not very close to zero which indicates
that even a low capacity utilization does not make the multi-level lot sizing and
scheduling problem be an easy-to-solve problem.

The run-time Performance of the B&B-method varies very much. For the
instances with M — 1, it takes between 0 to 53 CPU-seconds to solve them
where zero time actually means that the run-time is too small to be measured.

18

COSTRATIO =
5 150 900

-13.42 -12.05 -11.89

Table 16: The Impact of the Cost Structure on the Lower Bound

U ~ 30 U = 50 U = 70
-5.29 -11.73 -21.27

Table 17: The Impact of the Capacity Utilization on the Lower Bound

Most of the instances with M = 2 can also be solved within 60 CPU-seconds.
Almost all instances can be solved with a time limit of 900 CPU-seconds. Three
outliers need a bit less than 3.600 CPU-seconds.

In surnrnary, the overall average deviation from the optimum results is a
-12.46% deviation for our test-bed. This result decidedly outperforms the
outcome of the LP-relaxation approaches. Hence, the proposed B&B-method
provides a means to compute lower bounds for small instances within reasonable
time. Lower bounds for medium- to large-size instances can, however, not be
determined due to the exponential growth of the computational effort.

5 Lagrangean Relaxation

In the preceding section we removed the set of capacity constraints which com-
plicate solving a PLSP-MM-instance. For th e resulting problem we the n de-
veloped a tailor-made procedura to find lower bounds. A bit more sophisticated
than just removing complicating constraints is the general idea of replacing con
straints with a penalty term in the objective function. The trick is to dehne
a penalty term which — for minimization problems — increases the objective
function value if the removed constraints are violated. Such an approach which
additionally guarantees to give lower bounds for the original problem is known
as Lagrangean relaxation. A nice introdu ction to it is given in [7] (see also [9, 6]).

Subsequently, we will describe how to apply a Lagrangean relaxation to the
PLSP-MM in order to get a lower bound. Again, the capacity constraints are
considered as the complicating constraints. We can therefore use the B&B-
procedure described in the preceding section. In contrast what was done above,

19

we now rriinirriize the objec tive function

.) T M T
Y Y(sixit + hjljt) ~YJ2*£t&capacity£} (43)
j=l(=1 m=1 (= 1

where
Acapacityf£} d= Cmt - ^ p^qft £ = 1, '.., T ^

j&Jra.
gives a negative vaiue, if the capacity of a machine m in period t is exhaustively
required. For the moment it suffices here to know that the values A^ are non
negative parameters — so-called Lagrangean multipliers.

A procedure based on Lagrangean relaxation proceeds iteratively and the
upper index (k) simply counts the iterations. Roughly speaking, starting with
initial values for the Lagrangean multipliers, the resulting instance is solved.
Afterwards, the multipliers are modified and a new Iteration starts to solve the
instance again, This goes on until a stopping criterion is met.

In our context, we begin with

which actuallv means that we solve an U-PLSP-instance which is exactly the
same as the orie concerned in the preceding section.

After each Iteration k we update the Lagrangean multipliers using

1461

for m = 1 and £ = 1,..., T as it is adviced in [15]. ÜB* and LB* are
used to denote the smallest known upper bound and the largest known lower
bound, respectively, for the PLSP-MM-instance under concern. Note, UB* can
be deterrnined with one of the heuristics described in later chapters. LB* can
be chosen zero in itially, and be updated after each Iteration that gives a higher
objective function value than LB*. The parameter 5^ is a positive value where,
again, [15] helps: Initially,

<*(1) = 2. (47)

For k > 1, if LB* has not increased within the last, say, DELTAITER
iterations then

= (4%

otherwise,
S(k+D =<y(fc). (49)

20

The parameter DELTAITER is chosen by the user.
The stopping rule to terminate the Iteration process depends on several user

specified pararneters which are defined in Table 18 and which are tested after
each Iteration. If one of these criteria is fulfilled, the Lagrangean relaxation
procedura stops giving LB* as a lower bound. By construction, this lowerbound
is greater than or equal to the lower bound computed in the preceding sect ion
when we solved U-PLSP-instances.

Symbol Definition
MAXGAP Terminate if U B * — LB* < MAXGAP.
MAXITER Terminate if MAX1TER iterations are

performed.
MINLAMBDA Terminate if A ^+1) < MINLAMBDA for

all TTI — 1,.... M and t = 1,..., T.
TIMELIM IT Terminate if the total run-time is greater

than TIM ELIM IT seconds.

Table 18: Stopping Criteria for the Lagrangean Relaxation Approach

It should be stressed that the B&B-method described in the preceding section
can be used alrriost unchanged as a submodule. All tha t needs to be modified
is the evaluation of production plans which now must use formula (43). The
application of the cost-oriented bounding rule needs to compute

costsFS := costsps + (hiCD3(t+1) ~~ ^mt^capacity^) (50)
j£Jrn

instead of (40). The reverse Operations (41) must be adapted likewise. Re-
member Subsection 4.1 for determining the values ?j^(= Qjt) which in t urn are
needed for Computing the values Acapacity^}.

5.1 Experimental Evaluation

To study the Performance of the Lagrangean relaxation procedura we solve th e
1,033 srnall PLSP-MM-instances on the Pentium P120 Computer a gain. The
method pararneters are chosen as follows: DELTAITER = 5, MAXGAP —
0.001, MAXITER = 1,000, MINLAMBDA = 0.0001, and TIMELIMIT ~
3,600.

The discussion of the results on the basis of aggregated data begins with
the impact of th e number of machines on th e Performance. Table 19 shows the
numbers. As for the U-PLSP Solution, the findings are that the average gap is
positivelv correlated with the number of machines.

21

M = 1 M = 2
-3.82 -7.34

Table 19: The Impact of the Number of Machines on the Lower Boun d

The effect- o f changing the complexity of the gozinto-structure is analyzed in
Table 20. Although differences are not dramatic, gozinto-structures which are
more complex tend to result in slightly 1 arger deviations.

C = 0.2 C = 0.8
-5.26 -5.92

Table 20: The Impact of the Gozinto-Structure Complexity on the Lower Bound

The demand pattern is the focus of interest in Table 21. While there is
a strong tendency for the U-PLSP to yield large deviations if the demand
matrix is sparsely filled, the Lagrangean relaxation remedies this phenomenon
and now gives best results for this case. However, there is not a clear tend
ency that more demand entries reduce the Performance, because the results
for the parameter level (Tmacr&,Tmicro,T^e) = (10,1,5) are better than for
(Tmacrö • Tmicroi ^idle) — (5,2,2).

(Tmacro , Tmicroi ^ nidle) =
(10,1,5) (5,2,2) (1,10,0)

-5.59 -6.11 -5.11

Table 21: The Impact of the Demand Pattern on the Lower Bound

Table 22 reveals the impact of the cost structure on the Performance. In
contrast to the results in the preceding section, we now hav e that low setup costs
give the best results on average. The average deviation is positively correlated
with the ratio of setup and holding costs.

For the capacity utilization we observe again that a high utilization results
in a significantly worse deviation on average than a low utilization. Table 23
makes this apparent.

The average deviation for all 1,033 instances is -5.59% which is a satisfying
result.

22

COSTRATIO =
5 150 900

-4.58 -5.18 -7.00

Table 22: T he Impact of the Cost Structure on the Lower Bound

U = 30 [7 = 50 U = 70
-2.20 -4.81 -10.23

Table 23: The Impact of the Capacity Utilization on the Lower Bound

6 Summary of Evaluation

The cornputational study reveals that the we obtain no satisfying lower bounds
by solving the LP-relaxation of the original PLSP-model formulation or a simple
plant location formulation. Hence, a B&B-method is proposed to solve the un-
capacitated PLSP optimally. The lower b ound that we get this way is decidedly
better. A Lagrangean relaxation of the capacity constraints improves these
bounds. Table 24 summarizes the overall a verage results.

Average Gap
LP-Relaxation of
the PLSP-Model
LP-Relaxation of
the Simple Plant Location Model
Solution of
the Uncapacitated PLSP
Lagrangean Relaxation of
the Capacity Constraints

Table 24: Summary of Lower Bo unding Methods

Acknowledgement

This work was done with partial support from the DFG-project Dr 170/4-1.
We are indebted to Andreas Drexl for his steady support.

-48.20

-42.49

-12.46

-5.59

23

References

[1] BITRAN, G .R., MATSUO, H., (1986), Approximation Formulations for the
Single-Product Capacitated Lot Size Problem, Operations Research, Vol.
34, pp. 63-74

[2] DIABY, M ., BAHL, H.C., KARWAN, M.H., ZIONTS, S ., (1992), A Lagran-
gean Relaxation Approach for Very-Large-Scale Capacitated Lot-Sizing,
Management Science, Vol. 38, pp. 1329-1340

[3] DINKELBACH, W., (1964), Zum Problem der Produktionsplanung in Bin-
und Mehrproduktunternehmen, Würzburg, Physica, 2nd edition

[4] DREXL, A., HAASE, K., (1995), Proportional Lotsizing and Scheduling,
International Journal of P roduction Economics, Vol. 40, pp. 73-87

[5] EPPEN, G.D., MARTIN, R.K., (1987), Solving Multi-Item Capacitated
Lot-Sizing Problems Using Variable Redefinition, Operations Research,
Vol. 35, p p. 832-848

[6] FISHER, M.L., (1981), The Lagrangian Relaxation Method for Solving In
teger Programming Problems, Management Science, Vol. 27, pp. 1-18

[7] FISHER, M.L., (1985), An Applications Oriented Guide to Lagrangian Re
laxation, Interfaces, Vol. 15, No. 2, pp. 10-21

[8] FLEISCHMANN, B., (1990), The Discrete Lot-Sizing and Scheduling Prob
lem, European Journal of Operational Research, Vol. 44, pp. 337-348

[9] GEOFFRION, A.M., (1974), Lagrangian Relaxation and its Uses in Integer
Programming, Mathematical Programming Study, Vol. 2, pp. 82-114

[10] GÜNTHER, H.O., (1987), Flanning Lot Sizes an d Capacity Requirements
in a Single-Stage Production System, European Journal of Operational Re
search, Vol. 31, pp. 223-231

[11] HAASE. K-, (1993), Capacitated Lot-Sizing with Linked Production Quant-
ities of A djacent Periods, Working Paper No. 334, University of Kiel

[12] HAASE, K., (1994), Lotsizing and Scheduling for Production Flanning,
Lecture Notes in Economics and Mathematical Systems, Vol. 408 , Berlin,
Springer

[13] HAASE, K., (1996), Capacitated Lot-Sizing with Sequence Dependent
Setup Costs, OR Spektrum, Vol. 18, pp . 51-59

[14] HAASE, K., KIMMS, A., (1996), Lot Sizing and Scheduling with Sequence
Dependent Setup Costs and Times and Efficient Rescheduling Opportunit-
ies, Working Paper No. 393, University of Kiel

24

[15] HELD, M., WOLFE, P., CROWDER, H .P., (1974), Validation of Subgradi-
ent Optimization, Mathematical Programming, Vol. 6, pp. 62-88

[16] HlNDl, K .S., (1996), Solvingthe CLSP by a Tabu Search Heuristic, Journal
of the Operational Research Society, Vol. 47, pp. 151-161

[17] VAN HOESEL, S-, KOLEN, A., (1994), A Linear Description of the Discrete
Lot-Sizing and Scheduling Problem, European Journal of Operational Re
search. Vol. 75. pp. 342-353

[18] KARMARKAR, U.S., KEKRE, S., KEKRE, S., (1987), The Deterministic
Lotsizing Problem with Startup and Reservation Costs, Operations Re
search, Vol. 35, pp. 389-398

[19] KARMARKAR, U.S., SCHRÄGE, L., (1985), The Deterministic Dynamic
Product Cycling Problem, Operations Research, Vol. 33, pp. 3 26-345

[20] KIMMS, A., (1994). Optimal Multi-Level Lot Sizing and Scheduling with
Dedicated Machines, Working Paper No. 351, University of Kiel

[21] KIMMS, A., (1996), Multi-Level, Single-Machine Lot Sizing and Scheduling
(with Initial Inventory), European Journal of Operational Research, Vol. 89,
pp. 86-99

[22] KIMMS, A., (1996), Competitive Methods for Multi-Level Lot Sizing and
Scheduling: Tabu Search and Randomized Regrets, International Journal
of Production Research, Vol. 34, pp. 2279-2298

[23] KIMMS, A., (1996), Multi-Level Lot Sizing and Scheduling — Methods
for Capacitated, Dynamic, and Deterministic Models, Ph.D. dissertation,
University of Kiel

[24] KIRCA, Ö., KOKTEN, M., (1994), A New Heuristic Approach for the
Multi-Item Dynamic Lot Sizing Problem, European Journal of Operational
Research. Vol. 75, pp. 332-341

[25] LASDON, L.S., TERJUNG, R.C., (1971), An Efficient Algorithmfor Multi-
Item Scheduling, Operations Research, Vol. 19, pp. 946-969

[26] LEE, H.L., BILLINGTON, C., (1993), M aterial Management in Decentral-
ized Supply Chains, Operations Research, Vol. 41, pp. 835-847

[27] LEE. H.L., BILLINGTON, C ., CARTER, B., (1993), Hewlett-Packard Gains
Control of Inventory and Service through Design for Localization, Inter
faces, Vol. 23, No. 4, pp. 1-11

[28] LOTFI, V.. CHEN, W.H., (1991), An Optimal Algorithm for the Multi-
Item Capacitated Production Flanning Problem, European Journal of Op
erational Research, Vol. 52, pp. 179-193

25

[29] MAES, J, VAN WA SSENHOVE, L.N., (1988), Multi-Item Single-Level Ca
pacitated Dynamic Lot-Sizing Heuristics: A General Review, Journal of
the Operational Research Society, Vol. 39, pp. 9 91-1004

[30] ROSLING, K., (1986), Optimal Lot.-Sizingfor Dynamic Assembly Systems,
in: Axsäter, S-, Schneeweiss, C., Silver, E.A., (eds.), Multi-Stage Produc-
tion Flanning and Inventory Control, Berlin, Springer, pp. 119-131

[31] SAL OMON, M., KROON, L.G., KUIK, R., VAN WASSENHOVE, L.N.,
(1991), Sorrie Extensions of the Discrete Lotsizing and Scheduling Prob
lem, Management Science, Vol. 37, pp. 801-812

[32] SIMPSON, N.C., ERENGUC, S .S., (1994), Multiple Stage Production Flan
ning Research: History and Opportunities, Working Paper, State University
of New York at Buffalo

[33] STADTLER, H., (1994), Mixed Integer Programming Model Formulations
for Dynamic Multi-Item Multi-Level Capacitated Lotsizing, Working Pa
per, Technical University of D armstadt

[34] STADTLER, H., (1995), Reforrnulations of the Shortest Route Model for
Dynamic Multi-Item Multi-Level Capacitated Lotsizing, Working Paper,
Technical University of Darmstadt

[35] TEMPELMEIER, H., DERSTROFF, M., (1996), A Lagrangean-Based Heur-
istic for Dynamic Multi-Level Multi-Item Constrained Lotsizing with Setup
Times, Management. Science, Vol. 42, pp. 738-757

[36] TEMPELMEIER, H., HELBER, S., (1994), A Heuristic for Dynamic Multi-
Item Multi-Level Capacitated Lotsizing for General Product Structures,
European Journal of Operational Research, Vol. 75, p p. 296-311

26

