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Abstract 
This contribution generalizes the work of Drexl and Haase about the 

so-called proportional lot sizing and scheduling problem which was pub-
lished in 1995. While the early paper considers single -level cases only, the 
paper at hand describes multi-level problems. 1t provides mixed-integer 
programs for several important extensions which differ in the allocatio n 
of resources. A generic Soluti on method is presented and, following the 
preceding paper, a randomized regret based sampling method is tested. A 
computational study proves that, even for the multi-level case wh ich is far 
more complex than the sin gle-level problem, promising results are gained. 

Keywords: Multi-level lot sizing, scheduling, PLSP, random sampling 

1 Introduction 

Several items are to be produced in order to meet some known (or estimated) 
dynamic demand without backlogs and stockouts. Precedence relations among 
these items dehne an acyclic gozinto-structure of the gener al type. In contrast to 
many authors who allow demand for end items only, now, demand may occur for 
all items including component parts. The finite planning horizon is subdivided 
into a number of discrete time periods. Positive lead times are given due to 
technological restrictions such as cooling or transportation for instance. Fur-
thermore, items share common resources. Some (maybe all) of them are scarce. 
The capacities may vary over time. Producing one item requires an item-specific 
amount of the available capacity. All data are assumed to be deterministic. 

Items which a re produced in a period to meet some future demand must be 
stored in inventory and thus cause item-specific holding costs. Most authors 
assume that the holding costs for an item must be greater than or equal to the 
sum of the holding costs for all immediate predecessors. They argue that holding 
costs are mainly opportunity costs for capital which occurs no matter a compon­
ent part is assembled or not. Two reasons persuade us to make no particular 
assumptions for holding costs. First, as it is usual in the chemical industry for 
instance, keeping some component parts in storage may require ongoing addi-
tional effort such as cooling, heating, or shaking. While these parts need no 
special treatment when processed, storing component parts might be more ex-
pensive than storing assembled items. Second, Operations such as cutting tin 
mats for instance make parts smaller and often easier to handle. The remaining 
"waste" can often be sold as raw material for other manufacturing processes. 
Hence, opportunity costs may decrease when component parts are assembled. 
However, it should be made clear that the assumption of general holding costs 
is the most unrestrictive one. All models and methods developed under this 
assumption work for more restrictive cases as well. 

Each item requires at least one resource for which a setup State has to be 
taken into account. Production can only take place if a proper State is set 
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up. Setting a resource up for producing a particular item incurs item-specific 
setup costs which are assumed to be sequence independent. Setup times are not 
considered. Once a certain setup action is performed, the setup State is kept 
up until another setup changes the current state. Hence, same items which are 
produced having some idle time in-between do not enforce more than one setup 
action. To get things straight, note that some authors use the word changeover 
instead of setup in this context. 

The most fundamental assumption here is that for each resource at most 
one setup may occur within one period. Hence, at most two items sharing a 
common resource for which a setup state exists may be produced per period. 
Due to this assumption, the problem is known as the proportional lot sizing and 
scheduling problem (PLSP) [6, 12, 21]. By choosing the length of each time 
period appropriately small, the PLSP is a good approximation to a continuous 
time axis. It refines the well-known discrete lot sizing and scheduling problem 
(DLSP) [3, 9, 15, 23, 26] as well as the continuous setup lot sizing problem 
(CSLP) [1, 17, 16]. Both assume that at most one item may be produced per 
period. All three models could be classified as small bücket models since only 
a few (one or two) items are produced per period. In contrast to this, the 
well-known capacitated lot sizing problem (CLSP) [2, 7, 10, 14, 22, 24, 25] 
represents a large bücket model since many items can be produced per period. 
Remember, the CLSP does not include sequence decisions and is thus a much 
"easier" problem. An extension of the single-level CLSP with partial sequence 
decisions can be found in [11]. In [13] a large bücket single-level lot sizing and 
scheduling model is discussed. 

A comprehensive review of the multi-level lot sizing Literature is given in [21] 
where it is shown that most authors do not take capacity restrictions into account 
and that they make restrictive assumptions such as linear or assembly gozinto-
structures. If scarce capacities are considered, the work is mostly confined to 
single-machine cases. The most general methods are described in [27, 28] where 
the multi-level CLSP is attacked. 

2 Multi-Level PLSP with Multiple Machines 

An important variant of the PLSP is the one with multiple machines (PLSP-
MM). Several resources (machines) are available and each item is produced on 
an item-specificmachine^This is to say that there is an unambiguous mapping 
from items to machines. Of course, some items may share a common machine. 
Special cases are the single-machine problem for which models and methods 
are given in [19, 20], and the problem with dedicated machines where items do 
not share a common machine. For the latter optimal Solutions can be easily 
computed with a Iot-for-Iot policy [18]. 

Let us first introduce some notation. In Table 1 the decision variables are 
defined. Likewise, the parameters are explained in Table 2. Using this notation, 

2 



we are now able to present a MlP-model formulation. 

Symbol Definition 
Ijt Inventory for item j at the end of period t. 
qjt Production quantity for item j in period t. 
Xjt Binary variable which indicates whether a setup for 

item j occurs in period t (xjt = 1) or not (xjt = 0). 
yjt Binary variable which indicates whether machine rrij 

is set up for item j at the end of period t (yjt = 1) 
or not (yjt = 0). 

Table 1: Decision Variables for the PLSP-MM 

J T 
min53^(sixjt + Ai/it) (1) 

J=1t = l 
subject to 

Ijt = Ij(t-i) + qjt - djt - ̂ 2 ajiqa 4 1 ' V (2) 

min{t+Vj,T> , 
4,> E E (3) 

ieSj rat+l ' ' 

Xjt > yjt - Vj(t-1) t = . . (3) ^ 

Vjijt < + %) \ = i,','r (6) 

(8) 

W,„=j,>0 j ^ (9) 

The objective (1) is to minimize the sum of setup and holding costs. Equa-
tions (2) are the inventory balances. At the end of a period t we have in inventory 
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Symbol Definition 
an "Gozinto"-factor. Its value is zero if item i is not an an 

immediate successor of item j. Otherwise, it is the 
quantity of item j that is directly needed to 
produce one item i. 

Cmt Available capacity of machine m in period t. 
djt External demand for item j in period t. 
hj Non-negative holding cost for having one unit of 

item j one period in inventory. 
IjO Initial inventory for item j. 
3m Set of al l items that share the machine m, 

i.e. 3m d- {j e {1, | rrij = m}. 
J Number of items. 
M Number of machines. 
rrij Machine on which item j is produced. 
Pi Capacity needs for producing one unit of item j. 
S3 Non-negative setup cost for item j. 
Sj Set of immediate successors of item j, 

i.e. Sj d= {i G {1,..., J} | dji > 0}. 
T Number of periods. 
V3 Positive and integral lead time of item j. 
Vjo Unique initial setup state. 

Table 2: Parameters for the PLSP-MM 

what was in there at the end of period i — 1 plus what is produced minus ex-
ternal and internal demand. To fulfill internal demand we must respect positive 
lead times. Restrictions (3) guarantee so. Constraints (4) make sure that the 
setup state of each machine is uniquely defined at the end of each period. Those 
periods in which a setup üappenä; are spotted by (5). Note that idle periods 
may occur in order to save setup costs. Due to (6) production can only take 
place if there is a proper setup state either at the beginning or at the end of 
a particular period. Hence, at most two items can be manufactured on each 
machine per period. Capacity constraints are formulated in (7). Since the right 
band side is a constant, overtime is not available. (8) dehne the binary-valued 
setup state variables, while (9) are simple non-negativity conditions. The reader 
may convince himself that due to (5) in combination with (1) setup variables Xjt 

are indeed zero-one valued. Hence, non-negativity conditions are sufficient for 
these. For letting inventory variables Ijt be non-negative backlogging cannot 
occur. 
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3 Construction Principles 

There is a generic construction scheme that forms the basis of our heuristic. 
It is a backward oriented procedura which schedules items period by period 
starting with period T and ending with period one. We choose here a recurrent 
representation which enables us to develop the underlying ideas in a stepwise 
fashion. Now, let us assume that construct(t,At,m) is the procedura to be 
defined and t + At is the period and m is the machine under concern. Again, 
At E {0,1} where indicates that the setup state for machine m at the 
beginning of period <4-Iis tobe fixed next and At = 0 indicates that we 
already have chosen a setup State at the end of period t. The symbol jmt will 
denote the setup state for machine m at the end of period t. Assume jmt = 0 
for m = 1,..., M and t = 1,..., T initially. 

Note, from the problem parameters we can easily derive Vj, the set of the 
immediate predecessors of item j, and Vj, the set of a ll predecessors of it em j. 
Also, nrj, the net requirement of item j, and idji, the internal demand for item 
i that is directly or indirectly caused by producing one unit of item j> are easy 
to compute. 

Before the construction mechanism starts, the decisiori variables yjt and qjt 
are assigned zero for j = 1,..., J, m = 1,..., M, and t = 1,..., T. Remember, 
given the values for yjt and qjt the values for Xjt and Ijt are implicitly defined. 
Furthermore, assume auxiliary variables djt and CDjt for j = 1,..., J and 
t = 1,..., T. The former ones represent the entries in the demand matrix and 
thus are initialized with djt = djt. The latter ones stand for the cumulative future 
demand for item j which is not been met yet. As we will see, the cumulative 
demand can be efficiently computed while moving on from period to period. 
For the sake of conv enience we introduce CDj(r+1) = 0 fo r j = 1The 
remaining capacity of machine m in period t is denoted as RCmt. Initially, 
RCmt = Cmt for m = 1,..., M and t = 1,..., T. 

The initial call is construct(T, 1,1) and initiates the fixing of setup states at 
the end of period T. Table 3 gives all the details. 

choose jmT € XmT-
if (jmT 7^0) 

VjmTT := 1. 
if (m = M) 

construct(T, 0,1). 
eise 

construct(T,l,m+ 1). 

Table 3: Evaluating construct(T, 1, •) 

The choice of jmT needs to be refined, but at this point we do not need any 
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further insight and suppose that the selection is done somehow. All we need to 
know is that lmt C Jm U {0} for m = 1,..., Af and t = 1,..., T is the set of 
items among which items are chosen. Item 0 is a dummy item which will be 
needed for some methods that will be discussed. We will return for a precise 
discussion in subsequent sections. As one can see, once a setup State is chosen 
for all machines at the end of period T, a call of construct(T, 0,1) is made. Table 
4 provides a recipe of how to evaluate such calls. 

for j e Jm 

CDjt := min|c£»;{t+1) -f d i£,max{0,nrj -^T=t+i W) 
if (J»t# 0) 

:= CDJmtt ~ qjn.it-  
•ßCmt RCmt ~~ PjmtQjmtt' 
for i e 7>jmt 

if (t — vi > 0 and qjmtt > 0) 
d»(t — Vi) di(t-Vi) H~ 

if (m — M) 
construct(t ~ 1,1,1). 

eise 
construct(t,0,m-\-1). 

Table 4: Evaluating construct(t, 0, •) where 1 < t < T 

The Situation when calling con$truct(t, 0, m) is that the setup state jmt has 
already been chosen. Remarkable to note, how easy it is to take initial inventory 
into account. This is due to the backward oriented scheme. Evaluating 

min |CDj{t+x) + djt, max{0, ntj - ^ qjT} | (10) 
l r=t+l J 

makes sure that for an item j no more than the net requirement nrj is produced. 
Note, cumulating the production quantities is an easy task which can be done 
very efficiently. Given the cumulative demand CDjmit, production quantities 
qjmtt can be determined with respect to capacity constraints. Afterwards, we 
simply update the djt-matrix to take internal demand into account and proceed. 
Table 5 describes how t o evaluate con$truct(t, 1, -)-calls. 

These lines closely relate to what is defined in Table 4. DifFerences l ie in the 
fact that a setup state is chosen for the end of period t but items are scheduled 
in period t +1. For Computing production quantities we must therefore take into 
account that item jm(£+i) may already be scheduled in period t + 1. 
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choose jmt G X mt. 
if { jmt 7^ 0) 

Vjmtt := 1. 
if (jmt 7^ im(t+l)) 

1) - min{CDJml(t+1), }' 

^Cm(!+1) := ^Cm(H-l) — 

for t G Vjmt 

if (< + 1 - Vi > 0 and qjrmt(t+1) > 0) 

if (m — M) 
consfcruct(fc, 0,1). 

eise 
construct(t, 1, m + 1). 

Table 5: Evaluating consfcrucfc^, 1, •) where 1 < t < T 

Note, the combination of what is given in Tables 4 and 5 enforces that every 
item jmt that is produced at the beginning of a period Z + lis also produced at 
the end of period t if there is any positive cumulative demand left. In preliminary 
tests not reported here we also found out that if capacity is exhausted, i.e. if 
fiCm(t+i) = 0 and CDjm{t+1)(t+i) > 0, it is best to choose jmt - jm(t+1) in 
Table 5. In other words, lots are not split.1 The reason why this turned out to 
be advantageous is that the setup State tends to flicker otherwise and thus the 
total sum of setup costs tends to be high. In the rest of this chapter we assume 
that lots are not split. 

Turning back to the specification of the construct-procedure, it remains to 
explain what shall happen when the flrst period is reached. Table 6 describes 
how to schedule those items in period 1 for which the machines are initially set 
up for. In contrast fco what is given in Table 5 the initial setup State is known 
and thus needs not to be chosen. 

A ca ll to construd(0,0, •) terminates the construction phase. What is left is 
a final feasibility test where 

T 
nrj = Y,Qjt (11) 

t= 1 
must hold for j = 1,..., J fo r being a feasible Solution. Eventually, the objective 
function value of a feasible Solution can be determined. 

*It is w orth to be s tressed that lot Splitting could be easily integrated by not c hecking for 
exhausted capacity. All metho ds based on the des cribed construction scheine may thus be 
adapted for lot Splitting with minor modifications only. 
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if (jmO ± jm\) 

if ( m = M) 
construct(0}0,1). 

eise 
construct{0, l,m + 1). 

Table 6: Evaluating construct(0,1, •) 

To terminate a run of the construction procedure before period 1 is reached, 
we can perform a capacity check testing 

t+At 
12 12 PiidjiCDj(t+At) > J2 CmT (12) 
j&Jm TS 1 

which must be false for m = 1,..., M if period t+At is under concem arid thus, 
when true, indicates an infeasible Solution (if there is no initial inventory). 

It should be emphasized again, that the construction scheme described above 
does not necessarily generate an optimum Solution. It does not even guarantee 
to find a feasible Solution if there exists one. 

4 Randomized Regret Based Sampling 

Now, having introduced the backward oriented construction scheme construct, 
a very straightforward idea is to run the construction phase over and over again 
while memorizing the current best plan until some stopping criterion (e.g. a 
certain number of iterations) is met. Note, this only makes sense if the construct-
procedure works non-deterministically. 

Here, the choice of setup states jmt comes in again. If a stochastic selection 
rufe is used then it is probable to have different results after each run of the 
construction phase. 

Preliminary studies of ideas reported in this section are provided in [6, 12] 
for single-level, single-machine PLSP-instances and in [19, 20] for multi-level, 
single-machine PLSP-instances. 

4.1 An Introduction to Random Sampling 

The process of random sampling as done here is a Monte Carlo experiment where 
item numbers jmt are repeatedly drawn at random out of a population Xmt C Jm 
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for m = 1,..., M and t = 1,.. M T. An underlying distribution function <pmt is 
defined on the basis of a priority value TTyt > 0 that is assigned to each item j 
in the item set Xmt-

Before we give any details of the definitions of <pmt and 7Tjt} let us have 
a look at a taxonomy of sampling. Depending on the priority values, three 
important cases are worth to be highlighted. First, there is the general case 
with a probability to choose j £ Xmt being defined as 

<Pmt(j) d= ^ (13) 

for m = 1,..., M and t = 1,..., T where 

23 =1 (14) 
jGZmt 

holds. Since the priority values for the items may differ, this is called biased 
random sampling. By definition, if j, i 6 Xmt and irjt > irit, then <pmt(j) > 
¥?mt(0-

Many authors apply biased random sampling procedures to many different 
kinds of application areas. A comprehensive overview of research activities is out 
of the scope of this text. See for instance [8] where a so-called greedy randomized 
adaptive search procedure (GRASP) is introduced and used for finding max-
imum independent sets in graphs. Further references to GRASP-applications in 
the area of corporate acquisition of flexible manufacturing equipment, Computer 
aided process planning, airline flight scheduling and maintenance base planning, 
and several other problems are given. 

As a special case one might choose 

'jt constant (15) 

for j £ Xmt• This is called pure random sampling,2 because all items j £ Xmt 

now have the same probability 

(pmt (j) — 7~z r (16) 
I X mt \ 

for m = 1,..., M and t = 1,... ,T. 
Last, since items with a large priority values are preferred, one might com-

pute a modified priority value 

Qjt d= (njt - min nt + c)s (17) 

2Note that items j € have a priority v alue = 0. So, w e face a pure ran dom 
sampling only if 2 Tmt is kno wn be fore the pro cedure starts, but not if Xmt depends on the 
history of the execution. 
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for each j 6 1mt where e > 0 and 8 > 0, and then define 

y^(j) i=r^— (18) 

for m = 1 , ...,Af and t = 1 For using such a kind of distribution 
function (in the context of project scheduling), Drexl coined the name regret 
based (biased) random sampling [4, 5]. The motivation for this name stems 
from the idea that the modified priority value ßjt represents a measure for the 
regret not to choose the item j in period t. Hence, more emphasis is given on 
the differences of priority values 7Tjt. Both, c and 8 a re method parameters that 
guide the sampling process.3 For e a small positive value should be chosen to 
make sure that every item j € %mt is assigned a positive modified priority value 
Qjt > 0. The parameter 8 amplifies (smoothes) differences in the priority values 
iftf > 1 (0 < tf < 1). 

4.2 Randomized Regret Based Priority Rules 

The heart of a random sampling procedura are the priority values 7Tjt that are 
used to define the distribution function <pmt for m = 1,...,M and t = 1}... ,T. 
But before we can introduce priority values, we first need to define the set of 
items Xmt among which an item jmt is to be chosen.4 Promising candidates to 
set a machine m up for at the end of a period t are those items for which there 
is demand in either period f or, if t < T, period t + 1. In addition to that, 
items with demand in periods earlier than period t might be promising as well. 
Choosing such items causes idle periods (during which the setup State can be 
kept up). Apparently, the cumulative production quantities of an item need not 
exceed its net requirement. More formally, 

({je Jm |CDj(m) + <Ijt>o}u{je jm| EdJT>0}) (19) 
T —1 

T 
H{i €Jm\nrj- Y, 9jr > 0} 

r=t+1 

for m= 1 and t = 1,..., T. If Xmt = 0, we simply choose jmt - jm(t+1) 
in periods t <T, or, if t = T, fix jmT E Jm by arbitration, e.g. the item with 
the lowest item index (which when turned out to be wrong is neatly be corrected 
by the postprocessor). Let us therefore assume Xmt ^ 0. 

Using our problem understanding, two main aspects help us to find priority 
values. On the one hand, we like to have low-cost production plans. A p riority 

3 Using different parameters emt and 5 mt for each machine m and each period t turned out 
to increase the run-time, but did not improve the results decidedly. 

4Remember, in so me cases which are desc ribed in Sect ion 3 no selec tion is to be made, 
because we do not allow lot Splitting. 
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Y- * l , (20) 

value should therefore reflect cost criteria. On the other hand, it is quite hard 
to generate even a feasible Solution. Thus, priority values should also consider 
sources of infeasibility. In combination, priority values should lead to cheap and 
feasible production plans. 

We start with introducing two expressions that represent cost criteria. First, 
imagine that a machine m is not set up for an item j at the end of period t. 
This means that CDj^+i) items must be stored in inventory for at least one 
additional period and thus causing additional holding costs. The expression 

j d±f hjCDj(t+1) 
max{s, | i E Jm] 

for m s= 1,..., M, t = 1,..., T, and j E Xmt is a measure for these costs. 
Second, changing the setup State causes setup costs, or, stating this the other 

way around, not to select a certain item may save setup costs. Thus, 
d±l s3 

3t max{s,' | i E Jm) 
for m = 1,..., M, t = 1,..., T, and j E lmt is a measure for the cost savings, if 
an item is not selected. 

In addition to that, we now give two expressions that tend to avoid infeasib­
ility. On the one hand, we take into account that items usually have preceding 
items which are to be manufactured in advance. The more preceding items there 
are, the more risky it is to shift production into early periods. The closer we 
move towards period 1 the more important is this aspect. Using 

otherwise 3~~ (22) 

to denote the depth of an item j, the expression 

~ t + 1 -dePj (23) 

for m — 1 ,..., M, t = 1,..., T, and j E Xmt thus makes it more probable to 
choose items with a large depth, especially in early periods. To be well-defined 
choose a denominator equal to one if t + 1 = depj. 

On the other hand, we consider the capacity usage. Producing an item j and 
all its preceding items requires a well-defined amount of capacity per machine. 
The bottleneck machine can then be dehned as the machine with the highest ratio 
of capacity demand per available capacity. Items which cause a high capacity 
usage on the bottleneck machine should therefore have a high preference to be 
chosen. More formally, 

(CDj(,+i) + d„) (24) 
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for m = 1,..., M, t = 1,. -., T, and j e Xmt estimates the capacity usage of the 
bottleneck machine. 

As preliminary tests have revealed, using a combination of these four criteria 
seems to be a good strategy. For m G {1 , t € T}, and j G 
Xmt four cases may now occur where jm(T+i) = 0 is assumed for notational 
convenience: 
Case 1: C£>j(t+i) + djt > 0 and j ^ jm(t+i)-
Case 2: CDj(t+1) + djt > 0 and j = jm(t+i)-
Case 3: $ > ® anc* 3 ^ Jm(t+i) and Case 1 does not hold. 
Case 4" ST=I dj<r > 0 and j = and Case 2 does not hold. 

Depending on the case that holds, ftjt can now be defined as 

Kjt d-

7i$ ~ 72$ + 73$7 + 74$V Case 1 
7i$ + 73$J + 74$^ Case 2 
73$' + 74$V Case 5 
72?$ + 7s$' + 74$' Case ^ 

where 71,..., 74 are real-valued method parameters.5 Cases 1 and 2 are defined 
as motivated above. Note, that in Case 2 the setup cost savings are of no interest, 
because the machine already is in the proper setup state. In the Cases 3 and 4, 
the Holding cost criterion evaluates to zero. In contrast to the first two cases, 
the setup cost criterion now increases the priority value if the machine is in the 
correct setup state (Case 4) and is neglected in Case 3. This differs from what 
is done in Cases 1 and 2, although its Interpretation, i.e. giving items for which 
the machine is already set up for a better chance to be selected, is the same. The 
reason for doing so is motivated by a desire to decide for idle periods in order to 
maintain the setup state (Case 4). This idea is supported by making the priority 
value for the item for which Case 4 holds large and lower the priority values for 
those items which apply to Case 1. 

Using (18) in combination with (17) we now have a füll specification for the 
selection rule we employ. If the method parameters are chosen at randorn, the 
Solution procedure is called randomized regret based (biased random) sampling. 

4.3 Tuning the Method Parameters 

In our Implementation we ch oose all method parameters, namely 71,..., 74, e, 
and S, at random in each Iteration of the sampling process. Rather than doing 
this at pure random over and over again without any history sensitivity, one 
should make use of the information gained during previous iterations. This is 
to say that learning effects should steer the choice of the method parameters for 
values that tend to give good results. 

s Using different parameters ..., 04 mt for ea ch machine m and ea ch period t turned 
out to increase the computationaloverhead without giving decidedly better results. 
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Since all that will be said is valid for all parameters, let 

Parameter € {71,... ,74, e,£} (26) 

denote any of the method parameters. Furthermore, suppose n = 1,2, ...is the 
number of the current Iteration and parameter* is the value of the parameter 
when the current best (feasible) Solution was found within the last n — 1 itera-
tions. Initially, parameter* = 0 without loss of generality. In each Iteration we 
randomly choose a parameter value, say pv, out of the interval of valid parameter 
values, say \parametermin, pararnetermax], as specified by the user. If we would 
assign parameter = pv, we have a pure random choice without any learning. 

A fundamental idea for tuning the method parameters is to intensify the 
search in those areas of t he parameter space which are in the neighborhood of 
parameter*. In our Implementation, this is done using 

parameter = parameter* + i/n(pv — parameter*) (27) 

where vn € [0, lj defines the neighborhood around the current best parameter 
value from which the parameter used in iteration n is to be selected. If v n = 1 
then we have a pure random choice of p arameters again. And if vn — 0 t hen 
we would have no choice at all, because in every iteration parameter* would be 
chosen again. Initially, we s tart with v\ — 1. Note that in each iteration the 
parameter value lies indeed in the valid parameter space, i.e. 

parametermin < parameter < parametermax• (28) 

Without any significant efFort, we can count the number of iterations done 
so far that resulted in improved solutions. Let this number be denoted as 
improvements. Starting with a counter improvements = 0, its value is set 
to one if the first feasible Solution is found, and its value is increased by one 
every time a new current best Solution is found. Having this information, we 
comp ute 

fn-H = Vn (29) 

if iteration n did not improve the current best Solution and 

vn+i = - - — (30) 
improvements 

if iteration n resulted in an improvement. Note, because the counter improve­
ments monotonically increases from iteration to iteration, the value of vn de-
clines during run-time and intensives the search in a more and more narrow 
subspace of the parameter space. 

In preliminary experiments we found out, that the intens ification procedure 
described so far quite often traps into local optima, because the value vn declines 
too fast. The final outcome is often worse than what comes out with a pure 
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random choice of parameter values in every Iteration. Thus, we decided to choose 
^n+i = vn for n < NOINTENSIFY where NOINTENSIFY is specified by 
the user.6 Nevertheless, the counter improvements is maintained during the 
first NOINTENSIFY iterations as well. 

In addition to that, we found out that for some instances it is quite hard 
to find a feasible Solution. In such cases, intensification turned out to be good. 
For instances for which feasible solutions are easily found intensification is less 
exciting. A counter for the number of iterations which revealed no feasible 
Solution, namely infeasible, thus allows to decrease the parameter vn only if 

(31) 

where CRITICAL 6 [0,1] is a user-specified parameter. 

4.4 Modifications of the Construction Seherne 

The construction scheme given in Section 3 would work fine without any modi-
fication. However, suppose that we h ave chosen to set machine m Up for item 
jmt 6 Xmt at the end of period t. Furthermore, assume that 

jmt 0 {j € Jm | CDj(t+ij 4- djt > 0} (32) 

which implies that 
t-I 

jmt e {j e Jm | > °}' (33) 
T=1 

Let tjmt be the next period in which demand for item jmt occurs, i.e. 

= rnax{r | 1 < r < t AdjmtT > 0}. (34) 

Since the construction procedure strictly moves on from period to period 
choosing items again and again, it is quite unlikely to begin in period t > tjni 

and reach period tjmi having no other item than jmt be chosen for machine m 
at the end of periods tjmt, tjmi + 1,..., t • 

For this reason, we introduce the following modification: If an item jmt 
fulfilling (32) is chosen then we update the Jjt-entries as described in Table 7. 

This makes it unlikely to choose any other item than jmt to be produced 
on machine m in the periods tjmi + 1, — 1, because all demand that would 
require machine m is shifted to period tjmi. Note, there is no guarantee to 
choose jmt again and again. This makes sense, because after jmt is selected at 

6For instance, during tests with J = 5 a nd T = 10 we observed, that after 500 iterations we 
very often have results that are close to the results after 1,000 iterations when a pure random 
choice of paramete r values is d one [20]. So, w e wo uld suggest NOINTENSIFY = 500 for 
these instances. 
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for j € Jm 

djtjmt := + + 2Zr=(ymt 4r-
CDj(t+i) := 0-
forr <={tjnt + 1 <} 

djT := 0. 

Table 7: Generating Idle Periods tjmt + 1,.. 

the end of period t it may happen that scheduling items on machines other than 
machine m causes Updates of the d^-entries where tjmt < r <t. This demand 
has previously not been taken into account and hence we decide again if the 
setup state of machine m shoufd indeed be kept up for item jmt • 

5 Experimental Evaluation 

To test the Performance of the randomized regret based sampling method we use 
the test-bed defined in [21] w hich is a collection of 1080 instances with J = 5 
and T = 10. This set of instances is defined by a füll factorial experimental 
design. The problem parameters of interest are: 

• M E {1, 2}, the number of machines. 

• C € {0.2,08}, the complexity of the gozinto-structure. Roughly speaking, 
a complexity close to 1 means many arcs in the gozinto-structure, and a 
complexity close to 0 Stands for few arc s (see [21] for a formal definition). 

• (Tmacro,Tmicro,Tidie) € {(10,1,5),(5,2,2),(1,10,0)}, the demand pat­
tern. The planning horizon is subdivided into Tmacro macro periods each 
of which consists of Tmt-cro micro periods. External demand occurs at the 
end of each macro period out of the first Tidie m acro periods. (5, 2, 2) thus 
means that we face external demand in periods 6, 8, and 10. 

• COSTRATIO € {5,150,900}, the average ratio of setup and holding costs 
per item. 

• U € {30,50,70}, the percentage of capacity utilization. 

For each parameter level combination we generated 10 instances using the idea 
of common random numbers which gives a total of 1080 instances. 1033 of 
them turned out to have a feasible Solution. In each Iteration the method Para­
meters are drawn at random so that 7i} • • •, 74 G [0,1], e € [0.0001,0.1], and 
S 6 [0,10]. For tuning the method parameters we use NOINTENSIFY = 500 
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and CRITICAL = 0.6. For eacb parameter level combination we find the av-
erage deviation of t he Upper bound from the optimum Solution where for each 
instance the deviation is computed by 

deviation f mUB~^PT (35) 

with UB being the Upper bound and OPT the Optimum objective function value. 
Moreover, the tables show the worst case deviation and the number of instances 
for which a feasible Solution is found, too. 

An analysis shall now be done on the basis of aggregated data to see whether 
or not certain parameter levels have an impact on the Performance of the Solution 
procedure. For each parameter level we give three Performance measures. The 
average deviation from the optimum results is, perhaps, the most important. 
But, the infeasibility ratio which is the percentage of instances for which no 
feasible Solution can be found although such one exists is a good indicator of 
what makes instances hard to solve, too. The average run-time Performance is 
also shown where all values are given in CPU-seconds on a Pentium Computer 
with 120 MHz. 

The effect of changing the number of machines is studied in Table 8. As 
we see, both, the average deviation from optimum and the average run-time 
significantly increase with the number of machines. However, more machines 
make finding a feasible Solution easier. 

M = 1 M = 2 
Average Deviation 8.90 11.69 
Infeasibility Ratio 11.46 7.92 
Average Run-Time 0.39 0.51 

Table 8: The Impact of the Number of Machines on the Performance 

Varying the gozinto-structure complexity also effects the Performance of the 
regret based Solution procedure. Table 9 provides the details. A high com­
plexity results in 1 arger deviations from the optimum than a low complexity. It 
also raises the infeasibility ratio decidedly. A minor impact is on the run-time 
Performance where gozinto-stuctures with a greater complexity have a small 
tendency to increase the computational effort very slightly on average. 

Table 10 shows if the demand pattern affects the Performance of the heur-
istic, too. We learn that a pattern with many non-zeroes in the demand matrix 
gives poor results. The average deviation from the Optimum is positively cor-
related with the number of demands to be fulfilled. For sparsely-filled demand 
matrices the infeasibility ratio is below 1%, but increases dramatically for de­
mand matrices with many entries. Differences in the run-time Performance are 
not worth to be mentioned. 
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C = 0.2 C = 0.8 
Average Deviation 9.23 11.53 
Infeasibility Ratio 7.05 12.40 
Average Run-Time 0.44 0.47 

Table 9: The Impact of the Gozinto-Structure Complexity on the Performance 

{Tmacroi Tmicroi Tidle) = 
(10,1,5) (5,2,2) (1,10,1 

Average Deviation 16.25 12.63 3.52 
Infeasibility Ratio 14.53 14.20 0.84 
Average Run-Time 0.48 0.44 0.44 

Table 10: The Impact of the Demand Pattern on the Performance 

The impact of the cost structure on the Performance is analyzed in Table 11. 
It can be seen that for high setup costs the deviation of the upper bound from 
the optimum objective function value is on average significantly smaller than for 
low setup costs. The infeasibility ratios show that instances with very high or 
very low setup costs are not as easy to solve as instances with a balanced cost 
structure. The influence of different costs on the run-time Performance can be 
neglected. 

COSTRATIO = 
5 150 900 

Average Deviation 14.42 8.95 7.65 
Infeasibility Ratio 10.72 8.12 10.20 
Average Run-Time 0.46 0.45 0.44 

Table 11: The Impact of the Cost Structure on the Performance 

The results for different capacity utilizations are provided in Table 12. The 
average deviation from the optimum is positively correlated with the capacity 
utilization. Differences are, however, not dramatic. Major effects are for the 
infeasibility ratios. While for each instance with a low capacity utilization a 
feasible Solution can be found, one out of three instances with a capacity utiliz­
ation U = 70 cannot be solved. The run-time Performance is almost unaffected 
by changes in the capacity utilization. 
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CO 
1 

III U = 50 (7 = 70 
Average Deviation 9.10 10.99 11.24 
Infeasibility Ratio 0.00 2.23 28.84 
Average Run-Time 0.46 0.46 0.44 

Table 12: The Impact of the Capacity Utilization on the Performance 

In summary, we find that 100 out of the 1,033 instances in our test-bed 
cannot be solved by the randomized regret based sampling method. This gives 
an overall infeasibility ratio of 9.68%. The average run-time is 0.45 CPU-
seconds. The overall average deviation of th e upper bound from the Optimum 
objective function value is 10.33%. 

The most significant method parameter certainly is the number of iterations 
that are to be performed. Hence, Table 13 gives some insight into Performance 
changes due to that value. As a point of reference we also give the results for a 
variant of the randomized regret based sampling procedures which stops when 
a first feasible Solution is found or when 1,000 iterations are performed. 

Average Infeasibility Average 
Deviation Ratio Run-Time 

First Solution 31.93 9.68 0.02 
100 Iterations 13.39 18.01 0.05 
500 Iterations 11.00 12.58 0.23 
1,000 Iterations 10.33 9.68 0.45 
2,000 Iterations 9.78 8.23 0.90 

Table 13: The Impact of the Number of Ite rations on the Performance 

We see that performing 1,000 iterations is a good choice, because even if 
we w ould double that value the average deviation from the Optimum objective 
function values would not be drastically reduced. The poor average deviation 
results for the first feasible solutions that are found indicates that the instances 
in the test-bed are indeed not easy to solve. Hence, we can State that the 
randomized regret based sampling procedure indeed makes a contribution. 

6 Parallel Machines 

Lot sizing and scheduling with parallel machines (PLSP-PM) introduces a new 
degree of freedom into the planning problem. In contrast to lot sizing and 
scheduling with multiple machines we now have no fixed machine assignments 
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for the items. In other words, it is a priori not clear on which machine ifcems are 
produced. We as sume that some (maybe all) machines are capable to produce 
a particular item. The multi-machine case obviously is a special case of the 
parallel-machine case, because the number of machines to choose among is one 
for each item. This actually means that there is no choice. Furthermore, we 
assume the most general case that is the case of heterogeneous machines. This 
is to say, that the production of the same item requires different amounts of 
capacity if different machines are used. 

Table 14 defines the decision variables which are new or redefined. Likewise, 
Table 15 gives the parameters. A M lP-model formulation can now be presented 
to give a precise problem statement. 

Symbol Definition 
Qjmt Production quantity for item j on machine m 

in period t. 
Xjmt Binary variable which indicates whether a setup for 

item j occurs on machine m in period t 
{Xjmt = 1) or not (xjmt = 0). 

yjmt Binary variable which indicates whether machine m 
is set up for item j at the end of period t 
(Vjmt = 1) or not (yjmt = 0). 

Table 14: New Decision Variables for the PLSP-PM 

Symbol Definition 
*Jm Set of all items that share the machine m, 

i-e. J m d= {j e {1,.J} | m e Mj}. 
Mj Set of all machines that are capable to produce 

item j, i.e. Mj {m 6 {1,..., M} | pjm < oo}. 
Pjm Capacity needs for producing one unit of item j on 

machine m. Its value is oo if m achine m cannot 
be used to produce item j. 

sjm Non-negative setup cost for item j on machine m. 
VjmO Initial setup State. 

Table 15: New Parameters for the PLSP-PM 
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M T 
min £ J2 £ SjmXjmt (36) 

m=l jg Jm t=l 

+ EEA;4, j=1t=l 
subject to 

Ijt = ^?(t-1) d" Z2 Qjmt j ~ 1,J (37) 

-4t - 12 ZZ 
»€^j m£.Mj 
min{t+VjfT} . __ 

- 23 S ü a3.?imr t = 0,'...,'r-l (^S) 
r=t+l 

E»-<i r^;-f 09) 

i = l,•• J 
%jmt Vjmt yjm(t-l) m E A4j (40) 

t = 1, . . .,T 

Pjm^jmt ^ Cmt{yjm{t—\) + Vjmt) TU E A4j (41) 
t = 1,. . T 

7==/' ' (42) 
j€J-m '"*1 

j — 1, . . - , J 
Vjmt E {0,1} meMj (43) 

t = 

'"20 («> 

i = 
Qjrnt, Xjmt > 0 m € A4j (45) 

t = 

The meaning of (36) to (45) closely relates to (1) to (9) and thus needs no 
further explanation. However, it is remarkable to note that lots of the same item 
may be produced on different machines in the same period. Splitting lots for 
concurrent production on different machines may be necessary to find feasible 
(and optimum) solutions. 
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7 Multiple Resources 

For lot sizing and scheduling with multiple resources (PLSP-MR) we assume that 
each item requires several resources at a time. Manufacturing an item needs all 
corresponding resources to be in the right setup State. Thus, the model has to 
guarantee that, if an item is produced in a period, all required resources are in 
the proper setup state either at the beginning or at the end of the period. The 
multi-machine problem is a special case of multiple resources. In the former 
case items require only one resource to be produced. 

Table 16 introduces the new decision variables and Table 17 gives the new 
Parameters that are needed to extend the multi-machine problem. A MlP-model 
formulation using this Dotation can now be presented. 

Symbol Definition 
qft Production quantity for item j in period t where 

the required resources are properly set up at the 
beginning of period t. 

qft Production quantity for item j in period t where 
the required resources are properly set up at the 
end of period t. 

Xjmt Binary variable which indicates whether a setup for 
item j occurs on resource m in period t 
{Xjmt = 1) or not (xjmt = 0). 

Vjmt Binary variable which indicates whether resource m 
is set up for item j at the end of period t 
(Vjmt = 1) or not (yjmt - 0), 

Table 16: New Decision Variables for the PLSP-MR 

M T 
mm X] sjmxjmt (46) 

m=\ j£jm t=1 

+ E E j—1t—\ 
subject to 
ht = Ij(t-1) + qft + qft j = (47) 

-djt- J2 Mffil + ffit) 
i€Sj 
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Symbol Definition 
3m Set of all items that share the resource m, 

i.e. Jm d= {j € {1}. - - ,7} | Pjm < 00}-
A4; Set of all resources that are needed to produce 

item j, i.e. A4; d= {m £ {1,..., M} | pjm < oo}. 
Pjm Capacity needs for resource m for producing one 

unit of item j. Its value is oo if item j does 
not require resource m. 

5;'m Non-negative setup cost for item j on resource m. 
2/f mQ Initial setup State. 

Table 17: New P arameters for the PLSP-MR 

min{t+Vj,T} 
4' >J2 + ifr) 

i€Sj rsrt+l 

T, v3171t < 1 
3£Jm 

%jmt ^ Vjmt ~~ yjm(t— 1) 

PjmQjt 5 Cmtyjmt 

53 ^;t) 5 Cmt 

€ {0, 1} 

| > 0 

xjm« ^ 0 

j = 1,.. J 
t = 0, . . . ,T — 1 

m = 1,..., M 
Z = 1,...,T 

j — 1,... j 7 
m £ A4; 
Z = 1,... ,T 
j = 1,..., J 
m £ A4; 
Z = 

i = i,..., j 
m £ A4; 
Z = I,...,T 
m = 1,..., M 
Z = 1,...,T 

i = l, - • •, J 
m £ A4; 
Z = 1,..., T 
j = 1,..., J 
Z = 1,...,T 
j = 1,..J 
m £ A4; 
Z = 1,... ,T 
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This MlP-formulation is a straightforward extension of the PLSP-MM-
model and thus needs no elaborate discussion. However, an important aspect 
should be mentioned briefly. Due to the decision variables qft and qft we ex-
plicitly take into account the sequence of two different lots in a period. This is 
redundant in the PLSP-MM-model since the setup State variables yjmt uniquely 
dehne sequences. But now, we must make sure that all resources needed to pro-
duce an item j are in the right setup State at a time. Constraints (51) and (52) 
guarantee so. Noteworthy to say that postprocessing as described above cannot 
be done here since the schedules of different resources do interact. 

8 Partially Renewable Resources 

For lot sizing and scheduling with partially renewable resources (PLSP-PRR) 
we assume that each item requires one resource for which a setup State has to be 
taken into account. This is equivalent to the multi-machine case. In addition, 
each item may require several scarce resources for which no setup State has to 
be taken into account. Moreover, since we have small periods representing shifts 
or hours for instance, we assume that these additional resources have capacity 
Iimits given per interval of periods.7 Suppose for example, that periods represent 
shifts (e.g. 10 shifts per week) and resources are renewed once a week. Since they 
are not renewed in every period they are called partially renewable. Capacity 
limits are then given per week and not per shift. The case where capacity limits 
are given per period is of course a special case. Such resources would be called 
renewable. The one for which a setup State is taken into account is a renewable 
resource. 

To understand the subsequent MlP-model formulation, see Table 18 for new 
Parameters. The decision variables equal those of the PLSP-MM-model. 

J T 
min + Vit) (57) 

j=1(=1 
subject to 

Ijt - fj(f-i) + Ijt ~ djt - ajiqit j ~ (58) 
ieSj 

4(>E E (59) 
{es, r=t+1 

2 »• s1 (60) 

7A more g eneral point of vie w wo uld b e to conside r arbitrary sets of period s instead of 
intervals of periods. However, this is not done here. 
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Symbol Definition 

Cmt Available capacity of the partially renewable 
resource m in interval f. 

Jm Set of all items that share the partially renewable 
resource m, i.e. Jm d= {j e {1, -.,</} | Pjm < oo}. 

L Length of an interval in number of periods. All 
intervals are assumed to have equal length. 

M Number of partially renewable resources. 
Mj Set of all partially renewable resources that are 

needed to produce item i, 
i.e. Mj d= jm £ {1,.. .,M} | pjm < ooj. 

Pjm Capacity needs for the partially renewable resource 
m for producing one unit of item j. its value is oo 
if item j does not require resource m. 

T Number of intervals. We assume L - T = T and 
[(i — 1 )L + 1, iL] be the i-th interval of pe riods 
where i — 1,..., T. Note, a period t G {1,..., T) 
belongs to the interval i = 

Table 18: New Parameters for the PLSP-PRR 

Xjt > Vit - Vj(t-1) 3t_ " (61) 

Piqjt<Cmjt(yxt-i) + yjt) t = (62) 

jeJ, 
tL 

E ^ Cm, (63) 

E iE f (64) 
j€Jm r=(t-l)L+l 

f = 1,...,T 

SS» € {0,1} IZlZ'.'i (65) 

(66) 

All constraints but (64) equal those of the PLSP-MM-model and thus need 
no explanation again. The new set of restrictions (64) represents the capacity 
limits of the partially renewable resources. They make sure that the sum of 
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capacity demands for resource m in the t-th interval of periods does not exceed 
the capacity limit. 

9 Conclusion 

In this paper we tackled the multi-level proportional lot sizing and scheduling 
Problem. Starting with a mixed-integer model formulation for multiple ma-
chines where each item requires exactly one machine, we presented a rather 
general idea of constructing production plans. By refining this generic construc-
tion scheme, we in troduced a randomized regret based sampling method which 
can be seen as a generalization of the BACKADD-procedure given in [6]. A 
computational study revealed that even for the fchorny problem of multi-level lot 
sizing and scheduling with multiple machines, feasible solutions with an average 
deviation of about 10% from the optimum objective function value can be com-
puted within less than half a second CPU-time on a Pentium PI 20 Computer. 
Other mixed-integer models for parallel machines, multiple resources, and par-
tially renewable resources are also given. In summary, we find the proportional 
lot sizing and scheduling problem worth to be considered. Future work should 
implement variants of the construction scheme for the extension models and test 
their Performance. 
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