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Abstract 

Basic confounding patterns for full-profile conjoint analyses based upon ranking are 

examined. It is shown that commonly used orthogonal main-effect designs can lead to 

biased part-worth estimates, especially to an underestimation of less important variables. 

An alternative design procedure is developed to overcome this flaw. The model is tested 

by means of Simulation analyses and is applied to a marketing research study. Some 

guidelines for applications are provided. 

A. Introduction 

Conjoint analysis enjoys large popularity among marketing researchers, as it combines 

easy-to-handle data collection with sophisticated evaluation methods. Rank-based conjoint 

analysis is often used to estimate the respondent's metric Utility fiinction (see overview in: 

Green, Srinivasan,1978 and 1990). However, recent studies show that there are some 

inherent limitations concerning the accuracy of the part-worth estimates (Currim et al., 

1981; Müller-Hagedorn et al., 1993, Steenkamp, Wittink, 1994). 

To be specific, Darmon and Rouzies (1994) observe in a Simulation analysis that less 

important variables tend to be underestimated at the benefit of more important variables, 

especially if the data possess a low Ievel of noise. There are indications that this distortion 

can be caused by the interference with highly important variables (Teichert, 1994). 

This study investigates the systematic patterns of such biases in more detail. It focuses on 

the most severe case of distortion; when a variable of less importance is not at all 

distinguishable from the other variables. This variable is then known as "confounded" 

(Box, Hunter, Hunter, 1978). Confounding patterns are analyzed based on the 

mathematical capabilities of rank-ordered conjoint-analyses. Simple statistics and 

estimation modeis are used to provide a clear focus. To further simplify, the explanations 

are restricted to two-level designs. The results, however, are transferable to conjoint-

analyses that are more complex. 

In the following, basic confounding patterns of ranking data are first analyzed. The results 

of the simple model are subsequently transferred to orthogonal main-effect designs with 

more than three variables and are tested in a Simulation analysis. Possible solutions to the 

confounding patterns revealed are compared. The preferred alternative design model is 

then applied using large-scale empirical data. Finally, implications and guidelines for 

marketing research applications are discussed and presented. 
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B. Confounding patterns in ranking data 

a) Basic confounding patterns 

Part-worth values of variables are not directly observed in conjoint analyses. The data base 

consists of holistic preference judgments regarding a set of Stimuli, being pre-specified 

combinations of variables and their levels. Estimates for the individual variables are 

derived from Statistical methods of decomposition. 

Rank-based conjoint analyses use the ranking of Stimuli as the dependent variable and the 

stimuli-defining variable levels as the independent variables. Table 1 offers an example. 

The preferability of four different air-freight-services is surveyed. The Stimuli are defmed 

by three variables with two levels each. Dummies are used to code the variable levels. 

No Statistical method is able to retrieve information not provided in the ranking, as this is 

the only dependent variable in the analyses. A variable has no measurable effect if it exerts 

no influence on the ranking. This is ceteris paribus the case, if the average ranks are equal 

at the different variable levels. 

Table 1: Example of a rank-based conjoint problem for air-freight-services (simplified 

example from Mengen, 1993); variables, levels and codings. 

Service 
alternative 

characteristics of Service 

independent variable A: 
„transport time" 

independent variable B. 
„guarantee" 

independent variable C: 
„tracking" 

preference 
rank 
(1 = best case) 

dependent 
variable 

# 1 A-+1 „overnight" B = +1 „money back" C = +1 „real-time" 9 

#2 A = +1 „overnight" B = -1 „no guarantee" C = -1 „no tracking" 7 

# 3 A = -I „twodays" B = +1 „money back" C = -l „no tracking" 9 

#4 A = -1 „two days" B = -1 „no guarantee" C = +1 „real-time" 9 

One thus obtains a simple estimate regarding the size of an effect by contrasting the 

average ranking values at the different variable levels. Applying the robust ANOVA 

technique (see Wittink, Cattin, 1981), the size of the effect E(A) of variable A with two 

levels (+A,-A) can be defmed as the difference between the average ranks R : 

E(A) = R{+A)-R{-A) (i) 
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The estimated part-worth value PW(A) of variable A is a normalized transformation of the 

size of the effect, and can be defined as: 

E(A) 

with X beine the set of all independent variables and A eX 

When dealing with metric data, effect estimates are obtained without ambiguity from an 

orthogonal design: Such a design is a subset of Stimuli of the completely enumerated, full-

factorial design which fully correlates the levels of relevant effects and irrelevant 

interaction effects (Kuhfeld, Tobias, Garatt, 1994). These identities are known as design-

generating "aliases" Orthogonal designs avoid any other correlation of the levels of the 

relevant independent variables. The effects of the other variables are balanced out and do 

not influence the individual estimations. Therefore there is no ambiguity in the 

Interpretation of the outcomes of the estimating contrasts (Box, Hunter, Hunter, 1978). 

Orthogonality of ranking data is a necessary, but not a solely sufficient condition to 

prevent ambiguity of effect estimates. Information concerning effect size is lost in the 

recoding of metric preference values to ranking judgments. Adding one and the same 

metric part-worth value to a different stimulus may or may not influence its ranking, 

depending on the total utility of the stimulus in comparison with the Utility of the 

neighbouring Stimuli. Thus, the estimating equation (1) can be influenced by other 

variables, leading to an ambiguous effect estimate. 

Orthogonal main-effect designs may even lead to the confounding of a less important 

variable. This variable may be an alias of the (non-existent) interaction of two highly 

important variables. If this is the case, then a change of the level of the less important 

variable always coincides with a change of the level of exactly one of the highly important 

variables. Thus the effect of the less important variable is always offset by the 

simultaneously occuring effect of one of the iarger variables. Ceteris paribus, the smaller 

variable will not be able to influence the ranking structure. It will not be distinguishable, 

i.e. it will be confounded. 
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This effect can be illustrated using the example introduced in table (1): This is the most 

simple case of a 23"1 orthogonal main-effect design. The design is generated by choosing a 

subset of Stimuli with the design-generating alias C = A * B. A set of four Stimuli results, 

as shown in table 1 and visualized in figure 1. It can be seen, that the Stimuli distinguish 

themselves simultaneously in the levels of exactly two variables. Therefore the effect of 

the least important variable is always offset, this variable is not able to influence the 

preference structure. 

Figure 1: Observations of a 23-1 orthogonal main-effect design with • showing C = A * B 

This effect can be shown in mathematical terms as following: Let the "true" part-worth 

values PWof the upper levels of variables A, B, and C, each having the dichotomous 

levels (+1,-1), be described by the following inequalities: 

PW(A) > PW(B) > PW(C) > 0 (3) 

Let R(+A,+B,+C) be the rank of a stimulus consisting of variables A, B, and C with 

dummy level A=+l, B=+l, C=+l. The rank order of the four Stimuli selected (see figure 1) 

can then be deduced from the inequalities (3) as: 

R{+A^B^C) > R(+A-B-C) > R(-A9+B,-C) > R(-A,-B,+C) (4) 

The effect of variable C is estimated to be the contrast according to equation (1). 

According to the ranking structure of (4) it is calculated by adding the first and fourth 

ranks and subtracting the second and third ranks. The resulting estimate must consequently 
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be zero. This impfies that the smaliest variable is confounded in the design which was 

chosen. 

If the study on air-freight services would have been conducted as outlined in table (1), the 

deterministic model had been incapable of evaluating the respondent's preference for 

providing a tracking Service (variable C). 

b) Confounding in two-level main-effect designs 

Real-Iife orthogonal main-effect designs are extensions of the simple 23*1 orthogonal main-

effect design as outlined above. The basic pattern remains the same, however, if a less 

important variable C is confounded by the interaction term of two more important 

variables A and B. 

For any design with confounding C = AB, one obtains only replications within the three-

dimensional space of A, B and C at four levels as shown in figure 1. These replications 

differ in the values of the added variables. 

The added variables do not improve the estimability of effect C, as long as the basic 

ranking structure as outlined above remains unchanged. Reversais within the replications 

are irrelevant for the estimation of effect C since they occur at the same level of C. 

The confounding patterns of C are overcome if the basic ranking order (see inequalities 4) 

changes in respect to the relative positions of those observations with different levels of C 

(+C;-C). Thus there are four possibly relevant reversals within the three-dimensional space 

of A, B, C: 

> R(-A,+B,-C) > R(-A,-B+c) 

Reversal 1 Reversal 2 

! Reversal 3 
K • -

Reversal 4 
* > 

Variable C remains confounded if the added variables do not even cause a change in two 

neighbouring ranks (reversal 1 or 2).This is the case if the effect of variable B is larger 

than the sum of effects of the added variables and of C. 
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To illustrate, two more variables D and E are added to the example used above and a 25 2 

orthogonal main-effect design with eight Stimuli is chosen. A set of six possible designs 

fulfills these design characteristics (with generaling aliases DE = +/- AB; +/- AC; +/- BC). 

These designs consist of four Stimuli in the three-dimensional Space of ABC, with two 

occupants each. The replications distinguish themselves simultaneously in the levels of D 

and of E. 

The requirements for the occurrence of reversals 1 to 4 are calculated for each design. The 

design alternatives exhibit differences in their ability to overcome the basic confounding 

pattern (see table 2). Best results are obtained by the designs with confounding DE = +/-

AB. Reversals require the smallest relative size of the added variables in this case. 

Table 2: Requirements for reversal of ranks 

Alternative main-effect designs 

(design generating aliases) 

DE = AB DE = - AB DE = AC DE = - AC DE = BC DE = - BC 

reversal 1 B < D-C B < D-C B < D-C B < D-C B < D+E-C B < D-E-C 

reversal 2 B <D+C B < D+C B < D+C B < D+C B < C+D-E B < C+D+E 

reversal 3 A <D-C A < D-C A < D+E-C A < D-E-C A < D-C A < D-C 

reversal 4 A <D+C A < D+C A < C+D-E A < C+D+E A < C+D A < C+D 

The additional variables are not able to offset the confounding of C= AB in any design if: 

E(,f)| r, |E( g)|> % (A")| (6) 
XtA.B 

The basic confounding patterns are revealed to be of relevance in an orthogonal main-

effect design if two variables dominate the entire preference structure. A variable is 

confounded if it is an alias of the interaction term of the dominating variables. 

c) Simulation example 

A Simulation analysis is performed to indicate the relevance of the hypothesized 

confounding patterns. A 25"2 orthogonal main-effect design is chosen with confounding of 
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the main effects C=AB and E=-BD (see table 3). Preference functions are evaluated on an 

aggregate level using the Software package SPSS. 

Table 3: 25 2 orthogonal main-effect design 

Stimulus A B C=AB D E—AD 

I 1 

II 1 1 

III I 

IV 1 1 1 1 

V I 1 I 

VI 1 I 

VII 1 I 1 

VIII 1 1 I 1 

A deterministic model and stochastic models are tested for a preference function with 

given "true" preference values, with PW(A) > PW(B) > PW(C) > 0 and PW(B) > PW(D) > 

PW(E) >0. To create the stochastic models, the Carmone and Green (1981) method is 

applied. A normal distributed error term is added to each preference judgment before 

transforming the metric values into ranking judgments. The size of the error term is varied 

as a percentage of the Variation coefflcient (see Carmone, Green, 1981) in three levels. 

Table 4: Simulation outcomes of the main-effect design 

A B C D E 

"taie" part-worth 40% 31% 12% 10% 7% 

deterministic model 47% 33% 0% 20% 0% 

stochastic models: 

5% error term 49% 30% 1% 18% 2% 

10% error term 46% 31% 1% 17% 4% 

20% error term 45% 28% 3% 16% 8% 

As seen in table 4, the effects of both variables C and E are utterly confounded in the 

deterministic model. This can be explained in terms of the confounding patterns chosen, 
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since both variables C and E are confounded with the interaction term of two larger 

variables. 

The estimate of variable E approaches its „true" value with increasing error term. This 

improvement of aggregate estimation accuracy stems from the fact that, due to error, some 

reversals of rank are likely to occur between Stimuli having similiar underlying Utilities. 

Such stochastic mis-ranking provides additional information and leads to an improved 

estimate of variable E (Teichert, 1994). The deterministic confounding pattern is 

overcome by means of stochastic data. 

However, limitations to the stochastic improvement are evident. The effect of variable C 

remains clearly underestimated. This can also be explained by the confounding structure 

chosen. Since variable C is confounded with the interaction of the dominating variables A 

and B, reversals due to error are less likely to exert a significant influence on the 

estimating contrast of C. The stochastic effect is not sufficient to overcome the 

confounding patterns. 

The Simulation analysis shows the existence of confounding patterns that were 

hypothesized based on theoretical assumptions. It demonstrates that some ambiguities can 

be overcome on an aggregate Ievel by means of the stochastic error. The analysis also 

indicates that the effect of a variable which is confounded with the interaction term of two 

dominating variables remains underestimated. 

d) Extrapolation to higher-level designs 

The underestimation of less important variables is not restricted to two-level designs. 

Darmon and Rouzies (1994) observed this bias for three-level designs. A detailed analysis 

of the mathematics behind that would be out of scope of this study, because higher-level 

designs are much more complex and interaction effects are not as easy to code. 

However, the above outlined confounding patterns are directly transferable to subsets of 

higher-level designs consisting of variables with each two levels. A non-representative 

review of conjoint-analyses by Schubert (1991) shows that dichotomous variables are 

included in around half of the observed studies (see table 5). Therefore the Undings are 

applicable for a broad area of conjoint-applications. 
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Table 5: Frequency of study designs (n=123 conjoint studies, source: Schubert, 1991) 

Design type all variables majority of minority of majority of majority of 
with 2 levels variables variables variables variables 

with 2 levels with 2 levels with 3 ievels with more than 
3 levels 

frequency 17% 16% 11% 32% 24% 

Furthermore, higher-level designs can ex-post be treated as two-level designs, if all but two 

variable levels are equally preferred. Then confounding patterns can occur as if 

dichotomous levels were used. Such an effect can be supposed in a study on futures 

contracts (Pocsi et al., 1994): Within this 33"1 study design two variables possessed only 

two levels with different part-worth values. These variables obtained neglectible 

importance weights (2.4% and 5.1%). In addition, the conjoint analysis produced even a 

different rank order than a simultaneously tested self-explicated model. Thus it can be 

supposed that confounding did occur. 

Finally, confounding in higher-level designs may also occur on a case-by-case basis with 

different variables involved. Those confounding patterns are not easily revealed. However, 

there are indications for their existence. For example, a complex hybrid conjoint study on 

the design of country clubs (Toy et al., 1989) revealed an importance weigth of 1% for the 

variable „recreational facilities", while this variable got 13% in a self-explicated model. 

Since both models achieved identical results for the remaining six variables, it can be 

supposed that the highly reduced fractional factorial design confounded this variable. 

e) Implications of the confounding patterns revealed 

Some implications for marketing research applications may now be drawn. The 

confounding patterns are indeed relevant for conjoint applications that try to estimate the 

relative part-worth of effects. They can be harmful, if reliable information on less 

important effects is desired: this may well be the case in many marketing research 

applications. 

• When brands are compared within a conjoint analysis, the market potential of 

niche products may be underestimated. This particular bias can be especially 

relevant for smaller companies trying to enter a market from a niche position. 
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• When conjoint analysis is used to design new products, a set of possible product 

features can be evaluated in order to derive R&D targets. From a cost-benefit 

perspective, it may be beneficial to develop attractive combinations of less 

expansive design factors. The underestimation of smaller effects may conceal this 

possibility. 

In general, the overestimation of major effect's values may lead to a simplification of 

responses. This, in tum, may result in the Stereotyping of desired products, whereas in 

reality, USPs could well be gained from variations in features rated second. 

The biases are of less relevance for marketing applications focusing on the estimation of 

major aspects. However, even those estimates are affected, as the importance weigths of 

the confounded effects are not equally distributed among the larger variables. 

C. Possible solutions in order to overcome confounding 

a) Usage of orthogonal designs with higher resolution 

Confounding of main effects with two-factor interactions does not occur if orthogonal 

designs with higher resolution are utilized. The confounding patterns outlined avove are 

thus avoided, and unambiguous estimates of the smaller effects can be attained. 

To illustrate this hypothesis, a replication of the Simulation was performed with an 

extended design requiring 16 Stimuli. This design does not confound main effects with 

two-factor interactions. The results are presented in table 6. As seen in the table, the 

degree of distortion of variables C and E diminishes within the extended design. 

Table 6: Simulation outcomes of the extended design 

A B C D E 
„true" part-worth 40% 31% 12% 10% 7% 

deterministic model 44% 29% 15% 9% 3% 
stochastic models: 

5% error term 43% 29% 14% 10% 5% 
10% error term 42% 29% 13% 10% 6% 
20% error term 41% 30% 12% 10% 7% 
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It can be concluded that extended designs make possible an unambiguous estimate of the 

effects of smaller variables. According to the results of the Simulation analyses (see D), it 

seems that it should be sufficient to use compromise designs, which avoid a confounding 

with the interaction term of the largest expected effects. Other two-factor interactions may 

remain confounded with main effects, as their confounding effect could be corrected by 

the stochastic error term. 

A significant increase in the number of Stimuli, however, is offen required to maintain 

orthogonality. For the design shown, it was necessary to double the number of Stimuli. 

b) An alternative design scheme 

Complex, higher resolution designs are in many cases inapplicable. They may demand the 

inclusion of unrealistic combinations of variable levels, or they may overload the 

processing capacity of interviewees with too many Stimuli. Therefore, an alternative design 

scheme is offered, providing good approximations of the effect estimates while avoiding 

an "explosion" of the design in terms of number of Stimuli. 

The basic idea is to include additional Stimuli in order to resolve the ambiguities. In 

dealing with metric data, one would add a second experiment, consisting of Stimuli that 

leave the known effects constant and vary only the ambiguous effects (Box, Hunter, 

Hunter, 1978). A combined estimate is derivable if both the original and the added Stimuli 

are based on orthogonal designs. 

Ranking data require a different procedure. Any additional 23"1 design would lead to 

analogous confounding patterns as outlined in (B). An alternative procedure is thus 

suggested. 

The proposed alternative design scheme uses the original main-effect design as basis and 

combines two evaluation steps: Selected Stimuli are added and integrated into the design to 

overcome the confounding outlined above. In an initial evaluation step, the resulting 

extended design is used to segregate the effect of the originally confounded variable. 

Second, the main-effect design is applied in order to achieve unbiased estimates for the 

remaining variables. Finally, the outcomes of the extended design and main-effect design 

are integrated and an estimate is made regarding the entire preference structure. 

The following explanations are based on the example used above (see C). A deterministic 

model is applied to demonstrate the generic calculus. 
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Preparation of the conjoint-experiment: Generation of an extended, non-orthogonal design 

The orthogonal main-effect design consists only of a subset of Stimuli within the three-

dimensional Space A,B,C. This is the reason for the confounding pattern of variable C. It is 

therefore suggested that selected Stimuli be added to overcome this deficit. Table 7 shows 

the set of four possible Stimuli. 

The additional runs are applied to resolve the ambiguity with respect to A,B, and C. The 

other variables are, in this respect, of no relevance: their levels are thus arbitrarily 

balanced. The extended design is used to estimate variable C alone, therefore orthogonality 

must only be ensured with respect to variable C. 

Table 7: Possible Stimuli of the alternative design scheme 

Stimulus A B OAB 
i,v 

II, VI 
III, VII 

IV, VIII 

-1 -1 1 
1 -1 -1 

-1 1 -1 
1 1 1 

Addition Stimuli C = -
al AB 

Add 1 
Add 2 
Add 3 
Add 4 

1 -1 I 
-1 1 1 
-1 -1 -I 
1 1 -1 

To illustrate the efficiency of this procedura, only two Stimuli are added to the orthogonal 

main-effect design, making a total of ten Stimuli. The added ranking Stimuli are: (+Aa-

B,+C,-D,+E); (-A,+B,+C,+DrE).This subset is selected as variable C is here confronted 

with the adversary effects of A and B, and is therefore more likely to influence the ranking. 

Evaluation of the results 

Step 1: Estimate the absolute effect of variable C 

The extended design is used to obtain an isolated estimate for the absolute effect of 

variable C. This is the only Information which can be gained from table 8, as C does not 

correlate with any variable. Estimates for the other effects are biased, since the non­

orthogonal design does not balance them. Those estimates are meaningless and as such are 

not interpreted. 
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Table 8: Estimation steps of the alternative design scheme 

A B C D E 
"true" part-worth in % 40% 31% 12% 10% 7% 

Step 1: Estimation of effect C * 
size of effects -3,8 -2,6 -1,7 -1,0 -0,2 

part-worth in % 41% 28% 18% 11% 2% 
Step 2: Estimation of the other effects * 

size of effects -4,5 -3,5 given -1,5 0 
part-worth in % n.a. n.a. n.a. n.a. n.a. 

Step 3: Integration of outcomes 
size of effects -4,5 -3,5 -1,7 -1,5 0 

part-worth in % j 41% 31% 15% 13% 0% 
*) The shadowed Gelds are biased and are not used for evaluation. 

Step 2: Estimate the absolute effects of the other variables 

The underlying orthogonal main-effect design is used in a second estimation step to obtain 

unbiased estimates for the remaining variables. Since the effect of variable C has already 

been calculated, it can be excluded here. The effect E(C) = -1,7 implies that any stimulus 

loses an equivalent of 0,85 ranking points when variable C is added with a positive level, 

and gains 0,85 ranking points when variable C is added with a negative level. 

Accordingly, the Single ranks R, of the Stimuli i are adjusted by subtracting the specific 

effect E(C) of variable C. The resulting ranks R^ represent a hypothetical, real-numbered 

ranking structure of a conjoint-analysis without variable C: 

The effects of the remaining variables are estimated based on this adjusted ranking 

structure. The results are found in table 8. Still, it is only possible to estimate the absolute 

size of the effects, since variable C is excluded from the calculation. 

Step 3: Integrate outcomes of steps 1 and 2 

Finally, the outcomes of the two estimation steps - using both the extended design and the 

orthogonal main-effect design - are combined. Thus the alternative design scheme derives 

an estimate for the entire preference function. The absolute effects of all variables are 
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added, and relative values are calculated according to equation (2). The outcomes are the 

estimates of the relative part-worths. 

c) Comparison of Solution schemes 

As can be seen in the table 9, the alternative design scheme leads to markly improved 

estimates for variables A through D than the orthogonal main-effect design. The only flaw 

in comparison with the extended design is that variable E remains confounded. This, 

however, was expected, as the additional Stimuli did not concem the estimability of 

variable E. The feasibility of the alternative design scheme has thus been demonstrated. 

Table 9: Comparison of Simulation outcomes using deterministic models 

A B C D E Total absolute 
deviation * 

„true" part-worth 40% 31% 12% 10% 7% 

orthog. main-effect model 47% 33% 0% 20% 0% 38% 
(8 Stimuli) 

extended design 44% 29% 15% 9% 3% 14% 
(16 Stimuli) 

alternative design proc. 41% 31% 15% 13% 0% 14% 
(10 Stimuli) 

*) Total absolute deviation = Sum of absolute deviations of the estimated values from the "true" values. 

In summation, a significant improvement in estimation accuracy can be achieved by 

adding only a few Stimuli to the Standard orthogonal main-effect design. The rank-specific 

confounding patterns can be well overcome in a directed manner. Thus, the alternative 

design scheme should be an useful tool in marketing research applications, which must 

considerthe trade-off between methodological accuracy and practicability. 

d) Implementation of the alternative design scheme 

Confounding patterns are, in actual applications, neither positively identifiable in advance 

nor do they necessarily occur in each case, as individual preference functions differ. The 

first estimation step of the alternative design scheme, however, is only applicable for ex-

ante specifled and de-facto confounded variables: Usage of the extended design would lead 
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to biasedness, if the variable expected to be confounded turns out not to be so. In this case, 

the extended, non-orthogonal design may Iead to an overestimation of the separately 

estimated variable. 

Main-effect model Extended design 

Use main-effect model 
as basis 

Evaluate possibly relevant 
confounding pattern 

Preparation of conjoint-experiment 

Generate extended design 
by adding seiected observations 

Execution of conjoint-experiment Conduct conjoint experiment 
with extended design 

Evaluation of results r 
Estimate the individuai 
preference function usin 

main-effect design 
l 

V 
Estimate the effects of 
the remaining variables using 

main-effect model 

Combine the results; obtain th< 
entire preference function 

Estimate the effect of 
the confounded variab 

§_extended design 

Figure 2: Steps of the alternative design scheme 
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It is therefore advisable to follow a case-by-case procedure (see figure 2). A simple main-

effect model is chosen as the basis. This design is analyzed with regard to the confounding 

of main-effects with two-factor interactions. Of the confounding patterns revealed, that 

pattern which includes the interaction term of the variables expected to be largest is the 

one deemed potentially relevant. A few selected Stimuli are added to the main-effect 

design in order to correct the possible confounding. The resulting extended design is used 

to conduct the conjoint experiment. Evaluation is performed on an individual level. 

For each Observation, the necessity of applying the extended design is examined. The 

individual preference data are evaluated as if they were obtained solely from the 

underlying main-effect model. Results are then used to determine whether confounding 

actually did occur. This is the case, if the two predicted dominating variables actually do 

dominate the entire estimated preference function (see equation (6)). 

If examination reveals no confounding, the results of the orthogonal main-effect design are 

then considered and retained as unbiased effect estimates. The evaluation scheme outlined 

above (see b) is applied to those observations possessing the confounding that was 

predicted; the extended, non-orthogonal design is used to estimate the effect of the 

confounded variable. The adjusted main-effect design is used to estimate the remaining 

variables. Finally, results are combined to obtain the entire preference function. 

If heterogeneous preference functions with different dominating variables are expected, 

one may add different sets of Stimuli simultaneously. If, however, the design approaches 

the complexity of an orthogonal design with higher resolution, one should forego the 

alternative approach. In such a case, the advantage of a less complex design is diminished, 

whereas the information efficiency of orthogonal designs remains superior. 

D. Empirical example 

In order to examine the efficiency of the design scheme developed here, a large-scale 

marketing research application is used to apply the calculus. An international study on 

product preannouncements (Schirm, 1995) serves as the empirical basis. Within this füll-

profile conjoint study, four variables with two levels each (see table 10) build a füll-

factorial 24 design with 16 Stimuli. Potential customers were asked to rank the Stimuli 

according to respective credibility of the preannouncements. The outcomes are used to 
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assess consumer's attitudes towards non-existent products, and to derive efficient 

preannouncement strategies. 

Table 10: The variables and levels used in a marketing research application 

Technology 

(variable A) 

Announcement 

(variable B) 

Time horizon 

(variable C) 

Manufacturer 

(variable D) 

Level one minor improvement brief 1 year niche player 

Level two major improvement detailed 4 months market leader 

This study has been selected because it meets optimally the requirements for a meaningful 

test application. That is, first, the sample is likely to provide a solid basis both in terms of 

size and of complexity, as it consists of 739 observations leading to 5 distinct Clusters of 

interviewee's responses. Second, its design makes a comparison of models possible, since 

the full-factorial design can easily be partitioned into orthogonal main-effect designs. 

Finally, confounding patterns are expected, as the two variables „Technology" and 

„Announcement" dominate the entire preference function in about one-fourth of all the 

observations. 

The data are used to calculate effect estimates based on three different designs: 

1. Füll factorial design 

2. Main-effect design 

3. Alternative design 

The outcomes of the full-factorial design serve as Substitutes for the unknown "true" 

preference values. This is reasonable for the purpose of this study, because the focus lies 

on the internal validity. The outcomes of the full-factorial design can serve as a benchmark 

for the other designs, since the input data of those designs are subsets of the full-factorial 

Stimuli. 

In order to calculate estimates for the other two design schemes, a main-effect model with 

confounding C = A * B is arbitrarily chosen as a basis. Two Stimuli, having 

complementary confounding, are added for the alternative design. The rankings observed 
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in the full-factorial design are transformed to rankings of the subdesigns. The evaluation 

steps are performed as if the study woud be conducted anew (see figure 2). 

A summary of the outcomes is provided in table 11. Examination of the whole sample 

indicates that a slight improvement of estimation accuracy can be gained by applying the 

alternative design instead of the orthogonal main-effect design: variable C reaches a close 

approximation of its "true" value. The inferior estimation accuracy of variable A is not to 

be interpreted in favor of the main-effect design, since it stems from an overestimation of 

variable A within the confounded subset. 

Table 11: Comparison of design schemes 

Entire sample observations with confounding of C 
n= 739 n= 211 

Design Type (D) A B C D ** Total A B C D ** Total 
Techno Announce Time Manu- absolute Techno Announc Time Manu- absolute 

-logy -ment horizo facture deviatio -logy e-ment horizo facturer deviatio 
n r n n n 

AVG. PART-WORTH VALUES in %* 

Füll Factorial D. -48,5% 12,3% -17,4% 21,9% -60,7% 13,8% -13,6% 11,9% 

Main-Effect D. -48,2% 12,6% -14,2% 25,0% 6,9% -65,8% 16,1% -0,1% 17,7% 26,7% 

Alternative D. -46,0% 12,8% -16,6% 24,5% 6,4% -58,5% 17,0% -8,5% 15,9% 14,5% 

AVG. IMPORTANCE WEIGHTS in % 

Füll Factorial D. 37,8% 26,2% 20,5% 15,5% 45,6% 33,9% 12,2% 8,3% 

Main-Effect D. 37,3% 24,5% 19,8% 18,4% 5,8% 48,9% 38,3% 0,5% 12,3% 23,3% 

Alternative D. 35,7% 24,5% 21,8% 17,9% 7,5% 43,3% 38,6% 7,4% 10,7% 14,1% 

*) A "+" indicates that level two is preferred (see table 10 for coding of variable levels). 

**) Total absolute deviation = Sum of absolute deviations of the estimated values from the "true" values. 

Confounding of the variable C was detected in 211 out of the 739 observations. Focusing 

on this confounded subset, the effect of the alternative design approach becomes more 

evident. As expected, the main-effect design is utterly incapable of estimating the 

confounded variable C (deviations from zero stem from inconsistencies in the ranking 

structure). At the same time, this leads to an overestimation of the other variables. 

The alternative design is able to offset the confounding patterns to a large degree. Identity 

with the "true" values of the full-factorial design was not to be expected, as the additional 
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Stimuli were not concerned with the variable D, and because the ranking subsets entail 

inconsistencies. 

The picture is less clear when making a comparison of the weights of importance. A more 

detailed analysis is therefore performed with the help of a frequency table. Its results 

clearly demonstrate the improvement of estimation accuracy achieved by using the 

alternative design (see table 12). The main-effect design incorrectly classifies the effect 

„Time horizon" as unimportant (<5% importance value) in 23% of all observations. 

Applying the alternative design, 18% of the incorrectly classifled observations can be 

regrouped: 8% tum out to possess an average importance of 5-10%, and a further 9% have 

importance weights of 10-35%. This Information is an especially useful outcome of the 

conjoint analysis, since it is not fairly evident otherwise, and because other survey 

techniques might conceal this hidden aspect. 

The results of the main-effect design would have been misleading in this study if they were 

used as the basis for a product preannouncement strategy. They would suggest that 

consumer's attitudes towards the „Time horizon" of a product preannouncement is split 

almost evenly between those who regard this aspect as highly important and those who 

neglect this aspect in building their perception of credibility. This would be especially 

hannful if the subgroup of confounded observations was the targeted market segment: the 

recommendation for a preannouncement strategy would have been to pay little or no 

attention to timing aspects. 

Table 12: Comparison of the distributions of importance weights of „Time horizon" 

n = 739 

Frequency of the importance of variable 

„Time horizon" in % of total observations 

<5% <10% <15% >15% 

Füll Factorial Design 

Main-Effect design 

Alternative design 

9% 17% 21% 53% 

32% 7% 8% 53% 

14% 15% 17% 53% 
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In sum, a good approximation of the „true" preference values was achieved by using the 

alternative design scheme. This shows its attractiveness, as only 10, rather than 16, Stimuli 

were used. Reduced complexity of the ranking task should also enhance estimation 

accuracy, since response quality tends to be better with fewer Stimuli (Gattin, Weinberger, 

1980). 

The main-effect design performed quite well in terms of the estimation of average values 

of part-worth values. However, detailed analyses - such as clustering techniques - would 

have led to misclassifications, because nearly one-fourth of all observations exhibited 

significant deviations from their „true" preference structures. The potential pitfalls of 

using a main-effect design are thus evident. 

E. Conclusions 

• Rank-based conjoint analysis is more exposed to confounding than metric data. 

Confounding of metric data arises only due to the unforeseen existence of 

interaction effects not taken into consideration in the design's creation 

(Carmone, Green, 1981). Confounding of ranking data, however, occurs as 

well in the absense of interaction effects. 

• Orthogonality does not guarantee unbiased effect estimates in the case of 

ranking data. Conjoint analyses based on orthogonal main-effect designs may 

yield questionable effect estimates on the individual Ievel. Detailed analyses of 

individual preference structures will then be biased. Smaller effects in 

particular run the risk of being underestimated. 

• CarefuI choice of a design can aid in avoiding the rank-specific confounding 

patterns. If it is predicted that two variables dominate the preference model, a 

design should then be chosen which avoids confounding its interaction term 

with a main effect. In accordance with the findings of recent research 

(Kuhfeld, Tobias, Garatt, 1994; Perrey, 1996) it appears advisable to put 

considerable emphasis on the design choice and not rely uncritically on 

computerized design generators. 

• Marked improvements in estimation accuracy can be achieved using the 

proposed alternative design scheme. The procedure is recommended when two 

variables dominate the preference model and its interaction term is confounded 
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with another main effect. Complex designs are not required to overcome this 

confounding pattern. 

• Ambiguities result from the nature of ranking data itself and can be explained 

by the underlying confounding patterns. Accordingly, other biases such as the 

number-of-levels effect may be reexamined in this Iight (Wittink et al., 1989; 

Steenkamp, Wittink, 1994). One may suppose that it is not the absolute number 

of levels which causes the biases, but the underlying confounding patterns. 

Eventually, the number-of-levels effect may be overcome in a similar way; by 

adding Stimuli to the orthogonal design. This area is clearly in need of further 

study. 

F. Guide to marketing research applications 

Experimenters should tiy to limit the complexity of the ranking task as much as possible, 

in order to ensure a high degree of response reliability. If at all applicable, the Standard 

main-effect model ought to be used. If this model cannot be applied, the complexity should 

be restricted to the greatest degree possible, and the lowest acceptable number of Stimuli 

needed should be added. 

A sequential model for choosing a design is thus suggested as outlined in figure (3): the 

experimenter must first of all ask whether accurate part-worth estimates are relevant to the 

purpose of his study. If he is concerned solely with the estimation of market shares, 

relevance is rather limited (Darmon, Rouzies, 1994). The Standard main-effect model may 

be used instead, since it has proven its robustness in this regard (Carmone, Green, Jain, 

1978). 

However, the knowledge of part-worth values that constitute the choice can be relevant for 

a broad ränge of questions in product positioning. The experimenter then needs to make a 

sound decision regarding the design which is most adequate. This choice requires some ex-

ante knowledge of the expected preference functions. If no information is available from 

previous studies, a pretest should be performed. 

The experimenter ought to ask whether there are two dominating variables present. If not, 

and if a simple preference model is expected, the Standard main-effect model should be 

sufficient. If, on the other hand, two dominating variables are indeed expected, a more 

complex design should then be applied in order to obtain unbiased part-worth estimates. 
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To reach a final decision of design choice, the experimenter should then assess whether or 

not interaction effects are relevant If no relevant interaction effects are predicted, the 

alternative design should be used. This guarantees a good approximation of effect 

estimates and avoids unnecessary complicating of the ranking task. 

However, interaction effects may occur in particular between the two dominating variables 

(Louviere, 1988). In such a case, the estimability of the confounded variable deteriorates, 

since it would be an alias not only of the combination of two effects but also of a separate 

relevant effect. An orthogonal design with higher resolution would then be needed to 

balance the interaction effect. 

Figure 3: Guide to marketing research applications 
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