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Abstract We propose a new patent-based measure of knowledge spillovers that calculates
technological proximity based on firms that were identified via patent backward citations links.
We argue that this measure has a couple of advantages as compared to the ’standard’ measure
proposed by Jaffe: First, it reflects spillovers from both domestic and foreign technologically

’relevant’ firms, second, it is more precise because it only takes into account knowledge relations
with technologically ’relevant’ firms. Our empirical results indeed show that the measure

performs better than the standard measure in an innovation model. We find - for a representative
sample of Swiss firms - that knowledge spillovers measured in this way have a positive and
significant impact on innovation success. However, the knowledge spillovers appear to be

localized: Spillovers from geographically distant areas such as the USA and Japan matter less
than spillovers from near destinations such as Europe and particularly Switzerland itself.

Moreover, the spillover effect on innovation performance decreases with increasing number of
competitors on the main product market so that this effect would appear only in niche markets or
oligopolistic market structures. However, an additional effect of competition can only be detected

for more radical innovation success.
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1 Introduction

Since the two seminal papers by Jaffe (1986) and Jaffe et al. (1993) patent-based measures of

knowledge spillovers have become the workhorse in micro-level studies. Although Bloom et al.

(2013) substantially extended the original Jaffe measure and made an effort to include spillovers

from product market, the original approach to measure knowledge spillovers as suggested by Jaffe

has sustained its attractiveness. With the paper at hand we suggest a modified version of the Jaffe

measure and show its qualities in the framework of a standard innovation model. Moreover, we

show that competition has a significant impact on the effect of spillovers on innovation performance.

In this paper, we also use the Jaffe approach to measure technological proximity between firms with

the uncentered correlations between their underlying technological portfolios. A firm’s technological

portfolio is proxied by a firm’s share of patent applications in technological fields according to the

International Patent Classification (IPC). Annual patent flows are accumulated to patent stocks.

The firms’ patent stocks are then weighted with the patent-based Jaffe measure of technological

proximity. For a focal firm the sum of these weighted patent stocks of the firms of the focal firm’s

technologically relevant environment is used as a proxy of potential knowledge spillovers in our

innovation model.

However, we argue that the traditional Jaffe measure has two important drawbacks. First, it fo-

cuses on spillovers coming from firms belonging to a given sample. In most cases, such a sample

is arbitrary and not representative of any relevant firm population. Furthermore, in most studies

it is not possible to include spillovers from foreign firms although many patenting firms are acting

globally and might benefit from knowledge generated elsewhere. Second, the traditional measure

considers potential knowledge interactions with every firm in the sample, thus adding noise to the

measure, even if many of these firms might not be technologically relevant for the focal firm.

Today’s data availability and data processing capacities makes it possible to include much more

firms that might be directly technologically relevant for a focal firm. For this exercise, the techno-

logical landscape of Switzerland is an ideal subject because Switzerland is a small country with a

strongly internationalized economy. Therefore, we use a sample of firms with patent activities from

the KOF Swiss Innovation Survey and search for links to other firms worldwide that are techno-

logically relevant for the sample firms. Such technological links can be mapped with a focal firm’s
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backward citations to another firm’s patents. Thus, such backward links are used to identify tech-

nologically relevant firms worldwide. This is accomplished with the new names table in PATSTAT

(the so-called ECOOM-EUROSTAT-EPO PATSTAT Person Augmented Table, EEE-PPAT table

henceforth) that allows to identify cited firms. We then matched all patent applications that we

found in PATSTAT with the cited firms, calculated their patent stocks and their patent shares in

the underlying IPC classes.

We built N subsamples where N is the number of Swiss firms in our sample. Each subsample

contains 1+ni firms where ni is the number of firms cited by Swiss firm i. Based on this subsample

we calculated the Jaffe measure for each Swiss firm in the usual way based on the proximity to

cited firms’ patent stocks worldwide.

The use of survey data combined with patent data has the advantage that we can measure a firm’s

innovation success with a variable measuring sales with innovative products, which is a better proxy

for the commercial success of innovation activities than frequently used binary proxies or patent

counts. In addition, we are able to control for important industry and firm-specific factors.

The new spillover measure is tested in the framework of an innovation equation in which we con-

trol, among other things, for absorptive capacity, appropriability, and competition conditions. The

spillover proxy based on cited firms worldwide shows a positive and highly significant effect on

innovation success. A statistically significant, positive effect is also found for a spillover variable

that is based on citations of Swiss firms only. In contrast, only a relatively weak association with

innovation success could be found for a spillover measure that is calculated for all Swiss applicants

(irrespective of whether these firms are cited). The marginal effect of the new measure is not only

larger, it also measures the relationship more precisely than the traditional measure. In addition,

the spillover effect is stronger for sales stemming from new products as compared to modified prod-

ucts.

The results for regional spillovers show that cited firms’ knowledge stocks both in Switzerland and

in European countries matter for the commercial innovation success. For spillovers stemming from

the USA or Japanese firms, we do not find an effect, which might be due to localization of spillovers

as well as to differences between the countries with respect to their technological orientation.

A further contribution of this study is that we analyze interactions between knowledge spillovers and

the degree of competition in the product market. Although the competition-innovation relationship
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has been investigated extensively, we are lacking studies looking at the impact of competition on

knowledge spillovers empirically at firm level. We found that an increasing number of principal

competitors in the main sales market worldwide of the focal firm reduces the spillover effect from

cited firms. This result indicates that spillover effects on innovation performance are at largest for

firms that operate in niche markets or in oligopolistic structures. However, this effect can be traced

back solely to innovators with new products as compared to only modified products.

The paper is structured as follows: In section 2 the conceptual background, our ’new’ spillover

measure and the research hypotheses are presented. In section 3, the specification of the empirical

model and econometric issues are described. Section 4 describes the data that is used and section

5 presents the results. Section 6 summarizes and concludes.

2 Conceptual Background

2.1 Knowledge Spillovers: Concept and Measurement

2.1.1 Overview

A crucial aspect of innovative activity is the generation of knowledge, which to some extent has the

character of a public good. This gives rise to externalities (’spillovers’) that are a central theme in

the literature on innovation in industrial economics (see, e.g., Aghion and Jaravel 2015; Cohen and

Levinthal 1989; Geroski 1995; Griliches 1979; Spence 1984).

A general though rather simplistic way to address this externality problem is to assume the diffusion

of new private knowledge leading to a ’spillover pool of knowledge’ from which other economic

actors can draw information useful for their own innovative activities. A general formulation for the

spillovers as a (weighted) sum of the knowledge capital of a firm’s relevant technological environment

that gives rise to a knowledge pool is given by the following expression (see Griliches 1979, 1992):

SOi =
∑
j

wijKj ; i 6= j (2.1)

for focal firm i, where Kj is the patent-based knowledge capital of firm j belonging to the relevant
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economic environment of the focal firm i; wij is a weighting variable to be further specified.

On what should such a weighting variable be based? Broadly speaking, two distinct concepts

of knowledge spillovers have been applied in literature (see De La Potterie (1997) for a review).

According to the first one, spillover knowledge is related to flows of intermediate and/or capital

goods and is assumed to be proportional to the value of the stream of goods between firms/industries

(see, e.g., Wolff and Nadiri 1993). In the second concept, the weights in equation (2.1) are a measure

of scientific and technological ’distance’ among firms and industries (technological proximity; see,

e.g., Bloom et al. (2013); Jaffe (1986)) or of geographical distance (geographical proximity; see, e.g.,

Bloch (2013); Gust-Bardon et al. (2012)). Here, we focus on measures of technological proximity.

The well-known Jaffe technological proximity measure between all firm pairings in a certain sample

of enterprises takes the following form:

TECHij =
TiT

′
j

(TiT ′i )
1/2(TjT ′j)

1/2
; i 6= j (2.2)

where Ti and Tj are vectors containing the shares of patents of each firm in each technological field;

Ti = (Ti1, Ti2, , TiF ) for F distinct technological fields. The pool of technology spillovers of the focal

firm i in year t is proxied by what we call ’spillover measure’:

SPILL JAFFEi =
∑
j

TECHijKj ; i 6= j (2.3)

where Kj is the knowledge stock of firm j.

A major limitation of studies using this traditional measure is that they only focus on sample firms,

i.e., firm i and firm j must be necessarily in the same sample. Because the firm datasets very often

only comprise firms from one country (and in the most famous studies only firms from the US),

it is not possible to account for spillovers that might come from firms outside the focal country.

Although spillovers have been found to be localized (see, e.g., Jaffe et al. 1993), in a globalized

world it is most likely that there are still spillovers from foreign countries that are not negligible.
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2.1.2 A New Spillover Measure: Technological Relevance and Foreign Spillovers

In this paper, we both restrict and at the same time expand substantially the pool of firms from

which a focal firm in our sample can receive spillovers. As a result, we obtain a new measure

that might have advantages compared to the traditional Jaffe measure as it takes into account

technological relevance and foreign spillovers. The last point is especially interesting in the case

of Switzerland for which we have firm-level data. The position of Switzerland in the innovation

global landscape is quite strong and firms are acting globally. As a consequence, they are also

searching for knowledge globally. Especially for a small country, in-sample spillovers might neglect

a substantial part of incoming knowledge from foreign countries and/or from firms that are not

in the sample. ’Technologically relevant’ firms worldwide are defined as those firms whose patents

are cited in the focal Swiss firm’s patents (backward citations). We identified all firms that are

cited by Swiss firms in their patent applications to construct the sample of firms that build the

technologically relevant environment of a focal firm. We consider backward citations to be a good

proxy for the technological relevance of patents for the citing focal firm because it is likely that a

firm cites patents (or examiners assign citations to its patents; see section 3.3) from firms that are

active in similar industries, technological areas, etc.

Once we have identified the cited firms for each Swiss firm, we calculated the Jaffe proximity

measures for i = 1, ..., n sub-samples, where n is the number of Swiss patenting firms in our

sample. Each sub-sample contains 1 + ncited i firms where ncited i is the number of firms cited

by Swiss firm i. Each of these sub-samples defines the technologically relevant environment for

the respective focal firm. For the calculation of the spillover variable we use only the proximity

measures between the focal firm and the ncited i firms in sub-sample i. As compared with the Jaffe

measure the difference is that only those firms are taken into consideration for constructing the

spillover variable whose patents (more precisely: at least 1 patent) have been cited in the patents

of the focal firm (backward citations).1

1Actually, we calculated the Jaffe proximity measure for all firm pairings in each subsample, i.e., the focal firm
i and the ncited i cited firms in subsample i, and we eliminated the interactions between the cited firms ncited i

themselves as we did not need them for the construction of the spillover variable for the focal firms.
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2.2 Knowledge Spillovers and Innovation Performance

The relationship between knowledge spillovers and innovation performance is investigated in most

extant studies in the framework of a patent equation which approximates a knowledge production

function (see, e.g., Pakes and Griliches 1984) containing primarily R&D inputs and measures of

knowledge spillovers based on patent or R&D stocks. The main idea is that knowledge spillovers

may offer additional know-how to firms that are able to absorb such knowledge and combine it with

in-house generated knowledge. Cohen and Levinthal (1989, 1990) demonstrated that knowledge

spillovers can induce complementarities in R&D efforts and introduced the notion of absorptive

capacity as the precondition for a firm to be able to exploit such spillovers. Hence, given a certain

degree of absorptive capacity, the impact on innovation performance is expected to be positive in

general, eventually mitigated by appropriability and/or competition factors (see below).

A positive effect of the R&D-based spillover variable on the number of patents has been already

found in the seminal study of Jaffe (1986) for two cross-sections in 1973 and 1979 comprising 432

American firms. Peri (2005) also reported a positive impact of a patent-based spillover variable on

the number of patents of 147 US regions in the period 1975-1996. In a recent study, Bloom et al.

(2013) investigated the relationship between two patent-based technological spillover variables and

innovation output measured by the number of patents and found positive effects of spillovers on

patents for a panel of US firms for the period 1981-2001.

Furthermore, two European studies, one based on data for Italian firms and the second on data

for German firms, investigated the impact of R&D-based knowledge spillovers on measures of

innovation output other than patents. Cardamone (2010) examined the impact of technological

spillovers for a panel of 1,203 Italian firms over the period 1998-2003. The results showed that

the probability of introducing a product or process innovation is negatively correlated with

technological spillovers, contrary to the findings of most other studies. Jirjahn and Kraft (2011)

examined the effects of spillovers as measured by a binary variable for ’firm taking innovation ideas

from observing competitors’ on innovation output based on pooled data for 1022 manufacturing

firms in Lower Saxony covering the period 1995 and 1997. They found that spillovers have a

positive impact on the probability of introducing ’incremental’ innovations but no effect on the

probability of ’drastic’ innovations.
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Based on the above discussion of extant literature, we formulate the following hypothesis:

Hypothesis 1: There is a positive relationship between knowledge spillovers and innovation

performance.

2.3 Localization of Knowledge Spillovers

The main idea is that geographical (spatial) proximity enhances the ability of firms to recognize

and absorb external knowledge that is relevant for this firm’s innovation activities by reducing

the inherent uncertainty of identification of relevant knowledge (see, e.g., Audretsch and Feldman

1996). Of course, in a world in which geographically dispersed activities can be linked electronically,

the importance of geographic location as a factor of knowledge creation may seem irrelevant.

Nevertheless, many empirical studies confirm that geographical distance still plays a significant

role for the degree of knowledge diffusion. In particular, this is the case for the transfer of tacit

knowledge components (see, e.g., Gertler 2003). Empirical evidence on spatial proximity is often

based on patent citations by comparing the geographical location of patent citations with that of

the cited patents. Feldman and Kogler (2010) surveyed the relevant literature and they found that

most empirical studies confirm that knowledge spillovers are localized.

However, only geographical proximity may not be sufficient for the existence of knowledge

spillovers. As Feldman and Kogler (2010) emphasized, cognitive distance, proxied, for example,

by the Jaffe technological proximity measure, is a further important factor which could enhance

knowledge diffusion if the technological profiles are close enough to enable absorption and

implementation of external knowledge. However, if the technological profiles are too similar,

the generated spillovers may be of minimal added value and consequently would not positively

contribute to the innovation performance of the focal firm. As already stated in the seminal

paper of Jaffe et al. (1993), the disentanglement of the two effects is not easy if the focus is on

spatial proximity because ”there are other sources of agglomeration effects that could explain

the geographic concentration of technologically related activities without resort to localization of

knowledge spillovers” (p. 579).
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The main result of Jaffe et al. (1993) based on citations of patents that were granted by the US

patent office was that citations to domestic patents are more likely to be domestic and even more

likely to come from the same state as the cited patents. Localization fades over time but slowly.

In contrast, Li (2014) found that distance effects increase over time for the same age of citations;

otherwise, this study also supports the localization hypothesis.

In a further paper, Jaffe and Trajtenberg (1999) found based on citations of patents granted

by the US patent office to inventors in the US, the UK, France, Germany, and Japan with

respect to spatial distance that patents whose inventors reside in the same country are 30% to

80% more likely to cite each other than inventors from other countries. Hence, the spillover

localization tendency seems not only to occur in the US. The existence of localized spillovers has

been challenged by Thompson and Fox-Kean (2005) substantially from a methodological point

of view.2 In a recent study, Murata et al. (2014) found based on a new distance-based test solid

evidence supporting localization.

Further studies that support the localization hypothesis can be found in Peri (2005), based on

patent citations for 113 European and North American regions over 22 years, Maurseth and

Verspagen (2002), based on patent citations for European regions, and Fischer et al. (2009), based

on high-tech patent citations in Europe.

For our study we formulate the following hypothesis:

Hypothesis 2: Knowledge spillovers are stronger the smaller the geographic distance among

interacting firms is, other things being equal.

In the case of Switzerland, we thus expect that spillovers from firms in Switzerland will show a

stronger association with innovation performance than those from firms from other countries and

spillovers from firms in Europe a stronger association than those from firms from other more distant

regions.

2This has been the subject of the debate in the American Economic Review between Henderson et al. (2005) and
Thompson and Fox-Kean (2005).
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2.4 Knowledge Spillovers and Competition

Contrary to the extensive theoretical and empirical literature on the relationship between

competition and innovation performance (see, e.g., the seminal paper of Aghion et al. (2005),

research is silent about a possible moderating effect of competition on the innovation effect of

spillovers. Under the assumption that the amount of spillovers is directly and positively related

to the innovation performance of a firm, one could formulate the following hypothesis about the

moderating performance effect of competition: if a competitive situation generates a large amount

of spillovers then the expected performance effect is presumably high (positive) and if a competitive

situation generates few spillovers the expected performance effect is low (negative). However, even

in this respect the literature is not definite. In a survey of theoretical literature, De Bondt (1997)

refers indirectly to this non-linearity concluding as follows: ”In strategic investment [...] more

spillovers typically lower effort, unless other factors such as a not too competitive oligopoly (high

degree of product differentiation, small number of rivals) render the leakage effect small and then

the opposite tendency may apply” (p. 13).3

There are some investigations about the amount of spillovers generated in specific competitive

situations. Zirulia and Lacetera (2010) develop a model in which high knowledge spillovers lead

firms to soften incentives [of scientists for R&D] in order not to benefit competitors, but only

when product market competition is high; in contrast, high spillovers positively affect incentives

when competition is low, yielding a non-linear relationship between the degree of spillovers and

competition intensity.

With an agent-based simulation model, Wersching (2010) comes to the opposite results. He

discusses the two views of Schumpeterian competition and their implications for innovation

performance taking also knowledge spillovers into account. The simulation results show that a

technological regime with many competitors in the product market is compatible with strong

spillovers and in the case of only few competitors with weak spillovers. Given that the theoretical

discussion remains inconclusive, the issue of the influence of competition on the innovation effect

of knowledge spillovers has to be settled empirically. Thus, we are agnostic and formulate the

following three-part hypothesis:

3It has to be remarked that in this approach the appropriability aspect is not separated from the knowledge
aspect.
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Hypothesis 3a: Competition enhances the effect of knowledge spillovers on innovation perfor-

mance.

Hypothesis 3b: Competition reduces the effect of knowledge spillovers on innovation perfor-

mance.

Hypothesis 3c: Competition does not affect the effect of knowledge spillovers on innovation

performance.

3 Model Specification and Econometric Issues

3.1 Model Specification

The usual framework to study the impact of technological knowledge and knowledge spillovers on

innovation performance at the firm level is the knowledge production function which models the

relationship between innovation input and innovation output (see for a standard model Crépon

et al. (1998) and Cohen (2010) for a survey of this literature). We formulate this relationship as

a function between the sales of innovative products (LINNS) (that includes sales with new and

significantly modified products), i.e. a measure of innovation success, and the knowledge capital

(LK) as well as knowledge spillovers (LSPILL) that contribute to this success (see Ramani et al.

(2008) for a similar approach:

LINNSit = α0 + α1LKit−1 + α2LSPILLit−1 + α3Xit−1 + eit (3.1)

where

Xi = {Di; IPCi; INPCi;NCOMPi;APPRi;LEMPLi;HQUALi;FOREIGNi;

industry dummies; year dummies} ;

for firm i, year t. Thus, the total impact of knowledge on firm output is measured by (α1 + α2),
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the sum of the effects of a firm’s own knowledge capital and the knowledge obtained by spillovers

from enterprises of a firm’s technologically relevant economic environment. We control for demand

conditions (D), competition conditions (IPC; INPC; NCOMP), appropriability (APPR), the degree

of absorptive capacity that is proxied with the share of highly qualified employees (HQUAL), firm

size (LEMPL), foreign ownership (FOREIGN), industry affiliation and reference year (see Table A.1

for the exact definition of the variables). Controlling for appropriability and absorptive capacity is

particularly relevant in our approach of firms perceiving spillovers that are based on patent citations

as measures of technological linkages among firms. Competition conditions are measured by one

structural variable (number of main competitors in the relevant product market worldwide).

3.2 Econometric Issues

We estimate the reduced form in (3.1) with Generalized Least Squares (GLS). Standard errors are

heteroscedasticity robust. Reverse causality is not a concern in this setting since all covariates are

lagged by one period.4 Although we control for absorptive capacity and the existing knowledge

stock, we are not able to include all firm-specific factors that are relevant to enable a firm to absorb

spillovers from the technological environment, e.g., we do not observe management quality. In

additional estimations that are detailed in 5.4.2, the potential endogeneity of the spillover variable

(LSPILL) is addressed by using additional lagged levels and differences of the focal variable as

instruments. We have to note that in some of the empirical spillover literature, own knowledge

capital rather than the spillover variable is assumed to be endogenous (e.g., in Lychagin et al.

(2016)). We mainly follow Bloom et al. (2013) and focus on the spillover variable, but in Table B.4

we also present a specification where we treat both variables as endogenous.

4In fact, the covariates are lagged by three years. This is due to the survey data we use which is only available
for each third year, see next section.
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4 Data

4.1 Swiss Innovation Panel

The data stems from 6 waves of the Swiss Innovation Survey conducted by the KOF in the years

1996, 1999, 2002, 2005, and 2008.5 The surveys are based on a disproportionately stratified random

sample of firms with more than 5 employees (in full time equivalents) covering the industries of

the manufacturing, construction and (commercial) service sector. The sample stratification refers

to 2-digit industries and within each industry to three industry-specific firm size classes. The

investigation at hand only uses data for manufacturing firms with patent applications with 264,

316, 328, 332, and 304 observations for the years 1996, 1999, 2002, 2005 and 2008 respectively. The

resulting panel dataset is highly unbalanced. Due to missing values for model variables we end up

with 640 observations in the pooled version (see Table A.3 for the composition by industry, firm

size class and year of the sample used in the econometric estimations; Table A.2 for descriptive

statistics; and Table B.1 for the correlations between the model variables).

4.2 Patent Data

Annual information about patent applications comes from PATSTAT (EPO 2013) and the Derwent

World Patent Index (WPI) by Thomson Reuters.6 Based on the number of patent applications, we

calculated patent stocks as proxies for knowledge stocks for each firm and year using the perpetual

inventory method and a depreciation rate of 15% (see Hall et al. 2010):

Kit = (1− d)Kit−1 +Rit (4.1)

5The questionnaire of the survey, which resembles closely the ”Community Innovation Survey”, is available at
www.kof.ethz.ch in German, Italian, and French. In the estimations, we use three-year lags for all variables except
for the dependent variable that comes from the 2011 survey.

6We conducted several rounds of names matching: First, we used all patent applicants from Swiss applicants from
WPI between 1990 and 2010, cleaned the applicants’ names and firm names, and matched the cleaned applicants’
names with firm names from the Innovation Survey automatically with a matching software. Afterwards, we checked
the results manually. We also searched each firm name from the panel in ESPACENET and PATSTAT to get as
many as possible patent applications. At the end, all matched patent applications we found were compiled in one
dataset and checked once again. For the analysis here, we use patent families rather than single applications. Families
comprise multiple applications of the same invention in different countries. Thus, they better reflect inventions than
single patent applications (Mart́ınez 2011; OECD 2009).
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where Kit is the patent capital of firm i in t, d the depreciation rate, and Rit new patent applications

in t. The initial value is calculated as follows:

Ki0 = Ri0/(d+ g) (4.2)

The growth rate g is calculated from the 10-year average growth rate at 2-digit industry level for

patent applications before 1990.7 Table A.4 shows the calculated average patent capital by industry,

firm size class and year. Chemicals, machinery and electronics/instruments are the industries with

the largest patent stocks reflecting their high level of patenting activities.

The patent data also entails information about the technological fields (IPC code) at different

levels of aggregation. We use the subclass level with four digits (for further explanations, see

WIPO (2014)) yielding 617 subclasses for the calculation of the Jaffe measure of technological

proximity (see equations (2.2) and (2.3) in section 2).

4.3 The EEE-PPAT Tables with Names of Applicants

We identified all cited firms with the EEE-PPAT table that contains cleaned and harmonized names

of applicants.8 First, we searched for patent applications that are cited by patents assigned to a

Swiss applicant. These patent applications were matched with the ’person’ table from PATSTAT

and then matched with names and IDs from the EEE-PPAT table. In sum, we found 125,449 distinct

firms that are cited by Swiss firms from our sample (including self-citations). The distribution of

the number of cited firms is quite skew. In fact, 10% of the firms account for about 75% of all

backward links. 50% of the firms have less than 31 backward links, whereas 1% of the firms have

more than 2,460 links.

In the next step, we collected all patent applications for each cited firm in PATSTAT. This enabled

us to calculate the patent stocks of cited firms in the same way we did it for the Swiss firms using

7The reason for using industry-level information is that we did not match older patent applications before 1990.
The sector assignment of patent applications necessitated the use of concordance tables, in our case that by Lybbert
and Zolas (2014).

8See Du Plessis et al. (2009); Magerman et al. (2009); Peeters et al. (2009) for a description of the harmonization
routines.
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the perpetual inventory method.9 We also assigned technological fields at subclass level to each

patent application starting from the year 1995. We ended up with N datasets for the N sub-samples

described above. For each sub-sample, we calculated the firms’ share of patents in the underlying

subclasses (pooled over all years). Each dataset has F × (1 + ncited i) observations. Finally, we

calculated the spillover measures using a programming loop over all datasets. The final measures

for the Swiss firms were then assigned to the firm IDs in the innovation survey.

4.4 Spillover Variables for Different Regions

Based on formula (2.2), we first calculated the spillover measure that takes into account all backward

citation links (see Table A.5 for the average number of backward citations of Swiss firms by industry

and by firm size class; Chemicals, Machinery, Electrical Machinery and Electronics/Instruments,

which are the most innovative industries, show the highest number of citations). In a further step,

we looked at different geographical areas separately, i.e., we calculated the measure only based on

cited firms that belong to certain regions as identified by the person country codes of the patent

applicants. As main regions of interest, we chose Switzerland (as home-base), ’Europe’ (i.e., all

European countries except for Switzerland), the United States and Japan. The United States and

Japan are chosen because of their economic and technological importance and because of their

importance as patentees that makes them a potential technological source. For each region r, we

get i = 1, ..., n sub-samples with 1 + ncited i r firms where ncited i r is the number of firms in region

r cited by Swiss firm i (see Table A.4 for the calculated average patent capital of the cited firms

by regions).

For comparison, we also calculated the spillover measure in the usual way where we only take into

account Swiss applicants irrespective of whether they are cited or not (formula (2.3)).10

9As we can directly query the EEE-PPAT IDs in PATSTAT, we were able to retrieve patent applications up to
1971.

10However, in contrast to the ’traditional approach’, we take into account all Swiss applicants and not solely Swiss
applicants that are part of the sample.
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4.5 Self-citations

From formulas (2.1) to (2.3), it is immediately clear that backward links that are based on self-

citations must be excluded. Otherwise, our measure would not measure incoming external knowl-

edge spillovers properly. More severely, the knowledge capital of a focal firm would enter the

right-hand side of the regressions twice: First, as a focal firm’s knowledge stock and, second, as

weighted external knowledge stock through the spillover measure.

Excluding self-citations is involved because we have to deal with datasets with different firm iden-

tifiers: The survey data uses other identifiers than the EEE-PPAT table. Therefore, we cannot

simply match the two data sources based on firm IDs. However, we can identify ’matching’ firms

in the respective datasets based on the patent applications they have in common. Concretely, we

used all backward citations we could find for the Swiss firms (citing firms) and matched both the

cited and citing patent applications with IDs from the EEE-PPAT table. Afterwards, we deleted

all backward links where the cited patent applicant and the citing patent applicant have the same

firm from the EEE-PPAT table in common in order to eliminate systematically all links between

entities that might belong to the same company or are in any kind of judicial relationship.11 The

number of backward links then drops to 122,629.

4.6 Potential Biases and Problems with Patent Data

In the European patent system, most of the citations are added by patent examiners rather than by

applicants or inventors (see Criscuolo and Verspagen 2008). Nevertheless, many authors use citation

counts as – perhaps noisy – proxies for knowledge flows. Schoenmakers and Duysters (2010) argue

that inventors might not bother to include a citation and that they might simply forget to include

a citation, or even deliberately not include a citation for strategic reasons. Overall, they conclude

that particularly with respect to the European Patent Office also non-inventor citations might in-

dicate knowledge flows very well. Duguet and MacGarvie (2005) analyzed to what extent survey

responses to the French innovation survey on R&D outsourcing, external R&D, cooperative R&D

and other technology sources can predict backward and forward citations. They found support for

11This might apply to some foreign subsidiaries.
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the claim that patent citations are associated with technology flows as identified from the survey

questions for some, but not all, channels. In contrast to citations that refer to economies that are

more integrated with the French economy, citations to US inventors are associated with technology

acquisition through more indirect means such as equipment purchases. Roach and Cohen (2013)

did a similar exercise for knowledge flows from US research institutes to firms and found that ci-

tations reflect knowledge flows through channels of ’open science’, but not through contract-based

relationships.

In this paper, we assume that examiners add citations that reflect their expert opinion covering

existing patented knowledge on the topic in question. We do not see any reason why applicants

should not also have perceived the same knowledge as examiners, even if they have not reported

it in their applications. Consequently, we assume that citations (including examiners’ additional

citations) can be at least used to identify firms that are relevant for a focal firm from a technological

point of view.12 In additional estimates, we investigated the influence of examiner citations on the

robustness of our results. Using only citations that were added by applicants does not considerably

change the elasticity of the spillover variable for all regions (0.099 versus 0.093, see Table B.2 and

the discussion in section 5.4.1). Thus, our estimates are quite robust with respect to the distinction

between citations that were added by the examiner or the applicant or solely by the applicant.

Our results might be confronted with some other potential biases that arise from different aspects

of the underlying data and the patent system. The latter are discussed in De Rassenfosse et al.

(2013) and Bacchiocchi and Montobbio (2010). First, results might be subject to an institutional

bias when patents are used that are from countries with different patent systems. However, this

problem can be mitigated by using patent families as we did.13 Second, there might be a geographic

bias as applicants tend to file in their home patent offices and examiners tend to cite patents from

their home offices. However, we reduce the possibility of this bias by avoiding looking at single

patent offices. De Rassenfosse et al. (2013) found that small countries such as Belgium, the Nether-

lands, and Switzerland first file their patents at the European Patent Office. Thus, this kind of

bias can be avoided in case of European cited firms. Problems might arise, if, for example, a US

firm only applies in the US but not in Europe and the respective patent is not cited by a Swiss

12We do not attempt to capture knowledge flows with backward citations in this paper.
13In fact, we use families for both ’cited’ and ’citing’ patents.
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firm only because it is not applied for in Europe. We assume that ’technologically relevant’ patents

are mostly filed also at the European Patent Office (as the most important patent offices beneath

the USPTO and the JPO) even if the applicant is from the US.14 Moreover, patent families that

comprise a large number of patents that have been applied for internationally are more valuable

(Harhoff et al. 2003). Therefore, relevant patent families should comprise patent applications in

multiple geographical jurisdictions. A final argument against a geographical bias is that we only

look at backward citation links and not at the number of backward citations. Once a foreign firm

has received one backward citation, it is taken into account in our analysis.15

A further bias might arise from including backward citations to patents that were applied for or

granted a long time ago. However, we argue that we are not interested in the cited invention per

se, but rather in the general technological relevance of the cited firm. If a patent cites an invention

that was made a long time ago, the cited invention or at least the firm behind it should still possess

technological characteristics that could make it a potential spillover source otherwise it would not

have been cited by the focus firm.

There might be also concerns that our results are driven by firm size and the Chemical and Phar-

maceutical industry (the largest firms with the largest number of patent applications can be found

here). However, inclusion of these firms is essential as they might be important spillover sources for

smaller firms in Switzerland and their knowledge capital might affect the innovation performance

of other firms through our spillover measure.16

5 Results

5.1 Basic Model and Comparison of Spillover Measures

Columns 2 and 5 in Table A.6 show the estimates for the basic model for LINNS based on the

spillover variables LSPILL and LSPILL CH according to equation (2.3). LSPILL is based on all

14A large number of the cited firms are US firms, namely 39,437 compared 32,778 European firms. We also want to
emphasize that a home bias with respect to USPTO citations (the citation practices are different from the European
patent system) does not matter as we only look at citations Swiss firms made rather than citations US firms made.

15In Table B.2, columns 5 and 6, we show estimates when the spillover measure is additionally weighted with the
share of backward citations.

16In the regressions, we control for firm size that is strongly correlated with the number of backward citations and
the number of patents.
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backward links, whereas LSPILL CH only refers to cited Swiss firms. Both the elasticity of the

knowledge capital and the spillover variables are positive and statistically significant (columns 2 and

5). For SPILL CH, an increase by 1% of a firm’s knowledge capital is associated with an increase

by 0.123% of the sales of innovative products. The respective elasticity for the spillover variable

is 0.099 (0.094 for LSPILL). Thus, the joint effect of own and spillover patent capital amounts to

0.222 (0.223 for LSPILL), i.e. a change of 1% of the joint knowledge capital is related to a change

of 0.222% of innovative sales.17 The positive sign of the spillover variable confirms hypothesis 1.

We compare the estimates for the new citation-based measure referring to cited Swiss firms

(LSPILL CH) with the estimates for a standard Jaffe spillover variable based on patent stocks

of all Swiss firms with patents (LSPILL ALL; Table A.6, column 1), irrespective of whether they

are cited or not. The coefficient of the spillover variable is 0.053, i.e., much smaller than that for

the new measure, and statistically significant at the 10% test level. We interpret this result as

evidence that the new spillover variable identifies more relevant external knowledge as shown by a

substantial larger contribution (larger elasticity) of spillovers to a firm’s innovation success. Hence,

the better performance of the new measure is presumably due to the identification of firms that are

really technologically relevant for the focal firm as identified with backward citation links reflecting

links to external knowledge that the focal firm anticipated when generating its inventions.

Further variables that show as expected positive and statistically significant coefficients at the

usual test levels are the measure for absorptive capacity (HQUAL) and the measure for firm size

(LEMPL). The coefficient of the appropriability variable (APPR), a further relevant control vari-

able, is positive but not significant for LINNS.

In columns 3 and 4 and 6 and 7, respectively, we investigate the new spillover variables for the sales

with ’new’ (LINNS N) and ’significantly modified’ (LINNS M) products separately. This distinction

captures more radical vs. more incremental innovations. The results show that spillover-related

patent capital is significantly more important for modified products than for new products. The

elasticity is 0.113 for LINNS M as compared to 0.056 for LINNS N for spillovers from cited Swiss

firms and 0.098 versus 0.073 for spillovers from all cited firms worldwide. Moreover, own patent

capital is insignificant for modified products, but highly significant for new products. This indicates

17In a recent study based on data for several OECD countries for the period 1974-2002, Acharya (2015) estimated
an average elasticity of intra-industry R&D spillovers (with respect to labor productivity) of 0.071, which is of the
same magnitude as our estimates at firm level.
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that incremental innovation success is more dependent on external knowledge (’open innovation’),

whereas radical innovation success is more related to exploitation of own knowledge resources.

Indeed, APPR shows a positive and significant coefficient for the sales with new products, thus

supporting this presumption.18

5.2 Basic Model and Competition Effects

Table A.7, columns 1 to 3 shows the estimates of the basic model expanded by the interaction

term between the overall spillover variable LSPILL and the competition variable NCOMP that

measures the number of principal competitors on the main product market. The coefficient of

NCOMP becomes significantly positive in the estimates for LINNS N and remains insignificant for

LINNS M. The coefficient of the interaction term is negative and statistically significant at the

usual test level. This means that the effect of spillovers on the commercial success of innovations

is significantly lower in markets with a larger number of competitors. This negative effect can be

traced back primarily to sales with new products (see column 2) and is a hint in favor of Hypoth-

esis 3b. Obviously, more competition on the product market increases the need to innovate more

radically, but reduces the contribution of spillovers to innovation success with new products. In

face of stronger competition, radical innovators might also be careful that own knowledge does not

leak out to rivals; this explains the positive sign of the appropriability variable in the estimates for

LINNS N.

In columns 4 to 6, we specify the competition effect in an alternative way by interacting the spillover

variable with a dummy variable that takes on value 1 if the number of competitors is larger than

15, this being the cut-off value from where on competition matters (see the significantly positive

coefficient of the dummy variable NCOMP>15 in columns 4 and 6). The negative and statistically

significant coefficient of the interaction term confirms the previous results and shows that increas-

ing the number of competitors above 15 decreases the spillover effect on innovation performance.

Again, this result can be primarily traced back to innovation success with new products. These

results support Hypothesis 3b with respect to the number of competitors as a measure of market

18Our results are in line with Jirjahn and Kraft (2011) who have found that spillovers do not stimulate drastic
innovations, although they solely rely on survey data and the dependent variable and spillover variable are therefore
specified differently.
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concentration.

There are two possible interpretations of the finding that the effect of spillovers is weakened when

firms are operating in markets with many competitors (polypolistic markets). One possible ex-

planation for this result refers to the size of the knowledge capital stock of the cited firms.19 In

polypolistic markets, firms lack the financial means for comprehensive investments in R&D and con-

sequently, knowledge advancements are weaker and the average knowledge capital stock is likely

to be lower than in markets with less competitors. Hence, fewer spillovers are generated and their

effect on innovation performance is lower. In markets with few R&D active competitors, the firms

knowledge stocks are likely to be higher on average, hence, more spillovers are generated and their

effect on innovation performance is expected to be larger. The second interpretation refers to a

kind of ’business-stealing effect’ as described in Bloom et al. (2013) and is more related to the total

knowledge stock in a market – that is increased by a larger number of R&D active firms – rather

than the average knowledge stock: Firms benefit from competition on the technological market

if the social benefits arising from R&D spillovers exceed the costs of knowledge leakage, but they

suffer from competition on the product market at the same time so that the compound effect of

competition and spillovers on performance measures is negative.

On the whole, it appears that knowledge spillovers contribute disproportionately stronger to in-

novation success in more concentrated markets for a given level of appropriability and absorptive

capacity. This is particularly the case when innovating firms pursue strategies of high degree of

innovativeness.

5.3 Regional Effects

As already described, we calculated separate spillover variables based on backward citation links

to Swiss firms only (LSPILL CH), to European firms (LSPILL EU), US firms (LSPILL US) and

Japanese firms (LSPILL JP), respectively. We inserted all four regional spillover variables in the

LINNS equation and estimated the model once again (Table A.8, column 1). In a further step, we

inserted the four regional spillover variables separately in the innovation equation and estimated

19However, the spillover measure also includes the technological proximity measure, which is multiplied with the
size of the knowledge capital stock. The proposed explanation only refers to the knowledge capital stock. More
in-depth analysis would be necessary to include the proximity measure into the explanation of the observed facts.
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four different models (columns 2 to 5). The estimates with all four spillover variables show that only

the coefficient of the spillover variable from other Swiss firms is positive and statistically significant.

Thus, the overall spillover effect can be traced back mainly to spillovers from other Swiss firms,

the geographically nearest economic environment of a Swiss enterprise. The separate estimates for

each regional variable confirm this finding and yield the additional insight that European firms

also contribute to knowledge spillovers of Swiss firms, but to a smaller extent than Swiss firms

(0.063; column 3). The coefficients of the spillovers from US and Japanese firms are negative and

statistically insignificant.20 These results support Hypothesis 2 and they are in accordance with the

findings of recent studies for the US (Li (2014); based on citations for the period 1980-1997) and six

large industrial countries for the period 1980-2000 (Malerba et al. 2013). Although American and

Japanese firms possess of quite large patent stocks on average, spillovers from these stocks result in

smaller effects than the much smaller stocks of Swiss and European firms. A possible explanation

is a large technological distance between Swiss firms and firms from USA and Japan. Hence, the

regional effect might be strengthened by the technological proximity effect.

5.4 Robustness Tests and Further Estimations

5.4.1 Robustness of the Spillover Effect

We conducted three robustness tests with respect to the effects of the spillover variable and the

competition effects. The tests refer to (a) the exclusion of examiner citations, (b) the exclusion of

non-profit organisations, and (c) the consideration of weights for the backward citations. Table

B.2 (columns 1 and 2) shows results where we only include links based on citations made by

applicants and exclude citations added by examiners. The results are robust. The EEE-PPAT

table contains sector affiliations of the patent applicants. It has to be mentioned that not all

patent applicants are private firms although they are by far the majority.21 In columns 3 and

4, we consider only spillovers from profit-oriented firms (other institutions were excluded before

calculating the proximity measures). Again, the results are robust.

20A distinction between new and modified products did not yield any further insights. Therefore, results are not
shown here.

21We can detect 118,373 private firms, 5,551 non-profit organizations, and 1,598 universities that were cited by
Swiss applicants. Individuals can also apply for patents, but they were excluded from the analysis from the beginning.
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In columns 5 and 6, the spillover measure is weighted with the share of backward citations (i.e.,

the number of backward citations that occur between a Swiss firm and a cited firm relative to

the total number of backward citations a Swiss firm made). Obviously, the relative number of

backward citations has an influence on the magnitude of the effect of spillovers (as measured in

this study) on innovation performance. The elasticity of the spillover measure becomes larger,

but remains in the same range of magnitude. Thus, our findings without weighting are rather

conservative, the elasticities of the spillover measures displaying a kind of lower bound. With

respect to the competition effect, the interaction effect with competition is supported in the case

of (a) and (b) (see column 2 and 4) but not in (c) (column 6).

5.4.2 Robustness of the Econometric Specification

In further estimations, we check the robustness of our results with respect to different econometric

models and the possible endogeneity of model variables. Wooldridge (2010, pp. 70) considers

simple proxy variable solutions in order to eliminate omitted variable bias. He uses the lagged

dependent variable in order to proxy for unobserved heterogeneity. However, this procedure is

only valid in the cross-section (provided that that one lag of the dependent variable is available).

We therefore eliminate the time dimension from our data, introduce the lagged dependent variable

LINNSi,−1 (all independent variables were lagged before eliminating the time dimension) and

estimate Ordinary Least Squares. We assume that the unobserved heterogeneity qi can be

approximated by the lagged dependent variable. This means that:

qi = β0 + β1LINNSi,−1 + ui (5.1)

We assume that ui has zero mean and we are confident that ui is not significantly correlated with

the spillover variable LSPILLi,−1 and the proxy for competition in equation (3.1), which are the

main variables of interest.22 If this holds then α3 and the coefficient of the competition variable

22The relationship we are interested in can be formulated by LINNSi = γ0 + γ1qi + γ2LKi,−1 + γ3LSPILLi,−1 +
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NCOMP−1 in equation (3.1) are unbiased and measure the effect of spillovers and competition

on the innovation performance of firms in the cross-section. Why do we think that u is uncorre-

lated [Cov(LSPILL, u) = 0 and Cov(NCOMP, u) = 0]? Given our comprehensive control vector

including the lagged dependent variable it is hard to think of lacking important information that

is strongly correlated with spillovers and/or the number of principal competitors. Of course the

lagged dependent variable is endogenous, however, since we are not interested in the marginal effect

of this variable, this is of no concern to the empirical estimation strategy described here. Although

the spillover effect decreases by about 21% (see Table B.3), it is still highly significant and the

results are robust even when accounting for unobserved heterogeneity in this simple way.

In addition, Table B.4 shows Blundell-Bond estimates that are panel-consistent dynamic GMM esti-

mates also including the lagged dependent variable as regressor (Arenallo and Bover 1995; Blundell

and Bond 1998).23 The estimator uses further lags and lagged differences of LINNSi,t−1 as instru-

ments in a differenced equation and in a level equation, respectively. Additionally, we account for

potential endogeneity of LSPILL by introducing the lagged difference and the lags LSPILLi,t−2

and LSPILLi,t−3 as instruments in the system estimation (column 2). In column 3, we also include

instruments for LK in the same way.24 At the bottom of the table, we report the Sargan test statis-

tics and tests on zero autocorrelation. The Sargan test on valid overidentifying restrictions cannot

be rejected for the specifications in column (2) and (3). The tests on zero autocorrelation show

that the errors are serially uncorrelated as we cannot reject at order 2. Although prior innovation

success does not show any statistically significant association with current innovation success once

we account for endogeneity of prior innovation success, the spillover effect remains highly significant

which supports our baseline results.

Interestingly, in the additional estimations we provide in Table B.3, the coefficient of patent capital

is most often insignificant - quite in contrast to our baseline results. Lychagin et al. (2016) also

get insignificant coefficients for own knowledge capital in some specifications when accounting for

γ4Xi,−1 + εi.
23The Blundell-Bond estimates turn out to be more efficient in our case than the Arenallo-Bond estimates (Arellano

and Bond 1991; Blundell and Bond 1998). The method is similar to the one applied in Lychagin et al. (2016) (see Table
VI in their paper) although they treat only own knowledge capital and lagged productivity (their lagged dependent
variable) as endogenous.

24We do not lag the independent variables that we include in the regressions from the outset as in the baseline
models. The reason is that the estimator uses lags and lagged differences for the endogenous variables and that we
have to reject the test on joint significance of regressors when using lagged regressors from the outset in this model.
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spillovers. Although not explicitly discussed in literature so far, this might point to simultaneous

relationships between knowledge capital and knowledge spillovers and might indicate the need to es-

timate a simultaneous equation model, e.g., a GMM Three-Stage Least Squares model as described

in Wooldridge (2010).25

6 Summary and Conclusions

In this paper, we contribute to literature in three ways: First, we examine the impact of knowledge

spillovers as measured by a patent-based proximity measure on innovation success. Second, we pro-

pose a new measure that extends the traditional Jaffe spillover measure; it uses backward citation

links to identify the firms to which a focal firm is technologically exposed. Third, we investigate

the performance effects of spillovers in markets with different degrees of competition.

Based on a comprehensive data set comprising firm-level survey information for a representative

panel of Swiss firms and patent information for all firms worldwide with patents that have been

cited by Swiss firms, we found that (a) the proposed new spillover measure shows a positive and

significant effect of knowledge spillovers on innovation success as measured by the sales share of in-

novative products; (b) spillovers are more important for innovation success with modified products

(incremental innovations) as compared to new products (radical innovations), while a firm’s own

patent capital is more important for success with new products than with modified products; (c)

the knowledge spillovers are localized and concentrated primarily in Switzerland and to a smaller

extent in Europe; and (d) market competition is important for the innovation effects of spillovers,

but only with respect to radical innovation success.

With respect to competition, we found that firms in markets with many competitors do not ben-

efit from spillovers, while firms in markets with few competitors (less than 15) benefit more from

spillovers, but only with respect to firms that innovate with new products. This result indicates

that spillovers are more important for Swiss firms that operate in niche markets (e.g., measuring

instruments) or in typical R&D intensive, oligopolistic markets (e.g., pharmaceuticals). It reflects

25More concretely, spillovers might affect LINNS mainly through knowledge capital as external knowledge might
be absorbed into own knowledge so that the own knowledge stock increases which affects the sales with innovations
positively. Preliminary results, not shown here, seem to support the presumption that knowledge capital that affects
innovation success is partly determined by spillovers, but a more detailed analysis is left for future research.
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exactly the innovation strategy of many Swiss firms as it is investigated and discussed in previous

studies (see, e.g., Arvanitis 1997; Arvanitis and Hollenstein 1996). However, with respect to the

direct spillover effect, firms with a higher level of innovativeness draw on own accumulated knowl-

edge to a larger extent than on external knowledge from spillovers and try to prevent knowledge

leakage to rivals.

From a theoretical point of view, a possible mechanism for explaining our finding is as follows:

intensive competition as indicated by the presence of many principal competitors might reduce the

financial opportunities to invest in R&D. As internal R&D contributes to the absorptive capacity

that is needed for the exploitation of external knowledge, the lack of R&D investments tends to

reduce the performance effects of spillovers.

It is a limitation of this study that we only consider spillovers from patenting firms. If firms do

not patent their inventions, they might chose other means of knowledge protection, such as secrecy,

first-mover advantages, etc. It is likely that, for example, ’secrecy’ leads to lower knowledge exter-

nalities, but the extent of spillovers from other strategic appropriability mechanisms is unknown.

Cohen et al. (2002) suggest that R&D spillovers are significantly greater in industries and countries

where appropriability is low, notwithstanding the relative effectiveness of particular mechanisms.

Future investigations could shed light on the spillover effects of different appropriability mecha-

nisms, but they are not subject of the present study. A further limitation is that it refers to one

country only. The matching of firm survey data with patent data for several countries with differ-

ent technological profiles would enable researchers to test the citation-based spillover measure on

a wider basis and gain additional insights with respect to the role of knowledge spillovers in the

innovation process.

Finally, a limitation may lie in the measurement of the numbers of competitors that is a rather crude

measure from the survey that applies to the overall competitive environment. A refinement, e.g.,

by looking at the number of competitors in different technological classes could lead to more fine-

grained results. With respect to the interaction effect that we find for spillovers and competition,

a theoretical model would clearly help to understand the mechanisms from a conceptual point of

view. This paper is a first attempt to understand the mechanisms between competition, spillovers,

own existing knowledge and innovation success from an empirical point of view. Further progress in

this area might depend on finding suitable instruments for spillovers and on further disentangling
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the relationships between the focal variables applying appropriate econometric methods.
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A Tables



Table A.1: Description of variables

Variables Definition
LINNS Sales of innovative (new + significantly modified) products; nat-

ural logarithm
LINNS N Sales of innovative products that are new; natural logarithm
LINNS M Sales of innovative products that are significantly modified; natu-

ral logarithm
D Expected demand at the product market; five-level ordinal vari-

able (1: very weak demand development; 5: very strong demand
development)

NCOMP Number of competitors at the main product market; five-level
ordinal variable (1: up to 5 competitors; 2: 6 to 10; 3: 11-15; 4:
16-50; 5: > 50)

APPR Easiness of copying innovations; five-level ordinal variable (-1:
very weak copy easiness; -5: very strong easiness)

LEMPL Number of employees in full time equivalents; natural logarithm
HQUAL Share of employees with tertiary level education
FOREIGN Foreign-owned; binary variable: 1: yes; 0: no
LK Knowledge capital based on patents; natural logarithm
LSPILL ALL Knowledge spillover based on interaction with all Swiss applicants

that have at least 1 patent (see section 2); natural logarithm
LSPILL Knowledge spillover based on interaction with all applicants whose

patents have been cited by the focus firms (backward citations);
natural logarithm

LSPILL*NCOMP Interaction term of LSPILL with NCOMP
LSPILL CH LSPILL based on backward citations only of Swiss applicants;

natural logarithm
LSPILL EU LSPILL based on backward citations only of European applicants;

natural logarithm
LSPILL US LSPILL based on backward citations only of US applicants; nat-

ural logarithm
LSPILL JP LSPILL based on backward citations only of Japanese applicants;

natural logarithm
LSPILL APP LSPILL based on backward citations filed by the applicant (ex-

cluding those added by examiners); natural logarithm
LSPILL FIRMS LSPILL based on backward citations only of applicants that are

private corporations; natural logarithm
LSPILL BACK LSPILL based on backward citations, weighted with the share of

backward links cited by a firm; natural logarithm
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Table A.2: Descriptives

Variable Mean Std. Dev. Min Max

LINNSt 16.698 1.678 10.597 22.585
Dt−1 3.491 0.811 1 5
NCOMPt−1 2.17 1.183 1 5
LEMPLt−1 5.218 1.309 0.693 9.952
HQUALt−1 22.878 15.549 0 86
FOREIGNt−1 0.236 0.425 0 1
APPRt−1 -2.459 1.093 -5 -1
LKt−1 2.152 1.063 0.462 7.429
LSPILL 3.773 2.187 0 8.327
LSPILL CHt−1 2.157 2.141 0 7.844
LSPILL EUt−1 1.895 2.475 0 8.104
LSPILL USt−1 0.957 2.249 0 8.388
LSPILL JPt−1 0.327 1.45 0 8.414
LSPILL APPt−1 3.735 2.257 0 8.64
LSPILL FIRMSt−1 3.697 2.192 0 8.236
LSPILL BACKt−1 0.986 0.882 0 5.037
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Table A.3: Composition of the dataset by industry, firm size class and year (number of firms)

Industry N in %

Food, beverage 12 1.9
Textiles 12 1.9
Clothing. Leather 1 0.2
Wood processing 9 1.4
Paper 10 1.6
Printing 10 1.6
Chemicals 50 7.8
Plastics, rubber 27 4.2
Glass, stone, clay 17 2.7
Metal 12 1.9
Metal working 46 7.2
Machinery 194 30.3
Electrical machinery 66 10.3
Electronics, instruments 130 20.3
Vehicles 14 2.2
Watches 9 1.4
Other manufacturing 21 3.3

Firm size

Small (5-49) 135 21.1
Medium-sized (50-249) 342 53.4
Large (> 250) 163 25.5

Year

1999 74 11.6
2002 120 18.8
2005 136 21.2
2008 156 24.3
2011 154 24.1

Total 640 100
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Table A.4: Patent capital per firm by industry and firm size class

Industry

Food, beverage 55.81
Textiles 7.83
Clothing. Leather 6.12
Wood processing 2.02
Paper 5.58
Printing 2.94
Chemicals 104.29
Plastics, rubber 6.72
Glass, stone, clay 6.21
Metal 8.75
Metal working 6.24
Machinery 20.85
Electrical machinery 66.14
Electronics, instruments 22.56
Vehicles 5.21
Watches 4.04
Other manufacturing 3.42

Firm size

Small (5-49) 3.80
Medium-sized (50-249) 11.63
Large (> 250) 85.20

Total 28.66
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Table A.5: Number of backward citations per firm of Swiss firms by industry and firm size class

Industry

Food, beverage 58.43
Textiles 5.57
Clothing. Leather 3.90
Wood processing 0.33
Paper 1.80
Printing 3.74
Chemicals 100.86
Plastics, rubber 6.96
Glass, stone, clay 5.47
Metal 3.58
Metal working 3.38
Machinery 12.84
Electrical machinery 40.53
Electronics, instruments 19.47
Vehicles 7.81
Watches 4.85
Other manufacturing 2.28

Firm size

Small (5-49) 4.58
Medium-sized (50-249) 6.92
Large (> 250) 55.76
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Table A.6: Basic Model: Comparison of Two Different Measures of Knowledge Spillovers, GLS
Random Effects Estimates

(1) (2) (3) (4) (5) (6) (7)
LINNSt LINNSt LINNS Nt LINNS Mt LINNSt LINNS Nt LINNS Mt

Dt−1 0.064 0.056 0.126** 0.061 0.058 0.127** 0.063
(0.046) (0.047) (0.052) (0.045) (0.047) (0.052) (0.045)

NCOMPt−1 -0.010 -0.012 0.019 -0.003 -0.011 0.020 -0.003
(0.030) (0.030) (0.032) (0.032) (0.030) (0.032) (0.031)

LEMPLt−1 0.964*** 0.911*** 0.889*** 0.061 0.903*** 0.881*** 0.920***
(0.039) (0.042) (0.045) (0.045) (0.042) (0.046) (0.050)

HQUALt−1 0.010*** 0.009*** 0.006* 0.009*** 0.009*** 0.006* 0.010***
(0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003)

FOREIGNt−1 0.188** 0.184** 0.223** 0.258*** 0.200** 0.232** 0.271***
(0.093) (0.093) (0.100) (0.095) (0.091) (0.099) (0.096)

APPRt−1 0.022 0.018 0.065* -0.019 0.018 0.065* -0.018
(0.032) (0.032) (0.035) (0.036) (0.032) (0.035) (0.036)

LKt−1 0.128*** 0.123*** 0.182*** 0.069 0.129*** 0.184*** 0.080
(0.037) (0.048) (0.053) (0.051) (0.046) (0.051) (0.049)

LSPILL ALLt−1 0.053*
(0.030)

LSPILL CHt−1 0.099*** 0.071** 0.113***
(0.028) (0.031) (0.029)

LSPILLt−1 0.094*** 0.073*** 0.098***
(0.028) (0.028) (0.029)

Industry dummies (15) Yes Yes Yes Yes Yes Yes
Year dummies (4) Yes Yes Yes Yes Yes Yes
Const. 10.448*** 10.855*** 10.364*** 9.904*** 10.752*** 10.286*** 9.765***

(0.376) (0.375) (0.363) (0.387) (0.362) (0.355) (0.372)
N 701 696 653 628 696 653 628
Wald chi2 1495.97*** 1555.93*** 1314.47*** 1318.99*** 1562.36*** 1286.87*** 1300.46***
R2 overall 0.72 0.73 0.69 0.73 0.73 0.69 0.72
R2 between 0.75 0.75 0.72 0.75 0.75 0.72 0.75
R2 within 0.05 0.05 0.06 0.03 0.05 0.06 0.03
Rho 0.44 0.42 0.46 0.34 0.42 0.46 0.35

*,** and *** denote significance on the levels 10%, 5% and 1%, respectively.
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Table A.7: GLS Random Effects Estimates; Competition Effects

(1) (2) (3) (4) (5) (6)
LINNSt LINNS Nt LINNS Mt LINNSt LINNS Nt LINNS Mt

Dt−1 0.062 0.132** 0.066 0.049 0.117** 0.062
(0.047) (0.052) (0.045) (0.047) (0.052) (0.045)

LEMPLt−1 0.908*** 0.887*** 0.924*** 0.906*** 0.883*** 0.924***
(0.042) (0.046) (0.050) (0.042) (0.046) (0.050)

HQUALt−1 0.009*** 0.006* 0.010*** 0.009*** 0.006** 0.010***
(0.003) (0.003) (0.003) (0.003) (0.003) (0.003)

FOREIGNt−1 0.196** 0.222** 0.268*** 0.224** 0.254** 0.286***
(0.091) (0.099) (0.096) (0.091) (0.099) (0.096)

APPRt−1 0.019 0.067* -0.017 0.023 0.068* -0.014
(0.032) (0.035) (0.036) (0.032) (0.035) (0.035)

LKt−1 0.125*** 0.177*** 0.077 0.133*** 0.185*** 0.087*
(0.045) (0.050) (0.048) (0.045) (0.049) (0.048)

LSPILLt−1 0.103*** 0.085*** 0.103*** 0.102*** 0.082*** 0.098***
(0.028) (0.029) (0.030) (0.028) (0.029) (0.030)

NCOMPt−1 0.039 0.088** 0.031
(0.037) (0.045) (0.044)

LSPILL×NCOMPt−1 -0.053* -0.072** -0.035
(0.030) (0.030) (0.034)

NCOMP > 15t−1 0.217 0.355* 0.174
(0.168) (0.190) (0.193)

LSPILL×NCOMP > 15t−1 -0.075* -0.098** -0.053
(0.041) (0.040) (0.049)

Industry dummies (15) Yes Yes Yes Yes Yes Yes
Year dummies (4) Yes Yes Yes Yes Yes Yes
Const. 10.654*** 10.156*** 9.697*** 10.788*** 10.399*** 9.775***

(0.359) (0.361) (0.373) (0.353) (0.346) (0.361)
N 696 653 628 702 659 632
Wald chi2 1555.2*** 1280.05*** 1292.04*** 1588.58*** 1297.93*** 1284.20***
R2 overall 0.73 0.70 0.72 0.73 0.69 0.72
R2 between 0.75 0.72 0.75 0.75 0.71 0.75
R2 within 0.05 0.07 0.03 0.06 0.07 0.03
Rho 0.42 0.46 0.35 0.40 0.45 0.35

*,** and *** denote significance on the levels 10%, 5% and 1%, respectively.
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Table A.8: GLS Random Effects Estimates; Regional Effects

(1) (2) (3) (4) (5)
LINNSt LINNSt LINNSt LINNSt LINNSt

Dt−1 0.057 0.056 0.058 0.062 0.063
(0.047) (0.047) (0.047) (0.047) (0.047)

NCOMPt−1 -0.010 -0.012 -0.010 -0.010 -0.010
(0.030) (0.030) (0.030) (0.030) (0.030)

LEMPLt−1 0.916*** 0.911*** 0.933*** 0.951*** 0.960***
(0.043) (0.042) (0.042) (0.043) (0.041)

HQUALt−1 0.008*** 0.009*** 0.009*** 0.010*** 0.010***
(0.003) (0.003) (0.003) (0.003) (0.003)

FOREIGNt−1 0.171* 0.184** 0.171* 0.195** 0.195**
(0.093) (0.093) (0.093) (0.094) (0.094)

APPRt−1 0.021 0.018 0.021 0.019 0.021
(0.032) (0.032) (0.032) (0.032) (0.033)

LKt−1 0.126** 0.123*** 0.129*** 0.178*** 0.192***
(0.053) (0.048) (0.049) (0.047) (0.049)

LSPILL CHt−1 0.088*** 0.099***
(0.031) (0.028)

LSPILL EUt−1 0.028 0.063***
(0.025) (0.024)

LSPILL USt−1 -0.018 0.016
(0.027) (0.026)

LSPILL JPt−1 -0.021 -0.006
(0.030) (0.027)

Industry dummies (15) Yes Yes Yes Yes Yes
Year dummies (4) Yes Yes Yes Yes Yes
Const. 10.835*** 10.855*** 10.771*** 10.588*** 10.524***

(0.388) (0.375) (0.387) (0.392) (0.377)
N 696 696 696 696 696
Wald chi2 1584.50*** 1555.93*** 1515.15*** 1531.74*** 1571.40***
R2 overall 0.73 0.73 0.73 0.73 0.73
R2 between 0.75 0.75 0.75 0.75 0.75
R2 within 0.05 0.05 0.05 0.05 0.05
Rho 0.42 0.42 0.43 0.43 0.43

*,** and *** denote significance on the levels 10%, 5% and 1%, respectively.
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Table B.2: GLS Random Effects

(1) (2) (3) (4) (5) (6)
LINNSt LINNSt LINNSt LINNSt LINNSt LINNSt

Dt−1 0.055 0.059 0.056 0.063 0.065 0.065
(0.047) (0.047) (0.047) (0.047) (0.047) (0.047)

NCOMPt−1 -0.012 0.039 -0.010 0.040 -0.011 0.007
(0.030) (0.037) (0.030) (0.037) (0.030) (0.034)

LEMPLt−1 0.902*** 0.907*** 0.935*** 0.912*** 0.932*** 0.934***
(0.042) (0.042) (0.040) (0.043) (0.040) (0.040)

HQUALt−1 0.009*** 0.009*** 0.009*** 0.009*** 0.009*** 0.009***
(0.003) (0.003) (0.003) (0.003) (0.003) (0.003)

FOREIGNt−1 0.195** 0.192** 0.191** 0.199** 0.201** 0.199**
(0.092) (0.091) (0.094) (0.091) (0.092) (0.091)

APPRt−1 0.018 0.019 0.015 0.019 0.020 0.021
(0.032) (0.032) (0.032) (0.032) (0.032) (0.032)

LKt−1 0.129*** 0.123*** 0.130*** 0.131*** 0.180*** 0.178***
(0.046) (0.045) (0.050) (0.046) (0.045) (0.045)

LSPILL APPt−1 0.093*** 0.102***
(0.027) (0.028)

LSPILL APP ∗NCOMPt−1 -0.055*
(0.030)

LSPILL FIRMSt−1 0.107** 0.094***
(0.044) (0.028)

LSPILL FIRMS ∗NCOMPt−1 -0.056*
(0.031)

LSPILL BACKt−1 0.141*** 0.149***
(0.054) (0.057)

LSPILL BACK ∗NCOMPt−1 -0.075
(0.105)

Industry dummies (15) Yes Yes Yes Yes Yes Yes
Year dummies (4) Yes Yes Yes Yes Yes Yes
Const. 10.811*** 10.770*** 10.778*** 10.666*** 10.582*** 10.549***

(0.368) (0.370) (0.388) (0.381) (0.363) (0.363)
N 696 696 696 696 696 696
Wald chi2 1564.275*** 1554.801*** 1546.643*** 1540.510*** 1538.597*** 1541.555***
F-statistic
R2 overall 0.731 0.733 0.728 0.732 0.728 0.728
R2 between 0.752 0.753 0.748 0.752 0.751 0.751
R2 within 0.048 0.052 0.050 0.052 0.047 0.048
Rho 0.426 0.426 0.430 0.422 0.425 0.425

*,** and *** denote significance on the levels 10%, 5% and 1%, respectively.
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Table B.3: OLS Estimates

(1) (2)
LINNSt LINNSt

LINNSt−1 0.408*** 0.409***
(0.049) (0.049)

Dt−1 0.048 0.052
(0.045) (0.045)

NCOMPt−1 0.023 0.079*
(0.029) (0.041)

LEMPLt−1 0.492*** 0.497***
(0.059) (0.059)

HQUALt−1 0.007*** 0.007***
(0.002) (0.002)

FOREIGNt−1 0.115 0.106
(0.082) (0.081)

APPRt−1 0.031 0.031
(0.032) (0.032)

LKt−1 0.096** 0.091**
(0.042) (0.042)

LSPILLt−1 0.074*** 0.082***
(0.025) (0.025)

LSPILL×NCOMPt−1 -0.058*
(0.030)

Industry dummies (15) Yes Yes
Year dummies (4) No No
Const. 6.446*** 6.308***

(0.604) (0.601)

N 640 640
F-statistic 96.29*** 93.04***
R2 0.76 0.77

*,** and *** denote significance on the levels 10%, 5% and 1%, respectively.
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Table B.4: Blundell and Bond Estimates

(1) (2) (3)
LINNSt LINNSt LINNSt

LINNSt−1 -0.014 0.020 -0.022
(0.127) (0.115) (0.110)

Dt 0.089 0.084 0.099
(0.060) (0.067) (0.063)

NCOMPt -0.046 -0.067 -0.040
(0.061) (0.064) (0.059)

LEMPLt 0.928*** 0.804*** 0.882***
(0.200) (0.201) (0.159)

HQUALt 0.006 0.006 0.006
(0.004) (0.004) (0.004)

FOREIGNt -0.008 0.036 0.019
(0.168) (0.183) (0.147)

APPRt 0.019 0.022 0.017
(0.044) (0.047) (0.047)

LKt -0.020 -0.023 0.086
(0.161) (0.163) (0.119)

LSPILLt 0.056** 0.065*** 0.059***
(0.024) (0.025) (0.022)

Const. 11.678*** 11.752*** 11.730***
(2.404) (2.142) (1.626)

N 721 721 721
Wald chi2 37.008*** 40.783*** 162.102***
N instruments 23 30 40
Sargan test (chi2) 16.76 24.56 30
Sargan test (p-value) 0.080 0.219 0.451
AR(1) p-value 0.003 0.002 0.004
AR (2) p-value 0.771 0.818 0.718

*,** and *** denote significance on the levels 10%, 5% and 1%, respectively.
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