
Kimms, Alf; Drexl, Andreas

Working Paper — Digitized Version

Proportional lot sizing and scheduling: Some extensions

Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel, No. 407

Provided in Cooperation with:
Christian-Albrechts-University of Kiel, Institute of Business Administration

Suggested Citation: Kimms, Alf; Drexl, Andreas (1996) : Proportional lot sizing and scheduling: Some
extensions, Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel, No.
407, Universität Kiel, Institut für Betriebswirtschaftslehre, Kiel

This Version is available at:
https://hdl.handle.net/10419/149038

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/149038
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

Manuskripte

aus den

Instituten für Betriebswirtschaftslehre

der Universität Kiel

No. 407

Proportional Lot Sizing and Scheduling:
Some Extensions

A. Kimms and A. Drexl

September 1996

Alf Kimms, Andreas Drexl
Lehrstuhl für Produktion und Logistik, Institut für Betriebswirtschaftslehre,
Christian-Albrechts-Universitat zu Kiel, Olshausenstr. 40, 24118 Kiel, Germany
email: Kimms@bwl.uni-kiel.de

Drexl@bwl .uni-kiel .de
URL: http://www .wiso.uni-kiel.de/bwlinstitute/Prod

ftp://ftp.wiso.uni-kiel.de/pub/operations-research

Abstract
This contribution generalizes the work of Drexl and Haase about the

so-called proportional lot sizing and scheduling problem which was pub-
lished in 1995. While the early paper considers single -level cases only, the
paper at hand describes multi-level problems. 1t provides mixed-integer
programs for several important extensions which differ in the allocatio n
of resources. A generic Soluti on method is presented and, following the
preceding paper, a randomized regret based sampling method is tested. A
computational study proves that, even for the multi-level case wh ich is far
more complex than the sin gle-level problem, promising results are gained.

Keywords: Multi-level lot sizing, scheduling, PLSP, random sampling

1 Introduction

Several items are to be produced in order to meet some known (or estimated)
dynamic demand without backlogs and stockouts. Precedence relations among
these items dehne an acyclic gozinto-structure of the gener al type. In contrast to
many authors who allow demand for end items only, now, demand may occur for
all items including component parts. The finite planning horizon is subdivided
into a number of discrete time periods. Positive lead times are given due to
technological restrictions such as cooling or transportation for instance. Fur-
thermore, items share common resources. Some (maybe all) of them are scarce.
The capacities may vary over time. Producing one item requires an item-specific
amount of the available capacity. All data are assumed to be deterministic.

Items which a re produced in a period to meet some future demand must be
stored in inventory and thus cause item-specific holding costs. Most authors
assume that the holding costs for an item must be greater than or equal to the
sum of the holding costs for all immediate predecessors. They argue that holding
costs are mainly opportunity costs for capital which occurs no matter a compon­
ent part is assembled or not. Two reasons persuade us to make no particular
assumptions for holding costs. First, as it is usual in the chemical industry for
instance, keeping some component parts in storage may require ongoing addi-
tional effort such as cooling, heating, or shaking. While these parts need no
special treatment when processed, storing component parts might be more ex-
pensive than storing assembled items. Second, Operations such as cutting tin
mats for instance make parts smaller and often easier to handle. The remaining
"waste" can often be sold as raw material for other manufacturing processes.
Hence, opportunity costs may decrease when component parts are assembled.
However, it should be made clear that the assumption of general holding costs
is the most unrestrictive one. All models and methods developed under this
assumption work for more restrictive cases as well.

Each item requires at least one resource for which a setup State has to be
taken into account. Production can only take place if a proper State is set

1

up. Setting a resource up for producing a particular item incurs item-specific
setup costs which are assumed to be sequence independent. Setup times are not
considered. Once a certain setup action is performed, the setup State is kept
up until another setup changes the current state. Hence, same items which are
produced having some idle time in-between do not enforce more than one setup
action. To get things straight, note that some authors use the word changeover
instead of setup in this context.

The most fundamental assumption here is that for each resource at most
one setup may occur within one period. Hence, at most two items sharing a
common resource for which a setup state exists may be produced per period.
Due to this assumption, the problem is known as the proportional lot sizing and
scheduling problem (PLSP) [6, 12, 21]. By choosing the length of each time
period appropriately small, the PLSP is a good approximation to a continuous
time axis. It refines the well-known discrete lot sizing and scheduling problem
(DLSP) [3, 9, 15, 23, 26] as well as the continuous setup lot sizing problem
(CSLP) [1, 17, 16]. Both assume that at most one item may be produced per
period. All three models could be classified as small bücket models since only
a few (one or two) items are produced per period. In contrast to this, the
well-known capacitated lot sizing problem (CLSP) [2, 7, 10, 14, 22, 24, 25]
represents a large bücket model since many items can be produced per period.
Remember, the CLSP does not include sequence decisions and is thus a much
"easier" problem. An extension of the single-level CLSP with partial sequence
decisions can be found in [11]. In [13] a large bücket single-level lot sizing and
scheduling model is discussed.

A comprehensive review of the multi-level lot sizing Literature is given in [21]
where it is shown that most authors do not take capacity restrictions into account
and that they make restrictive assumptions such as linear or assembly gozinto-
structures. If scarce capacities are considered, the work is mostly confined to
single-machine cases. The most general methods are described in [27, 28] where
the multi-level CLSP is attacked.

2 Multi-Level PLSP with Multiple Machines

An important variant of the PLSP is the one with multiple machines (PLSP-
MM). Several resources (machines) are available and each item is produced on
an item-specificmachine^This is to say that there is an unambiguous mapping
from items to machines. Of course, some items may share a common machine.
Special cases are the single-machine problem for which models and methods
are given in [19, 20], and the problem with dedicated machines where items do
not share a common machine. For the latter optimal Solutions can be easily
computed with a Iot-for-Iot policy [18].

Let us first introduce some notation. In Table 1 the decision variables are
defined. Likewise, the parameters are explained in Table 2. Using this notation,

2

we are now able to present a MlP-model formulation.

Symbol Definition
Ijt Inventory for item j at the end of period t.
qjt Production quantity for item j in period t.
Xjt Binary variable which indicates whether a setup for

item j occurs in period t (xjt = 1) or not (xjt = 0).
yjt Binary variable which indicates whether machine rrij

is set up for item j at the end of period t (yjt = 1)
or not (yjt = 0).

Table 1: Decision Variables for the PLSP-MM

J T
min53^(sixjt + Ai/it) (1)

J=1t = l
subject to

Ijt = Ij(t-i) + qjt - djt - ̂ 2 ajiqa 4 1 ' V (2)

min{t+Vj,T> ,
4,> E E (3)

ieSj rat+l ' '

Xjt > yjt - Vj(t-1) t = . . (3) ^

Vjijt < + %) \ = i,','r (6)

(8)

W,„=j,>0 j ^ (9)

The objective (1) is to minimize the sum of setup and holding costs. Equa-
tions (2) are the inventory balances. At the end of a period t we have in inventory

3

Symbol Definition
an "Gozinto"-factor. Its value is zero if item i is not an an

immediate successor of item j. Otherwise, it is the
quantity of item j that is directly needed to
produce one item i.

Cmt Available capacity of machine m in period t.
djt External demand for item j in period t.
hj Non-negative holding cost for having one unit of

item j one period in inventory.
IjO Initial inventory for item j.
3m Set of al l items that share the machine m,

i.e. 3m d- {j e {1, | rrij = m}.
J Number of items.
M Number of machines.
rrij Machine on which item j is produced.
Pi Capacity needs for producing one unit of item j.
S3 Non-negative setup cost for item j.
Sj Set of immediate successors of item j,

i.e. Sj d= {i G {1,..., J} | dji > 0}.
T Number of periods.
V3 Positive and integral lead time of item j.
Vjo Unique initial setup state.

Table 2: Parameters for the PLSP-MM

what was in there at the end of period i — 1 plus what is produced minus ex-
ternal and internal demand. To fulfill internal demand we must respect positive
lead times. Restrictions (3) guarantee so. Constraints (4) make sure that the
setup state of each machine is uniquely defined at the end of each period. Those
periods in which a setup üappenä; are spotted by (5). Note that idle periods
may occur in order to save setup costs. Due to (6) production can only take
place if there is a proper setup state either at the beginning or at the end of
a particular period. Hence, at most two items can be manufactured on each
machine per period. Capacity constraints are formulated in (7). Since the right
band side is a constant, overtime is not available. (8) dehne the binary-valued
setup state variables, while (9) are simple non-negativity conditions. The reader
may convince himself that due to (5) in combination with (1) setup variables Xjt

are indeed zero-one valued. Hence, non-negativity conditions are sufficient for
these. For letting inventory variables Ijt be non-negative backlogging cannot
occur.

4

3 Construction Principles

There is a generic construction scheme that forms the basis of our heuristic.
It is a backward oriented procedura which schedules items period by period
starting with period T and ending with period one. We choose here a recurrent
representation which enables us to develop the underlying ideas in a stepwise
fashion. Now, let us assume that construct(t,At,m) is the procedura to be
defined and t + At is the period and m is the machine under concern. Again,
At E {0,1} where indicates that the setup state for machine m at the
beginning of period <4-Iis tobe fixed next and At = 0 indicates that we
already have chosen a setup State at the end of period t. The symbol jmt will
denote the setup state for machine m at the end of period t. Assume jmt = 0
for m = 1,..., M and t = 1,..., T initially.

Note, from the problem parameters we can easily derive Vj, the set of the
immediate predecessors of item j, and Vj, the set of a ll predecessors of it em j.
Also, nrj, the net requirement of item j, and idji, the internal demand for item
i that is directly or indirectly caused by producing one unit of item j> are easy
to compute.

Before the construction mechanism starts, the decisiori variables yjt and qjt
are assigned zero for j = 1,..., J, m = 1,..., M, and t = 1,..., T. Remember,
given the values for yjt and qjt the values for Xjt and Ijt are implicitly defined.
Furthermore, assume auxiliary variables djt and CDjt for j = 1,..., J and
t = 1,..., T. The former ones represent the entries in the demand matrix and
thus are initialized with djt = djt. The latter ones stand for the cumulative future
demand for item j which is not been met yet. As we will see, the cumulative
demand can be efficiently computed while moving on from period to period.
For the sake of conv enience we introduce CDj(r+1) = 0 fo r j = 1The
remaining capacity of machine m in period t is denoted as RCmt. Initially,
RCmt = Cmt for m = 1,..., M and t = 1,..., T.

The initial call is construct(T, 1,1) and initiates the fixing of setup states at
the end of period T. Table 3 gives all the details.

choose jmT € XmT-
if (jmT 7^0)

VjmTT := 1.
if (m = M)

construct(T, 0,1).
eise

construct(T,l,m+ 1).

Table 3: Evaluating construct(T, 1, •)

The choice of jmT needs to be refined, but at this point we do not need any

5

further insight and suppose that the selection is done somehow. All we need to
know is that lmt C Jm U {0} for m = 1,..., Af and t = 1,..., T is the set of
items among which items are chosen. Item 0 is a dummy item which will be
needed for some methods that will be discussed. We will return for a precise
discussion in subsequent sections. As one can see, once a setup State is chosen
for all machines at the end of period T, a call of construct(T, 0,1) is made. Table
4 provides a recipe of how to evaluate such calls.

for j e Jm

CDjt := min|c£»;{t+1) -f d i£,max{0,nrj -^T=t+i W)
if (J»t# 0)

:= CDJmtt ~ qjn.it-
•ßCmt RCmt ~~ PjmtQjmtt'
for i e 7>jmt

if (t — vi > 0 and qjmtt > 0)
d»(t — Vi) di(t-Vi) H~

if (m — M)
construct(t ~ 1,1,1).

eise
construct(t,0,m-\-1).

Table 4: Evaluating construct(t, 0, •) where 1 < t < T

The Situation when calling con$truct(t, 0, m) is that the setup state jmt has
already been chosen. Remarkable to note, how easy it is to take initial inventory
into account. This is due to the backward oriented scheme. Evaluating

min |CDj{t+x) + djt, max{0, ntj - ^ qjT} | (10)
l r=t+l J

makes sure that for an item j no more than the net requirement nrj is produced.
Note, cumulating the production quantities is an easy task which can be done
very efficiently. Given the cumulative demand CDjmit, production quantities
qjmtt can be determined with respect to capacity constraints. Afterwards, we
simply update the djt-matrix to take internal demand into account and proceed.
Table 5 describes how t o evaluate con$truct(t, 1, -)-calls.

These lines closely relate to what is defined in Table 4. DifFerences l ie in the
fact that a setup state is chosen for the end of period t but items are scheduled
in period t +1. For Computing production quantities we must therefore take into
account that item jm(£+i) may already be scheduled in period t + 1.

6

choose jmt G X mt.
if { jmt 7^ 0)

Vjmtt := 1.
if (jmt 7^ im(t+l))

1) - min{CDJml(t+1), }'

^Cm(!+1) := ^Cm(H-l) —

for t G Vjmt

if (< + 1 - Vi > 0 and qjrmt(t+1) > 0)

if (m — M)
consfcruct(fc, 0,1).

eise
construct(t, 1, m + 1).

Table 5: Evaluating consfcrucfc^, 1, •) where 1 < t < T

Note, the combination of what is given in Tables 4 and 5 enforces that every
item jmt that is produced at the beginning of a period Z + lis also produced at
the end of period t if there is any positive cumulative demand left. In preliminary
tests not reported here we also found out that if capacity is exhausted, i.e. if
fiCm(t+i) = 0 and CDjm{t+1)(t+i) > 0, it is best to choose jmt - jm(t+1) in
Table 5. In other words, lots are not split.1 The reason why this turned out to
be advantageous is that the setup State tends to flicker otherwise and thus the
total sum of setup costs tends to be high. In the rest of this chapter we assume
that lots are not split.

Turning back to the specification of the construct-procedure, it remains to
explain what shall happen when the flrst period is reached. Table 6 describes
how to schedule those items in period 1 for which the machines are initially set
up for. In contrast fco what is given in Table 5 the initial setup State is known
and thus needs not to be chosen.

A ca ll to construd(0,0, •) terminates the construction phase. What is left is
a final feasibility test where

T
nrj = Y,Qjt (11)

t= 1
must hold for j = 1,..., J fo r being a feasible Solution. Eventually, the objective
function value of a feasible Solution can be determined.

*It is w orth to be s tressed that lot Splitting could be easily integrated by not c hecking for
exhausted capacity. All metho ds based on the des cribed construction scheine may thus be
adapted for lot Splitting with minor modifications only.

7

if (jmO ± jm\)

if (m = M)
construct(0}0,1).

eise
construct{0, l,m + 1).

Table 6: Evaluating construct(0,1, •)

To terminate a run of the construction procedure before period 1 is reached,
we can perform a capacity check testing

t+At
12 12 PiidjiCDj(t+At) > J2 CmT (12)
j&Jm TS 1

which must be false for m = 1,..., M if period t+At is under concem arid thus,
when true, indicates an infeasible Solution (if there is no initial inventory).

It should be emphasized again, that the construction scheme described above
does not necessarily generate an optimum Solution. It does not even guarantee
to find a feasible Solution if there exists one.

4 Randomized Regret Based Sampling

Now, having introduced the backward oriented construction scheme construct,
a very straightforward idea is to run the construction phase over and over again
while memorizing the current best plan until some stopping criterion (e.g. a
certain number of iterations) is met. Note, this only makes sense if the construct-
procedure works non-deterministically.

Here, the choice of setup states jmt comes in again. If a stochastic selection
rufe is used then it is probable to have different results after each run of the
construction phase.

Preliminary studies of ideas reported in this section are provided in [6, 12]
for single-level, single-machine PLSP-instances and in [19, 20] for multi-level,
single-machine PLSP-instances.

4.1 An Introduction to Random Sampling

The process of random sampling as done here is a Monte Carlo experiment where
item numbers jmt are repeatedly drawn at random out of a population Xmt C Jm

8

for m = 1,..., M and t = 1,.. M T. An underlying distribution function <pmt is
defined on the basis of a priority value TTyt > 0 that is assigned to each item j
in the item set Xmt-

Before we give any details of the definitions of <pmt and 7Tjt} let us have
a look at a taxonomy of sampling. Depending on the priority values, three
important cases are worth to be highlighted. First, there is the general case
with a probability to choose j £ Xmt being defined as

<Pmt(j) d= ^ (13)

for m = 1,..., M and t = 1,..., T where

23 =1 (14)
jGZmt

holds. Since the priority values for the items may differ, this is called biased
random sampling. By definition, if j, i 6 Xmt and irjt > irit, then <pmt(j) >
¥?mt(0-

Many authors apply biased random sampling procedures to many different
kinds of application areas. A comprehensive overview of research activities is out
of the scope of this text. See for instance [8] where a so-called greedy randomized
adaptive search procedure (GRASP) is introduced and used for finding max-
imum independent sets in graphs. Further references to GRASP-applications in
the area of corporate acquisition of flexible manufacturing equipment, Computer
aided process planning, airline flight scheduling and maintenance base planning,
and several other problems are given.

As a special case one might choose

'jt constant (15)

for j £ Xmt• This is called pure random sampling,2 because all items j £ Xmt

now have the same probability

(pmt (j) — 7~z r (16)
I X mt \

for m = 1,..., M and t = 1,... ,T.
Last, since items with a large priority values are preferred, one might com-

pute a modified priority value

Qjt d= (njt - min nt + c)s (17)

2Note that items j € have a priority v alue = 0. So, w e face a pure ran dom
sampling only if 2 Tmt is kno wn be fore the pro cedure starts, but not if Xmt depends on the
history of the execution.

9

for each j 6 1mt where e > 0 and 8 > 0, and then define

y^(j) i=r^— (18)

for m = 1 , ...,Af and t = 1 For using such a kind of distribution
function (in the context of project scheduling), Drexl coined the name regret
based (biased) random sampling [4, 5]. The motivation for this name stems
from the idea that the modified priority value ßjt represents a measure for the
regret not to choose the item j in period t. Hence, more emphasis is given on
the differences of priority values 7Tjt. Both, c and 8 a re method parameters that
guide the sampling process.3 For e a small positive value should be chosen to
make sure that every item j € %mt is assigned a positive modified priority value
Qjt > 0. The parameter 8 amplifies (smoothes) differences in the priority values
iftf > 1 (0 < tf < 1).

4.2 Randomized Regret Based Priority Rules

The heart of a random sampling procedura are the priority values 7Tjt that are
used to define the distribution function <pmt for m = 1,...,M and t = 1}... ,T.
But before we can introduce priority values, we first need to define the set of
items Xmt among which an item jmt is to be chosen.4 Promising candidates to
set a machine m up for at the end of a period t are those items for which there
is demand in either period f or, if t < T, period t + 1. In addition to that,
items with demand in periods earlier than period t might be promising as well.
Choosing such items causes idle periods (during which the setup State can be
kept up). Apparently, the cumulative production quantities of an item need not
exceed its net requirement. More formally,

({je Jm |CDj(m) + <Ijt>o}u{je jm| EdJT>0}) (19)
T —1

T
H{i €Jm\nrj- Y, 9jr > 0}

r=t+1

for m= 1 and t = 1,..., T. If Xmt = 0, we simply choose jmt - jm(t+1)
in periods t <T, or, if t = T, fix jmT E Jm by arbitration, e.g. the item with
the lowest item index (which when turned out to be wrong is neatly be corrected
by the postprocessor). Let us therefore assume Xmt ^ 0.

Using our problem understanding, two main aspects help us to find priority
values. On the one hand, we like to have low-cost production plans. A p riority

3 Using different parameters emt and 5 mt for each machine m and each period t turned out
to increase the run-time, but did not improve the results decidedly.

4Remember, in so me cases which are desc ribed in Sect ion 3 no selec tion is to be made,
because we do not allow lot Splitting.

10

Y- * l , (20)

value should therefore reflect cost criteria. On the other hand, it is quite hard
to generate even a feasible Solution. Thus, priority values should also consider
sources of infeasibility. In combination, priority values should lead to cheap and
feasible production plans.

We start with introducing two expressions that represent cost criteria. First,
imagine that a machine m is not set up for an item j at the end of period t.
This means that CDj^+i) items must be stored in inventory for at least one
additional period and thus causing additional holding costs. The expression

j d±f hjCDj(t+1)
max{s, | i E Jm]

for m s= 1,..., M, t = 1,..., T, and j E Xmt is a measure for these costs.
Second, changing the setup State causes setup costs, or, stating this the other

way around, not to select a certain item may save setup costs. Thus,
d±l s3

3t max{s,' | i E Jm)
for m = 1,..., M, t = 1,..., T, and j E lmt is a measure for the cost savings, if
an item is not selected.

In addition to that, we now give two expressions that tend to avoid infeasib­
ility. On the one hand, we take into account that items usually have preceding
items which are to be manufactured in advance. The more preceding items there
are, the more risky it is to shift production into early periods. The closer we
move towards period 1 the more important is this aspect. Using

otherwise 3~~ (22)

to denote the depth of an item j, the expression

~ t + 1 -dePj (23)

for m — 1 ,..., M, t = 1,..., T, and j E Xmt thus makes it more probable to
choose items with a large depth, especially in early periods. To be well-defined
choose a denominator equal to one if t + 1 = depj.

On the other hand, we consider the capacity usage. Producing an item j and
all its preceding items requires a well-defined amount of capacity per machine.
The bottleneck machine can then be dehned as the machine with the highest ratio
of capacity demand per available capacity. Items which cause a high capacity
usage on the bottleneck machine should therefore have a high preference to be
chosen. More formally,

(CDj(,+i) + d„) (24)

11

for m = 1,..., M, t = 1,. -., T, and j e Xmt estimates the capacity usage of the
bottleneck machine.

As preliminary tests have revealed, using a combination of these four criteria
seems to be a good strategy. For m G {1 , t € T}, and j G
Xmt four cases may now occur where jm(T+i) = 0 is assumed for notational
convenience:
Case 1: C£>j(t+i) + djt > 0 and j ^ jm(t+i)-
Case 2: CDj(t+1) + djt > 0 and j = jm(t+i)-
Case 3: $ > ® anc* 3 ^ Jm(t+i) and Case 1 does not hold.
Case 4" ST=I dj<r > 0 and j = and Case 2 does not hold.

Depending on the case that holds, ftjt can now be defined as

Kjt d-

7i$ ~ 72$ + 73$7 + 74$V Case 1
7i$ + 73$J + 74$^ Case 2
73$' + 74$V Case 5
72?$ + 7s$' + 74$' Case ^

where 71,..., 74 are real-valued method parameters.5 Cases 1 and 2 are defined
as motivated above. Note, that in Case 2 the setup cost savings are of no interest,
because the machine already is in the proper setup state. In the Cases 3 and 4,
the Holding cost criterion evaluates to zero. In contrast to the first two cases,
the setup cost criterion now increases the priority value if the machine is in the
correct setup state (Case 4) and is neglected in Case 3. This differs from what
is done in Cases 1 and 2, although its Interpretation, i.e. giving items for which
the machine is already set up for a better chance to be selected, is the same. The
reason for doing so is motivated by a desire to decide for idle periods in order to
maintain the setup state (Case 4). This idea is supported by making the priority
value for the item for which Case 4 holds large and lower the priority values for
those items which apply to Case 1.

Using (18) in combination with (17) we now have a füll specification for the
selection rule we employ. If the method parameters are chosen at randorn, the
Solution procedure is called randomized regret based (biased random) sampling.

4.3 Tuning the Method Parameters

In our Implementation we ch oose all method parameters, namely 71,..., 74, e,
and S, at random in each Iteration of the sampling process. Rather than doing
this at pure random over and over again without any history sensitivity, one
should make use of the information gained during previous iterations. This is
to say that learning effects should steer the choice of the method parameters for
values that tend to give good results.

s Using different parameters ..., 04 mt for ea ch machine m and ea ch period t turned
out to increase the computationaloverhead without giving decidedly better results.

12

Since all that will be said is valid for all parameters, let

Parameter € {71,... ,74, e,£} (26)

denote any of the method parameters. Furthermore, suppose n = 1,2, ...is the
number of the current Iteration and parameter* is the value of the parameter
when the current best (feasible) Solution was found within the last n — 1 itera-
tions. Initially, parameter* = 0 without loss of generality. In each Iteration we
randomly choose a parameter value, say pv, out of the interval of valid parameter
values, say \parametermin, pararnetermax], as specified by the user. If we would
assign parameter = pv, we have a pure random choice without any learning.

A fundamental idea for tuning the method parameters is to intensify the
search in those areas of t he parameter space which are in the neighborhood of
parameter*. In our Implementation, this is done using

parameter = parameter* + i/n(pv — parameter*) (27)

where vn € [0, lj defines the neighborhood around the current best parameter
value from which the parameter used in iteration n is to be selected. If v n = 1
then we have a pure random choice of p arameters again. And if vn — 0 t hen
we would have no choice at all, because in every iteration parameter* would be
chosen again. Initially, we s tart with v\ — 1. Note that in each iteration the
parameter value lies indeed in the valid parameter space, i.e.

parametermin < parameter < parametermax• (28)

Without any significant efFort, we can count the number of iterations done
so far that resulted in improved solutions. Let this number be denoted as
improvements. Starting with a counter improvements = 0, its value is set
to one if the first feasible Solution is found, and its value is increased by one
every time a new current best Solution is found. Having this information, we
comp ute

fn-H = Vn (29)

if iteration n did not improve the current best Solution and

vn+i = - - — (30)
improvements

if iteration n resulted in an improvement. Note, because the counter improve­
ments monotonically increases from iteration to iteration, the value of vn de-
clines during run-time and intensives the search in a more and more narrow
subspace of the parameter space.

In preliminary experiments we found out, that the intens ification procedure
described so far quite often traps into local optima, because the value vn declines
too fast. The final outcome is often worse than what comes out with a pure

13

random choice of parameter values in every Iteration. Thus, we decided to choose
^n+i = vn for n < NOINTENSIFY where NOINTENSIFY is specified by
the user.6 Nevertheless, the counter improvements is maintained during the
first NOINTENSIFY iterations as well.

In addition to that, we found out that for some instances it is quite hard
to find a feasible Solution. In such cases, intensification turned out to be good.
For instances for which feasible solutions are easily found intensification is less
exciting. A counter for the number of iterations which revealed no feasible
Solution, namely infeasible, thus allows to decrease the parameter vn only if

(31)

where CRITICAL 6 [0,1] is a user-specified parameter.

4.4 Modifications of the Construction Seherne

The construction scheme given in Section 3 would work fine without any modi-
fication. However, suppose that we h ave chosen to set machine m Up for item
jmt 6 Xmt at the end of period t. Furthermore, assume that

jmt 0 {j € Jm | CDj(t+ij 4- djt > 0} (32)

which implies that
t-I

jmt e {j e Jm | > °}' (33)
T=1

Let tjmt be the next period in which demand for item jmt occurs, i.e.

= rnax{r | 1 < r < t AdjmtT > 0}. (34)

Since the construction procedure strictly moves on from period to period
choosing items again and again, it is quite unlikely to begin in period t > tjni

and reach period tjmi having no other item than jmt be chosen for machine m
at the end of periods tjmt, tjmi + 1,..., t •

For this reason, we introduce the following modification: If an item jmt
fulfilling (32) is chosen then we update the Jjt-entries as described in Table 7.

This makes it unlikely to choose any other item than jmt to be produced
on machine m in the periods tjmi + 1, — 1, because all demand that would
require machine m is shifted to period tjmi. Note, there is no guarantee to
choose jmt again and again. This makes sense, because after jmt is selected at

6For instance, during tests with J = 5 a nd T = 10 we observed, that after 500 iterations we
very often have results that are close to the results after 1,000 iterations when a pure random
choice of paramete r values is d one [20]. So, w e wo uld suggest NOINTENSIFY = 500 for
these instances.

14

for j € Jm

djtjmt := + + 2Zr=(ymt 4r-
CDj(t+i) := 0-
forr <={tjnt + 1 <}

djT := 0.

Table 7: Generating Idle Periods tjmt + 1,..

the end of period t it may happen that scheduling items on machines other than
machine m causes Updates of the d^-entries where tjmt < r <t. This demand
has previously not been taken into account and hence we decide again if the
setup state of machine m shoufd indeed be kept up for item jmt •

5 Experimental Evaluation

To test the Performance of the randomized regret based sampling method we use
the test-bed defined in [21] w hich is a collection of 1080 instances with J = 5
and T = 10. This set of instances is defined by a füll factorial experimental
design. The problem parameters of interest are:

• M E {1, 2}, the number of machines.

• C € {0.2,08}, the complexity of the gozinto-structure. Roughly speaking,
a complexity close to 1 means many arcs in the gozinto-structure, and a
complexity close to 0 Stands for few arc s (see [21] for a formal definition).

• (Tmacro,Tmicro,Tidie) € {(10,1,5),(5,2,2),(1,10,0)}, the demand pat­
tern. The planning horizon is subdivided into Tmacro macro periods each
of which consists of Tmt-cro micro periods. External demand occurs at the
end of each macro period out of the first Tidie m acro periods. (5, 2, 2) thus
means that we face external demand in periods 6, 8, and 10.

• COSTRATIO € {5,150,900}, the average ratio of setup and holding costs
per item.

• U € {30,50,70}, the percentage of capacity utilization.

For each parameter level combination we generated 10 instances using the idea
of common random numbers which gives a total of 1080 instances. 1033 of
them turned out to have a feasible Solution. In each Iteration the method Para­
meters are drawn at random so that 7i} • • •, 74 G [0,1], e € [0.0001,0.1], and
S 6 [0,10]. For tuning the method parameters we use NOINTENSIFY = 500

15

and CRITICAL = 0.6. For eacb parameter level combination we find the av-
erage deviation of t he Upper bound from the optimum Solution where for each
instance the deviation is computed by

deviation f mUB~^PT (35)

with UB being the Upper bound and OPT the Optimum objective function value.
Moreover, the tables show the worst case deviation and the number of instances
for which a feasible Solution is found, too.

An analysis shall now be done on the basis of aggregated data to see whether
or not certain parameter levels have an impact on the Performance of the Solution
procedure. For each parameter level we give three Performance measures. The
average deviation from the optimum results is, perhaps, the most important.
But, the infeasibility ratio which is the percentage of instances for which no
feasible Solution can be found although such one exists is a good indicator of
what makes instances hard to solve, too. The average run-time Performance is
also shown where all values are given in CPU-seconds on a Pentium Computer
with 120 MHz.

The effect of changing the number of machines is studied in Table 8. As
we see, both, the average deviation from optimum and the average run-time
significantly increase with the number of machines. However, more machines
make finding a feasible Solution easier.

M = 1 M = 2
Average Deviation 8.90 11.69
Infeasibility Ratio 11.46 7.92
Average Run-Time 0.39 0.51

Table 8: The Impact of the Number of Machines on the Performance

Varying the gozinto-structure complexity also effects the Performance of the
regret based Solution procedure. Table 9 provides the details. A high com­
plexity results in 1 arger deviations from the optimum than a low complexity. It
also raises the infeasibility ratio decidedly. A minor impact is on the run-time
Performance where gozinto-stuctures with a greater complexity have a small
tendency to increase the computational effort very slightly on average.

Table 10 shows if the demand pattern affects the Performance of the heur-
istic, too. We learn that a pattern with many non-zeroes in the demand matrix
gives poor results. The average deviation from the Optimum is positively cor-
related with the number of demands to be fulfilled. For sparsely-filled demand
matrices the infeasibility ratio is below 1%, but increases dramatically for de­
mand matrices with many entries. Differences in the run-time Performance are
not worth to be mentioned.

16

C = 0.2 C = 0.8
Average Deviation 9.23 11.53
Infeasibility Ratio 7.05 12.40
Average Run-Time 0.44 0.47

Table 9: The Impact of the Gozinto-Structure Complexity on the Performance

{Tmacroi Tmicroi Tidle) =
(10,1,5) (5,2,2) (1,10,1

Average Deviation 16.25 12.63 3.52
Infeasibility Ratio 14.53 14.20 0.84
Average Run-Time 0.48 0.44 0.44

Table 10: The Impact of the Demand Pattern on the Performance

The impact of the cost structure on the Performance is analyzed in Table 11.
It can be seen that for high setup costs the deviation of the upper bound from
the optimum objective function value is on average significantly smaller than for
low setup costs. The infeasibility ratios show that instances with very high or
very low setup costs are not as easy to solve as instances with a balanced cost
structure. The influence of different costs on the run-time Performance can be
neglected.

COSTRATIO =
5 150 900

Average Deviation 14.42 8.95 7.65
Infeasibility Ratio 10.72 8.12 10.20
Average Run-Time 0.46 0.45 0.44

Table 11: The Impact of the Cost Structure on the Performance

The results for different capacity utilizations are provided in Table 12. The
average deviation from the optimum is positively correlated with the capacity
utilization. Differences are, however, not dramatic. Major effects are for the
infeasibility ratios. While for each instance with a low capacity utilization a
feasible Solution can be found, one out of three instances with a capacity utiliz­
ation U = 70 cannot be solved. The run-time Performance is almost unaffected
by changes in the capacity utilization.

17

o

CO
1

III U = 50 (7 = 70
Average Deviation 9.10 10.99 11.24
Infeasibility Ratio 0.00 2.23 28.84
Average Run-Time 0.46 0.46 0.44

Table 12: The Impact of the Capacity Utilization on the Performance

In summary, we find that 100 out of the 1,033 instances in our test-bed
cannot be solved by the randomized regret based sampling method. This gives
an overall infeasibility ratio of 9.68%. The average run-time is 0.45 CPU-
seconds. The overall average deviation of th e upper bound from the Optimum
objective function value is 10.33%.

The most significant method parameter certainly is the number of iterations
that are to be performed. Hence, Table 13 gives some insight into Performance
changes due to that value. As a point of reference we also give the results for a
variant of the randomized regret based sampling procedures which stops when
a first feasible Solution is found or when 1,000 iterations are performed.

Average Infeasibility Average
Deviation Ratio Run-Time

First Solution 31.93 9.68 0.02
100 Iterations 13.39 18.01 0.05
500 Iterations 11.00 12.58 0.23
1,000 Iterations 10.33 9.68 0.45
2,000 Iterations 9.78 8.23 0.90

Table 13: The Impact of the Number of Ite rations on the Performance

We see that performing 1,000 iterations is a good choice, because even if
we w ould double that value the average deviation from the Optimum objective
function values would not be drastically reduced. The poor average deviation
results for the first feasible solutions that are found indicates that the instances
in the test-bed are indeed not easy to solve. Hence, we can State that the
randomized regret based sampling procedure indeed makes a contribution.

6 Parallel Machines

Lot sizing and scheduling with parallel machines (PLSP-PM) introduces a new
degree of freedom into the planning problem. In contrast to lot sizing and
scheduling with multiple machines we now have no fixed machine assignments

18

for the items. In other words, it is a priori not clear on which machine ifcems are
produced. We as sume that some (maybe all) machines are capable to produce
a particular item. The multi-machine case obviously is a special case of the
parallel-machine case, because the number of machines to choose among is one
for each item. This actually means that there is no choice. Furthermore, we
assume the most general case that is the case of heterogeneous machines. This
is to say, that the production of the same item requires different amounts of
capacity if different machines are used.

Table 14 defines the decision variables which are new or redefined. Likewise,
Table 15 gives the parameters. A M lP-model formulation can now be presented
to give a precise problem statement.

Symbol Definition
Qjmt Production quantity for item j on machine m

in period t.
Xjmt Binary variable which indicates whether a setup for

item j occurs on machine m in period t
{Xjmt = 1) or not (xjmt = 0).

yjmt Binary variable which indicates whether machine m
is set up for item j at the end of period t
(Vjmt = 1) or not (yjmt = 0).

Table 14: New Decision Variables for the PLSP-PM

Symbol Definition
*Jm Set of all items that share the machine m,

i-e. J m d= {j e {1,.J} | m e Mj}.
Mj Set of all machines that are capable to produce

item j, i.e. Mj {m 6 {1,..., M} | pjm < oo}.
Pjm Capacity needs for producing one unit of item j on

machine m. Its value is oo if m achine m cannot
be used to produce item j.

sjm Non-negative setup cost for item j on machine m.
VjmO Initial setup State.

Table 15: New Parameters for the PLSP-PM

19

M T
min £ J2 £ SjmXjmt (36)

m=l jg Jm t=l

+ EEA;4, j=1t=l
subject to

Ijt = ^?(t-1) d" Z2 Qjmt j ~ 1,J (37)

-4t - 12 ZZ
»€^j m£.Mj
min{t+VjfT} . __

- 23 S ü a3.?imr t = 0,'...,'r-l (^S)
r=t+l

E»-<i r^;-f 09)

i = l,•• J
%jmt Vjmt yjm(t-l) m E A4j (40)

t = 1, . . .,T

Pjm^jmt ^ Cmt{yjm{t—\) + Vjmt) TU E A4j (41)
t = 1,. . T

7==/' ' (42)
j€J-m '"*1

j — 1, . . - , J
Vjmt E {0,1} meMj (43)

t =

'"20 («>

i =
Qjrnt, Xjmt > 0 m € A4j (45)

t =

The meaning of (36) to (45) closely relates to (1) to (9) and thus needs no
further explanation. However, it is remarkable to note that lots of the same item
may be produced on different machines in the same period. Splitting lots for
concurrent production on different machines may be necessary to find feasible
(and optimum) solutions.

20

7 Multiple Resources

For lot sizing and scheduling with multiple resources (PLSP-MR) we assume that
each item requires several resources at a time. Manufacturing an item needs all
corresponding resources to be in the right setup State. Thus, the model has to
guarantee that, if an item is produced in a period, all required resources are in
the proper setup state either at the beginning or at the end of the period. The
multi-machine problem is a special case of multiple resources. In the former
case items require only one resource to be produced.

Table 16 introduces the new decision variables and Table 17 gives the new
Parameters that are needed to extend the multi-machine problem. A MlP-model
formulation using this Dotation can now be presented.

Symbol Definition
qft Production quantity for item j in period t where

the required resources are properly set up at the
beginning of period t.

qft Production quantity for item j in period t where
the required resources are properly set up at the
end of period t.

Xjmt Binary variable which indicates whether a setup for
item j occurs on resource m in period t
{Xjmt = 1) or not (xjmt = 0).

Vjmt Binary variable which indicates whether resource m
is set up for item j at the end of period t
(Vjmt = 1) or not (yjmt - 0),

Table 16: New Decision Variables for the PLSP-MR

M T
mm X] sjmxjmt (46)

m=\ j£jm t=1

+ E E j—1t—\
subject to
ht = Ij(t-1) + qft + qft j = (47)

-djt- J2 Mffil + ffit)
i€Sj

21

Symbol Definition
3m Set of all items that share the resource m,

i.e. Jm d= {j € {1}. - - ,7} | Pjm < 00}-
A4; Set of all resources that are needed to produce

item j, i.e. A4; d= {m £ {1,..., M} | pjm < oo}.
Pjm Capacity needs for resource m for producing one

unit of item j. Its value is oo if item j does
not require resource m.

5;'m Non-negative setup cost for item j on resource m.
2/f mQ Initial setup State.

Table 17: New P arameters for the PLSP-MR

min{t+Vj,T}
4' >J2 + ifr)

i€Sj rsrt+l

T, v3171t < 1
3£Jm

%jmt ^ Vjmt ~~ yjm(t— 1)

PjmQjt 5 Cmtyjmt

53 ^;t) 5 Cmt

€ {0, 1}

| > 0

xjm« ^ 0

j = 1,.. J
t = 0, . . . ,T — 1

m = 1,..., M
Z = 1,...,T

j — 1,... j 7
m £ A4;
Z = 1,... ,T
j = 1,..., J
m £ A4;
Z =

i = i,..., j
m £ A4;
Z = I,...,T
m = 1,..., M
Z = 1,...,T

i = l, - • •, J
m £ A4;
Z = 1,..., T
j = 1,..., J
Z = 1,...,T
j = 1,..J
m £ A4;
Z = 1,... ,T

22

This MlP-formulation is a straightforward extension of the PLSP-MM-
model and thus needs no elaborate discussion. However, an important aspect
should be mentioned briefly. Due to the decision variables qft and qft we ex-
plicitly take into account the sequence of two different lots in a period. This is
redundant in the PLSP-MM-model since the setup State variables yjmt uniquely
dehne sequences. But now, we must make sure that all resources needed to pro-
duce an item j are in the right setup State at a time. Constraints (51) and (52)
guarantee so. Noteworthy to say that postprocessing as described above cannot
be done here since the schedules of different resources do interact.

8 Partially Renewable Resources

For lot sizing and scheduling with partially renewable resources (PLSP-PRR)
we assume that each item requires one resource for which a setup State has to be
taken into account. This is equivalent to the multi-machine case. In addition,
each item may require several scarce resources for which no setup State has to
be taken into account. Moreover, since we have small periods representing shifts
or hours for instance, we assume that these additional resources have capacity
Iimits given per interval of periods.7 Suppose for example, that periods represent
shifts (e.g. 10 shifts per week) and resources are renewed once a week. Since they
are not renewed in every period they are called partially renewable. Capacity
limits are then given per week and not per shift. The case where capacity limits
are given per period is of course a special case. Such resources would be called
renewable. The one for which a setup State is taken into account is a renewable
resource.

To understand the subsequent MlP-model formulation, see Table 18 for new
Parameters. The decision variables equal those of the PLSP-MM-model.

J T
min + Vit) (57)

j=1(=1
subject to

Ijt - fj(f-i) + Ijt ~ djt - ajiqit j ~ (58)
ieSj

4(>E E (59)
{es, r=t+1

2 »• s1 (60)

7A more g eneral point of vie w wo uld b e to conside r arbitrary sets of period s instead of
intervals of periods. However, this is not done here.

23

Symbol Definition

Cmt Available capacity of the partially renewable
resource m in interval f.

Jm Set of all items that share the partially renewable
resource m, i.e. Jm d= {j e {1, -.,</} | Pjm < oo}.

L Length of an interval in number of periods. All
intervals are assumed to have equal length.

M Number of partially renewable resources.
Mj Set of all partially renewable resources that are

needed to produce item i,
i.e. Mj d= jm £ {1,.. .,M} | pjm < ooj.

Pjm Capacity needs for the partially renewable resource
m for producing one unit of item j. its value is oo
if item j does not require resource m.

T Number of intervals. We assume L - T = T and
[(i — 1)L + 1, iL] be the i-th interval of pe riods
where i — 1,..., T. Note, a period t G {1,..., T)
belongs to the interval i =

Table 18: New Parameters for the PLSP-PRR

Xjt > Vit - Vj(t-1) 3t_ " (61)

Piqjt<Cmjt(yxt-i) + yjt) t = (62)

jeJ,
tL

E ^ Cm, (63)

E iE f (64)
j€Jm r=(t-l)L+l

f = 1,...,T

SS» € {0,1} IZlZ'.'i (65)

(66)

All constraints but (64) equal those of the PLSP-MM-model and thus need
no explanation again. The new set of restrictions (64) represents the capacity
limits of the partially renewable resources. They make sure that the sum of

24

capacity demands for resource m in the t-th interval of periods does not exceed
the capacity limit.

9 Conclusion

In this paper we tackled the multi-level proportional lot sizing and scheduling
Problem. Starting with a mixed-integer model formulation for multiple ma-
chines where each item requires exactly one machine, we presented a rather
general idea of constructing production plans. By refining this generic construc-
tion scheme, we in troduced a randomized regret based sampling method which
can be seen as a generalization of the BACKADD-procedure given in [6]. A
computational study revealed that even for the fchorny problem of multi-level lot
sizing and scheduling with multiple machines, feasible solutions with an average
deviation of about 10% from the optimum objective function value can be com-
puted within less than half a second CPU-time on a Pentium PI 20 Computer.
Other mixed-integer models for parallel machines, multiple resources, and par-
tially renewable resources are also given. In summary, we find the proportional
lot sizing and scheduling problem worth to be considered. Future work should
implement variants of the construction scheme for the extension models and test
their Performance.

Acknowledgement

This work was done with partial support from the DFG-project Dr 170/4-1.

References

[1] BITRAN, G .R., MATSUO, H., (1986), Approximation Formulationsfor the
Single-Product Capacitated Lot Size Problem, Operations Research, Vol.
34, pp.63-74

[2] DIABY, M., BAHL, H.C., KARWAN, M.H., ZIONTS, S ., (1992), A Lagran-
gean Relaxation Approach for Very-Large-Scale Capacitated Lot-Sizing,
Management Science, Vol. 38, pp. 1329-1340

[3] DINKELBACH, W., (1964), Zum Problem der Produktionsplanung in Ein-
und Mehrproduktunternehmen, Würzburg, Physica, 2nd edition

[4] DREXL, A., (1991), Scheduling of Project Networks by Job Assignment,
Management Science, Vol. 37, pp. 1590-1602

[5] DREXL, A., GRÜNEWALD, J., (1993), Nonpreemptive Muli-Mode
Resource-Constrained Project Scheduling, IIE TVansactions, Vol. 25 , No.
5, pp, 74-81

25

[6] DREXL, A., HAASE, K., (1995), Proportional Lotsizing and Scheduling,
International Journal of Production Economics, Vol. 40, pp. 73-87

[7] EPPEN, G.D., MARTIN, R.K., (1987), Solving Multi-Item Capacitated
Lot-Sizing Problems Using Variable Redefinition, Operations Research,
Vol. 35, pp. 832-848

[8] FEO, T.A., RESENDE, M.G.C., SMITH, S.H., (1994), A Greedy Random-
ized Adaptive Search Procedura for Maximum Independent Set, Operations
Research, Vol. 42, pp. 860-878

[9] FLEISCHMANN, B., (1990), The Discrete Lot-Sizing and Scheduling Prob­
lem, European Journal of Operational Research, Vol. 44, pp. 337-348

[10] GÜNTHER, H.O., (1987), Flanning Lot Sizes and Capacity Requirements
in a Single-Stage Production System, European Journal of Operational Re­
search, Vol. 31, pp. 223-231

[11] HAASE, K ., (1993), Capacitated Lot-Sizing with Linked Production Quant-
ities of Adjacent Periods, Working Paper No. 334, University of Kie l

[12] HAASE, K., (1994), Lotsizing and Scheduling for Production Flanning,
Lecture Notes in Economics and Mathematical Systems, Vol. 40 8, Berlin,
Springer

[13] HAASE, K ., KIMMS, A., (1996), Lot Sizing and Scheduling with Sequence
Dependent Setup Costs and Times and Efficient Rescheduling Opportunit-
ies, Working Paper No. 393, University of Kiel

[14] HINDI, K.S., (1996), Solvingthe CLSP by aTabu Search Heuristic, Journal
of the Operational Research Society, Vol. 47, pp. 151-161

[15] VAN HOE SEL, S-, KOLEN, A., (1994), A Linea r Description of the Discrete
Lot-Sizing and Scheduling Problem, European Journal of Operational Re­
search, Vol. 75, pp. 342-353

[16] KARMARKAR, U.S., KEKRE, S., KEHRE, S., (1987), The Deterministic
Lotsizing Problem with Startup and Reservation Costs, Operations Re­
search, Vol. 35, p p. 389-398

[17] KARMARKAR, U.S., SCHRÄGE, L., (1985), The Deterministic Dynamic
Product Cycling Problem, Operations Research, Vol. 33, pp. 326-345

[18] KIMMS, A., (1994), Optimal Multi-Level Lot Sizing and Scheduling with
Dedicated Machines, Working Paper No. 351, University of Kiel

[19] KIMMS, A ., (1996), Multi-Level, Single-Machine Lot Sizing and Scheduling
(with Initial Inventory), European Journal of Operational Research, Vol. 89,
pp. 86-99

26

[20] KIMMS, A., (1996), Competitive Methods for Multi-Level Lot Sizing and
Scheduling: Tabu Search and Randomized Regrets, International Journal
of Production Research, Vol. 34, pp. 2279-2298

[21] KlMMS, A., (1996), Multi-Level Lot Sizing and Scheduling — Methods
for Capacitated, Dynamic, and Deterministic Models, Ph.D. dissertation,
University of Kiel

[22] KIRCA, Ö., KOKTEN, M., (1994), A New Heuristic Approach for the
Multi-Item Dynamic Lot Sizing Problem, European Journal of Operational
Research, Vol. 75, pp. 332-341

[23] LASDON, L.S., TERJUNG, R.C., (1971), An Efficient Algorithm for Multi-
Item Scheduling, Operations Research, Vol. 19, pp. 946-969

[24] LOTFI, V., CHEN, W.H., (1991), An Optimal Algorithm for the Multi-
Item Capacitated Production Flanning Problem, European Journal of Op­
erational Research, Vol. 52, pp. 179-193

[25] MAES, J, VAN WAS SENHOVE, L.N., (1988), Multi-Item Single-Level Ca­
pacitated Dynamic Lot—Sizing Heuristics: A General Review, Journal of
the Operational Research Society, Vol. 39, pp. 991-1004

[26] SALOMON, M., KROON, L.G., KUIK, R., VAN WASSENHOVE, L.N.,
(1991), Sorne Extensions of the Discrete Lotsizing and Scheduling Prob­
lem, Management Science, Vol. 37, pp. 801-812

[27] TEMPELMEIER, H., DERSTROFF, M., (1996), A L agrangean-Based Heur­
istic for Dynamic Multi-Level Multi-Item Constrained Lotsizing with Setup
Times, Management Science, Vol. 42, pp. 738-757

[28] TEMPELMEIER, H., HELBER, S ., (1994), A Heuristic for Dynamic Multi-
Item Multi-Level Capacitated Lotsizing for General Product Structures,
European Journal of Operational Research, Vol. 75, pp. 296-311

27

