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Abstract

We review and evaluate methods previously adopted in the applied literature of adap-

tive learning in order to initialize agents’ beliefs. Previous methods are classified into three

broad classes: equilibrium-related, training sample-based, and estimation-based. We con-

duct several simulations comparing the accuracy of the initial estimates provided by these

methods and how they affect the accuracy of other estimated model parameters. We find

evidence against their joint estimation with standard moment conditions: as the accuracy

of estimated initials tends to deteriorate with the sample size, spillover effects also deterio-

rate the accuracy of the estimates of the model’s structural parameters. We show how this

problem can be attenuated by penalizing the variance of estimation errors. Even so, the

joint estimation of learning initials with other model parameters is still subject to severe

distortions in small samples. We find that equilibrium-related and training sample-based

initials are less prone to these issues. We also demonstrate the empirical relevance of our

results by estimating a New Keynesian Phillips curve with learning, where we find that our

estimation approach provides robustness to the initialization of learning. That allows us

to conclude that under adaptive learning the degree of price stickiness is lower compared

to inferences under rational expectations, whereas the fraction of backward looking price

setters increases.

Keywords: expectations, adaptive learning, initialization, algorithms, hybrid New Key-

nesian Phillips curve.

JEL codes: C63, D84, E03, E37.

1 Introduction

Adaptive learning algorithms have been proposed to provide a procedural rationality view on
agents’ process of expectations formation. Reopening a long standing debate on how should
∗We gratefully acknowledge the comments and evaluations provided by anonymous reviewers. An earlier

version of this paper was presented at the 2016 EEA-ESEM joint meeting in Geneva. Any remaining errors are
our own.
†Corresponding author. E-mail: galimberti@kof.ethz.ch.
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expectations be modeled in macroeconomic models, the heuristics provided by learning algo-
rithms come at the cost of introducing new degrees of freedom into the analysis. One open node
relates to how these recursive mechanisms should be initialized in order to be representative of
agents’ learning-to-forecast behavior.

The main characteristic of the adaptive learning approach is its reliance on recursive al-
gorithms in order to represent how agents update their beliefs as new observations about the
economic relationship of interest become available. Such recursions naturally demand an ini-
tial starting point, and it is the numerical specification of these conditions that we denote as
the initialization problem. Clearly, the uncertainties affecting the initialization of the learning
process will propagate recursively into the predictions obtained with the model, and it seems
crucial that the researcher understands the magnitude of these distortions and how they can
affect structural inferences.

In this paper we investigate this issue with particular attention to the applied literature of
learning in macroeconomics. Here applied is taken to encompass both theoretical simulations
as well as exercises of empirical estimation and calibration. Examples can be found in Sargent
(1999); Marcet and Nicolini (2003), or more recently in Eusepi and Preston (2011); Milani
(2011), between many others cited throughout the paper. The main distinctive feature of these
works consists in the replacement of the rational expectations (RE) assumption of an instanta-
neous adjustment of agents expectations, with a characterization of agents as adaptive learners
of their own environment. More generally, our study will be relevant for scholars interested
in the methods needed to uncover the initial beliefs of economic agents in models where such
beliefs actually matter for economic dynamics.

The economic relevance of the initialization issue can be illustrated considering the long
debated causes of the period of Great Inflation during the 1970s in the US. One of the main
explanations for that episode comes from Sargent’s (1999) hypothesis that the evolution of US
inflation rates over the period can be attributed to the evolution of the monetary authority’s
beliefs about the trade-off between inflation and unemployment, the so-called Phillips curve.
Subsequent studies advanced on this issue attributing the rise in inflation rates to delayed policy
responses to ongoing structural changes in the economy of that period (see, e.g., Bullard and
Eusepi, 2005; Orphanides and Williams, 2005a). Importantly, as evidenced in Primiceri (2006);
Sargent et al. (2006), the point of departure in policymaker’s beliefs, which is what we refer to
as the learning initials in this particular context, is a crucial feature in such explanation.

Assumptions about initial beliefs also matter for the fit of models that introduce adaptive
learning on the side of other market participants, such as households and firms. Examples
are given by Carceles-Poveda and Giannitsarou (2008) for asset pricing models, Huang et al.
(2009) in a standard growth model, and Slobodyan and Wouters (2012) in a medium-scale
dynamic stochastic general equilibrium (DSGE) model. Overall, these studies present results
showing that whereas the introduction of learning has interesting effects on the dynamics and
the fit of models to the data, a great portion of the improvements may be associated to transition
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dynamics from specific initial beliefs. Hence, it is important to have a systematic evaluation of
the different alternatives available as initialization methods, and we attempt to fill that gap in
this paper.

We review the literature in order to pool together the pre-existing initialization methods
into an archetypal classification that can be broadly defined in three major classes: equilibrium-
related methods, training sample-based methods, and estimation-based methods. The equilibrium-
related initializations are generally obtained taking rational expectations equilibrium (REE) as
a reference, and exploring distributional deviations from that assumption. The training sample-
based initializations, as the name suggests, are obtained with the application of the learning
algorithm (or variations) over a pre-sample of observations that is left aside from the original
sample of data available. Here we distinguish between two main forms of this method: (i) a
Weighted Least Squares (WLS) approach, which is equivalent to the application of a constant
gain Least Squares (LS) algorithm1 to the training sample; and, (ii) an Ordinary Least Squares
(OLS) approach, which is equivalent to the decreasing gain form of the LS algorithm. Finally,
the more recent estimation-based methods consist of approaches involving the joint estimation
of the initials with other model parameters, hence allowing the use of the same data that is
used for inferences about structural features of the model to guide the specification of learning
initials.

We compare the initialization methods on the basis of the accuracy of their delivered initial
estimates and their effects over the accuracy of other estimated model parameters. To evaluate
accuracy we derive measures of the Mean Squared Deviation (MSD) between true parame-
ter values and their corresponding estimates obtained according to the different initialization
methods. We relate the MSD measures to two main principles to judge the quality of an initial-
ization. First, we look at the coherence of the initialization estimates to the dynamics implied
by the learning process; second, we consider how susceptible the method is to biases that push
up the model’s explanatory power over the initial portion of observations in the sample.

The accuracy of initialization methods is first examined analytically within the simplified
framework of an example model where agents are required to learn only a constant. Under
these conditions we establish some important relationships between the invariant distribution
of the learning estimates and the MSDs associated to the initialization methods: (i) an REE-
based initial yields an MSD equal to the variance of the learning estimates; (ii) the accuracy
of training sample-based initials depends on the number of observations left aside for training,
and the specification of the learning gains; under a constant gain equal to that underlying the
data generating process (WLS-based), MSDs tend to zero as the training sample increases;
under decreasing gains (OLS-based), the MSDs converge to those obtained under the REE-
based initial; (iii) an initial estimate based on the minimization of the model’s sum of squared
residuals tends to yield smaller MSDs as the estimation sample grows. However, we show that

1Consistent with the majority of the adaptive learning literature, in this paper we focus on the LS algorithm as
representative of how agents update their expectations (see also Berardi and Galimberti, 2014, on this point).
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only the WLS-based method is capable of converging to the true initial estimate. We believe
these results should prove useful for applied researchers interested in the simulation of models
with adaptive learning.

For empirical purposes, one is confronted with a more intricate initialization problem,
namely, the estimation of other model parameters. To evaluate initialization methods under
these circumstances we conduct several simulation exercises based on a model of the New
Keynesian Phillips curve (NKPC) with learning. Our simulation results point to some interest-
ing findings. First, the analytical results based on the assumption of known model parameters
are confirmed for the NKPC model; particularly, the training sample-based initialization meth-
ods are in general favored in terms of the coherence criterion, since these methods are found
to provide more accurate estimates of the learning initials. Second, the performance of the ini-
tialization methods is sensitive to the accuracy of their associated model parameters’ estimates;
here the equilibrium-related initials can prove useful for being less sensitive to the estimation
of the learning gain, which turns out to be severely affected by finite sample distortions.

Notwithstanding, we find that the pre-determined initials were much less vulnerable to the
estimation of other model parameters than the jointly estimated initials. Regarding the latter,
we find that the estimation approach plays a key role in determining the quality of the initials
and their effects over other parameters’ estimates. Particularly, an estimation based solely
on traditional moment conditions, derived from the assumption that the model’s unobserved
disturbance is a martingale difference sequence, leads to severe distortions to the estimated
initials as the sample size grows. Furthermore, these distortions can spillover to the estimates of
the other model parameters. Based on our analytical derivations, we proposed a solution to this
problem with the inclusion of a squared residual criterion to the estimation objective, denoting
this as the augmented approach. Although we show that our augmented approach is successful
in restoring the consistency of the jointly estimated initials, this solution is only effective for
large samples. Importantly, under the pre-determined initials the negative spillover effect from
the initialization errors to the model parameters’ estimates is not as strong as observed under
the joint estimation approaches.

This last finding is of particular relevance for empirical analysis, where interest is usually
in uncovering the underlying values of structural parameters that may validate the model’s con-
sistency with data evidence. In order to further enhance our understanding on the relevance of
these different initialization methods for applied macroeconomics, we also present an empiri-
cal application on the determination of US inflation rates under the Phillips curve framework.
Adopting a generalized method of moments (GMM) estimation approach, we find that the
initials and the estimation criterion can, indeed, affect the estimates of structural parameters.
Our results indicate that allowing for adaptive learning in the determination of inflation rates
leads to a lower degree of price stickiness, but a higher fraction of backward looking firms
than suggested by RE estimates. This finding, nevertheless, is only robust to the alternative
specifications of the initial estimates under our augmented estimation approach.
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Finally, we also contribute to the literature on the estimation of models with adaptive learn-
ing by proposing the introduction of robust stability restrictions in the estimation of the model.
Because adaptive learning under constant gain can generate unrealistic dynamics due to in-
stabilities in the recursive estimation of the learning coefficients (see Evans and Honkapohja,
2009), the estimation of models under learning can be extremely sensitive to the sample of
observations and the range of values allowed for the learning gain. To deal with this issue we
impose additional constraints to the estimates of the learning gains, drawing upper bounds con-
ditioned on the values of other parameters through simulations of the model. One advantage
of this approach, compared to an unconditional reduction of the gain upper bound, is that it
provides weaker constraints robust to learning stability for the joint estimation of the model
parameters with the learning gain and initials.

The remainder of this paper proceeds as follows. In section §2 we provide a brief introduc-
tion to the use of adaptive learning in macroeconomic models, and establish the initialization
problem under a simple “learn-the-average” example model. A review of the initialization
methods previously adopted in the literature is presented in section §3 together with an ana-
lytical evaluation of these methods under the example model. We then proceed to present our
simulation analysis, in section §4, and an empirical application, in section §5, both aiming at
a comparative evaluation between the different methods of initialization under more realistic
circumstances, such as the case where the learning gain and other model parameters require
estimation. Finally, we conclude this paper with some remarks in section §6. Some key deriva-
tions and supplementary results are provided in the Appendices.

2 Adaptive Learning and the Initialization Problem

2.1 A brief primer on adaptive learning

Adaptive learning is introduced in macroeconomic models as an alternative to the assumption
that agents hold rational expectations. One implication of the rational expectations assumption
is that agents’ beliefs are always consistent with the true model of the economy. Hence, under
RE the economy instantaneously adjusts itself towards an equilibrium after any kind of shock
that may have realistically affected agents’ beliefs. In contrast, adaptive learning introduces
some degree of persistence in the process through which agents update their beliefs, which
allows such beliefs to deviate from RE in the short run, while keeping up with the idea of
consistency in the long run.

To help fix ideas consider an univariate linear forward-looking model, where the determi-
nation of the current value of a variable of interest, yt, depends on the value expected for that
same variable in the next period, yet+1 plus a mean zero random shock, ut, i.e.,

yt = βyet+1 + ut. (1)
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Simple as it stands, this specification may represent the reduced form of the equilibrium equa-
tions of an economic model which could potentially be non linear; it also corresponds, e.g., to
simplified versions of two well known models: the Cagan model of inflation, letting yt stand
for the price level and ut for a mean zero random supply of money; and, the standard model
of asset pricing under risk neutrality, letting yt stand for the asset price and ut for a mean zero
random sequence of dividends.

A solution to model (1) requires the specification of agents’ perceived law of motion (PLM),
which depicts how agents form expectations. Particularly, if agents condition their forecasts on
a constant, yet+1 = 0 solves the model for any β. Hence, the stochastic process followed by
the economy, also known as the actual law of motion (ALM), is directly determined by the
specification of agents’ PLM.

Under learning the corresponding ALM is given by

yt = βφt−1 + ut, (2)

where φt−1 denotes agents’ estimates of the constant in their PLM based on observations avail-
able up to the previous period. Different recursive algorithms have been proposed in the litera-
ture to represent how agents update such estimates. Due to its widespread popularity between
econometricians, one natural choice for that purpose has been the Least Squares (LS) algorithm,
which can be generally defined as follows.

Algorithm 1 (LS). Let agents’ PLM of yt be given by a linear regression of the form

yt = x′tφt−1 + εt, (3)

where xt = (x1,t, . . . , xK,t)
′ is a set of pre-determined variables, possibly including a constant

(e.g., x1,t = 1) and lags of yt, φt = (φ1,t, . . . , φK,t)
′ stands for a vector of coefficients, possibly

time-varying, and εt denotes an unpredictable disturbance term. Under this context, the LS

estimates of φt, conditional on observations up to time t, are given by

φ̂t = φ̂t−1 + γtR
−1
t xt

(
yt − x′tφ̂t−1

)
, (4)

Rt = Rt−1 + γt (xtx
′
t −Rt−1) , (5)

where γt is a learning gain parameter, and Rt stands for an estimate of the regressors matrix

of second moments.

The LS algorithm is originally motivated as the result from the minimization of a weighted
sum of squared errors, where the weights are determined by the learning gain parameter (see
Berardi and Galimberti, 2013). Hence, the learning gain stands for a parameter determining
how quickly a given information is incorporated into the algorithm’s coefficients estimates.
There are two particular cases of interest: (i) when γt = 1/t, every observation receives the
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same weight and (4)-(5) reduces to the (recursive) Ordinary Least Squares (OLS); and, (ii) un-
der a constant gain, past observations receive geometrically decaying weights and (4)-(5) can be
viewed as a (recursive) Weighted Least Squares (WLS) with weights given by (1− γ)j , where
j indexes for the number of periods between the weighted observation and the last observation
in the sample. Our focus is on the constant gain specification due to its relevance for applied
purposes: because it allows for a continuous operation of the algorithm’s tracking capabilities,
the constant gain can capture time-varying effects of different sources, such as structural breaks
or the out-of-equilibrium dynamics generated by stochastic shocks.

For a PLM with an intercept only the constant-gain LS algorithm simplifies to

φt = φt−1 + γ (yt − φt−1) . (6)

Substituting yt from model (1)’s ALM one can find that

φt = δtφ0 + γ
t−1∑
i=0

δiut−i, (7)

where δ = 1− γ (1− β). Taking the unconditional expectation of this expression we find that
convergence to the RE equilibrium requires that |δ| < 1, which is only possible when β < 1

and 0 < γ < 2/ (1− β). Under this assumption the variance of the long run distribution of the
learning estimates around the REE, denoted by σ2

φ, is then given by

σ2
φ = lim

t→∞
E
[
φ2
t

]
,

=
γσ2

u

(1− β) (1 + δ)
, (8)

where σ2
u is the variance of ut. Thus, the dispersion of the learning estimates around the REE

increases with the value of the learning gain; see Evans and Honkapohja (2001, Theorem 7.9)
for a more general result on the relationship between the learning gain and the invariant distri-
bution of the learning estimates.

2.2 The initialization problem

Recursive learning algorithms naturally demand an initial starting point, and it is the numerical
specification of these conditions that we denote as the initialization problem. By the recursive
nature of learning, any error in the initial estimates will propagate recursively into the predic-
tions obtained with the model. Consider the case of our example model, (2)+(6); letting φ̂0

stand for a guess of the true value of φ0, the model prediction of yt+1 associated with this initial
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is given by ŷt+1 = βφ̂t, where φ̂t is obtained from (4) as

φ0 = φ̂0,

φ̂1 = φ̂0 + γ
(
y1 − φ̂0

)
,

...
...

φ̂t = φ̂t−1 + γ
(
yt − φ̂t−1

)
. (9)

Let the corresponding prediction error be denoted by ∆̂t+1 = yt+1 − ŷt+1; then, the mean
squared prediction error (MSPE) from this model amounts to

E
[
∆̂2
t+1

]
= E

[(
β
(
φt − φ̂t

)
+ ut+1

)2]
,

= β2λ2tDφ0 + σ2
u, (10)

where λ = 1−γ, andDφ0 stands for the initialization’s Mean Squared Deviation (MSD), which
is more generally defined as:

Definition 1 (MSD). The Mean Squared Deviation between the true value of a parameter,
θt, which may be a learning initial (e.g., φ0, R0) or a time-invariant model parameter, and a
corresponding estimate, θ̂t, is given by

Dθt = E

[(
θt − θ̂t

)2]
. (11)

Clearly, assuming that 0 < γ < 1, (10) shows that the effects of initialization errors tend
to disappear as the distance from the initial point increases. Also notice that as γ increases, the
prediction error associated to an initialization error decreases. Hence, the smaller the learning
gain, the more important are the learning initials for the accuracy of the predictions obtained
with the model. For empirical purposes both the model and learning parameters, say β and γ
in our example model, are not known a priori and may therefore require estimation. In that
case initialization errors can further aggravate the accuracy of the model predictions through
its effects on parameters’ estimation error. In fact, as we will show in our simulation analysis
further below, the estimation of the model and learning parameters can be severely affected by
the misspecification of the learning initials.

2.3 Evaluation criteria

Our relative assessment of the initialization methods that we describe in the next section will be
guided by two principles that we consider of relevance for applied adaptive learning research:
(i) the initials COHERENCE to the learning process; and, (ii) the initials SUSCEPTIBILITY to
bias the model’s explanatory power and the estimation of its parameters.
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In empirical settings, a proper initialization of the learning algorithm requires to find out
what were agents’ beliefs at the beginning of the sample of data. To achieve this goal it is
important to understand the statistical properties of the learning process we are trying to mimic.
Recursive estimation algorithms are statistically characterized by two main distinct phases: a
transient phase, where the estimates are so far apart from the true parameter values that the
upcoming sequence of updates can easily achieve substantial improvements to the accuracy of
the estimates; and a stationary phase, where most of the updates to the estimates are essentially
just tracking tiny disturbances that may affect the system under estimation. Hence, if the initial
beliefs should reflect the continuation of an estimation process that was already in motion prior
to the sample beginning, an initialization method will satisfy the COHERENCE criterion when
it can deliver estimates as close as possible to the algorithm’s long run operation2. Under our
evaluation measure this corresponds to a minimization of the initials’ MSD.

Another empirical issue is how much can the learning initials affect the accuracy of the
estimates of other model parameters. Under standard likelihood-based estimation approaches,
every data point is given the same weight on the estimation of a structural parameter that is
assumed to be constant throughout the sample period. Under learning this weighting profile
can be easily manipulated by tweaking the initial learning estimates so as to induce a transient
phase in the portion of the sample that follows the initialization, which potentially increases
the model’s explanatory power. In the context of our analysis, such SUSCEPTIBILITY to biases
is measured by looking at the MSDs of some key parameter estimates across the different
initialization methods.

These principles may inherently generate a trade-off for the assessment of the initialization
methods: one can always give up some degree of the COHERENCE delivered by a learning initial
in exchange for some SUSCEPTIBILITY to tweak that initial in order to improve the model fit to
the data. Thus, it is important to obtain a quantitative assessment of how the different methods
perform with respect to these criteria.

3 Review of Initialization Methods

In this section we review initialization methods adopted in the previous literature. We also
present expressions for their associated MSD under the example model described in the previ-
ous section, i.e., (2)+(6). For that purpose, throughout this section we assumed that: (i) both
the learning gain and the model parameter are known; and, (ii) the learning process has already
converged to its invariant distribution at the period where the initial is evaluated, and at the be-
ginning of the training sample, when applicable. Numerical simulations validating our results
are presented in Appendix C.1.

2Admittedly, one may also be interested in obtaining initials that reflect the transient phase that follows the
occurrence of a large shock that shifted agents’ beliefs away from equilibrium just before the initialization data
point.
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3.1 Equilibrium-related methods

One way to initialize learning algorithms is obtained by using the existing knowledge about
the law of motion(s) generating the data. Particularly, conditional on the knowledge about the
model specification and the parameter values, one can easily obtain the REE implied values of
agents’ PLM coefficients and use these equilibrium values as reference for the initial estimates.
In the case of our example model, such initial would be given by φ̂REE0 = 0, and the associated
MSD equals to the variance of the learning estimates, σ2

φ, as given by (8).
Although this method was naturally appealing in earlier works with theoretical simulations,

such as in Bray and Savin (1986), its debut into the applied literature came in the seminal
contribution of Sargent (1999). Its usage has since been prominent in studies on the effects
of replacing the assumption of frictionless REE by the sticky process of expectations forma-
tion through adaptive learning (e.g., Marcet and Nicolini, 2003; Bullard and Eusepi, 2005;
Orphanides and Williams, 2005b). For simulations, robust inferences can be obtained through
this method by drawing the initials from a distribution centered around the REE values (see
Carceles-Poveda and Giannitsarou, 2007).

Empirically, the uncertainties about the true model parameters may complicate the adoption
of this method. One alternative is to approach the issue in two stages: first, model estimates
are obtained under the REE assumption; second, these estimates are used to calculate the PLM
coefficient values corresponding to the REE, which are then plugged back in as initial estimates
for the algorithm’s recursion for the analysis under learning (see Slobodyan and Wouters, 2012;
Ormeño and Molnár, 2015). One criticism to this practical solution is that it seems very likely
that the REE estimates obtained in the first step will be biased for not taking the learning effects
into account. Later, in our simulation and empirical exercises, we show that this issue can be
circumvented by allowing the REE initials to be determined jointly with the model parameters
under learning.

The REE-based initials do not provide ideal initial estimates for cases where there is prior
information that the economy was in a transient phase at the beginning of the sample. In
such a case, an alternative is provided by the ad-hoc initialization method, where the initials
are hand-picked by the researcher. When taking the REE-based initials as a reference, this
method provides a way to validate the sensitivity of results obtained under the former approach
(e.g., Milani, 2007; Carceles-Poveda and Giannitsarou, 2008). In fact, one of the main uses
of ad-hoc initials is to deal with the possibility of structural changes around the periods of the
initials: when the changes affect the REE, agents may not be able to instantaneously adjust to
the new equilibrium, and could therefore be forming expectations consistent with the previous
equilibrium at the time of the initialization (see also Carceles-Poveda and Giannitsarou, 2007,
p. 2679).

10



3.2 Training sample-based methods

Another common approach in learning applications is to use a pre-sample of observations in
order to obtain the initial estimates. This is especially recommended for the cases where there
is not enough previous knowledge about the system under estimation so as to allow an educated
guess. The origins of this approach can be traced back into the engineering literature (see, e.g.,
Ljung and Soderstrom, 1983, pp. 299-303), where it is often suggested that the coefficients
should be initialized with the value of zero and an initial training sample should be left aside to
let the algorithm adjust its estimates according to the underlying calibration.

For applied purposes, it is often easier to adopt the non-recursive version of the learning
algorithm to estimate the initials over the training sample. Letting P denote the number of
observations set aside for the initialization, application of (4)-(5) in the training sample results
in

RP = γP

P∑
i=1

wixix
′
i + w0R∅, (12)

φ̂P = γPR−1P

P∑
i=1

wixiyi, (13)

where {wi}Pi=0 stands for the sequence of weights given to each observation in the training
sample, and R∅ may incorporate prior information regarding the uncertainty surrounding the
determination of the coefficients estimates. Under the assumption of a Gaussian random walk
parameter drift model for φt, Berardi and Galimberti (2013) have shown that Rt is inversely
related to the matrix of mean squared errors associated to the Kalman filter coefficients esti-

mates, E
[(

φt − φ̂t

)(
φt − φ̂t

)′]
. Hence, in a Bayesian interpretation, as R∅ → 0 the prior

becomes more diffuse, since it is associated with a higher uncertainty about the coefficients
estimates3.

Depending on the weighting scheme and the prior estimates, there are two main variations
of this method in the learning literature: the OLS-based (e.g., Williams, 2003; Orphanides and
Williams, 2005a; Sargent et al., 2006) and the WLS-based (e.g., Primiceri, 2006; Milani, 2007,
2008, 2011, 2014; Huang et al., 2009; Chevillon et al., 2010; Eusepi and Preston, 2011; Lubik
and Matthes, 2014) initials.

3.2.1 WLS-based initials

The WLS-based method derives from the Weighted Least Squares interpretation of the learning
algorithm under a constant gain specification. In the training sample the initials associated to
this method are obtained by setting γP = γ, and wi = (1− γ)P−i in (12)-(13). Under our

3Notice that when R∅ = 0, a necessary condition for RP to be invertible, as required in (13), is that P ≥ K.
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example model, the MSD associated to the WLS initial is given by

DWLS
φ0

= E
[(
λPφ−P

)2]
,

= λ2Pσ2
φ, (14)

from which we obtain the following proposition.

Proposition 1. Under the model given by (2)+(6), the WLS-based initialization yields, on av-

erage, smaller MSDs than the REE-based initials.

Remark 1. This result is specific to the model under consideration, and it stems from the fact
that the REE is equal to the diffuse prior used for the WLS initial, i.e., φREE = φ̂WLS

−P = 0.
Because the WLS method incorporates information from the training sample to that prior, it
will always, on average, attain more precise initial estimates. In fact, if we add a constant α to
the model in (1), φREE = α/ (1− β) and limt→∞E [φ2

t ] = σ2
φ + φ2

REE; then, whereas DREEφ0

would still be equal to the variance of the invariant distribution of learning estimates, DWLS

would carry the effect of φ2
REE .

For models with regressors in the PLM, as we will see in the simulation exercise of next
section, the initialization of the matrix of second moments, (5), also becomes important. Here
we consider two possibilities for the prior, R∅. One, based on REE reasoning, is to set it to
the sample estimate of the long-run covariance matrix of the regressors. Ideally, the sample
used for such estimation should be restricted to the training sample itself, in order to prevent
contamination of the initials due to the effects of changes in the statistical properties of the data
that were not present before the initialization period. The second alternative we consider is to
follow a diffuse approach and set R∅ = 0.

3.2.2 OLS-based initials

The OLS-based method, as the abbreviation suggests, is based on the Ordinary Least Squares
estimator that is widely known among econometricians for possessing some well desired prop-
erties, such as consistency and efficiency in the estimation of linear models. For training sample
initialization, it is obtained by setting γP = 1/P , wi = 1, and R∅ = 0 in (12)-(13). One impor-
tant advantage of this method relates to its convergence speed: the fact that a relatively higher
gain value is used in the first iterations of the algorithm within the training sample tends to
accelerate its convergence to the true initials.

Under our example model, the MSD associated to the OLS-based initial is given by

DOLSφ0
=

(
δP −

β
(
δP − 1

)
P (δ − 1)

)2

σ2
φ + σ2

uK, (15)
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where K is a function of the model parameters and the length of the initialization sample.
Clearly, a necessary, though not sufficient, condition for the OLS-based initials to yield smaller
MSD than the WLS-based initial is that λP > δP−β

(
δP − 1

)
P−1 (δ − 1)−1. However, notice

that as P →∞, DOLSφ0
→ E [φ2

t ], which leads to our next proposition.

Proposition 2. Under the model given by (2)+(6), as the length of the training sample increases

to infinity, the MSD of the OLS-based initialization converges, on average, to the MSD of the

REE-based initialization.

Remark 2. A direct implication of Propositions 1 and 2 is that the WLS-based initialization
will tend to outperform the OLS-based method as the length of the training sample increases.

3.3 Estimation-based methods

Another approach to the initialization of learning coefficients is to add the initials to the set of
the model’s parameters, and estimate them jointly. The idea can be traced back to the landmark
work by Sargent et al. (2006), where the estimation of the monetary authority’s initial and
consecutive stream of beliefs provided evidence in favor of Sargent’s (1999) hypothesis on the
“Conquest of American Inflation”: namely, that the rise and fall of post-WWII inflation in
the US can be attributed to the evolution of the monetary authority’s beliefs about the trade-
off between inflation and unemployment. In spite of some early criticisms (see discussion
in Carboni and Ellison, 2009), the approach of joint estimation of initials has been slowly
incorporated into broader applications of adaptive learning. After being hinted as a possibility
in Milani (2007, p. 2071) and Huang et al. (2009, p. 397), initial attempts have focused on the
effects of the joint estimation of the initial matrix of second moments, R0 (e.g., Milani, 2008,
2011), and more recently on the estimation of the complete set of learning initials (as in, e.g.,
Slobodyan and Wouters, 2012; Gaus and Ramamurthy, 2014).

There are different alternatives for the estimation of dynamics macroeconomic models;
here, for illustrative purposes, we adopt the approach of minimizing the sum of squared resid-
uals (SSR). Namely, the estimation-based initials are obtained according to

φ̂SSR0 = arg min
φ̂0

SSR =
T−1∑
i=0

û2T−i, (16)

where T stands for the number of observations used for estimation. Under our example model’s
ALM, the initial estimate that solves this problem is given by

φ̂SSR0 =
T−1∑
i=0

HiyT−i, (17)

where
Hi =

γ (λ−i (1 + λ)− βλ (λ−i − λi))
βλ (λ−T − λT )

. (18)
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The MSD associated to these estimated initials are then given by

DSSRφ0
= E

[(
φ0 − φ̂SSR0

)2]
,

=
γ (γ − 2)

β2 (λ2T − 1)
σ2
u. (19)

Proposition 3. Under the model given by (2)+(6), whereas increasing the length of the estima-

tion sample improves the accuracy of SSR-based initials, the initial estimates never converge

to their corresponding true values.

Remark 3. Notice that evaluating (19) in the limit as T → ∞ one finds that the higher the
learning gain, the higher the asymptotic error incurred by the SSR-based initial.

Most estimation approaches share a common idea of looking for the combination of param-
eter values that maximize the fit of the model, or its implications, to available macroeconomic
data. Hence, the joint estimation of learning initials can have an appealing motivation for pro-
viding those estimates of the initial beliefs that are the most consistent with the data according
to the chosen empirical criterion. However, as we will show in our simulation analysis in the
next section, the effects of incorporating the initials into estimation routines will depend on the
specification of the estimation objective.

3.4 Mixed approaches

Initialization methods can have several nuances that may not be, strictly speaking, reflected into
the classes we proposed above. Particularly, there are many possibilities involving a mixture
of the different approaches. For example, the REE-based initials could be computed on the
basis of estimates of the model parameters obtained using data solely from the training sam-
ple. A similar approach has been used in Slobodyan and Wouters (2012), though adding the
OLS-based method to the mixture: after estimates of the model under RE are obtained, using
either the training or the whole sample, the initials are set to the REE-implied OLS estimates
of agents’ PLM. Another example is given in Milani (2011), where the mix is between the
WLS-based method and the estimation-based approach: for every draw in the Bayesian esti-
mation routine, a training sample of observations is used to compute the initial matrix of second
moments according to (12), plugging in the corresponding estimated learning gain.

Finally, although we have focused our discussion on the use of actual data on the variables
included in agents’ PLM, another alternative is to use data from survey-based forecasts in order
to get information about the initial conditions. Data on survey forecasts have been broadly taken
as proxy for agents’ actual expectations. In most of the cases, the initialization methods we
discussed above can be adjusted to take advantage of this information. For example, the REE-
based initials can be calculated using model’s estimates obtained by replacing expectation terms
by direct measures from surveys (see, e.g., Orphanides and Williams, 2005a). Learning initials
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consistent with surveys’ information can also be obtained by adjusting the estimation-based
method to maximize the fit of the forecasts implied by the learning estimates to those obtained
from survey forecasts (Pfajfar and Santoro, 2010). Although we recognize the potential value
of these alternatives, we restrict the scope of our analysis to the definitions of initialization
methods covered by our classification.

4 Simulation Analysis

4.1 Baseline Phillips curve model

In order to shed further light on the comparative evaluation of the initialization methods re-
viewed above, we now analyze their quantitative properties with simulations. To provide a
meaningful economic example, we focus on a standard New Keynesian Phillips curve (NKPC)
model, given by

πt = βπet+1 + λxt + ut, (20)

xt = ρxt−1 + vt, (21)

where πt is inflation, πet+1 represents agents’ expectations for next period inflation, xt is a proxy
for real marginal cost, and ut is a disturbance which can be interpreted as a measurement error
or as an unobserved cost-push shock. The parameters in (20) are taken as semi-structural in
the sense that they can be associated to deeper structural parameters of a microfounded model
(see, e.g., Mavroeidis et al., 2014). Particularly, β is the subjective discount factor and

λ =
(1− θ) (1− θβ)

θ
κ, (22)

where θ ∈ (0, 1) represents the fraction of firms that cannot change their prices in any given
period, i.e., an index of price rigidity under the Calvo framework, and κ ≤ 1 is a function of
the labor elasticity of production and the price elasticity of demand.

The RE solution of this model is given by

πt =
λ

1− βρ
xt + ut. (23)

It can be shown that this equilibrium is E-stable if βρ < 1, a condition that is automatically met
under the usual assumptions that 0 < β < 1 and |ρ| < 1 (see Evans and Honkapohja, 2001,
pp. 198-200). Consistent with this solution, under adaptive learning agents form expectations
according to a PLM given by

πt = φt−1xt + zt, (24)
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where φt is a parameter estimated with the univariate version of the LS algorithm given by
(4)-(5), also substituting yt ≡ πt. Iterating (24) forward and substituting the expectations in
(20) we obtain the ALM under learning

πt = (βρφt−1 + λ)xt + ut. (25)

4.2 Simulation and estimation approach

We generate 10,000 samples of artificial series of πt and xt assuming that ut ∼ N (0, σ2
u),

vt ∼ N (0, σ2
v), and that Correl (ut, vt) = 0. The number of observations used for the learning

initialization, in the training sample-based methods, and the estimation of the model’s param-
eters will be a dimension of our analysis, but in general we simulate the model for 10,000
observations and assume the sample of data available for estimation starts at the 10,001 obser-
vation, i.e., t = 0 is observation 10,000 in our artificial series. The model parameters are set
to β = 0.99, θ = 0.65, κ = 0.25, ρ = 0.9, σ2

u = 3, σ2
v = 1, whereas for the learning gain we

evaluate two options, γ1 = 0.02 and γ2 = 0.104.
In order to estimate the model and learning parameters, we follow a generalized method of

moments (GMM) approach. Following Chevillon et al. (2010), we obtain the moment condi-
tions from the common assumption that the unobserved disturbance term, ut in our model, is a
martingale difference sequence, which means Et−1 [ut] = 0. For a given set of pre-determined
instruments, the model’s ALM under learning is used to derive the associated GMM objective
function, which is minimized using standard numerical estimation methods5.

One important dimension of our analysis of estimated initials is the choice of instruments
used for the definition of the estimation criterion. According to Proposition 3, the use of a
squared residuals criterion provides interesting results with respect to the accuracy of estimated
initials as the estimation sample size grows. Nevertheless, the SSR criterion is not implicit in
the GMM estimation approach with pre-determined instruments, and, as we will show, this can
turn the estimation approach susceptible to severe initialization biases for large samples. Hence,
we consider two estimation approaches. The first, which we denote as standard, is based on the
use of four lags of the model residuals as instrument; this approach was proposed by Chevillon
et al. (2010) in order to deal with the weak identification and persistence problems that are
induced by adaptive learning6. The second approach, which we call the augmented method, is
to use both four lags and the contemporaneous values of the model residuals as instruments, so
as to enforce the SSR criterion in the estimation of the model.

4Our findings are qualitatively insensitive to these choices of parameters values, but not quantitatively. As
evidenced in (10), though under a simpler model specification, the impact of initialization errors over the accuracy
of the model’s predictions is positively related to the magnitude of the parameter associated with the forward-
looking term, β.

5Details about this estimation procedure are provided in Appendix B.
6We have also experimented with the more traditional approach of taking lags of πt and xt as instruments, and

found such alternatives to have no major effects over our main conclusions about initial estimates.
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4.3 Results

We conduct two sets of simulation exercises comparing the accuracy of the initialization meth-
ods, focusing on the PLM coefficient initial7, φ0, and how the different initials affect the ac-
curacy of estimates of other model’s parameters, such as the learning gain, γ, and the price
rigidity parameter, θ. First, we look at the case where only the learning initial is estimated, i.e.,
both γ and θ are assumed to be known. This corresponds to the analysis carried out analyti-
cally in section §3 for the simpler example model, and should therefore be informative about
how our previous conclusions extrapolate to more realistic models. Second, we consider the
more realistic case where the model parameters need to be estimated jointly with the determi-
nation of the learning initials. Importantly, in the latter case the pre-determined initials are also
conditioned on the estimates of the model parameters relevant to their determination.

Under the REE-based method, based on the true model’s parameter values, the initials
are given by φREE0 ' 0.44, and RREE

0 ' 5.26. For the methods based on a training sam-
ple, i.e., the OLS and the WLS initials, we first set aside an initial portion of the simulated
series, {πt, xt}0t=1−P , and then compute the initials based on (12)-(13), varying the size of
the training sample over P = {10, 25, 50, 75, 100, 200}. For the WLS case we explore two
alternative specifications of the prior R∅, namely, a REE prior with R∅ = RREE

0 , and a dif-
fuse prior with R∅ = 0. For the estimation-based initials we also consider two options: the
standard GMM approach, using four lags of the estimated disturbances as instrument; and
the augmented approach, which adds the contemporaneous disturbances to the former8. In
order to evaluate whether the sample size has any effect over the estimates we vary it over
T = {50, 100, 200, 500, 1000, 5000}.

4.3.1 Initials accuracy under known model parameters

We begin looking at the case where only the learning initial is estimated. The MSDs for the
initialization methods under analysis are presented in Figure 1 for the two different gain values.
We draw the following observations from these results:

1. The REE-based initials are overall the less accurate among the pre-determined initials.
Also, the performance of the REE-based initial deteriorates substantially for the higher
gain calibration. This last result is in agreement with the result (see Eq. 8) that higher
learning gains lead to noisier estimates of agents’ PLM parameters, which drive out-of-
equilibrium dynamics farther from the REE implied parameter values.

7Results on the accuracy of R0, which is also dependent on the initialization method, are available upon
request.

8The initial of the matrix of second moment, R0, is fixed to its true value for the results reported on the
estimated initials. Overall, adding R0 to the estimation problem deteriorates the accuracy of the estimates for the
PLM coefficient initial. These results are available upon request.
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Figure 1: Mean squared deviations of initials with only φ0 estimated.

(a) Under low gain.
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(b) Under high gain.
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Notes: MSDs are depicted in a logarithmic scale (vertical axis) and are based on averaged statistics
over 10,000 simulations of the baseline Phillips curve model. The low and high gains are set
to γ1 = 0.02 and γ2 = 0.10, respectively. Estimated initials are obtained by GMM using the
estimation sample indicated in the upper horizontal axis, whereas the training sample-based
initials use the initialization samples indicated in the lower horizontal axis.

2. Whereas there is little difference between the OLS and the WLS initials under the lower
gain calibration, the latter is clearly the best performing method under the higher gain.
Also, notice that increasing the size of the training sample always improves the perfor-
mance of the WLS initials, while the relationship is not monotonic for the OLS initials.

3. Between the two alternative specifications of the WLS prior on the learning coefficients
uncertainty, the diffuse prior provides the most accurate initial estimates, though not in
terms of the initial for the regressors’ variance, where the REE prior obtains a better fit.
Hence, the use of a diffuse prior provides an interesting way to speed up the convergence
of the learning estimates within the training sample.

4. The results for the estimated initials are clearly dependent on the specification of the
estimation criterion. Particularly, under the standard GMM approach larger estimation
samples have a perverse effect on the accuracy of the estimated initials. Adding the
squared residuals criterion to the estimation then brings significant improvements to the
accuracy of this method, also avoiding the negative effects from the estimation sample
size.
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Figure 2: Mean squared deviations of initials with φ0, γ and θ jointly estimated.

(a) Under low gain.
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(b) Under high gain.
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Notes: See notes of Figure 1. The estimates of γ used for the WLS-based initials are those obtained
under the augmented estimation approach with T = 200.

4.3.2 Initials accuracy with estimated model parameters

We now look at the more realistic case where model parameters need to be estimated together
with the learning initial. Naturally, lack of knowledge about the true learning gain and the
true index of price rigidity should affect the performance not only of the estimated initials, by
adding more parameters to the estimation problem, but also the performance of those methods
that are dependent on the model parameters, i.e., θ for the REE-based method, and γ for the
WLS-based method. Figure 2 presents the results obtained under these circumstances9 and
focusing on the same initialization methods and gain calibrations evaluated above.

The main observation sprouting from these results relates to the sensitiveness of some pre-
determined initials to the estimation of the model parameters. Particularly, we find that the
inaccuracies in the estimation of γ can hold back the WLS convergence to the true learning
coefficients within both the training sample and the estimation sample that follows the initial-
ization. Besides, because the OLS-based method is not sensitive to any of the estimated model
parameters, it yields performances identical to those observed without the estimation of other
parameters. As in the previous exercise, the OLS-based initials can yield good convergence per-
formance under small training samples, but they are not robust to variations in the underlying
learning gain. With respect to the joint estimation of the initials we draw a similar conclusion
to that obtained from the exercise under known model parameters: the augmented estimation
approach is outperforming the standard approach.

9Results for the addition of each of these parameters separately to the estimation problem are presented in
Appendix C.2.
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Figure 3: Mean squared deviations of estimates of price rigidity index, θ.

(a) Under low gain.
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(b) Under high gain.
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Notes: See notes of Figure 1. The estimates refer to the exercise with the joint estimation of γ, θ
and the corresponding initial. The OLS and the WLS-based initials use a training sample of
P = 75 observations.

4.3.3 Initials effects over accuracy of estimated model parameters

Perhaps a more interesting question for the applied researcher is how much the errors implied
by each initialization method can affect the estimates of the other model parameters. In Fig-
ures 3 and 4 we report results on the accuracy of the estimates for the parameters θ and γ,
respectively, also referring to the same simulations and estimations analyzed above.

Overall we find that all estimates of the model parameters tend to converge to their corre-
sponding true values as the estimation sample size increases, confirming the consistency prop-
erty of the adopted GMM estimators. However, we also observe different rates of convergence,
depending on the initialization method and the estimation approach. For the estimation of θ, the
REE-based initial is performing remarkably well, whereas the training sample-based methods
show a slower convergence depending on the underlying gain calibration. For the estimation of
γ, the pre-determined initials are performing similarly.

But it is with respect to the estimation approach that we observe the greatest disparities.
Whereas the augmented approach is generally preferred for large samples, its performance
for the estimation of θ with smaller samples is slightly poorer relative to the standard approach.
Although this result cautions against the use of non-predetermined instruments in the estimation
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Figure 4: Mean squared deviations of estimates of learning gain, γ.

(a) Under low gain.
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(b) Under high gain.
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Notes: See notes of Figures 1 and 3.

of structural parameters in models with learning, it is also clear that our augmented approach
brings substantial improvements to all estimates as the sample size grows10.

Nevertheless, the pre-determined methods are generally showing a better performance than
that obtained under the joint estimation of the initials. This result is also evident in Figure 5,
where we look at the densities of θ estimates when the gain is assumed to be known. Cor-
roborating previous findings in the literature (e.g., Chevillon et al., 2010), in the left hand side
(l.h.s.) panel of Figure 5 we observe that learning induces non-standard distributions in finite
sample estimates of model parameters. Interestingly, we find that the joint estimation of the
learning initials can lead to much stronger deviations from asymptotic distributions. Moreover,
notice that even with a larger estimation sample, as in the right hand side (r.h.s.) panel of
Figure 5, the θ estimates are still more dispersed under the case where the initial was jointly
estimated using the standard approach than under the cases with pre-determined initials and the
augmented estimation approach.

To better understand the impact of initialization errors over other model parameters esti-
mation errors, we present in Figure 6 scatter diagrams relating the squared deviations of the
initial estimates and those of θ estimates across the many simulations conducted with the joint
estimation of these parameters. Importantly, we observe that the effects of the initialization
errors depend on whether the initials are jointly estimated with the model parameter or pre-
determined. Particularly for small estimation samples, in the l.h.s. panel of Figure 6, the joint

10Another noteworthy caution against the augmented approach under small estimation samples is that numerical
estimation instabilities were observed more frequently than in the standard approach for the estimation of the
learning gain, as reported in Table 2 in the Appendix.
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Figure 5: Densities of θ estimates over simulations.

(a) Small estimation sample (T=50).
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(b) Big estimation sample (T=5000).
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Notes: Densities estimated using the normal kernel smoothing function over 10,000 simulations of
the baseline Phillips curve model under the low gain setup, γ1 = 0.02. Simulations with exact
boundary estimates are discarded (see a report on these cases in the Appendix). The estimates
refer to the exercise where only θ and φ0 are estimated.

estimation of the initial induces a positive correlation between the initials and the model pa-
rameter’s estimation errors. This negative spillover effect naturally disappears as the estimation
sample increases, and both the model parameter and the estimated initials get more accurate.

4.4 Summary and discussion

We draw several important conclusions regarding the performance of the different initialization
methods from our simulation analysis. First, our results under the assumption of known model
parameters provided robustness to our analytical findings obtained under the simpler example
model of the previous section. Particularly, we find that the WLS-based initials, with diffuse
priors, show the best performance in terms of initials accuracy, as long as “enough” obser-
vations are set aside for the training sample. The number of “enough” observations depends
on the gain calibration, where smaller gains require longer training samples to guarantee the
learning algorithm’s convergence.

Second, when model parameters require estimation we found that the performance of the
initialization methods is sensitive to the accuracy of the estimated parameters. However, the
sensitiveness of pre-determined initials to the estimation approach was much weaker than that
of the jointly estimated initials. Here, the traditional focus on pre-determined instruments was
found to hinder the consistency of the initial estimates, which tended to deteriorate as the
sample size increased. Our proposal to include a squared residual term in the estimation crite-
rion found some success in reverting that relationship. One explanation for that result is that
the SSR criterion penalizes more strongly the accumulation of learning estimation errors: the

22



Figure 6: Relationship between initialization errors and model estimation errors.

(a) Small estimation sample (T=50).
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(b) Big estimation sample (T=5000).
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Notes: The scatter diagrams are based on squared deviations between the indicated parameters es-
timates (φ0 in the horizontal axis, and θ in the vertical one) and their corresponding true
value over 10,000 simulations of the baseline Phillips curve model under the low gain setup,
γ1 = 0.02. Simulations with exact boundary estimates are discarded (see a report on these
cases in the Appendix). The estimates refer to the exercise where only θ and φ0 are estimated.

larger the estimation sample, the higher the precision attained by the learning estimates by the
end of the sample, and with that, the more evident become the initialization errors (relative
to end-of-sample errors). Without the SSR criterion, in contrast, the relative weights given to
initialization errors only tended to decrease as the estimation sample size increased, reducing
the relevance of initials and therefore turning their estimation indeterminate.

Notwithstanding, even under the augmented estimation approach the joint estimation of
initials was found to have a negative spillover effect on the accuracy of model parameter esti-
mates, particularly with small estimation samples. This spillover effect was not observed under
the pre-determined initials. Hence, we conclude that their usage must be preferred; particularly,
our evidence indicates that WLS-based method may be favored on the grounds of its greater
robustness to uncertainties regarding the true values of the learning gain.

5 Empirical Application

5.1 Hybrid Phillips curve model

In order to evaluate the relevance of using different initialization methods, we now pursue
an empirical application augmenting our baseline model and estimating it with US macroe-
conomic data. We follow Gali and Gertler (1999) and estimate a hybrid NKPC model given
by
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πt = ψfπ
e
t+1 + ψbπt−1 + δxt + ηt, (26)

xt = ρxt−1 + νt, (27)

with
ψf = βθζ−1, ψb = ωζ−1, δ = (1− ω) (1− θ) (1− βθ) ζ−1, (28)

ζ = θ + ω (1− θ (1− β)) , (29)

where ω is the fraction of firms that set their prices according to a backward looking rule of
thumb, and the remaining parameters have the same interpretation as in the baseline specifica-
tion.

Assuming the PLM is given by

πt = a+ bπt−1 + cxt + ut, (30)

and that πt is unknown when agents form expectations at period t,

πet+1 = Et [πt+1] = a (1 + b) + b2πt−1 + c (b+ ρ)xt. (31)

The REE is given by the values of a, b, and c that solve the following equalities

a = ψfa (1 + b) , b = ψfb
2 + ψb, c = ψfbc+ ψfρc+ δ. (32)

Solutions to this system are characterized in the Appendix A.5, where we also show that there
is an unique E-stable REE in this model, given by a∗ = 0, b∗ =

(
1−

√
1− 4ψfψb

)
/2ψf , and

c∗ = δ/ (1− ψf (b∗ + ρ)). Under adaptive learning, agents form expectations using estimates

of these parameters obtained according to the LS algorithm of (4)-(5), where φ̂t ≡
(
ât, b̂t, ĉt

)′
,

xt ≡ (1, πt−1, xt)
′ and yt ≡ πt.

5.2 Data and estimation approach

We use quarterly US data covering the period from 1947q1 to 2016q3. To measure inflation we
use CPI inflation, whereas for the forcing variable, xt, we use non-farm business sector labor
shares. To remove trends in the latter we obtain gap measures using the Hodrick-Prescott (HP)
filter. For simplicity, we are neglecting real-time data issues by focusing on a unique snapshot
of the realization of these series. All our data series are obtained from the FRED database of
the St. Louis Fed.

We adopt a GMM estimation approach similar to that used in our simulation analysis. Here,
the set of parameters determining inflation is given by Θ = (β, θ, ω, ρ, γ,Φ0,R0). To facilitate
estimation we fix some of these parameters to values we consider reasonable: β = 0.99, ρ =
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0.75. We experiment with both estimation approaches discussed in our simulation exercise.
Under the standard estimation approach the instruments are given by a constant plus four lags
of the estimation residuals, the HP-filtered output gap on real GDP, and a long-short interest
rate spread given by the difference between the 10-year Treasury Bill rate and the Federal
Funds rate. Under the augmented approach we then add the contemporaneous estimation errors
to the former list of instruments. We also include an unrestricted constant, α, in the model
specification.

In order to conduct a comparative evaluation of the estimates associated to the different
initialization methods, we fix the estimation sample to start from 1972q2. That leaves up to
100 observations for the training sample-based initializations. For the cases of the REE-based
and the WLS-based methods, the initials are re-calculated within the estimation routine in order
to take into account the estimates of the model parameters and the learning gain, respectively.
We use a diffuse prior for the WLS-based method.

We also benchmark our estimates of the model under learning with corresponding estimates
under RE. For that purpose we follow the approach of replacing the expectation term in (26)
by actual observations of next period inflation. Imposing the same identifying assumption we
used under learning, which in the present context is given by Et−1 [ηt] = 0, leads to moment
conditions of the form of (52), except that the residual term now also includes an one-step-
ahead inflation forecast error (see Mavroeidis et al., 2014, pp. 133-4). Finally, as instruments
for the RE estimation we use four lags of inflation and the labor income share gap instead of
the lagged residuals.

5.3 Robust stable learning estimates

Models with adaptive learning may generate unrealistic dynamics due to instabilities in the
recursive estimation of the learning coefficients. That is particularly relevant for the case of
constant gain learning: the higher the value of the learning gain, the higher the chances that
a sequence of abnormal forecast errors will push agents’ PLM estimates outside the region
of stability in the parameters’ space. Therefore, the estimation of models under learning can
be extremely sensitive to the sample of observations and the range of values allowed for the
learning gain.

To deal with these potential sources of instabilities we develop a robust stability estimation
approach. Namely, we impose additional constraints to the estimates of the learning gains so
as to ensure the stability of learning11. Importantly, due to self-referentiality, these constraints
can depend on the values of the model parameters. Considering that we are also estimating θ
and ω we draw the upper bounds to be imposed on the estimation of the learning gain through

11Although we are not aware of any previous attempt to introduce such robustness conditions in the estimation
of learning models in the literature, this approach is inspired by Evans and Honkapohja (2009), who showed that
constant gain learning can turn an otherwise learnable equilibrium unstable, depending on the value of the gain.
We thank an Associate Editor for pointing us towards this direction.
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Figure 7: Learning gain simulated upper bounds for hybrid New Keynesian Phillips curve
model.
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Notes: Upper bounds obtained from 1,000 simulations of model (26) under learning over a grid of 15
values of θ = {0.01, 0.08, ..., 0.91, 0.99} and 15 values of ω = {0.01, 0.08, ..., 0.91, 0.99}.
The reported upper bounds refer to averaged maximum gain values for which the simulated
learning estimates of b̂t remained between ±1.5 over 1,000 periods. See the Appendix C.3
for further details.

simulations of the model for different combinations of those parameters12. The resulting upper
bounds are presented in Figure 7. We observe that the model becomes more sensitive to the
learning gain as the model parameters get closer to their boundary values. To understand this
result notice that from (26): (i) as θ, ω → 1, inflation converges to a random walk process
because δ → 0 and ψf + ψb → 1; and, (ii) as θ, ω → 0, the model becomes indeterminate
because ζ → 0.

Another mechanism that is often coupled to the learning algorithm in order to prevent the
learning estimates to diverge is the so-called “projection facility”. Whenever the learning es-
timates leave a bounded region in the parameters space, the projection facility is activated in
order to contain the escape. This device is particularly useful for the cases of PLMs containing
lagged endogenous variables, where the definition of parameters’ bounds can be easily derived
from stationarity conditions. Here, for the estimation of the hybrid NKPC we also adopt a pro-
jection facility that is activated whenever

∣∣∣b̂t∣∣∣ ≥ 1.5, in which case the learning algorithm does
not update the learning estimates and discards the associated observation13.

12See the Appendix C.3 for details about these simulations.
13Although stationarity of (30) requires that |b| < 1, we adopt a critical value of 1.5 so as to allow the algorithm

some space to return to the stability region on its own.
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5.4 Results

The results obtained with the GMM estimation of the hybrid NKPC model are presented in
Table 1. The RE benchmark estimates seem to be in accordance to previous estimates in the
literature (e.g., Gali and Gertler, 1999) where the Calvo’s index of price stickiness, θ, is found
to be greater than the fraction of backward looking price setters, ω. Also notice that the RE
estimates are statistically different from zero at standard levels of significance.

Most important for our purposes are the estimates obtained under learning, particularly
comparing the differences due to changes in the estimation and the initialization methods. Our
main finding is that the relevance of the initialization approach appears to be related to the
estimation approach. Particularly, we observe that there is much less variation on the estimates
across the initializations when the parameters are estimated under the augmented rather than the
standard approach. E.g., ω varies between 0.02 (OLS-based initial) and 0.99 (estimated initial)
under the standard estimation approach, while under the augmented approach ω is narrower
identified between 0.84 (pre-determined initials) and 0.86 (estimated initial). The same applies
to the other estimated parameters, except for the learning initials, where the estimates of a0, b0,
and c0 still show some variation across the initialization methods.

Empirically, it is difficult to assess which of the initialization methods provided the most
accurate initial estimates. In our simulation analysis we have argued in favor of the WLS-based
estimates for providing the estimates that are most coherent to the ongoing learning process
at the beginning of the estimation sample. That seems to be the case here, as the OLS-based
initials point to similar estimates.

But most importantly, we interpret these results as providing evidence in favor of the aug-
mented estimation approach of models with learning. The inclusion of the SSR criterion seems
to play a major role in facilitating the identification of the model parameters, particularly for
turning these estimates less sensitive to the learning initials. Irrespective of the initialization
method, all the augmented estimates of the hybrid NKPC tell a similar story: when agents need
to learn how to form their inflation expectations, our inference points to a lower degree of price
stickiness and a higher fraction of backward looking firms than suggested by estimates under
the RE assumption. In other terms, allowing for adaptive learning turns the evidence more fa-
vorable to the hybrid form of the NKPC. We find that this result is robust14 to how the learning
initials are estimated only with the inclusion of the SSR criterion in the estimation of the model.

6 Concluding remarks

In this paper we provided a critical review on several methods previously proposed in the lit-
erature of learning and expectations in macroeconomics in order to initialize its learning algo-

14Estimates for alternative estimation samples are reported in Appendix C.4. Whereas our point estimates are
less robust to changes in the covered historical periods, as it is often the case in macroeconomic applications, the
finding in favor of the hybrid form of the NKPC appears to be robust to most initialization/estimation approaches.
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Table 1: Empirical estimates of US NKPC - 1972q2 - 2016q3.

Estimation exercise
Parameter Estimates

α θ ω γ a0 b0 c0

Rational expectations 0.00 0.85 0.40
(0.01) (0.09) (0.06)

Learning with jointly estimated initials
- Standard approach 0.04 0.91 0.99 0.06 8.60 -0.55 5.61

(0.17) (11.78) (13.37) (0.02) (1.83) (0.18) (2.16)
- Augmented approach 0.37 0.21 0.86 0.03 2.17 0.68 0.62

(0.46) (0.28) (0.16) (0.08) (7.60) (4.75) (4.27)
Learning with REE-based initials

- Standard approach 0.04 0.80 0.80 0.03 1.49 0.96 0.04
(0.14) (0.42) (0.34) (0.03)

- Augmented approach 0.38 0.21 0.84 0.03 0.61 1.00 0.14
(0.07) (0.04) (0.09) (0.04)

Learning with WLS-based initials
- Standard approach -0.09 0.84 0.07 0.02 0.17 0.77 0.03

(0.07) (0.14) (0.25) (0.01)
- Augmented approach 0.36 0.23 0.84 0.03 0.19 0.75 0.05

(0.07) (0.06) (0.10) (0.05)
Learning with OLS-based initials

- Standard approach 0.00 0.77 0.02 0.10 0.17 0.76 0.03
(0.03) (0.08) (0.10) (0.02)

- Augmented approach 0.37 0.22 0.84 0.03 0.17 0.76 0.03
(0.06) (0.05) (0.10) (0.05)

Notes: Parameters estimated by GMM, as explained in the text, using US data from 1972q2 to
2016q3. For the cases with pre-determined initials, the initial learning coefficients are ob-
tained from training samples of 75 observations over the period from 1953q3 to 1972q1. Val-
ues in parentheses are standard errors of the estimates and are computed based on numerical
approximations of the objective function first derivatives. The standard errors under learning
should be interpreted with caution since the estimators distribution, and corresponding test
statistics, can become non-standard (see Chevillon et al., 2010). Estimates in bold are those
found to be statistically different than zero at a 5% level of significance.
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rithms. We proposed a taxonomy of initialization methods that can be broadly defined in three
major classes: equilibrium-related methods, training sample-based methods, and estimation-
based methods. We conducted extensive simulation exercises comparing different initialization
methods that can be conceived within this classification.

Our analysis led us to draw the following recommendations. First, though equilibrium-
related initialization methods seem to provide rather conservative initials, they are often inco-
herent with the dynamics implied by learning, particularly under high learning gains. Second,
among the training sample-based methods, the use of standard OLS estimates can also turn out
to provide incoherent estimates since it does not take into account the particular specification
of the learning gain. Direct application of the learning algorithm into the training sample, the
WLS-based method in our terminology, was overall favored by our evaluation criteria. Particu-
larly, we found that a diffuse specification of this method leads to an accelerated convergence,
facilitating the feasibility of the method in macroeconomic contexts.

We also uncovered some problems with the approach of joint estimation of the learning
initials with other model parameters. Strikingly, the accuracy of these estimates tended to
deteriorate with the sample size, and, perhaps more importantly, we found evidence of spillover
effects from the biases introduced by estimation of the initials into the estimates of the model’s
structural parameters. We proposed a solution to the first problem by including a squared
residual criterion to the estimation objective; whereas this approach restored consistency to the
joint estimation of the learning initials, attenuating the negative spillover effect asymptotically,
the estimation of initials was still problematic under small samples.

Finally, the sensitiveness of model estimates to the learning initialization method and the
estimation approach was illustrated with an empirical application on the determination of US
inflation rates under the Phillips curve framework. Our estimation approach was found to be the
most robust to alternative specifications of the initials, pointing to stronger evidence in favor of
the hybrid form of the New Keynesian Phillips curve than it would otherwise be inferred under
rational expectations and standard estimates of the model with learning.

A Derivations

A.1 MSPE implied by initialization error

From (2) we have that yt+1 = βφt + ut+1 and ŷt+1 = βφ̂t, so that the prediction error is given
by

∆̂t+1 = yt+1 − ŷt+1,

= β
(
φt − φ̂t

)
+ ut+1. (33)
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Defining ε̂t = φt − φ̂t, from (9) we find that

ε̂t = φt−1 + γ (yt − φt−1)− φ̂t−1 − γ
(
yt − φ̂t−1

)
,

= (1− γ)
(
φt−1 − φ̂t−1

)
,

= (1− γ) ε̂t−1,

which can be solved recursively to result in ε̂t = (1− γ)t ε̂0. Substituting this back into (33)
and taking the expectation of the squared value results in

∆̂t+1 = β (1− γ)t ε̂0 + ut+1,

E
[
∆̂2
t+1

]
= β2 (1− γ)2t ε̂20 + σ2

u.

For the case where β is unknown, assuming E
[
β̂ut

]
= 0, the MSPE is then given by

E
[

ˆ̂
∆2
t+1

]
= E

[(
βφt − β̂φ̂t + ut+1

)2]
,

= E
[
ˆ̂ε2t

]
+ σ2

u, (34)

where ˆ̂εt = βφt − β̂φ̂t, leading to

ˆ̂εt = (1− γ) ˆ̂εt−1 + γ
(
β − β̂

)
yt.

Solving this recursively yields

ˆ̂εt = (1− γ)t ˆ̂ε0 + γ
(
β − β̂

) t−1∑
i=0

(1− γ)i yt−i.

A.2 Long run variance of learning estimates

Substituting (2) into (4) we obtain

φt = δφt−1 + γut,

where δ = 1− γ (1− β). This recursion is equivalent to

φt = δtφ0 + γ
t−1∑
i=0

δiut−i, (35)
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In the limit, as t → ∞, E [φ∞] = 0 as long as |δ| < 1. Hence, the long run variance of φt,
denoted by σ2

φ, is given by

σ2
φ = lim

t→∞
E
[
φ2
t

]
,

= lim
t→∞

E

δ2tφ2
0 + 2δtφ0γ

t−1∑
i=0

δiut−i +

(
γ

t−1∑
i=0

δiut−i

)2
 ,

which, because ut is assumed to be serially independent, simplifies to

σ2
φ = lim

t→∞
δ2tφ2

0 + γ2
t−1∑
i=0

δ2iσ2
u,

= lim
t→∞

δ2tφ2
0 + γ2σ2

u

1− δ2t

1− δ2
,

=
γ2σ2

u

1− δ2
,

=
γσ2

u

(1− β) (1 + δ)

where the limit is solved under the assumption that |δ| < 1. Notice that ∂σ2
φ/∂γ > 0, i.e., as

the gain increases the dispersion of the learning estimates tends to increase as well.

A.3 MSDs of training sample-based initials

For the training sample-based initials we consider a sample of P observations, and in this case
(7) translates to

φ0 = δPφ−P + γ
P−1∑
i=0

δiu−i. (36)

A.3.1 WLS-based initials

The WLS-based initial is equivalent to the application of the constant gain LS algorithm to the
training sample, departing from φ̂−P = 0 (so-called diffuse prior15). Yet, because the actuals
are determined by the true learning estimates, (36) can not be directly employed to obtain the
WLS estimates. Taking that into account we find that the WLS-based initial is given by

φ̂WLS
0 = γβλP−1φ−P + γβλ−1

P−1∑
i=1

λiφ−i + γ

P−1∑
i=0

λiu−i,

=
(
δP − λP

)
φ−P + γ

P−1∑
i=0

δiu−i, (37)

15These derivations can be easily extended to the case with any other arbitrary prior, such as the REE-based
prior
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where λ = 1− γ. The corresponding MSD is then given by

DWLS
φ0

= E
[(
λPφ−P

)2]
,

= λ2PE
[
φ2
t

]
. (38)

A.3.2 OLS-based initials

The OLS-based initial is obtained by application of the Ordinary Least Squares estimator to
the training sample of observations, which is equivalent to the use of (6) with a decreasing
gain, 1/t, instead of the constant, γ, and also departing from the diffuse prior, φ̂−P = 0. The
OLS-based initial is then given by

φ̂OLS0 =
β

P
φ−P +

β

P

P−1∑
i=1

φ−i +
1

P

P−1∑
i=0

u−i,

=
β
(
δP − 1

)
P (δ − 1)

φ−P +
1

P (1− β)

P−1∑
i=1

(
1− βδi

)
u−i +

1

P
u0, (39)

from which the corresponding MSD follows as

DOLSφ0
=

(
δP −

β
(
δP − 1

)
P (δ − 1)

)2

E
[
φ2
t

]
+ σ2

uK, (40)

where

K =

(
γ − 1

P

)2

+
P−1∑
i=1

(
γδi +

βδi − 1

P (1− β)

)2

. (41)

A.4 SSR estimation-based initials and associated MSD

The SSR estimation-based initials are obtained according to

φ̂SSR0 = arg min
φ̂0

SSR =
T−1∑
i=0

û2T−i. (42)

Using (2) we find that the FOC to this minimization problem is given by

β

T−1∑
i=0

∂φ̂T−i−1

∂φ̂0

φ̂T−i−1 =
T−1∑
i=0

∂φ̂T−i−1

∂φ̂0

yT−i. (43)

Using (6) we find that, departing from an estimated initial and using the data available in the
estimation sample,

φ̂T−i−1 = λT−i−1φ̂0 + γ
T−i−2∑
j=0

λjyT−i−j−1, (44)
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so that
∂φ̂T−i−1

∂φ̂0

= λT−i−1, (45)

where λ = 1− γ. Substituting (44) and (45) into (43), we find that the initial estimate is given
by

φ̂SSR0 =
T−1∑
i=0

HiyT−i, (46)

where
Hi =

γ (λ−i (1 + λ)− βλ (λ−i − λi))
βλ (λ−T − λT )

. (47)

The MSD associated to the estimated initials can be derived by using the ALM to obtain

yT−i = βδT−i−1φ0 + βγ

T−i−2∑
j=0

δjuT−i−j−1 + uT−i, (48)

which introduced into (46) leads to

φ̂SSR0 = φ0βδ
T−1

T−1∑
i=0

Hiδ
−i + βγδ−1

T−1∑
i=1

uT−iδ
i

i−1∑
j=0

Hjδ
−j +

T−1∑
i=0

HiuT−i,

= φ0 +
γ (γ − 2)

βλ (λT − λ−T )

T−1∑
i=0

λ−iuT−i. (49)

This expression can be used to evaluate the MSD according to

DSSRφ = E

[(
φ0 − φ̂SSR0

)2]
,

= E
[
φ2
0

]
− 2E

[
φ0φ̂0

]
+ E

[
φ̂2
0

]
,

= E
[
φ̂2
0

]
− E

[
φ2
0

]
,

=
γ (γ − 2)

β2 (λ2T − 1)
σ2
u. (50)

A.5 Hybrid Phillips curve REEs

There are six solutions to the RE conditions in (32). Starting with b, there are two possible

solutions given by b± =
1±
√

1−4ψfψb

2ψf
. For a there are three possibilities: a = 0 or a is indeter-

minate with β = 1 and ω 6= 1, or ω = 1 and β 6= 1. Finally, c is uniquely determined by b.
Putting these combinations together we have the following RE solutions:

RE.1 =
{
a = 0, b+, c+

}
; RE.2 =

{
a = 0, b−, c−

}
;

RE.3 =
{
a = any, b+, c+, β = 1, ω 6= 1

}
; RE.4 =

{
a = any, b+, c+, ω = 1, β 6= 1

}
;
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RE.5 =
{
a = any, b−, c−, β = 1, ω 6= 1

}
; RE.6 =

{
a = any, b−, c−, ω = 1, β 6= 1

}
.

Naturally, the solutions with indeterminate a can be ruled out on economic grounds: the sub-
jective discount factor is generally assumed to be smaller than unity, whereas ω = 1 would
break the relationship between πt and xt underlying the Phillips curve.

To check for E-stability of these solutions we first define the T -mapping associated to this
model:

T

 a

b

c

 =

 ψfa (1 + b)

ψfb
2 + ψb

ψfbc+ ψfcρ+ δ

 .
E-stability requires that the eigenvalues of the Jacobian matrix of T , evaluated at the given RE
solution, are smaller than unity. These eigenvalues depend only on the value of b and are given
by

{(1 + b)ψf , 2bψf , (b+ ρ)ψf} .

Focusing on the range of reasonable parameter values, 0 < β < 1, 0 < θ < 1, 0 ≤ ω < 1, and
−1 < ρ < 1, we find that only the RE solution with b− can be E-stable.

B GMM estimation

Moment conditions are obtained using the model’s ALM under learning, (25), from which we
can define the residual function according to

ht (Θ) = πt − βρφt−1xt − λxt, (51)

where Θ denotes the set of parameters requiring estimation. For a given set of instruments, Zt,
the corresponding moment conditions are given by

E [Ztht (Θ)] = 0. (52)

The model parameters are then estimated by minimization of the associated GMM objective
function

gT

(
Θ̂
)

=

[
T−1

T∑
t=1

Ztht

(
Θ̂
)]′

WT

[
T−1

T∑
t=1

Ztht

(
Θ̂
)]

, (53)

which is constructed from the sample counterpart of the moment conditions in (52) and a
weighting matrix, WT . This weighting matrix is optimally defined as a consistent estimator
of the inverse of the long-run variance of the moment conditions. Because the variance of (52)
depends on the values of Θ, we adopt an iterative GMM estimator (see, e.g., Hall, 2005): we
first set W (0)

T = I to obtain the preliminary estimates Θ̂(0) that minimize (53); we then use the
Newey and West (1987) heteroskedasticity and autocorrelation consistent estimator of the vari-
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ance of the moment conditions evaluated at Θ̂(0) to obtain a new estimate of W (1)
T ; we repeat

this process until a convergence criterion is achieved.
A numerical optimization routine is used to find the values of Θ̂ that minimize the GMM

objective function, (53). For that purpose we adopt a sequential quadratic programming algo-
rithm, namely the ’sqp’ option in the fmincon function in Matlab optimization toolbox. The
convergence criterion for the iterative estimation of the weighting matrix is based on the Eu-
clidean distance between the successive parameters estimates, i.e.,

∥∥∥Θ̂(i) − Θ̂(i−1)
∥∥∥ < ε. In our

simulations we set ε = 10−4, for which convergence is achieved in about 4 (5) iterations, on
average, under γ = 0.02 (γ = 0.10).

Whereas the model parameters are reasonably constrained by theory implied boundaries,
the parameters associated to the learning algorithm require artificial constrains to avoid numer-
ical instabilities during estimation. Our experimental analysis led us to adopt the following
constrains: 0 ≤ γ ≤ 0.5, φREE − 5 ≤ φ̂0 ≤ φREE + 5, and 0 < R̂0 ≤ 50. Although these
constraints were never violated in the artificial data, the numerical estimation of φ̂0 and R̂0 of-
ten resulted in boundary solutions. These cases are summarized in Table 2, where we observe
that increasing the number of estimated parameters tends to increase the number of boundary
solutions for the initial estimates. These effects are also amplified when the data true learning
gain increases, except for the case of the estimation of the gain itself, where a higher gain facil-
itates estimation. The number of boundary solutions also tends to increase with the sample size
under the standard estimation approach, whereas it decreases under the augmented approach.
Perhaps the main drawback associated to the augmented approach relates to the estimation of
the learning gain, where the estimates turned out unstable for more than 80% of the simulations
under the small learning gain and using the small estimations samples.

C Supplementary results

C.1 Validation of analytical MSD expressions

In order to validate the MSD expressions derived in section 3, we ran 100, 000 simulations of
the example model of section 2 for different combinations of parameters. For each simulation
we draw 10, 000 + T (pseudo-)random values for ut from a normal distribution, and use these
disturbances to generate artificial observations of yt and φt according to the ALM and the
learning algorithm specification given by (2) and (6), respectively. We then obtain estimates
for φt=10,000 according to each initialization method described in section 3. The results are
presented in table 3 and show a very good fit between our analytical derivations and numerical
estimates.
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Table 3: Analytical and numerical MSDs for initials obtained under the example model.

Method
σ2
u = 1 σ2

u = 4

β = 0.9 β = −5 β = 0.9 β = −5

γ ⇒ 0.02 0.25 0.02 0.25 0.02 0.25 0.02 0.25

REE-based:
0.100 1.269 0.002 0.083 0.400 5.082 0.007 0.331

(0.100) (1.266) (0.002) (0.083) (0.400) (5.063) (0.007) (0.333)
WLS-based:
P = 10 0.067 0.004 0.001 0.000 0.267 0.016 0.005 0.001

(0.067) (0.004) (0.001) (0.000) (0.267) (0.016) (0.005) (0.001)
P = 25 0.037 0.000 0.001 0.000 0.145 0.000 0.003 0.000

(0.036) (0.000) (0.001) (0.000) (0.146) (0.000) (0.003) (0.000)
P = 50 0.013 0.000 0.000 0.000 0.053 0.000 0.001 0.000

(0.013) (0.000) (0.000) (0.000) (0.053) (0.000) (0.001) (0.000)
P = 100 0.002 0.000 0.000 0.000 0.007 0.000 0.000 0.000

(0.002) (0.000) (0.000) (0.000) (0.007) (0.000) (0.000) (0.000)
OLS-based:
P = 10 0.079 0.066 0.051 0.045 0.317 0.261 0.205 0.180

(0.079) (0.065) (0.051) (0.045) (0.316) (0.261) (0.204) (0.182)
P = 25 0.022 0.284 0.008 0.063 0.089 1.128 0.033 0.252

(0.022) (0.283) (0.008) (0.063) (0.089) (1.132) (0.032) (0.253)
P = 50 0.006 0.580 0.002 0.072 0.025 2.304 0.007 0.288

(0.006) (0.577) (0.002) (0.072) (0.025) (2.308) (0.007) (0.290)
P = 100 0.003 0.905 0.001 0.077 0.013 3.609 0.003 0.308

(0.003) (0.903) (0.001) (0.078) (0.013) (3.612) (0.003) (0.311)
SSR estimation-based:
T = 10 0.147 0.543 0.005 0.017 0.591 2.152 0.019 0.070

(0.147) (0.542) (0.005) (0.018) (0.588) (2.167) (0.019) (0.070)
T = 100 0.050 0.541 0.002 0.017 0.199 2.146 0.006 0.070

(0.050) (0.540) (0.002) (0.018) (0.199) (2.160) (0.006) (0.070)
T = 250 0.049 0.541 0.002 0.017 0.196 2.146 0.006 0.070

(0.049) (0.540) (0.002) (0.018) (0.196) (2.160) (0.006) (0.070)
T = 1000 0.049 0.541 0.002 0.017 0.196 2.146 0.006 0.070

(0.049) (0.540) (0.002) (0.018) (0.196) (2.160) (0.006) (0.070)

Notes: All statistics refer to MSD estimates. Values in parentheses come from the analytical ex-
pressions derived in the text, whereas those without parentheses come from the numerical
simulation.
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Figure 8: Mean Squared Deviations of initials with φ0 and γ jointly estimated.

(a) Under low gain.
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(b) Under high gain.
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Notes: See notes of Figure 1. The estimates of γ used for the WLS-based initials are those obtained
under the augmented estimation approach with T = 200.

C.2 Initials MSDs with jointly estimated model parameters

Figures 8 and 9 report the initials MSD results for the addition of γ and θ, respectively, to
the estimation problem. These results are consistent with our findings discussed on the main
text on the basis of Figure 2 for the exercise where both γ and θ are jointly estimated with the
learning initial.

C.3 Simulated upper bounds on learning gain for hybrid Phillips curve
model

The upper bounds on the learning gain adopted for the empirical exercise are obtained by
running 1,000 simulations of the hybrid NKPC model, using the same parametrizations that we
are adopting in the estimation, i.e., fixing β = 0.99 and ρ = 0.75, and using RE estimated
residuals in order to fix the variances of the residuals needed to simulate the model. The
simulations are conducted over a grid of 15 values of θ = {0.01, 0.08, ..., 0.91, 0.99} and 15

values of ω = {0.01, 0.08, ..., 0.91, 0.99}, and increasing the learning gain starting from γ = 0.005

with a step equal to 0.005 until the learning estimates diverge: 1,000 observations are simulated
with the first gain, and then if the estimates did not diverge, we move to the next γ, and so on.
We check for divergence by looking at the value of the b̂t learning coefficient estimate, and stop
the simulation whenever it goes above the value of 1.5. In general, when the learning estimate
reached that value, the simulated inflation series was already exploding. The upper bounds are
then obtained by averaging the maximum gain values across the 1,000 simulations for each
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Figure 9: MSDs - φ0 and θ jointly estimated.

(a) Under low gain.
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(b) Under high gain.
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Notes: See notes of Figure 1. The estimates of θ used for the REE-based initials are those obtained
under the augmented estimation approach.

combination of parameters. For the empirical estimation of the model, we obtain an interpolant
function, G (θ, ω), using cubic splines based on the gridded gain upper bounds presented in
Figure 7. This function is then supplied to the numerical estimation routine as a nonlinear
restriction on the estimates.

C.4 Empirical estimates for alternative sample

Estimates of macroeconomic models may be sensitive to the historical period underlying the
sample used for estimation. U.S. post-WWII inflation history over our sample of data has
been marked by two main episodes of interest: (i) the Great Inflation period, starting around
early-1970s and ending by mid-1980s; and, (ii) the more recent period that followed the 2007-
08 financial crisis. To check for the sensitiveness of our results, we re-estimated the model
discussed in the text by focusing on samples that exclude these periods. Results are presented
in Tables 4 and 5, the former excluding the Great Inflation period and the latter also excluding
the period since the financial crisis.
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Table 4: Empirical estimates of US NKPC - 1985q1 - 2016q3.

Estimation exercise
Parameter Estimates

α θ ω γ a0 b0 c0

Rational expectations 0.00 0.86 0.37
(0.01) (0.11) (0.06)

Learning with jointly estimated initials
- Standard approach 0.21 0.54 0.67 0.12 3.36 1.32 -6.33

(0.14) (0.22) (0.25) (0.04) (1.86) (1.87) (3.78)
- Augmented approach 0.16 0.45 0.99 0.01 -0.07 1.50 0.10

(0.43) (1.16) (1.47) (0.01) (1.04) (1.18) (0.91)
Learning with REE-based initials

- Standard approach 0.06 0.85 0.99 0.04 0.76 1.00 0.00
(0.15) (2.70) (3.10) (0.05)

- Augmented approach 0.01 0.74 0.79 0.00 0.20 0.98 0.06
(0.11) (0.26) (0.33) (0.00)

Learning with WLS-based initials
- Standard approach 0.27 0.29 0.87 0.00 0.31 0.81 0.02

(0.09) (0.15) (0.08) (0.01)
- Augmented approach 0.15 0.54 0.71 0.06 0.31 0.78 -0.04

(0.09) (0.08) (0.19) (0.03)
Learning with OLS-based initials

- Standard approach 0.23 0.31 0.84 0.00 0.32 0.80 -0.01
(0.24) (0.16) (0.08) (0.02)

- Augmented approach -0.02 0.66 0.50 0.01 0.32 0.80 -0.01
(0.12) (0.13) (0.28) (0.01)

Notes: See notes to Table 1.
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Table 5: Empirical estimates of US NKPC - 1985q1 - 2007q4.

Estimation exercise
Parameter Estimates

α θ ω γ a0 b0 c0

Rational expectations 0.00 0.91 0.20
(0.01) (0.13) (0.06)

Learning with jointly estimated initials
- Standard approach 0.29 0.16 0.36 0.01 2.63 -1.03 11.48

(0.14) (0.08) (0.12) (0.00) (0.58) (0.08) (3.33)
- Augmented approach 0.67 0.03 0.67 0.00 1.04 -0.89 34.27

(0.07) (0.03) (0.37) (0.00) (2.10) (0.40) (35.57)
Learning with REE-based initials

- Standard approach 0.38 0.33 0.99 0.20 0.74 1.00 0.01
(0.11) (0.17) (0.17) (0.12)

- Augmented approach 0.10 0.51 0.67 0.07 0.71 0.99 0.26
(0.12) (0.14) (0.33) (0.10)

Learning with WLS-based initials
- Standard approach 0.32 0.47 0.99 0.20 0.44 0.55 -0.01

(0.13) (0.28) (0.26) (0.14)
- Augmented approach 0.22 0.43 0.73 0.08 0.30 0.76 -0.04

(0.12) (0.12) (0.17) (0.13)
Learning with OLS-based initials

- Standard approach 0.34 0.41 0.99 0.20 0.32 0.80 -0.01
(0.10) (0.17) (0.21) (0.13)

- Augmented approach 0.23 0.42 0.74 0.11 0.32 0.80 -0.01
(0.12) (0.13) (0.15) (0.11)

Notes: See notes to Table 1.
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