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Abstract

We propose a Bayesian optimal filtering setup for improving out-of-
sample forecasting performance when using volatile high frequency
data with long lag structure for forecasting low-frequency data. We
test this setup by using real-time Swiss construction investment and
construction permit data. We compare our approach to different filter-
ing techniques and show that our proposed filter outperforms various
commonly used filtering techniques in terms of extracting the more
relevant signal of the indicator series for forecasting.
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1 Introduction
Policy makers need up-to-date information on the state of the economy
in order to implement policy actions. Often publication lags complicate
this, calling for an inclusion of readily available up-to-date high frequency
data to be incorporated into forecasting models in order to produce better
nowcasts. Bridge models and (restricted and unrestricted) Mixed Data
Sampling (MIDAS) models tackle this issue by combining high-frequency
and low-frequency data for estimation and forecasting.

In this application we investigate how restricted and unrestricted MIDAS
setups and bridge equations perform if the required lag length of the
high frequency variable is long and the data very volatile. This can pose
problems for the U-MIDAS as many parameters will have to be estimated.
But also the restricted MIDAS approach could have problems to form a
proper weighting scheme for very volatile data. This also holds for bridge
equations, where the volatile structure of the data will likely introduce
noise into the autoregressive forecasts of the high-frequency variable. To
circumvent these problems we propose the use of a flexible Bayesian Beta
filter for bridge equations. While still using a standard bridge equation for
forecasting the low-frequency variable, the aggregation and forecast of the
high-frequency variable is enhanced with our Bayesian beta filter which is
able to filter a usable signal from the data. We test this compared to unfil-
tered data as well as smoothed data by using established filtering techniques.

Particularly, we investigate the forecast of construction investments (low
frequency) by construction permits (high frequency) in Switzerland. In order
to utilize the series of permits as a predictor for low frequency investments
we employ a Bayesian beta filter. Using real-time data with vintages from
January 2005 - December 2014 and data starting in Q1 1993 for construction
investment and January 1993 for construction permits respectively, we
calculate out-of-sample forecasts. We show that our filtering approach for
bridge models clearly beats a U-MIDAS, a standard restricted MIDAS setup
as well as traditional bridge models and competing autoregressive (AR)
models in terms of out-of-sample performance both when using unfiltered
data as well as when using standard smoothing approaches.

Related literature

The problem of how to incorporate data with different frequency sampling in
econometric models has been addressed in the literature in the last decade.
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A large number of studies have been published looking at the benefits of
employing both high and low frequency data simultaneously in the context
of single-equation approaches. One of those are bridge equations, which
have been used for quite some time and are common in policy organizations
due to their simple method and transparency. The general idea behind
bridge equations is to explain a low-frequency variable by time-aggregated
low-frequency lags of a high frequency variable. First, forecasts of the high
frequency variable are generated by using an additional model, normally
an autoregressive process, which are then time-aggregated to the lower
frequency. The estimation of both equations can be easily done by ordinary
least squares (OLS). Forecasts are then done iteratively by using the
previously obtained forecasts. Early applications of bridge equations in the
literature can be found for example in Ingenito & Trehan (1996) or Baffigi
et al. (2004) as well at central banks like ECB (2008) or Bundesbank (2013).

Another single equation approach to handle time series with different
frequencies that is also able to address the problem that arises when
accounting a long lag structure is mixed data sampling (MIDAS) proposed
by Ghysels et al. (2004), building on Almon (1965). In this approach the
high-frequency variable is not time-aggregated but directly related to the
low-frequency variable. As this can lead to a high number of parameters to
be estimated lag polynomials can be used to decrease the necessary number
of parameters and then be estimated by non-linear least squares (Ghysels
et al. (2007)). Early applications of this method were mostly with financial
data where sampling differences are quite big when using daily data, for ex-
ample in Ghysels et al. (2006). More recently MIDAS has also been used on
macroeconomic data for example in Clements & Galvão (2008) and Clements
& Galvão (2009) or Armesto et al. (2010) and Andreou et al. (2011). More
recently Foroni et al. (2012) have shown, that if differences in frequencies
are small, for instance for a mixture of quarterly and monthly data, an unre-
stricted MIDAS setup (U-MIDAS) is equivalent or even superior compared
with standard MIDAS setups. An unrestricted MIDAS setup requires less
computational and modelling efforts compared with standard MIDAS setups.

Schumacher (2014) proposed an iterative MIDAS (MIDAS-IT) as a combi-
nation between those two approaches. It differs from bridge equations by
using the MIDAS weighting scheme on the right-hand side of the equation
instead of a time-aggregated high frequency variable. The high frequency
variable has still to be forecasted by using a separate model. The difference
to the MIDAS approach is the iterative forecasting method instead of a
direct forecast. In his application he finds no systematic advantage of any
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of the three methods proposed methods.

A not finally clarified question when handling volatile high-frequency data in
mixed frequency models is if MIDAS models or bridge equations could bene-
fit from the inclusion of filtering techniques to tackle volatile high-frequency
data. Established methods for dealing with volatile data are for instance
a one-sided simple moving average or the Hodrick-Prescott-Filter (Hodrick
& Prescott (1997)). The decomposition of the data into trend and cycli-
cal components is one of the workhorse filters in economics, but especially
for forecasting it leads to some problems due to being a two-sided filter
(Baxter & King (1999)), but some workarounds have been suggested in the
literature, mainly extending the current edge of the data with forecasts (Eu-
ropean Comission (1995)). This filtered data can be used in the standard
mixed-frequency models as a benchmark for comparison with more advanced
filtering techniques (in this application a Bayesian beta filtering approach).

2 Data
Construction permits issued by municipalities offer information about up-
coming construction activity as well as its volume. Since most construction
activity in Switzerland requires a permit, these permissions can be utilized
to forecast Swiss construction investments.1

In our analysis we use quarterly nominal, non seasonal adjusted construction
investment as low frequency series and monthly construction permits as
high frequency series. For the data on construction investment volumes
the sample ranges from Q1 1993 to Q4 2014 and is taken from the Swiss
State Secretariat for Economic Affairs (SECO).2 The data on construction

1Construction permit data have for instance been studied by McDonald & McMillen
(2000) or Somerville (2001) for the US or by Lerbs (2012) for Germany. For Switzerland
Peters & Wapf (2007) have investigated the timing of construction applications, permits,
and housing starts. On average it takes 3.3 months for applications to be permitted by
authorities.

2Given the share of construction investments relative to GDP in several countries fore-
casts of construction investment are of significant importance for decision makers analyzing
the development of the aggregate economy. In contrast to other industries (e.g. trade,
etc.) construction activities involve a substantial amount of local work in the production
process. This substantial amount is value-adding and influences GDP strongly. The im-
port share is lower than in other sectors. Changes in construction activity thereby are of
importance for domestic business cycles and investment figures. Roundabout 9% of GDP
can be attributed to construction in Switzerland. Fluctuations in construction thereby
strongly influence overall investments and thereby GDP.
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permits ranges from January 1993 to December 2014 and is available from
Dokumedia Baublatt (www.doku.ch). Each permit contains information
on the expected construction volume measured in Swiss Francs. The series
used in our analysis is the sum of nominal construction permits approved by
municipal authorities within Switzerland in the respective month. As can
be seen in Figure 1 the data on construction permits is highly volatile with
many spikes. These spikes are caused by large construction permits projects
which drive up the permit series in a month by several hundred million CHF
and drop out the next month again.

Figure 1: Construction permits (in nominal Mio. CHF)
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The data for construction investment in Switzerland is revised sometimes
considerably, as can be seen in Figure 2. Thus, we conduct a real-time fore-
casting exercise for testing the forecast performance of our model. For this
we construct a real-time data set for vintages starting in January 2005 until
December 2014 taking both into account the state of revisions as well as the
publication lag of both time series. Construction permits are normally avail-
able within one month while the publication lag for construction investment

5



is 3 months.3 In our first vintage for January 2005 we would thus be able
to use the construction permits up to December 2004 as well as construction
investment until the third quarter 2004.

Figure 2: Construction investments, year-on-year growth rates at
different vintages
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3 A beta filter approach for forecasting

3.1 Formal model description
In order to use a volatile high frequency variable such as construction per-
mits to forecast a low frequency variable such as construction investments a
couple of latent variables have to be estimated: The way how a single permit
is mapped into a construction investment is unknown. Volumes will not

3Quarterly investment data is published by SECO at the beginning of March, June,
September, December. Construction permission data in published by Documedia Baublatt
on the 1st every month.
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be spent entirely at the initiation of the construction project - the volumes
will be spread over an extended time frame as it takes several months
and up to many years to finish a construction project. Furthermore, the
relationship between independent variable (permit volumes) and dependent
variable (construction investment) is unknown because a) permit holders
are not required to realize their permits and to build and b) most, but not
all construction activity require a permit. Therefore construction permits
are only a rough indicator of later realized construction investments.

The combination of unknown distributions and parameters poses prob-
lems. The estimation of distributions becomes computationally feasible
if one is willing to select distributions out of the set of known statistical
distributions. Such distributions are characterized by their moments
which can be chosen in such a fashion that the overall fit of model
and data is optimized. By using the beta distribution, the estimation
strategy reduces itself to retrieve these moments and is made feasible by
reducing the parameter space. This is represented by the weighting equation:

X̃HFt =
n−1∑
k=0
B(k/n; p, q)L̃kHFXHFt (1)

where XHFt is a monthly high-frequency variable, L̃kHF a lag operator, X̃HFt

the redistributed high-frequency variable and n the number of desired lags.
B represents a beta distribution, depending on the number of discrete density
steps k and the shape parameters p, q. The Beta distribution has the conve-
nient property that values cannot be negative (which would be implausible
in terms of construction volumes) and can be written as follows:

B(k/n; p, q) = 1
B
(
k+1
n
, k
n
, p, q

) (x− k + 1
n

)p−1 (
k

n
− x

)q−1

(2)

Outside of the interval x ∈ [0, 1] the function values of f(x) are set to zero.
Shape parameters p, q are strictly positive > 0. The term B

(
k+1
n
, k
n
, p, q

)
indicates a restricted Beta function with the upper and lower boundaries k+1

n

and k
n

B

(
k + 1
n

,
k

n
, p, q

)
= Γ(p)Γ(q)

Γ(p+ q)

(
k

n
− k + 1

n

)p+q+1

(3)
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where Γ represents a Gamma function:

Γ(z) =
∫ ∞

0
uz−1e−udu (4)

The redistributed high-frequency variable X̃HFt is then time-aggregated
to the lower frequency and can then be plugged into the standard bridge
equation as X̃LF

HFt
:

∆Yt = c+
p∑
i=1

βiL
i∆Yt + γ∆X̃LF

HFt
+ εt. (5)

∆Yt are observed quarterly year-over-year construction investment growth
rates, c is a constant, p is the desired lag length of the autoregressive
term with the coefficients βi to be estimated, Li is a lag operator, γ is the
coefficient associated to the redistributed construction permit series and
X̃LF
HFt

are the time-aggregated quarterly redistributed construction permits
at time t which are used as year-on-year growth rates, indicated by ∆.

3.2 Estimation strategy
By utilizing a Gibbs sampler the bridge equation parameters ψ =
(c, β1, ..., βp, γ) are drawn from a Normal-Gamma distribution given the
Beta distribution shape parameters p, q. Proposals for p, q are drawn in
a Metropolis-within-Gibbs sampler step.4 Random walk candidate draws for
θ = (p, q) are generated by

θ∗ = θ(s−1) + z (6)

with s being the number of the current draw, s−1 indicating the previous ac-
cepted draw, and θ∗ the new draw. Innovations z are determined by drawing

4A Bayesian Metropolis-within-Gibbs sampler setup for an estimation of a MIDAS re-
gression has for instance been employed by Ghysels (2012), Ghysels & Owyang (2011)
and Rodriguez & Puggioni (2010). In contrast to Rodriguez & Puggioni (2010), we do
not impose prior values on the lag structure of beta distributions. In contrast to Ghysels
(2012), we employ a Random-Walk Metropolis Hastings step, while they draw from candi-
date densities utilizing importance sampling. While Rodriguez & Puggioni (2010) employ
Bayesian model selection to identify the model fitting the data best based on marginal
likelihoods, we consider the joint distribution of prior and likelihood over all models visited
by the algorithm to find the expected mean parameters values fitting the data.
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random numbers from a Normal density with mean θ(s−1) and covariance-
matrix Σθ, which is chosen to yield acceptance ratios between 0.2 and 0.6 for
each shape parameter. The shape parameters p, q are drawn independently
of each other, but are jointly accepted or discarded in each iteration. Draws
will be accepted based on their acceptance probability:

α(θ(s−1), θ∗) = min

[
p(θ = θ∗|y, ψ)

p(θ = θ(s−1)|y, ψ) , 1
]

(7)

Thus if the posterior of the new draw given the data y and the parameters
ψ is higher than the posterior of the previous draw the new draw will be
accepted with probability 1. If the posterior of the new draw is lower than
the posterior of the previous draw the new draw will only be kept if the
ratio of the new posterior and the posterior evaluated at the previous step
is higher than a random number drawn from a uniform distribution between
0 and 1. I.e. even if the posterior declines and the new draw has a lower
probability it will be kept if it is not too unlikely. This ensures, that the
Metropolis-Hastings algorithm walks over the entire parameter space even
into regions with lower probability while taking more draws in regions with
high probability, i.e. where the posterior is highest.

3.3 Forecasting strategy
Once the beta shape parameters have been drawn, the coefficients of the
bridge equation regression can be drawn. For each set of coefficients a forecast
Ŷs is calculated. The median forecast for each forecasting horizon is the
result of

Ŷ = median
(s)∈S

Ŷs(θ(s), ψ(s)) (8)

where S is the number of draws.5 Forecasts will be generated for a nowcast
and up to four quarters ahead. A nowcast for the unknown yt (due to the
publication lag) is estimated by using the drawn parameters and relying
on observed investment values yt−1,..., yt−4 and redistributed construction
permits for t.6 The forecasts are done iteratively, so the forecast for Ŷt+1

5In our setting 200,000 draws minus 160,000 burn in, divided by 10 to adjust for
autocorrelation in the draws

6In January, February, April, May, July, August, October, November the previous
quarter investment values have not been published yet. Therefore also a backcast for the
previous quarter has to be estimated.
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uses the drawn parameters with both the nowcast Ŷt as well as the past
observed values yt−1, yt−2, yt−3 and the redistributed construction permits
for period t+ 1:

∆Yt+1 = c+
p∑
i=1

βiL
i∆Yt+1 + γ∆X̃LF

HFt+1 . (9)

In contrast to bridge models or the MIDAS-IT approach without leads by
Schumacher (2014), which generate high frequency variable forecasts by em-
ploying a simple AR model, the forecasts by the beta filtering approach for
the high frequency variable X̃HFt are done by rescaling the truncated den-
sity function to correct for missing probability mass and re-weighting the
remaining high-frequency observations:

X̃HFt+h
= 1∑n−1

k=h B(k/n; p, q)

n−1∑
k=h

(B(k/n; p, q)L̃kHFXHFt). (10)

4 Real-time parameter estimates
In order to check if the estimation results are stable over time we analyse
the distribution and estimation parameters of the real-time estimation. The
mean coefficients for the shape parameters p, q over all vintages can been
seen in figure 3. The shape parameters were mostly stable over all vintages
between 4.5 and 5 for the first parameter p and between 2.5 and 2.8 for the
second parameter q.

In June 2014 the beta shape parameters dropped considerably, probably to a
very high first estimate of construction investment for the first quarter 2014
of 12.4% year-on-year growth which was shortly afterwards revised down
to 3.7% during an extensive revision of the whole history of construction
investment. This led to a shift of the distribution mean to the right, i.e.
extending the time until construction permits are actually effective for
construction investment.

The mean shape coefficients can be displayed as Beta distribution for
example with p = 5 and q = 2.7 in figure 4. The estimated beta distribution
gives little weight to the first observations but rises rapidly thereafter,
reaching a climax after five years and quickly reducing its weight structure
thereafter. Such a weight structure might be the consequence of the long
time it takes for construction to start after the actual permit was issued.
Furthermore, the lag structure of large projects is very long, implying a
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Figure 3: Real-time coefficients of beta distribution
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longer duration of construction projects.

Using the beta-filtered real-time series to depict the estimated coefficients for
the bridge equation shows a varying picture over the real-time vintages (see
figure 5). This figure shows that the constant as well as the coefficient for the
redistributed permit data are more or less stable over all vintages. The au-
toregressive terms of the bridge equation exhibit more variation, which could
be attributed to mayor revisions or surprising releases of construction invest-
ments. Before June 2012 the coefficients for Lag 3 and Lag 4 are basically
not statistically distinguishable from zero. The story changes for vintages
until September 2014. In June 2012 the first release of negative construction
investment growth rates was published for Q1/2012 (a drop by more than
-10%). Until September 2014 negative growth rates for construction invest-
ments were published by the statistical office (see also figure 2). In October
2014 the construction investment growth rate for Q1/2012 was revised to
+1.5% - an upward revision by more than 11 percentage points compared
to the first estimate which now indicates more a boom than a slump. This
could also explain the slight decrease in the coefficient for the redistributed
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Figure 4: Beta distribution

permits and the sudden increase of the coefficient in October 2014.

5 Out-of-sample tests

5.1 Benchmark model setup
We employ four different benchmark models for the forecast comparison
with the bridged MIDAS model. Namely we use a simple autoregressive
model, a bridge model, a MIDAS regression with an Almon lag polynomial
for parameter reduction and an unrestricted MIDAS regression to compute
forecasts, which will be covered in more detail in the following sub-chapters.

5.1.1 Autoregressive model

We use a simple autoregressive model as benchmark model for the construc-
tion investment. An autoregressive model is specified using the formula

Yt = c+
p∑
i=1

βiL
iYt + εt,
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Figure 5: Real-time mean coefficients of the bridge equation
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where Li indicates a lag function ranging from 1 to the desired lag length
p and βi the parameter for each ith lag of variable Yt. εt is an error term.
Forecasts of Ŷt+1, Ŷt+2,..., Ŷt+h are done iteratively by plugging in the
previously forecast values, i.e Ŷt+2 = c+ β1Ŷt+1 + β2Yt + ...+ βpYt−p+2.

5.1.2 Bridge model

Additionally we also use a simple bridge model, which enables us to enhance
the autoregressive model with monthly information. This approach is sepa-
rated into three steps. Firstly, we specify a model using the own lags of the
quarterly variable Yt as well as the time aggregated quarterly values of the
monthly variable Xq

t . This is defined as follows:

Yt = c+
p∑
i=1

βiL
iYt +

n∑
j=0

γjL
jXq

t + εt

In a second step, using only a monthly variable and an autoregressive
model, forecasts of the monthly variables are computed, as specified in the
previous subsection. The monthly variable and the respective forecasts
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are time-aggregated to quarterly frequency and plugged into the above
specification in order to compute forecasts of the quarterly variable. The
forecasts are again computed iteratively.

By aggregating the high-frequency variable to the lower frequency potential
information is lost because time averaging assumes that each high-frequency
observation Xt inside a low frequency period receives the same weight. It
could be possible that for instance the first observation of Xt should get
a higher weight in the time aggregation than the others. Thus, potential
information is lost due to this process.

5.1.3 MIDAS

Ghysels et al. (2004) introduced the MIDAS approach. This approach cir-
cumvents the problem of time averaging by approximating the parameters
of each high-frequency observation of the high frequency variable Xt with a
polynomial function θ(k;ω). As benchmark model we use a MIDAS model
with a non-exponential Almon lag polynomial, which is quite flexible but at
the same time still maintains parsimony. Additionally the non-linear weight-
ing function can be transformed back into linear form, which allows the
model to be easily estimated by using OLS. The approximation of the high-
frequency observations is done for K = n ∗ m lags, which depend both on
the number of high frequency periods inside the low frequency period m as
well as the number of low frequency period lags n. For instance, if Xt were
a monthly variable and Yt a quarterly variable, then m = 3. The model is
specified with respect to the desired forecast horizon h. The aim is to find
the specification that would have predicted Yt h quarters before. Thus the
MIDAS equation for growth Yt+h in period t+ h would be defined as:

Yt+h = c+
p∑
i=0

βiL
iYt + γ

K∑
k=0

θ(k;ω)Lk/3Xt+l + εt+h

Lk/3 is a lag operator for monthly variables which is defined as
Xt−1/3 = L1/3Xt and l an is defined as the lead of the high-frequency
variable on the low-frequency variable. Thus, the forecasts are done directly
by plugging the most recent data into to the formula using the estimated
parameters for each forecast horizon h.
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5.1.4 U-MIDAS

The unrestricted MIDAS approach was promoted by Foroni et al. (2012).
Instead of approximating the parameters of each high-frequency observa-
tion of the high frequency variable Xt, this approach estimates the weights
as unrestricted parameters. This allows for even more flexibility than the
MIDAS approach. But in contrast U-MIDAS approach does not maintain
parsimony. Depending on the frequency of the high-frequency variable, this
approach can easily be over-parametrized. But when frequency differences
are small as with macroeconomic data the results of the U-MIDAS are sim-
ilar or even slightly superior to the MIDAS approach. The functional form
of the U-MIDAS is defined as:

Yt+h = c+
p∑
i=0

βiL
iYt +

K∑
k=0

γkL
k/3Xt+l + εt+h

5.2 Benchmark results
Our aim is to forecast the quarterly year-on-year growth rate of nominal
construction investments up to one year ahead using the construction
permits and investment data that were available at the moment of the
forecast. In order to test the forecast performance of our model we conduct
a real-time experiment using Vintages from January 2005 until December
2014. For each of the vintages we conduct a nowcast for the quarter of the
vintage as well as one to four step-ahead forecasts.

In order to evaluate the forecast performance of our model we take several
steps. First we compare those forecasts with a simple autoregressive model,
which uses the same amount of information as the bridge model with our
redistributed data, namely 4 quarterly lags. In a second step we produce
forecasts for Swiss construction investment using Swiss building permit data
as additional information, but in its original form. For this we use different
benchmark models, namely a bridge model, a standard MIDAS setup and
an unrestricted MIDAS (U-MIDAS) as explained in section 5.1. All models
have the same quarterly information as our model, but as the bridge model
and especially the U-MIDAS tend to become over-parametrized quite fast,
we also restrict the lagged information of the high frequency variable to
one year. The Almon-MIDAS can use more lagged information due to the
reduction of the parameter space by using an Almon lag polynomial. Thus
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we use the same lag length as in our baseline model (84 monthly lags). In a
third step we use a Hodrick-Prescott filter for smoothing the high-frequency
data, both in its simple form and with an adjustment for endpoint problems.
In a final step we compare the forecast performance of our setup with a
moving average for the high-frequency data.

To compare the forecast performance of the different models we calculate
the relative root mean squared forecast error (RMSFE) for each model and
forecast horizon h which is defined as:

∆RMSFEh = 100 ∗
(
RMSFEBeta filtered

h −RMSFEBenchmark
h

RMSFEBenchmark
h

)
.

We refer to ∆RMSFEh as the relative change in the RMSFE. The more
negative ∆RMSFEh is, the better performs our setup relative to the
respective benchmark model in terms of predicitive power.

The following results are robust for different lag specifications. When using
more monthly lags for the bridge model and the U-MIDAS the models will
be over-parametrized and their forecast performance thus decrease further.
Fewer monthly lags do not improve the forecast performance significantly.
The results are also robust when using 72 or 96 monthly lags for beta-filtered
data, moving average and Almon MIDAS. Additionally the results don’t
change significantly when using different growth rates for the high frequency
variable, i.e. month-on-month growth instead of year-on-year growth.

5.2.1 Autoregressive process

In order to test if the inclusion of the high-frequency building permit
data actually delivers any additional information we first test the forecast
performance of a bridge model including the beta-filtered data compared
to a simple autoregressive process with 4 lags (AR(4)). As can be seen in
figure 6 the filtered data improves upon the AR(4) model for the whole
forecast horizon. The relative RMSFE actually decreases for a longer
forecast horizon, which means the forecast errors of the model including the
beta-filtered data are even smaller compared to the AR(4) for forecasts up
to one year ahead.
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Figure 6: Relative RMSFE to autoregressive model

5.2.2 Unfiltered Data

In this section we test if the filtering of the data using our method leads
to an improved forecast performance compared to using the original data.
For this we look at three standard mixed-frequency forecasting models. As
indicated above bridge models and the unrestricted MIDAS are not able
to cope with long lags which is why we restrict the lags for those models
to 4 quarterly and 12 monthly lags. The Almon MIDAS in contrast uses
the same amount of information as the bridge model with the filtered
data, i.e. 84 monthly lags. As can be seen in figure 7 the addition of the
original permit data seems to give at least some additional information
compared to AR(4) model in figure 6. The relative RMSFE of the bridge
model, which includes the permit data, aggregated to quarterly frequency,
yields a slightly lower forecast error than the AR(4) model, i.e. the relative
RMSFE is slightly better when both are compared to the bridge model
using the beta-filtered data. In contrast, both the unrestricted MIDAS
model as well as the Almon MIDAS model do not seem to be able to get
a good signal from the original data. While the relative RMSFE of the
UMIDAS model compared to the bridge model using the beta-filtered data
is constantly below zero, the relative RMSFE of the Almon MIDAS model is
at least for the nowcast horizon close to zero but drops rapidly afterwards.
In conclusion, the addition of the original permit data can lead to small
increases in forecast performance as long as the model is able to get a useful
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signal from the data.

Figure 7: Rel. RMSFE to benchmark models with unfiltered data

5.2.3 HP-filtered Data

A method to extract a useful signal from volatile data is filtering the data.
One of the most used filters is the Hodrick-Presscot Filter (Hodrick &
Prescott (1997)). This allows a decomposition of the data into a trend and
a cyclical component. For the use of the HP-filter with monthly data we
use a λ of 129,600 as suggested by Ravn & Uhlig (2002). We use the trend
component as high frequency variable for forecasting.

As can be seen in figure 8 the forecast performance of the bridge model
and the Almon MIDAS improve slightly when compared to the usage of the
unfiltered data in the previous subsection. The relative RMSFE of those two
benchmark models is nevertheless still clearly below zero and thus performs
worse than the bridge model using the beta-filtered data. The UMIDAS
seems to have severe problems dealing with the HP-filtered data. This is due
to very high collinearity due to the low variation in the trend component of
the filtered data between monthly observations.

The HP-filter has well known endpoint problems ((Baxter & King (1999))).
This stems from the fact that the smoothed series at the beginning and the
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Figure 8: Rel. RMSFE to benchmark models with HP-filtered data

end of the time series tends to be close to the observed data. A general
workaround is to use forecasts for several observations ahead in order to
produce a better smoothing at the current edge of the data. In our case the
mediocre results of the HP-filtered data could be related to this problem.
Thus, we use a simple autoregressive process to forecast the high frequency
data in order to get more reliable smoothing results. The outcome can be seen
in figure 9. The forecast performance actually worsens when compared to
the HP-filter without correction for endpoint problems. The relative RMSFE
is more negative for bridge models and the Almon MIDAS. It seems that
autoregressive forecasts when using very volatile data is not advantageous.

5.2.4 Moving average

Another standard method for smoothing volatile data is to use a moving
average of the data, which is closest to our method. But instead of having a
separate weight for each high frequency observation a moving average gives
all past observations the same weight. The basic analysis uses seven years or
84 months of past data, thus each monthly observation would get a weight
of 1/84. The forecast is done in the same manner as with the beta filter by
re-weighted the remaining observations.

The result can be seen in figure 10 which shows the relative RMSFE of a
bridge model using the moving average data and the bridge model using
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Figure 9: Rel. RMSFE to benchmark models with adjusted HP-
filtered data

the beta filtered data. When nowcasting using moving average data does
seem to give slightly smaller forecast errors, for longer forecast horizons the
model using the beta-filtered data clearly outperforms the moving-average
data. It seems that the weighting scheme of the beta-filtering enables us to
make better forecasts by correctly re-weighting the past observations.

6 Conclusion
To study the usefulness of a Bayesian beta filtering approach for a setup
with a long lag structure of a volatile high frequency variable to forecast a
low frequency we apply beta filtering approach on construction permit and
investment data. Quarterly estimates of construction activity are subject to
a substantial publication lag, thus, timely available construction permits can
give policy makers an early indication on the state of the construction sector.

As construction permits can contain information for several years ahead
and display a volatile structure, they can pose a problem for traditional
mixed-frequency approaches even when using standard filtering methods.
To deal with the special structure of the data we construct a Bayesian beta
filtering setup which allows us to use both long lags and is at the same time
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Figure 10: Relative RMSFE to moving average

able to filter a usable signal from the data.

To test the forecast performance of our model we conduct a real-time exper-
iment using vintages from January 2005 until December 2014. We compare
the out-of-sample forecast performance of our model with different bench-
mark models, namely a simple AR-process, a bridge model, an unrestricted
MIDAS and a restricted MIDAS using an Almon polynomial for the reduc-
tion of the parameter space. The beta filtering approach clearly improves the
forecast accuracy upon an AR-model from 10% for shorter forecast horizons
to more than 25% for longer horizons. While the inclusion of permit data in
standard mixed-frequency models leads to small improvements in the forecast
performance compared to the AR-model, they are still clearly outperformed
by our beta filtering approach, especially for longer forecasting horizons.
This result also holds when pre-filtering the data with a HP-filter, although
the forecast performance of the benchmark models slightly increases. Also
the application of a one-sided moving average yields a weaker forecast per-
formance, especially for longer forecast horizons. The specific structure of
construction permit data seems to contain mostly noise for traditional models
while the Bayesian beta filter can still use the contained information.
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Appendix 1:Intuition of the bridged MIDAS
approach
Consider an arbitrary set of construction permits over time, which have been
summed up for each month M (see figure 11).

Figure 11: Example construction permits
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These observed construction permit sums are in a next step multiplied with
an estimated distribution. The example distribution in figure 12 peaks in
the center, has a total duration of five months, i.e. all construction permits
are being used for construction investments within five months, and it is
bell-shaped, i.e. little construction activity takes place right after the permit
issue and at the end of the five month period.
The result of the multiplication is a series of effective construction permits,
meaning that based on the estimated distribution, the observed construction
permits for each month are redistributed according to the volumes which
will actually be used for construction in a specific month. So for instance,
as can be seen in figure 13 only 11% of the permit volume will be used for
construction in the first month (M1). The next month redistributed values
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Figure 12: Example distribution

(M2) contain the sum of 11% of (observed) M2 permit numbers and 22%
of (observed) M1 permit numbers. Accordingly the fifth month (M5) of the
redistributed series is the sum of 11% of (observed) M5 permit numbers
and 22% of (observed) M4 permit numbers, 33% of (observed) M3 permit
numbers, 22% of (observed) M2 permit numbers and 11% of (observed) M1
permit numbers.

Estimation takes place only when the full information is available (99% of
the distribution). Referring to the example, only redistributed series starting
from (redistributed) M5 would be used for the estimation. The forecasts for
the redistributed series lack the information for the current month. Therefore
the values will be rescaled to 100%.
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Figure 13: Example redistributed construction permits
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