
Kimms, Alf

Working Paper  —  Digitized Version

Parameter controlled instance generation for lot sizing
problems

Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel, No. 412

Provided in Cooperation with:
Christian-Albrechts-University of Kiel, Institute of Business Administration

Suggested Citation: Kimms, Alf (1996) : Parameter controlled instance generation for lot sizing
problems, Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel, No. 412,
Universität Kiel, Institut für Betriebswirtschaftslehre, Kiel

This Version is available at:
https://hdl.handle.net/10419/149043

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/149043
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


Manuskripte 

aus den 

Instituten für Betriebswirtschaftslehre 

der Universität Kiel 



No. 412 

Parameter Controlled Instance Generation 
for Lot Sizing Problems 

A. Kimms 

October 1996 

Alf Kimms 
Lehrstuhl für Produktion und Logistik, Institut für Betriebswirtschaftslehre, 
Christian-Albrechts-Universität zu Kiel, Olshausenstr. 40, 24118 Kiel, Germany 
email: Kimms@bwl. uni-kiel .de 
URL: http://www.wiso.uni-kieI.de/bwlinstitute/Prod 

ftp://ftp.wiso.uni-kiel.de/pub/operations-research 



Abstract 
This contribution defines a n instance generator for capacitated, dy-

namic, multi-lev el lot sizing problems. It provides sophisticated methods 
for generating systematically varied parameter level combinations automat-
ically. This helps to perform evaluations of lot sizing methods according 
to a factorial experimentell design and to establish Standard tes t-beds. 

Keywords: Instance generator, experimentäl design, lot sizing 

1 Introduction 

An important section in high-quality research papers which present Solution 
methods for a certain problem is the one that is concerned with the competitive 
edge. To aliow a fair and profound comparison of new methods with existing 
ones, both, the new and the old ones should be applied to the same test-bed 
for an assessment of their Performance. If you are lucky, there has a Standard 
test-bed been established in the literature for the problem you deal with. If 
not, it is up to you to dehne a test-bed which guarantees fairness. Moreover, 
not only for comparing two or more methods, but also for introducing a method 
for a problem that has not been attacked before one should use a test-bed that 
gives insight under which conditions, i.e. problem parameter settings, a certain 
method performs good or bad. 

Some general remarks ab out the design of test-beds can be found in [1, 5]. 
Rather than using a random experimental design, authors should use factorial 
designs to evaluate their methods. This provides the opportunity to vary cer­
tain parameter values systematically in order to study the impact of destinet 
parameter level combinations on the Performance. 

A way to achieve the goal of constructing test-beds where the parameter set­
tings are systematically varied is to speeify instance generators. The advantage 
of these is that different instances can easily be generated. Making the instance 
generator available to the public helps to establish Standard test-beds, because 
it usually is much easier to communicate some input values for that program 
instead of hundreds of data sets. 

For the (resource constrained) project scheduling problem (RCPSP), for ex-
ample, an instance generator has recently been described in [7]. For the (capa­
citated, dynamic, multi-level) lot sizing problem (CLSP) and variants which are 
the subject of our concern, no instance generator has been published (see [6] for 
an extensive review of the research work on that topic). Hence, we will close 
that gap. 

Throughout the text we make use of some short-hand notation. To draw a 
real-valued random variable with uniform distribution out of an interval [a, 6] we 
write € RRAND[a, 6]. A nalogously, € IRAND[a, b] is used to draw an integer-
valued random variable. Generating uniformly distributed random numbers is 
based on the random number generator described in [8]. If x is real-valued, [arj 
(f*l) denotes the greatest (smallest) integer value that is less (greater) than or 
equal to x. 

2 Parameters 

An instance of a capacitated, multi-level lot sizing problem can be characterized 
by a set of p arameters. For our purposes, we consider the parameters given in 
Table 1. See [6] for l ot sizing models which are defined using this notation. 

1 



Symbol Definition 
aJi "Gozinto"-factor. Its value is zero if item i is not an aJi 

immediate successor of i tem j. Otherwise, it is the 
quantity of item j that is directly needed to 
produce one item i. 

Cmt Available capacity of machine m in period t. 
djt External demand for item j in period t. 
h3 Non-negative holding cost for having one unit of 

item j o ne period in inventory. 
IjO Initial inventory for item j. 
J Number of items. 
M Number of machines. 
rrij Machine on which item j is produced. 

Let Jm denote the set of item that share machine m. 
Pj Capacity needs for producing one unit of item j. 
Sj Non-negative setup cost for item j. 
T Number of periods. 
Vj Positive and integral lead time of item j. 
Vjo Unique initial setup state. 

Table 1: Parameters for a Lot Sizing Problem 

All Parameters out of </, Af, a nd T (which are user input respecting M < J) 
are generated at random. Straightforwardly, we choose 

Ij0 e IRAND[INITINVmin,INJTINVmax) 
where INITINVmax > INITINVmin > 0 are 
user input, 

mj 6 1RAND[1,M] 
where Jm ^ 0 for all m = 1,..., M must hold, 

pj € RRAND[CAPNEEDmin,CAPNEEDmax] 
where CAPNEEDmax > CAPNEEDmin > 0 are 
user input, 

Vj 6 IRAND[LEADTIMEmin, LEADTIMEmax] 
where LEADTIMEmax > LEADTIMEmin > 0 
are user input, 

yjo e IRAND[0,1] 
where 2/j'o < 1 for all m = 1,..., Af must hold. 

The remaining parameters need a more sophisticated strategy to be generated 
randomly. 

3 Generation of Gozinto-Structures 

The input parameters for generating acyclic gozinto-structures are given in Table 
2. 

In the sequel we confine ourseif to general gozinto-structures (TYPEQ = 
general) in order to avoid too much technical detail. The generation of linear, 
assembly, or divergent gozinto-structures is roughly the same. Some hints for 
what changes is spread in the text and should be sufficient. 

2 



Symbol Definition 
[ARCmin, ARCmax] Interval of gozinto-factors where 

ARCmax > ARCmin > 0. To generate 
single-level instances one may choose 
ARCmin = ARCmax = 0. 
Complexity of the gozinto-structure. 
Largest low Ievel code of items in the 
gozinto-structures. 
Number of end items. 
Number of items, where 
ITEMS(0) + DEPTH < J. 
Maximum number of iterations where 
MAXITERG > NG. 
Number of different gozinto-structures 
to be created. 
A priority value for llc = 1,..., DEPTH 
which is used to define a discrete 
probability function that helps to shape 
the gozinto-structure where 
PRIVAL(llc) > 0 for all 
llc = 1,.DEPTH. 
Type of the gozinto-structure, 
i.e. TYPEQ E {linear, assembly, 
divergent, gener al}. 

COMPLEXITY 
DEPTH 

ITEMS{ 0) 
J 

MAXITERG 

NG 

PRIVAL(llc) 

TYPEG 

Table 2: Parameters for Generating Gozinto-Structures 

3 



Once the generation of gozinto-structures is started, we first decide how 
many items should have what low level code. Let ITEMS(llc) where llc = 
1,..., DEPTH denote the number of items with low level code llc. We must 
guarantee ITEMS{llc) > 1 for all llc = 1DEPTH to come up with a 
structure of the desired depth. Such a structure must exist since ITEMS(0) + 
DEPTH < J holds. At the end 

DBPTH 
]T ITEMS(llc) = J (1) 
llc—0 

must hold. Low level codes are assigned at random using a discrete prob-
ability function which is defined on the basis of PRIVAL(llc) for all llc = 
1,..., DEPTH. Formally, if Z E R RAND[Q, 1] then 

level(Z) ä=f 

min < llc e DEPTH} \ 
PRIVAL(n) 

ns 1 
BPTH 

PRlVAL(r, 
>z 

(2) 

is the low level code to choose next. The piece of code in Table 3 gives a precise 
definition of what is done. 

ITEMS(llc) := 1 for all llc = 1,.DEPTH. 
white EudV" ITEMS(llc) < J 

choose Z € RRAND[0,1]. 
ITEMS{level(Z)) := ITEMS(level(Z)) + X. 

Table 3: Method to Construct a Gozinto-Structure, Part 1 

Figure 1 shows a possible outcome for J = 6, ITEMS(0) = 1, and DEPTH = 
2. 

If linear or divergent gozinto-structures shall be constructed, we must respect 
ITEMS(llc) < ITEMS(llc - 1) for all llc = 1DEPTH and keep this 
condition true during execution. 

In the next step, we construct a gozinto-structure where exactly ITEMS(llc) 
items have alow level code llc = 0,, DEPTH. We will use the minimum num­
ber of arcs to do so. Without loss of generality we assume that items that should 
have a low level code llc are numbered consecutively from 1+YlnC=Q ?TEMS(n) 
to Yln=o ITEMS{n) (see Figure 1). This, by the way, guarantees a technological 
ordering. The basic idea now is simple. Just introduce exactly one are pointing 
from an item that should have a low leve l code llc where llc = 1,..DEPTH 
to any item that should have a low level code llc — 1. Figure 2 shows a possible 
result for the example where ARCmin = 1 and ARCmax — 2. More formally, 
this part of the construction of a gozinto-structure can be described as in Table 
4. 

The resulting gozinto-structure meets its specification with a minimum num­
ber of arcs, i.e. J — ITEMS(0) arcs. Additional arcs can now be introduced in 
order to make the structure more "complex". Let 

4 



Low Level Code 

Figure 1: A Possible Assignment of Low Level Codes to Items 

be an auxiliary function. A measure of complexity can be defined as 

n def numarcs — minarcs (A^ C — : (4) 
maxarcs — minarcs 

where 
J 3-1 

numarcs = (^) 
j=ii=i 

is the number of arcs in the gozinto-structure, 

minarcs =' J - ITEMS{0) (6) 

is the minimum number of arcs in a gozinto-structure with J items given the 
number ITEMS(0) of end items, and 

DBPTH-l / DEPTH \ 
maxarcs =' ^ I ITEMS(llc) ^ ITEMS(n) | (7) 

llc=0 \ n=iic+l / 

is the maximum number of arcs in a gozinto-structure with J items given the 
number ITEMS(Uc) of items per low level for llc = Q,...}DEPTH. The 
complexity C of a multi-level gozinto-structure is a real value where 0 < C < 1 
holds. Roughly speaking, it is a measure that expresses how many arcs could be 
removed while keeping the same number of items per low level, and it relates this 
value to the maximum additional number of arcs that could exist. C evaluates to 

5 



a.ji = 0 for all jti= 1,..., J-
for llc = 1 to llc — D EPTH 

for j = \ + E"l"o' ITEMS(n) to j = E"l0 ITEMS(n) 
choose i e IRAND[ 1 + E"=~o2 ITEMS(n), 

EÜL'o1 ITEMS(n)]. 
ctji := IRAND[ARCmin, ARCmax\-

Table 4: Method to Construct a Gozinto-Structure, Part 2 

zero if the gozinto-structure ander concern has the minimum number of arcs (see 
Figure 2 for example), and its value is one if no further arcs can be introduced 
without changing the number of items per low level. 

Discussions on complexity measures for gozinto-structures are rather un-
done. Only one author, namely Collier [2], has introduced a so-called degree of 
commonality index 

° " J-ITEMS(0) K } 

where 

idji d= 

1 , if j = i_ 
0 , if ig Vj 
Z akjidki (= Zfees tikidjk) , oth erwise 

keVj 

(9) 

for j, i = 1,is the internal demand for item i that is directly or indirectly 
caused if one item j is produced. Here, Vj denotes the set of all immediate 
predecessors of item j, Vj denotes all predecessors of item j. We do not use 
this definition of complexity, because we feel that the fact that the value of C' 
has no Upper bound, which is valid for all gozinto-structures whatsoever, is less 
graphic than our definition. A value of C close to one indicates "many arcs" 
which means many predecessor relationships between items. But what does 
a C'-value of, say, 1.5 mean? Since we use the complexity as a user defined 
Parameter for generating gozinto-structures, the user should have a good feeling 
for the impact of changing its value. 

This is where the parameter COMPLEXITY comes in. We now keep on 
adding additional arcs one by one until the gozinto-structure has the desired com­
plexity. Figure 3 gives a possible result for the example if COMPLEXITY = 
0.5 is chosen (C = 0.5, too). More precisely, we do what is described in Table 5. 

while C < COMPLEXITY 
choose j e IRAND[ 1 + ITEMS(0), J] 

where ZCi ITEMS(n). 
choose i 6 IRAND[ 1, Znlo 1 ITEMS(n)] where Oj,- = 0. 
CLji := IRAND[ARCminj ARCmax\-

Table 5: Method to Construct a Gozinto-Structure, Part 3 

6 



Low Level Code 

Figure 2: A G ozinto-Structure with a Minimum Number of Ares 

After this procedure terminates, we have a gozinto-strueture with complexity 
C w here 

COMPLEXITY 
< 
C 
< 

COMPLEXITY + maxarcsl_minarcs 

holds. 
Note, linear and assembly gozinto-struetures always have a complexity C = 0. 

In general, divergent struktures have a maximum complexity C < 1. 
Since we want to have Nc different gozinto-struetures, we simply iterate the 

whole procedure over and over again each time starting from Scratch, i.e. start-
ing with determining ITEMS(llc) for all llc = 1,..., DEPTH. This loop is 
halted, if NQ different gozinto-struetures are found or if MAXITERQ iter-
ations are performed. The latter condition guarantees that the generation of 
gozinto-struetures terminates even if NQ is greater than the number of differ­
ent gozinto-struetures which do exist while meeting the specification. Testing 
whether a generated gozinto-strueture is new o r has already been constructed 
during earlier iterations seems to be an easy task at first sight. One might guess 
that comparing the o^-matrices is sufficient. Note, if two adjacency matrices 
are of a different size such a comparison is, of course, sufficient. Consider Figure 
4 to see another gozinto-strueture that could have been computed following the 
above lines. Both, Figure 3 and Figure 4 show isomorphic gozinto-struetures. 

7 



Low Level Code 

Figure 3: A Gozinto-Structure with C = 0.5 

Since simple relabeling of the items makes both identical, we wish to identify 
them as the same structure. 

Having a look at the a^,—matrices reveals that both can hardly be identified 
as representing the same structure. We give the matrix for Figure 3 at the left 
hand side and the matrix that corresponds to Figure 4 at the right hand side: 

( 0 
1 
1 
1 
0 

\ 0 0 

0 0 \ 
0 0 

0 
0 
0 
0 / 

( o 
1 
1 
1 
0 

V 0 

0 \ 
0 
0 
0 
0 
0 / 

A more sophisticated method thus needs to be employed to test whether 
or not two adjacency matrices represent the same gozinto-structure. If the 
values ITEMS(llc) of the two gozinto-structures difier for at least one llc = 
0,..., DEPTH, it is obvious that the two matrices cannot represent the same 
gozinto-structure. Otherwise, the trick to check if two adjacency matrices rep­
resent the same gozinto-structure is to consider the corresponding incidence 
matrices, find pairs of so-called equivalent rows, and delete these. If this yields 
all rows deleted, the two incidence matrices and hence both adjacency matrices 
represent the same gozinto-structure. If not, they represent different structures. 
Before we begin to explain what equivalent rows are, let us recall the notion of 

8 



Low Level Code 

Figure 4: An Isomorphic Gozinto-Structure 

an incidence matrix (ofi)j,i=i,from graph theory: 

1 c°> 

where Sj denotes the set of all immediate successors of item j. 
We must use the incidence matrices, because a row j of an adjacency matrix 

does only show for what arcs the item with number j is the origin, but it does not 
provide the information for which arcs the item is a destination. It is easy to find 
examples which show that using the adjacency matrices instead of the incidence 
matrices would let the procedure to be presented indicate an isomorphism for 
some gozinto-structures which are not identical. 

Two rows, say, j and i (which represent items j and i) are called equivalent 
if and only if each number that occurs, say, n > 0 t imes in row j, also occurs n 
times in row i and llcj = llci. Note, licj is used to denote the low level code of 
item j. More formally, two rows j and i are equivalent if and only if there is a 
permutation TT of column indices so that 

llcj = llci and äjk = Ä = 1,..., J (11) 

holds. 
The procedure to be employed iteratively finds a row j in the one incidence 

matrix that is equivalent to a row i in the other and deletes both. It terminates 
if n o further equivalent (and undeleted) rows can be found. If all rows are de-
leted, the two incidence matrices and so the toyo adjacency matrices do represent 
isomorphic gozinto-structures. 

9 



As an example, let us reconsider the gozinto-structures in Figures 3 and 
4 again to see if the presented procedura finds out that both structures are 
isomorphic. The incidence matrix that corresponds to Figure 3 is given at the 
left hand side and the one that corresponds to Figure 4 is given on the right 
hand side where horizontal lines separate different low levels: 

0 -1 -1 -1 0 0 \ / o -1 -1 -1 0 0 
1 0 0 0 -1 0 1 0 0 0 -2 -2 
1 0 0 0 -2 -2 ? 1 0 0 0 -1 -1 
1 0 0 0 -1 -1 4:—> 1 0 0 0 0 -1 
0 1 2 1 0 0 0 2 1 0 0 0 
0 0 2 1 0 0 } \.0 2 1 1 0 0 

Looking for corresponding rows, we find that row 3 of the matrix on the left 
hand side is äquivalent to row 2 of the right hand side matrix. Hence, these rows 
can be deleted. So can rows 5 and 6, re spectively. 

( 0 -1 -1 -1 0 0 \ / 0 -1 -1 -1 0 0 
1 0 0 0 -1 0 X X X X X X 
X X X X X X ? 1 0 0 0 -1 -1 
1 0 0 0 -1 -1 N V 1 0 0 0 0 -1 
X X X X X X 0 2 1 0 0 0 

K 0 0 2 1 0 0 / \ X X X X X X ) 

The reader may convince himself that moving on indeed deletes all rows and 
thus gives the desired result that both matrices represent isomorphic gozinto-
structures. 

4 Generation of External Demand 

The parameters for generating external demand matrices are given in Table 6. 

Symbol Definition 
[DEMminyDEMmax] Interval of demand sizes where 

DEMmax >-DEMmin > 0. 
ITEMS{ 0) Number of end items. 
J Total number of items where 

J > ITEMS(0). 
ND Number of different external demand 

matrices to be created. 
Tidle Number of idle macro periods where 

Tidle > 0. 
T -Lmacro Number of macro periods where 

Tmacro ^ T%dle-
Tmicro Number if micro periods where 

Tmicro ^ 0* 
TYPED Indicator for which items external 

demand may occur, 
i.e. TYP ED € {end items, all items}. 

Table 6: Parameters for Generating External Demand 

10 



These parameters guide the random generali on of demand matrices. While 
generating a djt-value for j = 1,..., J and t = 1,..., T, three cases may occur: 

end items 
Case 3: t > TidieTmiCro and ^— = 1^-*—J and (Sj = 0 or TYP ED = 1 wiero ^ i miero J x J 
all items) 

Depending on the case that holds, we dehne 

where T = TmacroTmicro• The idea behind this definition of T links model 
specific and real-world points of view. In the real-world external demands are 
not to be met at arbitrary points of time, but at some well-defined points of time 
such as the end of a shift, the end of a day, or the end of a week, for example. 
These real-world macro periods may then be subdivided into fine grain micro 
periods which are the subject of consideration when solving an instance. Since 
the user may set TmiCro = 1 and hence T = Tmacr0 this way of generating 
external demand is not restrictive, but close to real-world (see also [3, 4] for 
a discussion of macro and micro periods when interpreting the CLSP and the 
DLSP). The parameter Tidie specifies a number of macro periods at the beginning 
of the planning horizon in which no external demand occurs. This allows to 
generate multi-level instances with low initial inventory where the depth of items 
must fit into the time window between period one and the due date of Orders. 

In total a number of ND different external demand matrices is generated 
where checking if two matrices are equal can be done with a straightforward 
comparison. 

5 Generation of Capacity Limits 

To generate a matrix of capacity limits we need a gozinto-structure, an external 
demand matrix which defines external demand for each item in the gozinto-
structure, Vj-, pj-t and mj-vectors, and a parameter U where 0 < U < 100 
which defines the percentage of capacity utilization per machine as input. A value 
U > 100 would indicate that capacity needs exceed the capacity availability. As 
we do not consider overtime such values are not valid. 

Basically, the capacity utilization is a measure which relates capacity demand 
to capacity availability. Before we give more details, let us first introduce an 
auxiliary notation for what (external or internal) demand is to be met at what 
point of time. Disregarding restrictive assumptions about how m any items can 
be produced per period, a lot-for-lot policy leads to 

where, by the way, df?L = djt for all j = 1 and t = 1,.. .,T in the 
single-level case. 

(12) 

11 



Most authors define the capacity utilization of a machine m where m = 
1,..M as: 

77 dSj ^i€ Et=l QQ Um - =7 % 1UU 

2-rt = l 
(14) 

A somehow more realistic definition would be 

äef J2j€JmPjnrj Ur 
ZLl Cr 

100 

where nrj denotes the net requirement of item j, because in the presence of 
positive initial inventory the capacity utilization is overestimated, otherwise. 

So, if we assume U\ « ... « UM « U it seems to be a good idea to choose 

'mt 
TljeJm 52t = l V5d\tL 

T-U 100 (15) 

But, since demand is dynamic this is not a good choice as a small single-item 
example shows. Suppose, J = 1, M = 1, and T = 4. Furthermore, assume the 
data given in Table 7. Let U = 70. 

djt t = 1 2 3 4 pj 
~T= 1 35 10 ~T~ 

Table 7: A Small Single-Item Example for Determining the Capacity Utilization 

Using formula (15) gives C\t = 17 for all t = 1,.. .,T. Unfortunately, there 
is no feasible Solution for an instance with these parameters, because meeting 
the demand in period 2 exceeds the available capacity. 

The problem here is that using an overall average as defined by (15) does 
not take the variance of demand into account. A procedure which reflects the 
dynamic nature of demands is thus needed to generate a capacity limit matrix. 
The method that we use is given in Table 8 where 

3mf( = ^j.Zr=tPidirL 1 -* -1 -T (16) 

is used to denote the average capacity demand in the interval [£, ...,<] of periods. 
The presented method guarantees that 

jeJrn T = 1 T = 1 

holds. Also, 

LT jr,rU^U™^U (18) 

is a valid worst case bound which proves a satisfying approximation for U\ 
... « UM ~ U, because if 

tssl 

12 



for m = 1 to m = M 
t := 1. 
while t <T 

t := t. 
dm := 0. 
while dm < dmit and t < T 

dm dmft. 
t := t + 1. 

for T = t to r = t — 1 
Cmr := K>7T1-

Table 8: Method to Compute Capacity Limits 

which certainly is true in most real-world situations then the left hand side 
evaluates to 

EL. d^L 

i oo + YLjeJm <%tL u U&U. (19) 

Note, if we woul d have chosen to compute CmT := dm^jf- in the method given 
in Table 8 then we wo uld have U\ = ... = UM = U. However, we decided to 
generale integer values for demand (see (12)) as well as for capacity limits. 

As an example, suppose the gozinto-structure given in Figure 5 where J = 5. 
Furthermore, assume M = 2 and T = 10. All other relevant parameters are 
provided in Table 9 where external demand occurs for item 1 only. Table 10 
shows a protocol of running the procedura given in Table 8 with these data and 
U = 70. 

Figure 5: A Gozinto-Structure with Five Items 

The entries in the columns d\ and dg, respectively, which are highlighted with 
boxes trigger the computation of C\T and Cg?, respectively, for t < r < t. For 
example, since d2 = 12 is a local maximum when Computing average capacity 
demands beginning with period 5 stepwise Up to period 9, C25 = C26 = C27 = 

13 



5
 

II 2 3 4 5 6 7 8 9 10 mj Pj Vj 
j = 1 10 20 1 1 1 

II to
 

10 20 2 1 1 co II 30 60 1 1 1 
j = 4 20 40 2 1 1 
j = 5 30 60 1 1 1 

Table 9: Relevant Data for the Example 

t t ^n"t di d^tt dg Ci, c2t 

1 0 0 
1 0 0 0 0 22 11 
2 0 0 0 0 22 11 
3 10 10 6.67 6.67 22 11 
4 15 15 7.5 7.5 22 11 
5 14 6 

5 0 0 
5 10 10 0 0 15 18 
6 5 0 0 18 

6 
6 0 

0 
0 43 

7 0 0 0 0 43 18 
8 20 20 10 10 43 18 
9 30 30 12 12 43 18 

10 28 10 
10 0 0 

10 20 20 0 [o] 29 0 
11 

[o] 

Table 10: A Protocol of the Method in Table 8 

C28 = C29 = [12^] = 18. Due to (14), U\ — 69.08 and U2 = 67.16 which is 
close to the desired vahie U = 70. 

6 Generation of Holding and Setup Costs 

The parameters for generating holding and setup costs are given in Table 11. 
Holding costs are generated at random using 

hj G IR AND[ [HCOSTmin + (J - j) ncosTmai-HcosTmin j > (20) 

\HCOSTmin +(j-j+ i)iicosTm.,-HcosTmiv-ß 

for j = 1,..., J. Note, using the ##A7VD-function would be fine as well. The 
generation of holding costs therefore tends to assign high holding costs to items 
with a small low level code and low holding costs to items with a large low level 
code (see Subsection 3). 

14 



Symbol Definition 
COSTRATIO Ratio of setup and holding costs 

where COSTRATIO > 0. 
Interval of holding costs where 
ff COSTmax > ffCOSTmin > 0. 
Number of items. 
Number of different cost vectors 
to be created. 
Acceptable deviation from the 
cost ratio where 
0 < RATIODEV < 100. 

[HCOSTmin,HCOSTr min j mai. 

J 
Nc 

RATIODEV 

Table 11: Parameters for Generating Holding and Setup Costs 

Setup costs can now be chosen with respect to 

Sj € IRAND[ [COSTRATIO • hj( 1 -

fCOSTRATIO - hj{l + 

RATIODEV 
100 )J , (21) 

)1] RATIODEV 
100 

for j = 1,..., J. Again, the RRAND-{\inction would be okay, too. 
To find Nc different cost vectors a simple comparison helps to check for 

doubles. 

We have presented an instance generator for capacitated, multi-level lot sizing 
Problems. It is trivial to remark that uncapacitated or single-level instances 
can also be generated by choosing the method parameters accordingly. The 
specifications given here have been coded in C. The source code is available on 
our ftp-site: ftp://ftp.wiso.uni-kiel.de/pub/operations-research 

Future work should extend the instance generator for Setup times, parallel 
machines, or sequence dependent setup costs (and times) which may be Import-
ant for lot sizing and scheduling models. 

Acknowledgement 

This work was done with partial support from the DFG-project Dr 170/4-1. 

References 

[1] BARR, R.S., GOLDEN, B.L., KELLY, J.P., RESENDE, M.G.C., STEW­
ART, W.R., (1995), Designing and Reporting on Computational Experi­
ments with Heuristic Methods, Journal of Heuristics, Vol. 1, pp. 9-32 

[2] COLLIER, D.A., (1981), The Measurement and Operating Benefits of Com-
ponent Part Commonality, Decision Sciences, Vol. 12, pp. 85-96 

[3] FLEISCHMANN, B., (1990), The Discrete Lot-Sizing and Scheduling Prob­
lem, European Journal of Operational Research, Vol. 44, pp. 337-348 

7 Conclusion and Future Work 

15 



[4] FLEISCHMANN, B., (1994), The Discrete Lot-Sizing and Scheduling Prob­
lem with Sequence-Dependent Setup Costs, European Journal of Opera-
tional Research, Vol. 75, pp. 395-404 

[5] HOOKER, J.N., (1995), Testing Heuristics: We Have It All Wrong, Journal 
of Heuristics, Vol. 1, pp. 33-42 

[6] KlMMS, A., (1996), Multi-Level Lot Sizing and Scheduling — Methods 
for Capacitated, Dynamic, and Deterministic Models, Ph.D. dissertation, 
University of Kiel 

[7] KOLISCH, R., SPRECHER, A., DREXL, A., (1995), Characterization and 
Generation of a General Class of Resource-Constrained Project Scheduling 
Problems, Management Science, Vol. 41, pp. 1693-1703 

[8] SCHRÄGE, L., (1979), A More Portable FORTRAN Random Number Gen­
erator, ACM Transactions on Mathematical Software, Vol. 5, pp. 132-138 

16 


