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On Preemption in Discrete and Continuous Time

Jan-Henrik Steg∗

Abstract

The seminal work of Fudenberg and Tirole (1985) on how preemption erodes the value
of an option to wait raises general questions about the relation between models in discrete
and continuous time and thus about the interpretation of its central result, relying on an
“infinitely fine grid”. Here it is shown that the preemption equilibrium is the limit of the
unique symmetric equilibria of the game when reduced to any sequence of grids becoming
infinitely fine. Furthermore, additional subgame perfect equilibria using conventional
continuous-time mixed strategies are identified.

Keywords: Preemption, discrete time, continuous time, subgame perfect equilibrium, con-
vergence.

JEL subject classification: C61, C73, D21, D43, L12, L13

1 Preemption in discrete and continuous time

Preemption is a well-known phenomenon in the context of irreversible investment. In their
seminal paper, Fudenberg and Tirole (1985, henceforth FT) argue forcefully that a first-mover
advantage provides an incentive for two firms to preempt each other in adopting a new technol-
ogy, such that, in equilibrium, adoption occurs so early that the firms are indifferent between
being the first adopter (called leader) or the second (called follower). Thus competition di-
minishes the value of the option to wait for an optimal adoption time.1 This reasoning has a
drastic influence on the valuation of real options in general and has been applied extensively
in the literature.2
∗Center for Mathematical Economics, Bielefeld University, Germany. jsteg@uni-bielefeld.de

Financial support by the German Research Foundation (DFG) via grant Ri 1142-4-2 is gratefully acknowledged.
1This effect requires to model subgame perfect reactions to any observed adoption by some firm, and thus to

distinguish histories in which some firm already has adopted or not, respectively. As it is customary in timing
games, FT fix optimal reactions and concentrate on the game for histories in which no firm has adopted.
Reinganum (1981), on the contrary, studies simple Nash equilibria in which the firms precommit to adoption
times and thus, if preempted, do not postpone adoption as would be optimal.

2See, e.g., Grenadier (1996) or Weeds (2002), or, for a recent survey on game-theoretic real option models,
Azevedo and Paxson (2014).
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However, FT make their argument by means of a continuous-time model using unconven-
tional mixed strategies, which are motivated by discrete-time limits, but lack a formal link to
discrete-time versions of the game.3 That link will be established here. In general, the interest
in the relation between limits of discrete-time games and games framed in continuous time,
which has recently been investigated for different classes of games,4 is due to the following
dilemma. A continuous-time model may be desirable by the promise to apply convenient
analytic methods, or because it seems unnatural to restrict the timing of actions in a given
problem. However, one often encounters conceptual problems to define reasonable strategies
in continuous time, or equilibrium existence may be lost, which is typical for timing games.

A general modeling issue for timing games is the flip side of the intuitive preemption
argument: which strategies can actually support an equilibrium of early stopping at the
point where the firms are indifferent between the leader and follower roles. A firm is only
willing to adopt at that point if any hesitation would result in being preempted, because the
payoff to the leader (L) is increasing at that point, see time T1 in Figure 1. There cannot
be simultaneous adoption, which is the worst outcome (M). Thus, the respective other firm
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Figure 1: Values at first adoption time t.

must use a strategy that induces adoption “immediately after” the indifference point T1 if no
adoption has occured at T1 (or before), which in continuous time can only mean adopting at a
rate on an interval from T1. That rate would have to be infinite if the associated probability of
getting the follower payoff (F ) was to compensate the increase in L, so there is no preemption
equilibrium in conventional distributions over time.5

FT let the firms instead place “atoms” α(t) ∈ (0, 1) on every t ∈ (T1, T
∗
2 ) and interpret

3Simon and Stinchcombe (1989) formalize the idea of an “infinitely fine grid” for extensive-form games with
pure strategies. Fudenberg and Levine (1986) consider continuous-time limits of ε-Nash equilibria of discrete-
time versions of (timing) games. Laraki et al. (2005) construct ε-subgame perfect equilibria for continuous
time games of timing by discretizing time, but without taking a limit.

4See, e.g., Fudenberg and Levine (2009) and the references therein.
5To make a firm willing to adopt, the other has to adopt at least with the hazard rate L′(t)/[L(t) − F (t)]

from T1 on, see Hendricks and Wilson (1992). This rate is not integrable for the model of FT and would thus
result in a unit mass on {T1}, see Lemma 5.1 in Section 5.
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these as conditional adoption probabilities. Requiring the atoms to be a continuous function
of time, the outcome at t is defined to be that from playing an infinite sequence of constant
probabilities α(t). The analogy with discrete-time models is only illustrated by a simpler
example (a “grab-the-dollar” coordination game with monotone payoffs). As equilibria of
games in discrete time are very sensitive to the last period (like the prisoners’ dilemma or the
chain store paradox), the relation of their proposed solution to limits of actual discrete-time
versions of the game is not clear.

In Section 3 we show that there is a unique symmetric subgame perfect equilibrium if the
adoption times are confined to any discrete grid (Proposition 3.1). For any sequence of grids
that become arbitrarily fine, the equilibrium distribution over outcomes does converge to the
preemption equilibrium outcome distribution proposed by FT (in any subgame, Theorem 3.2).
In particular, the equilibrium payoffs in any subgame with L(t) ≥ F (t) converge to F (t) and
immediate adoption by at least one firm occurs, whereas the payoffs in any subgame with
L(t) < F (t) converge to L(T1), where the first adoption occurs, with probability 1/2 by either
firm. Concerning the strategies, for any fixed t ∈ R+ and l ∈ N, the adoption probabilities in
the first l periods after t converge uniformly to α(t) and thus the limit interpretation of FT
is valid. In particular, for any t ∈ (T1, T

∗
2 ) the limit is

α(t) = L(t)− F (t)
L(t)−M(t) ∈ (0, 1),

and by hesitating for a positive amount of time, any firm would be preempted immediately
in the limit and become follower. As waiting must also be optimal given the fully mixed
strategies, the payoff must be that of the follower.

The analysis leading to this result is based on the dynamics of the equilibrium continuation
values that are implied by the indifference condition from playing a mixed strategy in any
equilibrium. A general key insight from this analysis is that the continuation values are
nondecreasing in time where F > M (Lemma 5.2). Further, where L > F , the limit of the
continuation values at time t cannot lie in (F,L) (Lemma 5.4), so the limit must be F .

In discrete time there are additional equilibria in which the firms take turns of adopting
in periods with a first-mover advantage. Whether there is a limit outcome at some t (even
in payoffs, for t ∈ (T1, T

∗
2 )) depends strongly on the sequence of grids and on who starts

with adopting on any grid. There are also continuous-time equilibria that are not limits from
discrete time. FT show that preemption can be avoided in Case B in Figure 1 by firms
agreeing on any joint adoption date in [S, T̂2].6 These are equilibria in pure strategies.

Although FT allow the firms to use conventional continuous-time mixed strategies – dis-
tribution functions G(t) over time – they miss some subgame perfect equilibria using such
strategies in their equilibrium classification. In Section 4 below, Theorem 4.1 exhibits equi-

6Such equilibria could however be obtained as limits of ε-equilibria with ε↘ 0 as the period length vanishes.
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libria using nondegenerate mixed strategies. In these equilibria, the firms also coordinate on
late joint adoption after S. From some arbitrary earlier point between T1 and S on, however,
each firm thinks that the other will adopt in the next instant with a certain small probability,
and not after S. The associated risk of becoming follower balances the increase in L and thus
adoption becomes as good as waiting.

This principle holds although L is not monotone. It also does not depend on the specific
payoff processes L, F and M here, but works much more generally for other nonmonotone
processes. Therefore, the equilibrium verification step for Theorem 4.1 is formulated as a
separate Proposition 5.5 with all requirements on L, F and M in its statement, to be found
in Section 5 that contains all proofs.

2 The model

As in FT, we start with their basic technology adoption model and derive payoffs L(t), F (t)
and M(t) that accrue if t is the first time of adoption, on which the subsequent analysis will
be based. Consider two firms having the option to adopt some available new technology. The
cost of adopting at time t ∈ R+ is c(t) and falling over time. Before adopting, a firm earns
the revenue π0(m) per unit of time, where m is the number of firms already having adopted;
it switches to π1(m) by adoption. Revenues are discounted continuously at the rate r > 0,
whereas c is already discounted to t = 0. Thus, if firms i, j ∈ {1, 2}, i 6= j adopt at times
ti, tj ∈ R+, the payoff to firm i is

V (ti, tj) =


∫ ti

0 e−rsπ0(0) ds+
∫ tj
ti e
−rsπ1(1) ds+

∫∞
tj
e−rsπ1(2) ds− c(ti) if ti < tj ,∫ tj

0 e−rsπ0(0) ds+
∫ ti
tj
e−rsπ0(1) ds+

∫∞
ti
e−rsπ1(2) ds− c(ti) if ti ≥ tj .

It is assumed that
π1(1)− π0(0) > π1(2)− π0(1) ≥ π1(2)− π0(0), (2.1)

i.e. the gain of the first adopter exceeds that of the second, and adopting does not increase
the revenue of the other firm.

If firm j is the only adopter by time tj ∈ R+, an optimal adoption time for the other firm
i maximizes V (ti, tj) over ti ≥ tj , which is equivalent to maximizing∫ ∞

τ
e−rs

(
π1(2)− π0(1)

)
ds− c(τ) (2.2)

over all feasible times τ ≥ t. Assume that (2.2) is strictly quasiconcave in τ ∈ R+ and has a
maximum at some T ∗2 > 0 (implied by Assumption 2 on c in FT). Thus the unique optimal
time to adopt in [tj ,∞) is max(T ∗2 , tj). Therefore, if t ∈ R+ is the first time at which any
firm adopts, then the payoff to firm i given an optimal follower reaction in continuous time is
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L(t) := V (t, T ∗2 ∨ t) if firm i is the only first adopter and thus the leader, F (t) := V (T ∗2 ∨ t, t) if
firm j is the only first adopter and i the follower, andM(t) := V (t, t) if simultaneous adoption
occurs.

Note that M(t) = F (t) = L(t) for all t ≥ T ∗2 and M(t) < min(F (t), L(t)) for all t < T ∗2
by uniqueness of the latter and π1(1) > π1(2), respectively. We will use the following further
properties that are stylized in Figure 1 and implied by Assumption 2 on c in FT. L, F and M
are continuous. There is a point T1 < T ∗2 such that L(t) < F (t) for t ∈ [0, T1) and L(t) > F (t)
for t ∈ (T1, T

∗
2 ). When restricted to (T1, T

∗
2 ), L is strictly quasiconcave and has a maximum

at some point T ∗1 . Finally, M is strictly quasiconcave and has a maximum at some point
T̂2 ≥ T ∗2 .7

3 Equilibria in discrete time

Consider a family of grids {T N ;N ∈ N}, where each grid is a strictly increasing and unbounded
sequence of time points, i.e. T N = {tN0 , tN1 , . . . } with 0 = tN0 < tN1 < · · · and sup T N = ∞
for every N ∈ N, but such that its mesh ‖T N‖ := sup{tNk − tNk−1; k ∈ N} is finite. Assume
that the grids are ordered by decreasing mesh size and that the mesh gets arbitrarily fine, i.e.
‖T N‖ ↘ 0 as N →∞.

The payoffs at the first time of adoption are as follows if the adoption times are restricted
to the grid T N . First, simultaneous adoption at any tNk ∈ T N yields payoffs MN (tNk ) :=
V (tNk , tNk ) = M(tNk ). Now the feasible adoption times for a firm that becomes follower at tNk
are τ ∈ T N ∩ [tNk+1,∞). By strict quasiconcavity, (2.2) is maximized over all τ ∈ T N (only)
by some endpoint of the interval [tNl , tNl+1) that contains T ∗2 . Denoting that point by T ∗N2 , an
optimal adoption time for the follower is max(T ∗N2 , tNk+1). Thus, the follower payoff is

FN (tNk ) :=

V (tNk+1, t
N
k ) ≤MN (tNk ) if tNk ≥ T ∗N2 ,

V (T ∗N2 , tNk ) ≥MN (tNk ) if tNk < T ∗N2 ,
(3.1)

and the leader payoff is

LN (tNk ) :=

V (tNk , tNk+1) if tNk ≥ T ∗N2 ,

V (tNk , T ∗N2 ) if tNk < T ∗N2 .

Note that we can have FN (tNk ) = MN (tNk ) for at most one tNk ∈ T N by strict quasiconcavity
of (2.2), which must be T ∗N2 or its predecessor. Note also that FN (tNk ) ≤ F (tNk ) as there are
fewer possibilities to optimize on the grid.

7All quasiconcavity properties hold if (2.2) is also strictly quasiconcave for the other revenue differences
from (2.1). Their order implies that of T ∗1 < T ∗2 ≤ T̂2 if c is differentiable. T1 exists if (2.2) is also strictly
quasiconcave for π1(1)− π0(1), as then L− F is strictly quasiconcave on [0, T ∗2 ].
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The following properties will be used for the equilibrium determination. Recall that M(t)
is strictly quasiconcave and has a maximum at some T̂2 ≥ T ∗2 . Letting T̂N2 ≥ T ∗N2 denote the
right endpoint of the interval [tNl , tNl+1) containing T̂2, also MN (tNk ) is strictly increasing for
tNk+1 < T̂N2 and strictly decreasing for tNk > T̂N2 . LN , on the contrary, need not resemble L as
much due to the follower reaction varying with the period length. A general property is that
LN (tNk )−MN (tNk ) > 0 for all tNk ∈ T N , as the difference is the value of the monopoly markup
π1(1) − π1(2) at least over the period [tNk , tNk+1). By discounting, that difference vanishes as
tNk →∞.

In the timing game on any grid T N we focus on the adoption decisions as long as no firm
has adopted and determine payoffs at the first time of adoption by the processes LN , FN

and MN . A behavioral strategy for player i ∈ {1, 2} is thus a sequence σNi : N0 → [0, 1],
where σNi (k) is the probability with which firm i adopts at time tNk ∈ T N if no firm has
adopted before. Given a behavioral strategy for each firm i, the strategy profile is denoted
σN = (σN1 , σN2 ) and the associated expected payoff to firm i at time tNk if no firm has adopted,
yet, is denoted by V i

σN (tNk ).
Given a strategy profile σN , firm i is indifferent between adopting and waiting at time tNk

if and only if

(
1− σNj (k)

)
LN (tNk ) + σNj (k)MN (tNk ) = σNj (k)FN (tNk ) +

(
1− σNj (k)

)
V i
σN (tNk+1). (3.2)

Adoption is uniquely optimal if the LHS exceeds the RHS, and waiting in the opposite case.
The equilibria in Proposition 3.1 are constructed by backward iteration from times tNk+1 > T ∗N2
at which adoption is dominant, so V i

σN (tNk+1) = MN (tNk+1). We then show in the proof given
in Section 5 that LN (tNk ) > MN (tNk+1) where MN (tNk ) ≥ FN (tNk ), so adoption must occur in
all such periods, too.

Proposition 3.1. For any T N there is a unique symmetric subgame perfect equilibrium σN .
In that equilibrium, both firms i, j ∈ {1, 2} adopt immediately with probability 1 in any period
tNk ∈ T N with MN (tNk ) ≥ FN (tNk ), implying payoffs V i

σN (tNk ) = MN (tNk ). No firm adopts if
MN (tNk ) < FN (tNk ) and LN (tNk ) ≤ V i

σN (tNk+1), implying V i
σN (tNk ) = V i

σN (tNk+1). Otherwise, the
firms adopt with probability

σNj (k) =
LN (tNk )− V i

σN (tNk+1)
LN (tNk )− V i

σN (tNk+1) + FN (tNk )−MN (tNk )
, (3.3)

implying

V i
σN (tNk ) =

LN (tNk )FN (tNk )− V i
σN (tNk+1)MN (tNk )

LN (tNk )− V i
σN (tNk+1) + FN (tNk )−MN (tNk )

≤ LN (tNk ). (3.4)

The convergence analysis for the symmetric equilibria as N →∞ uses the following facts.
As for the continuous-time model sketched in Figure 1, the equilibrium payoffs are at least FN ,
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which can be secured by waiting untilMN ≥ FN , as FN is nondecreasing before. Further, the
indifference condition (3.2) implies that the increments of the equilibrium payoff process (3.4)
are nonnegative where FN > MN (see Lemma 5.2), where the payoffs are thus bounded by
MN (T ∗N2 ). However, as the processes LN , FN andMN approach their continuous-time limits
(in a sense specified in Lemma 5.3), V N cannot stay in (F,L) because its increments would
sum up unboundedly. Thus the limit has to be F where F ≤ L. Where F > L, waiting will
be dominant for any sufficiently fine grid. To simplify notation in the following convergence
analysis, let V i

σN (t) := V i
σN (tNk ) for any t ∈ R+ and N ∈ N, where tNk ≤ t < tNk+1.

Theorem 3.2. If σN is the symmetric equilibrium on each T N , then limN V
i
σN (t) = F (t) for

any t ∈ R+ with L(t) ≥ F (t) and limN V
i
σN (t) = L(T1) for any t ∈ R+ with L(t) < F (t).

Further, for any fixed t ∈ R+ and l ∈ N and tNk ≤ t < tNk+1 for all N ∈ N we have

lim
N→∞

σNi (k + l) =


1 for F (t) = M(t),

0 for F (t) > L(t),
L(t)− F (t)
L(t)−M(t) for L(t) ≥ F (t) > M(t).

4 Equilibria with mixed strategies in continuous time

As in FT, a mixed strategy for firm i ∈ {1, 2} for the game in continuous time is a family
Gi = (Gti)t∈R+ of cumulative distribution functions Gti on R+ putting no weight on [0, t),
respectively, and that are time consistent in the sense of Bayes’ law, i.e. that satisfy Gti(u) =
Gti(v−) +

(
1−Gti(v−)

)
Gvi (u) for all t < v ≤ u, where Gti(v−) := lims↗v G

t
i(s). Let ∆Gti(v) :=

Gti(v) − Gti(v−) denote possible jumps due to atoms. Given any i, j ∈ {1, 2}, i 6= j, and a
mixed strategy profile (G1, G2), the payoff to firm i in the subgame beginning at t ∈ R+ is

V (Gti, Gtj) =
∫ ∞

0

(
1−Gtj(u)

)
L(u) dGti(u) +

∫ ∞
0

(
1−Gti(u)

)
F (u) dGtj(u)

+
∑
u∈R+

∆Gti(u)∆Gtj(u)M(u).8

The profile (G1, G2) is a subgame perfect equilibrium if there is no t ∈ R+ at which some firm
i could increase V (Gti, Gtj) by choosing any other distribution function than Gti that puts no
weight on [0, t), i.e. if for all t ∈ R+, (Gt1, Gt2) is an equilibrium.

Consider Case B in Figure 1, i.e. M(T̂2) ≥ L(T ∗1 ), so that there are dates at which joint
adoption gives a higher payoff than any leader payoff before. S is the first time that joint
adoption is at least as profitable as any earlier leader payoff. FT show that it is a subgame
perfect equilibrium to fix any date in [S, T̂2] and to adopt immediately from this date on, and

8V (Gt
i, G

t
j) differs only by the domain from V (ti, tj) in Section 2. This notation is consistent with FT.
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claim that the only alternative equilibria would be preemption.
The following Theorem 4.1 identifies additional equilibria using nondegenerate mixed

strategies. In these equilibria, the firms also coordinate on a late joint adoption date T
after S. From some arbitrary earlier point T0 ∈ [T1, S] on, however, the firms start adopting
at a rate that depends on (cumulative) increases in L. The associated risk to become follower
makes the firms indifferent to adopt when L is setting new records.

The principle behind Theorem 4.1 does not depend on the given payoff processes L, F
and M , in particular not on monotonicity. Therefore, the equilibrium verification step is
formulated as a separate Proposition 5.5 in Section 5, with all requirements on L, F and M
in its statement.

Theorem 4.1. Let S := inf{t ≥ 0 |L(t) = M(t) ≥ L(T ∗1 )} and L∗(s) := supv≤s L(v). For
any fixed T0 ∈ [T1, S] and T ∈ [S, T̂2], the mixed strategies (G1, G2) satisfying

Gt1(u) = Gt2(u) = 1− 1u<T exp
(
−
∫ u

t

1s≥T0 dL
∗(s)

L(s)− F (s)

)

for all 0 ≤ t ≤ u and Gt1(u) = Gt2(u) = 0 for all 0 ≤ u < t are a subgame perfect equilibrium,
with payoff V (Gt1, Gt2) = L(t ∨ T0) if max(t, T0) < T ∗1 and V (Gt1, Gt2) = L(t ∨ S) otherwise.

5 Proofs

The following lemma shows that the preemption equilibrium from FT cannot be sustained by
strategies that are distribution functions over continuous time, see fn. 5.

Lemma 5.1. For any ε ∈ (0, T1 − T ∗2 ),
∫ T1+ε
T1

[L(t)− F (t)]−1 dL(t) =∞.

Proof. For any t ∈ (T1, T
∗
2 ) we have dF (t) = e−rt

(
π0(0)− π0(1)

)
dt ≥ 0 and L(t) > F (t), so

∫ T1+ε

T1

dL(t)
L(t)− F (t) ≥

∫ T1+ε

T1

d
(
L(t)− F (t)

)
L(t)− F (t) = ln

(
L(t)− F (t)

)∣∣∣T1+ε

T1
=∞.

Note that similarly the result obtains more generally if there are λ > −1 and δ ∈ (0, ε] such
that F (t)− F (T1) ≥ −λ(L(t)− L(T1)) for all t ∈ (T1, T1 + δ) and L(T1 + δ) > L(T1).

Proof of Proposition 3.1. We first argue that both firms must adopt immediately when-
ever MN (tNk ) > FN (tNk ). Recall that MN is strictly decreasing on the set T N ∩ (T̂N2 ,∞),
and that LN (tNk ) −MN (tNk ) → 0 as tNk → ∞. Thus, LN must have a maximum when re-
stricted to that set and also one on the set T N ∩ (T ∗N2 ,∞) that has finitely many elements
more. Let T̂N1 denote the latest time at which LN attains its maximum on the latter set.
Then it holds at tNk = T̂N1 that LN (tNk ) > V i

σN (tNk+1) for all strategy profiles σN and firms
i ∈ {1, 2} due to LN (tNl ) > MN (tNl ) ≥ FN (tNl ) for all tNl ≥ T ∗N2 . For any tNk > T ∗N2 , indeed

8



MN (tNk ) > FN (tNk ) by strict quasiconcavity of (2.2). Thus, adopting is uniquely optimal at
tNk = T̂N1 , implying V i

σN (T̂N1 ) = MN (T̂N1 ) if σN is a subgame perfect equilibrium. To work
backwards, note that for any tNk ≥ T ∗N2 we have

LN (tNk )−MN (tNk+1) =
∫ tNk+1

tN
k

e−rs
(
π1(1)− π0(0)

)
ds− c(tNk ) + c(tNk+1)

>

∫ tNk+1

tN
k

e−rs
(
π1(2)− π0(1)

)
ds− c(tNk ) + c(tNk+1)

= MN (tNk )− FN (tNk ) ≥ 0. (5.1)

Thus, if T ∗N2 < tNk < tNk+1 = T̂N1 again LN (tNk ) > V i
σN (tNk+1), and by iteration immediate

adoption must occur at any tNk ∈ (T ∗N2 , T̂N1 ]. The same argument applies to T N ∩ (T̂N1 ,∞)
and so forth, to yield immediate adoption and V i

σN (tNk ) = MN (tNk ) on all of T N ∩ (T ∗N2 ,∞)
in any subgame perfect equilibrium. Outside that set, MN (tNk ) > FN (tNk ) can only occur
at tNk = T ∗N2 by (3.1). Then again LN (tNk ) > V i

σN (tNk+1) by (5.1) and the firms must adopt
immediately.

Next, if MN (tNk ) = FN (tNk ), then MN (tNk+1) > FN (tNk+1) by strict quasiconcavity of (2.2)
and thus tNk+1 ≥ T ∗N2 by (3.1), so at any such tNk we still have LN (tNk ) > V i

σN (tNk+1) by (5.1).
Then the LHS in (3.2) exceeds the RHS unless σNj (k) = 1, meaning that both firms must
adopt in any symmetric equilibrium.

It remains to work backwards through the initial periods at which MN (tNk ) < FN (tNk ),
knowing V i

σN (tNk+1) = MN (tNk+1) at the last of them. Considering (3.2), in equilibrium firm
i can only adopt in any of these periods if LN (tNk ) ≥ V i

σN (tNk+1). In particular, if the latter
binds, firm i can only adopt if σNj (k) = 0, so also σNi (k) = 0 in a symmetric equilibrium.
Thus, V i

σN (tNk ) = V i
σN (tNk+1) if LN (tNk ) ≤ V i

σN (tNk+1). Finally, if LN (tNk ) > V i
σN (tNk+1), firm i

is indifferent only if (3.3) holds, the RHS of which now is in (0, 1). For any smaller (greater)
σNj (k), firm i must adopt (wait). Thus, in any symmetric equilibrium, σN1 = σN2 must be
given by (3.3), which plugged into (3.2) yields the payoff (3.4) in (MN (tNk ), LN (tNk )).

To prove Theorem 3.2, first three lemmas are established. A crucial fact for taking the lim-
its of the symmetric equilibria as N →∞ is that the value processes V i

σN (·) are nondecreasing
and dominating FN (·) up to T ∗N2 . In particular we then have FN (tNk ) ≤ V i

σN (tNk ) ≤MN (tNl )
if k ≤ l and tNl is the first period with FN (tNl ) ≤MN (tNl ).

Lemma 5.2. If σN is the symmetric equilibrium on T N , then FN (tNk ) ≤ V i
σN (tNk ) ≤ V i

σN (tNk+1)
for all tNk ∈ T N with FN (tNk ) > MN (tNk ).

Proof. It suffices to show that FN (tNk ) ≤ V i
σN (tNk+1) if FN (tNk ) > MN (tNk ). Indeed, sup-

pose the latter holds. If LN (tNk ) ≤ V i
σN (tNk+1), then σN1 (k) = σN2 (k) = 0 and V i

σN (tNk ) =
V i
σN (tNk+1) ≥ FN (tNk ) as claimed. If LN (tNk ) > V i

σN (tNk+1), then V i
σN (tNk ) is given by (3.4).
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The derivative of that term w.r.t. V i
σN (tNk+1) has the same sign as FN (tNk )−MN (tNk ) (recall-

ing LN (tNk ) > MN (tNk )), so FN (tNk ) > MN (tNk ) and V i
σN (tNk+1) ≥ FN (tNk ) imply V i

σN (tNk ) ≥
FN (tNk ). (3.4) also implies

V i
σN (tNk+1)− V i

σN (tNk ) =
(
V i
σN (tNk+1)− FN (tNk )

)(
LN (tNk )− V i

σN (tNk+1)
)

LN (tNk )− V i
σN (tNk+1) + FN (tNk )−MN (tNk )

, (5.2)

which shows that V i
σN (tNk+1) ≥ V i

σN (tNk ) for V i
σN (tNk+1) ≥ FN (tNk ) and FN (tNk ) > MN (tNk ) also

if LN (tNk ) > V i
σN (tNk+1).

To show now iteratively that FN (tNk ) ≤ V i
σN (tNk+1) holds where FN (tNk ) > MN (tNk ), con-

sider the last such period, so FN (tNk+1) ≤MN (tNk+1) = V i
σN (tNk+1) and tNk+1 ≤ T ∗N2 by (3.1). If

tNk+1 = T ∗N2 , then FN (tNk )−MN (tNk+1) =
∫ tNk+1
tN
k

e−rs
(
π0(1)−π0(0)

)
ds ≤ 0, implying FN (tNk ) ≤

V i
σN (tNk+1). If tNk+1 < T ∗N2 , then FN (tNk ) − FN (tNk+1) =

∫ tNk+1
tN
k

e−rs
(
π0(1) − π0(0)

)
ds ≤ 0 and

thus also FN (tNk ) ≤ V i
σN (tNk+1). In either case then FN (tNk ) ≤ V i

σN (tNk ) as shown before. Mov-
ing further backward, then tNk+1 < T ∗N2 must hold and hence FN (tNk ) ≤ FN (tNk+1) ≤ V i

σN (tNk+1)
as just established. (As a side product this proves also that FN (tNk ) ≤ FN (tNk+1) whenever
FN (tNk+1) ≥MN (tNk+1).)

The discrete-time payoff processes converge as follows to their continuous-time counter-
parts. MN converges uniformly toM as N →∞ in the sense that sup{|MN (tNk )−M(tNk )|; k ∈
N0} → 0, because this sequence is identically 0. LN converges in the same notion, though not
trivially. FN converges pointwise if one considers the grid points close to a fixed time t ∈ R+,
and so do LN and MN , too.

Lemma 5.3. sup{|LN (tNk )− L(tNk )|; k ∈ N0} → 0 as N →∞. Further, for any fixed t ∈ R+

and l ∈ N0, if tNk ≤ t < tNk+1 for all N ∈ N, then FN (tNk+l) → F (t), LN (tNk+l) → L(t) and
MN (tNk+l)→M(t) as N →∞.

Proof. The first claim follows from sup{|LN (tNk )−L(tNk )|; k ∈ N0} ≤
(
π1(1)−π1(2)

)
‖T N‖ for

all N ∈ N, which holds because LN (tNk ) and L(tNk ) differ only by the revenue π1(1) − π1(2)
between disagreeing follower reaction times, which is for at most one period.

For FN also the cost c matters. To obtain pointwise convergence, fix some t ∈ R+ and
choose for each grid T N the periods satisfying tNk ≤ t < tNk+1. Then

FN (tNk )− F (t) =
∫ t

tN
k

e−rs
(
π0(1)− π0(0)

)
ds+

∫ T ∗N2 ∨tNk+1

T ∗2 ∨t
e−rs

(
π0(1)− π1(2)

)
ds

− c(T ∗N2 ∨ tNk+1) + c(T ∗2 ∨ t).

The adoption times differ again by at most one period, |
(
T ∗N2 ∨ tNk+1

)
−
(
T ∗2 ∨ t

)
| ≤ ‖T N‖,

because if T ∗2 < tNk+1, then tNk+1 ≥ T ∗N2 , and if T ∗2 ≥ tNk+1, then tNk+1 ≤ T ∗N2 and |T ∗N2 −
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T ∗2 | ≤ ‖T N‖. Thus FN (tNk ) → F (t) as N → ∞ by continuity of c. Analogously, also
FN (tNk+l)→ F (t), LN (tNk+l)→ L(t) and MN (tNk+l)→M(t) for the same (tNk )N and any fixed
l ∈ N0, as then |

(
T ∗N2 ∨ tNk+l+1

)
−
(
T ∗2 ∨ t

)
| ≤ (l + 1)‖T N‖.

An immediate consequence of Lemmas 5.2 and 5.3 is that lim infN V i
σN (t) ≥ F (t) for any

t ∈ R+. The following lemma shows that due to the increments of V i
σN (·) implied by (3.4),

any cluster point above F (t) must imply an immediate jump above L(t) and thus the lim sup
would have to stay above L. The latter will subsequently be shown to be impossible given
the boundedness of V i

σN (·) observed in the context of Lemma 5.2.

Lemma 5.4. If σN is the symmetric equilibrium on each T N and lim supN V i
σN (t) > F (t) for

some t ∈ R+ with L(t) > F (t), then lim supN V i
σN (s) ≥ L(s) for all s > t with L(s) > F (s).

Proof. Suppose that for some t < T ∗2 ,
(
V i
σN (t)

)
N

has a cluster point C ∈ (F (t), L(t)). We first
show that any subsequence of

(
V i
σN (·)

)
N

that converges to the cluster point C at t must have
a lim inf immediately to the right of t not less than L(t), as otherwise there would be some
interval after t in which the increments of V i

σN (·) given by (5.2) are bounded away from 0 as
they become arbitrarily frequent. Therefore, choose arbitrary 0 < ε < min(L(t)−C,C−F (t))
and 0 < δ < min(ε, T ∗2 − t) such that |F (s)− F (t)| < ε and |L(s)− L(t)| < ε for all |s− t| ≤ δ
by continuity. By monotonicity of V i

σN (·), any subsequence converging to the cluster point C
at t must have a lim inf not below C at t+ δ. Suppose by way of contradiction that one has a
cluster pointD < L(t)−ε. For any subsequence converging both to C at t andD at t+δ, V i

σN (t)
is arbitrarily close to C and V i

σN (t+ δ) arbitrarily close to D for all N sufficiently large, and
so max(V i

σN (s)−D,C−V i
σN (s), 0) is arbitrarily close to 0 for all s ∈ [t, t+ δ] by monotonicity

of V i
σN (·). By uniform convergence, LN (tNk ) is arbitrarily close to L(tNk ) > L(t) − ε for all

tNk ∈ [t, t + δ] for all N sufficiently large. Recall that FN (tNk ) ≤ F (tNk ) < F (t) + ε < C for
all tNk ∈ [t, t + δ], so in particular FN (tNk ) −MN (tNk ) ≤ F (tNk ) −M(tNk ) is bounded for all
tNk ∈ [t, t + δ] by continuity of F (·) −M(·), but nonnegative due to tNk < T ∗2 . Together, if
D < L(t)− ε, then the increments of V i

σN (tNk ) given by (5.2) are positive and bounded away
from 0 for all tNk , tNk+1 ∈ [t, t+ δ] for all N sufficiently large, and there are arbitrarily many of
them in that interval as ‖T N‖ → 0, which contradicts that V i

σN (t + δ) has the cluster point
D. As ε was arbitrary, the lim inf at any s > t of any subsequence of V i

σN (·) that converges
to the cluster point C at t cannot be below L(t).

By continuity of L(·) and F (·) and monotonicity of all V i
σN (·) this implies that if ever

lim supN V i
σN (t) > F (t) for some t with L(t) > F (t), then lim supN V i

σN (s) ≥ L(s) for all s > t

with L(s) > F (s).

Proof of Theorem 3.2. By Lemma 5.4, if lim supN V i
σN (t) > F (t) for some t with L(t) >

F (t), i.e. t ∈ (T1, T
∗
2 ), then lim supN V i

σN (s) > M(T ∗2 ) for some s ∈ [t, T ∗2 ), because L(s) >
M(T ∗2 ) ≥ F (s) for all s in [T ∗2 − ε, T ∗2 ) with sufficiently small ε > 0. However, if s ≤ T ∗2 then
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lim supN V i
σN (s) ≤ M(T ∗2 ), because V i

σN (·) is nondecreasing, and for tNk ≤ s = T ∗2 < tNk+1 one
of the two grid points is the first time that FN (tNl ) ≤MN (tNl ) (cf. the remark before Lemma
5.2), such that then V i

σN (tNk ) ≤ max(MN (tNk ),MN (tNk+1)), which converges to M(T ∗2 ).
Therefore we must have lim supN V i

σN (t) = F (t) for all t ∈ R+ with L(t) > F (t) and thus
convergence by lim infN V i

σN (t) ≥ F (t). The same argument shows convergence for t = T1,
because if lim supN V i

σN (t) > F (t) for t = T1, then this would also hold for some t > T1 with
L(t) > F (t) by continuity of F (·).

By continuity of the limit in t and monotonicity of V i
σN (·), limN V

i
σN (tNk ) = limN V

i
σN (tNk+l)

for any t ∈ R+ and tNk ≤ t < tNk+1 and fixed l ∈ N. Therefore, and by Lemma 5.3,

lim
N→∞

σNi (k) = lim
N→∞

σNi (k + l) = L(t)− F (t)
L(t)−M(t) (5.3)

where L(t) > F (t). At t = T1, we have L(T1) = limN L
N (tNk+l) > M(T1) = limN M

N (tNk+l)
for tNk ≤ T1 < tNk+1. Thus, considering (3.2), if lim supN σNi (k + l) > 0, this would mean
lim infN V i

σN (tNk+l) < L(T1) = F (T1), which is not true. Therefore limN σ
N
i (k + l) = 0.

Besides t = T1, we have L(t) = F (t) for t ≥ T ∗2 , i.e. F (t) = M(t). By lim supN V i
σN (T ∗2 ) ≤

M(T ∗2 ) as argued above and lim infN V i
σN (T ∗2 ) ≥ F (T ∗2 ) = M(T ∗2 ), we also have convergence

for t = T ∗2 . With t = T ∗2 < tNk+1, we have T ∗N2 ≤ tNk+1 and thus σNi (k + l) = 1 for any l ∈ N.
If T ∗2 < t < tNk+1, then tNk ≥ T ∗N2 for all N sufficiently large and thus σN (k) = σN (k + l) = 1
for all l ∈ N and V i

σN (tNk ) = MN (tNk ), converging to M(t) = F (t).
Now consider an arbitrary t < T1, i.e. L(t) < F (t). With tNk ≤ t < tNk+1, we have

MN (tNk ) < LN (tNk ) < FN (tNk ) ≤ V i
σN (tNk+1) for all N sufficiently large by Lemmas 5.2

and 5.3 and thus σNi (k) = 0 and V i
σN (tNk ) = V i

σN (tNk+1). With tNk < T1 < T ∗1 , further
LN (tNm) < LN (tNk ) and thus σNi (m) = 0 and V i

σN (tNm) = V i
σN (tNk+1) for all m < k. That

means lim infN V i
σN (s) ≥ F (t) for all s ≤ t. As t < T1 was arbitrary and F (t) increases

continuously to F (T1), lim infN V i
σN (t) ≥ F (T1) for all t < T1. However, by monotonicity of

V i
σN (·), lim supN V i

σN (t) ≤ limN V
i
σN (T1) = F (T1) = L(T1), so convergence holds. Finally fix

any s < t < T 1 and l ∈ N. Then limN σ
N
i (k + l) = 0 for tNk ≤ s < tNk+1, as tNk+l < t for

sufficiently large N , which implies σNi (k + l) = 0 as argued before.

The verification of the equilibria from Theorem 4.1 does not depend on the particular
properties of L, F and M from Section 2. Therefore, these may be any functions of time in
the following Proposition 5.5, which is applied in the subsequent proof of Theorem 4.1. Recall
the notation Gti(u−) := lims↗uG

t(s) and ∆Gti(u) = Gti(u)−Gti(u−) that will be used for any
monotone function.

Proposition 5.5. Consider any times 0 ≤ t ≤ T0 ≤ T ≤ inf{s ≥ t |L(s) < F (s)}. Suppose
that L∗(s) := supv≤s L(v) is continuous in s ∈ [T0, T ) and that (GT1 , GT2 ) is an equilibrium for
the subgame beginning at T ∈ R+ with symmetric payoffs V (GT1 , GT2 ) = V (GT2 , GT1 ).
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Then the mixed strategies Gt1 and Gt2 satisfying

Gti(u) = 1− exp
(
−
∫ u

t

1s≥T0 dL
∗(s)

L(s)− F (s)

)
(5.4)

for all u ∈ [0, T ) and Gti(u) = Gti(T−) +
(
1 − Gti(T−)

)
GTi (u) for all u ≥ T , i = 1, 2,

are an equilibrium in the subgame beginning at t if and only if
(
1 − Gt1(T−)

)(
V (GT1 , GT2 ) −

supt≤v<T L(v)
)
≥ 0 and ∆Gt1(M −F ) ≥ 0 on [t, T ), both with equality if Gt1 increases contin-

uously somewhere before T .
The corresponding symmetric payoffs are V (Gt1, Gt2) = L∗(T0) if Gt1 increases continuously

somewhere before T and otherwise V (Gt1, Gt2) = V (GT1 , GT2 ) if Gt1(T−) = 0 and V (Gt1, Gt2) =
M(inf{u ≥ t |Gt1(u) = 1}) if Gt1(T−) = 1.

The strategies Gti can only have a jump before T if dL∗ > 0 and L = F , which will thus be
terminal, and where joint adoption must be an equilibrium. If

∫
[T0,T )[L(s)−F (s)]−1 dL∗(s) is

finite, then the continuation equilibrium payoff V (GT1 , GT2 ) must be sufficiently high, whereas
if the integral is unbounded but continuous, then V (GT1 , GT2 ) does not matter.

Proof of Proposition 5.5. Each Gti is right-continuous and nondecreasing as L∗(s) is con-
tinuous and nondecreasing and L(s) ≥ F (s) for all s ∈ [T0, T ). Also Gti(u) = 0 for u < t and
limu→∞G

t
i(u) = limu→∞G

T
i (u) = 1. Gti is a best reply to Gtj for any i, j ∈ {1, 2}, i 6= j, if

and only if V (u,Gtj) := V (1s≥u, Gtj) ≤ V (Gti, Gtj) for all u ≥ t, and if equality holds for all u
in the support of dGti. Note that

V (u,Gtj) =
∫

[0,u)
F (s) dGtj(s) + ∆Gtj(u)M(u) +

(
1−Gtj(u)

)
L(u).

Letting τGj := inf{u ∈ R+ |Gtj(u) = 1}, V (u,Gtj) is constant for u > τGj .
First consider Gtj(T−) = 1, so in fact Gt1 = Gt2. Suppose ∆Gtj(τGj ) = 1 (so τGj < T ).

Then L(τGj ) = F (τGj ) and dA(τGj ) > 0, so A(τGj ) = L∗(τGj ) − L∗(T0) = L(τGj ) − L∗(T0) and
thus L(τGj ) = L∗(τGj ). By V (Gti, Gtj) = M(τGj ) and V (u,Gtj) = F (τGj ) for all u > τGj , we
need M(τGj ) ≥ F (τGj ). This then ensures also V (Gti, Gtj) ≥ V (u,Gtj) = L(u) for all u < τGj
by F (τGj ) = L(τGj ) = L∗(τGj ).

Now suppose ∆Gtj(τGj ) < 1, i.e. Gtj increases continuously before τGj ≤ T . Letting A(u) :=∫ u
t 1s≥T0 dL

∗(s) = L∗(u ∨ T0) − L∗(T0), Gtj given by (5.4) satisfies
(
L(s) − F (s)

)
dGtj(s) =(

1−Gtj(s)
)
dA(s) for any s ≤ u < min(τGj , T ). Applying integration by parts to the RHS and

using continuity of Gtj(s) and A(s) and Gtj(0) = A(0) = 0 yields
∫

[0,u)
F (s) dGtj(s) =

∫
[0,u)

(
L(s)−A(s)

)
dGtj(s)−

(
1−Gtj(u)

)
A(u).

Here dGtj(s) > 0 only if dA(s) > 0, implying again A(s) = L∗(s) − L∗(T0) = L(s) − L∗(T0).
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For u < min(τGj , T ) also ∆Gtj(u) = 0 and thus V (u,Gtj) = L∗(T0)Gtj(u) +
(
1−Gtj(u)

)(
L(u)−

A(u)
)
≤ L∗(T0), with equality if dA(u) > 0, i.e. if dGti(u) > 0. If further ∆Gtj(τGj ) = 0, then

indeed V (Gti, Gtj) = L∗(T0) = V (u,Gtj) for all u ≥ τGj .
If 0 < ∆Gtj(τGj ) < 1, then u = τGj < T is in the support of dGti, but no u > τGj . By the

previous arguments V (τGj , Gtj) = L∗(T0)Gtj(τGj −) + ∆Gtj(τGj )
(
M(τGj ) − A(τGj )

)
and, for any

u > τGj , V (u,Gtj) = L∗(T0)Gtj(τGj −)+∆Gtj(τGj )
(
F (τGj )−A(τG1 )

)
. Thus V (τGj , Gtj) ≥ V (u,Gtj)

if and only if M(τGj ) ≥ F (τGj ). Then, noting that we can have ∆Gtj(τGj ) > 0 and τGj < T

only if dA(τGj ) > 0, whence again A(τGj ) = L(τGj ) − L∗(T0), and only if L(τGj ) = F (τGj ), we
have V (τGj , Gtj) = L∗(T0)Gtj(τGj −) + ∆Gtj(τGj )

(
M(τGj )− F (τGj ) + L∗(T0)

)
≥ L∗(T0). In fact,

equality must hold by L∗(T0) = V (u,Gtj) for all u < τGj in the support of dGti as shown above,
i.e. M(τG1 ) = F (τG1 ).

Now consider Gtj(T−) < 1. Then Gt1(T−) = Gt2(T−) < 1 and some u ≥ T is in the support
of dGti. As (GT1 , GT2 ) is an equilibrium, V (u,Gtj) ≤ V (GTi , Gtj) for all u ≥ T , with equality
for u in the support of dGti. If Gtj(T−) = 0, then Gt1 = GT1 and Gt2 = GT2 and V (Gti, Gtj) =
V (GTi , GTj ) ≥ V (u,Gtj) also for all u ∈ [t, T ) if and only if V (GTi , GTj ) ≥ supt≤u<T L(u). If
0 < Gtj(T−) < 1, then we have V (u,Gtj) = L∗(T0) for some u < T in the support of dGti as
shown above. Thus we need V (GTi , Gtj) = L∗(T0). Now V (GTi , Gtj) =

∫
[0,T ) F (s) dGtj(s) +

(
1−

Gtj(T−)
)
V (GTi , GTj ) = L∗(T0)Gtj(T−)+

(
1−Gtj(T−)

)(
V (GTi , GTj )−A(T−)

)
by the arguments

from above. Therefore V (GTi , Gtj) = L∗(T0) if and only if V (GT1 , GT2 ) = L∗(T−), which now
exceeds L∗(T0) and thus L∗(T−) = supt≤u<T L(u).

Proof of Theorem 4.1. Any Gt1 is right-continuous and nondecreasing as L∗(s) is continu-
ous and nondecreasing and L(s) ≥ F (s) for all s ≥ T0 ≥ T1. Further limu→∞G

t
1(u) = 1 as

T ≤ T̂2 < ∞. The family G1 is also time consistent, because the time consistency condition
can be written as

(
1−Gt1(u)

)
=
(
1−Gt1(v−)

)(
1−Gv1(u)

)
for any t ≤ v ≤ u and holds by

1u<T exp
(
−
∫ u

t

1s≥T0 dL
∗(s)

L(s)− F (s)

)
= 1v≤T exp

(
−
∫ v

t

1s≥T0 dL
∗(s)

L(s)− F (s)

)
1u<T exp

(
−
∫ u

v

1s≥T0 dL
∗(s)

L(s)− F (s)

)
= 1u<T exp

(
−
∫ v

t

1s≥T0 dL
∗(s)

L(s)− F (s)

)
exp

(
−
∫ u

v

1s≥T0 dL
∗(s)

L(s)− F (s)

)
.

For any t ≥ S ≥ max(T0, T
∗
2 ), we have Gt1(t) = Gt2(t) = 1, either due to t ≥ T or due to

dL∗(t) = dM(t) > 0 and L(t) = F (t). These are an equilibrium by M(t) ≥ F (t).
To show that (Gt1, Gt2) are also an equilibrium for any t < S, we can now apply Proposition

5.5 with S in place of T and max(t, T0) in place of T0, and using the continuation equilibrium
with symmetric payoffs V (GS1 , GS2 ) = V (GS2 , GS1 ) = M(S). Then all hypotheses are satisfied.
Indeed, Gt1(u) = Gt2(u) are continuous before S, which is the first time with dL∗ > 0 and
L = F , and where indeed V (GS1 , GS2 ) = M(S) = L∗(S) ≥ L(v) for all v ∈ [t, S) by definition

14



of S.
The payoffs for t < S are as claimed by Proposition 5.5. If max(t, T0) ≥ T ∗1 , we have

Gt1(S−) = 0 and the equilibrium payoff at S isM(S) = L(S). If max(t, T0) < T ∗1 , Gt1 increases
continuously before S as L does on [0, T ∗1 ], which implies also L∗(t ∨ T0) = L(t ∨ T0).
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