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Abstract

We examine collaboration in a one-arm bandit problem in which the play-
ers’ actions affect the distribution over future payoffs. The players need to ex-
ert costly effort both to enhance the value of a risky technology and to learn
about its current state. Both product value and learning are public goods,
which gives the players incentives to free-ride on each others’ actions. This
leads to an inefficiently low aggregate level of effort. When the players’ ac-
tions affect the distribution over future payoffs, they eventually get trapped
in the low action, causing an inefficient unraveling of the game. Moreover,
the players’ incentives to exert effort depend on the state that in turn depends
on the aggregate effort. If the players start restricting effort when the belief
decreases in expectation, the two effects play in the same direction. Higher
effort encourages higher effort and vice versa. Unraveling leads to multiple
symmetric Markov perfect equilibria.
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restless bandits
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1 Introduction
In a market for technological innovations, firms often engage in collaboration to
facilitate development of a common standard or to create a new business entity.1

In 1997, the cell phone companies Nokia, Motorola, and Ericsson started collab-
oration in creating a common standard for a wireless telecommunication format.
The Wireless Application Protocol (WAP) soon became a widely used by mobile
operators, equipment producers and software developers. However, such collab-
oration is related with great uncertainty and not every attempt to collaborate is
successful. Starting from 1994, IBM, Apple and Hewlett-Packard spent over three
years and $50 million on an unsuccessful attempt to develop a new standard for
an operating system for computers that would challenge Microsoft Windows.

Constant effort is needed to both facilitate the standard and to learn if it is
viable. Even if the firms manage to establish a new standard, it may lose its
position and become obsolete. Indeed, in 2002, WAP Forum merged to a new
Open Mobile Architecture to form a new initiative, Open Mobile Alliance (OMA),
and has by now been replaced by new, more elaborate smart phone standards.
Finally, the technology is a public good; the firms benefit each others efforts to
facilitate the common standard.

The main result of the paper shows an inefficient unraveling of the coopera-
tion in the dynamic collaboration relationship. The unraveling follows since the
players fail to coordinate on the efficient action if they are not sufficiently con-
fident about the viability of the technology. Due to the insufficiently high level
of effort, the players quickly lose the market. Moreover, we show that the play-
ers’ incentive to exert effort depend on their current assessment of the value of
the technology, which again depends on the players’ effort. Whenever the two ef-
fects play in the same direction, the game has multiple symmetric Markov Perfect
equilibria. Otherwise, the symmetric Markov Perfect equilibrium is unique.

Specifically, the players engage in dynamic collaboration while facing uncer-
tainty about the value of the technology that changes over time depending on the
players’ effort. At each point in time, each player chooses how much effort they
exert in selling and developing the product. Effort is costly and the returns are
uncertain and depend on the unobserved state of the world. The state changes
stochastically over time and the probability distribution over future payoffs de-
pends on the players’ actions. When the players exert effort, they receive noisy
signals about the state. Thus, effort has two consequences in the model: the play-
ers’ receive more informative signals about the current state and they improve

1Such collaboration is legal in the US by the National Cooperative Research Act of 1984 and in
the EU by Article 101(3) TFEU if the collaborative efforts do not have anticompetitive effects. See
Schilling (2005) for further examples and analysis of circumstances which such a collaboration is
beneficial for the firms.
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the probability distribution over future payoffs.
We analyze the noncooperative game in which each player individually decides

how much effort to exert. The state of the world is the same across the players
while each player carries the cost of effort individually. The players always have
the option to wait and see if the other players’ efforts resulted in success. In the
noncooperative game both information acquisition and the value of the product
resemble a public good problem. The players have an incentive to free-ride on
each others’ actions.

Before solving the noncooperative game, we identify two important benchmark
cases: the complete information problem and the social planner’s solution when
the current state is unobserved. With complete information, the planner always
exerts effort if the current state is high. If the state becomes low, the planner has
to decide if she should continue exerting effort. The optimal decision depends on
how likely the planner is to win back the market if she lost it. If the probability
of success is high enough, it is always optimal to exert full effort. Otherwise, the
planner abandons the product as soon as its value becomes low. In absence of
effort, the product value stays low and the planner never exerts effort again.

Next, we analyze the social planner’s optimal decision if she does not observe
the state, but learns about it by observing her payoffs. Again, the optimal policy
depends on how likely the planner is to win back the market if she lost it. If the
probability of success is not high enough, the planner eventually abandons the
technology if she becomes too pessimistic about its value. The optimal strategy
is a threshold policy that only conditions on the planner’s belief about the state.
If the planner becomes too pessimistic, she abandons the technology. Now if the
planner does not exert effort, the technology is more and more likely to become
obsolete. Once the technology is abandoned, it is never optimal to exert effort
again.

The main part of the paper analyzes the version of the model in which the
players individually decide how much effort to exert. The players observe both
each others’ payoffs and their effort levels, but face uncertainty about the current
state. We solve for the symmetric Markov Perfect equilibria of the noncoopera-
tive game. The players choose their strategies as functions of their beliefs only.
The restriction is applied for tractability and allows us to use standard dynamic
programming tools to solve for the equilibrium.

As is standard in strategic learning games, we identify three qualitatively dif-
ferent effort regimes, depending on the players’ belief about the current state.
Firstly, if the players are very optimistic, effort has positive instantaneous value
and the players exert every effort to extract the surplus. Secondly, if the players
are sufficiently pessimistic, it is never optimal to develop the product. Thirdly,
when beliefs are intermediate, the players optimally restrict their effort. The
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third investment regime arises because of free-riding and distinguishes the non-
cooperative solution from the social planner’s solution.

At the noncooperative optimum, the players’ incentives to exert effort are
driven by two important forces: free-riding and encouragement effect. Both ef-
fects are familiar from the strategic learning literature. The encouragement effect
follows since the value of information is positive. The players benefit by learning
from each others’ signals: by exerting higher effort they encourage other players
to exert higher effort. The free-riding effect arises because both the value of the
technology and the information are public goods, and reduces the players’ effort
at the noncooperative equilibrium.

Letting the players’ action affect the distribution over future payoffs adds sev-
eral new features in the strategic learning game. Firstly, he players’ incentives
to free-ride on each others’ actions depend on (a) how likely they are to lose the
market if they abstain from effort; and (b) on the impact on their efforts on the
state. The first effect alleviates free-riding: a sufficiently high level of effort is
needed for the players not to lose the market. The second effect makes free-riding
more attractive: the players have an incentive to free-ride not only on each others’
information acquisition but also on their impact on the state. Secondly, restricting
effort leads to an inefficiently early unraveling in the nonooperative game. The
aggregate effort is not high enough to sustain the product value, but the players
gradually lose the market. Thirdly, the players’ incentives to exert effort depend
on the current state that again depends on the aggregate effort. Thus, a higher
effort encourages other players to exert higher effort. We show that this leads to
multiple symmetric Markov equilibria of the noncooperative game.

Our model builds on the two-armed bandit problem that has been exhaustively
studied in both economics and applied mathematics literature.23 The strategic
learning game is well explored for the pure experimentation case in which ex-
erting effort allows for the players to learn about the value of a risky arm. Our
model builds on Bolton and Harris (1999) in which the payoff of the risky arm
follows a Brownian motion with an unknown drift and a known volatility. We ex-
tend the framework by allowing the value of the arm to depend on the players’
effort. We find that in the noncooperative equilibrium, the players fail to sustain
a sufficiently high level of effort, leading to an inefficient unraveling of the game.
The unraveling leads to an inefficiently short lifetime of the risky arm, and can-
not occur if the value of the arm is fixed. In contrast, Bolton and Harris show
that experimentation goes on indefinitely in the noncooperative game. Moreover,
the symmetric Markov Perfect Equilibrium is always unique while our game has

2In particular, exerting effort corresponds to investing in the risky arm while abstaining from
it corresponds to investing in the safe arm.

3Bergemann and Välimäki (2008) provide a comprehensive review of earlier literature in ap-
plied mathematics and economics.
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multiple equilibria. In the pure experimentation problem, the players’ incentives
to pull the arm depend on the state, but the state is independent of the force at
which the players pull. As a consequence, the noncooperative game has a unique
symmetric Markov Perfect Equilibrium. Keller, Rady, and Cripps (2005); Keller
and Rady (2010, 2015) analyze related models in which the risky arm generates
lump sum payoffs that arrive at Poisson rate. For traditional bandits, Poisson
case turns out to be much more tractable, and the players’ value functions can be
solved in closed form in most cases. In contrast, when the risky arm is evolving,
finding closed form solutions seems unlikely.4

Bandit problems that involve evolving arms are sometimes called restless ban-
dits in the literature. Fryer and Harms (2013) study a model in which the value of
the risky arm increases deterministically in the player’s investments. Following
bad news, the player eventually gets trapped in investing in the safe arm instead
of developing the more valuable risky arm. The results are very different from our
framework in which predictions are self-fulfilling. The players eventually aban-
don the good risky arm which then becomes bad with probability one over a long
enough time horizon. Also, good luck may encourage a player to invest in it such
that the arm eventually becomes good.

Our framework borrows from related models that consider an autonomously
evolving risky arm, in particular, from Keller and Rady (1999, 2003) who ex-
amine the problem of selling in the market of stochastically evolving demand.
Khromenkova (2016) analyzes of the case of strategic experimentation with au-
tonomously evolving restless bandits and Poisson distributed payoffs. Our model
distinguishes from those by letting the value of the risky arm to depend on the
players’ action.

This paper is among the first ones to consider strategic learning in a restless
bandit framework with endogenously evolving arms. Safronov (2014) develops a
two-armed bandit model with competing players in which the player eventually
becomes experienced in pulling an arm, which increases the payoff from that par-
ticular arm. If experienced, the player eventually gets trapped with a less valu-
able arm, instead of developing a potentially more valuable, but yet unexplored
arm. The model exhibits no gradual learning, but players eventually learn the
value of the arm after receiving an instantaneous lump-sum. The model simpli-
fies tremendously and the players’ value functions can be solved in closed form.
Our model builds on a classical bandit, which, unfortunately, comes with the cost
of losing on tractability.

4The classical strategic bandit problem has been extended in many important directions to
answer relevant questions that remain yet unexplored in our framework. We do not attempt to
review the literature here; Hörner and Skrzypacz (2016) provides an excellent review.
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2 Setting
We examine a game with N players in continuous time. Each player can decide
how much effort to put in developing a product and learning about its value. The
player’s profit depends on the unobserved product value and on exogenous circum-
stances. Moreover, the value is stochastic and may change over time. The change
is unobserved and depends on the players’ actions.

Each player is facing a capacity constraint; without loss of generality we nor-
malize the maximal effort that he can exert to 1. Let αt,i ∈ [0,1] denote the inten-
sity at which the player i develops the product and αt ≡ (αt,1, ...,αt,N)> a vector
summarizing all players’ efforts at time t.5

The product value at time t is

µt = stµ, (1)

where st ∈ {0,1} is the unobserved state of the world. In particular, if st = 1, the
product value is high and if st = 0, the product value is low. The state of the
world st eventually changes over time following an unobserved stochastic process.
In particular, the firms need to constantly exert effort to develop the product to
facilitate its value in the market. The product value follows a continuous-time
Markov chain with the transition probabilities

Pr[ sz = i,∀z ∈ [t, t+dt]| st = j]=
{

e−λsdt if i = j,
1− e−λsdt if i 6= j,

(2)

with s ∈ {0,1}.
The product value evolves at rate λs that depends on both on the development

intensities αt and on an exogenous parameter λ ∈ [0,∞). It is formally defined as

λs =
{
λ(1−δ>αt) if s = 1,
λδ>αt if s = 0, (3)

with δ= (δ1, ...,δN), and δi > 0 for all i describing the effect of the player i’s effort
on the state. In particular, if the product value is high at time t, the probability
that it is still high at time t+∆t, is

Pr[st+∆t = 1|st = 1,αt]= 1−λ(1−δ>αt)∆t+ o(∆t),

and if it is low at time t, the probability that it is high at time t+∆t, is

Pr[st+∆t = 1|st = 0,αt]=λδ>αt∆t+ o(∆t).
5We let A> denote the transpose of the matrix A.

6



The probability, that the product has a high value on the market, increases in the
players’ aggregate effort αt. Moreover, to keep the model as simple as possible, we
assume that if all players abstain from effort, i.e. set αt,i = 0 for all i, the low state
becomes more and more likely over time.6 The terms of order (∆t)2 and higher are
collected in the term o(∆t) and can be neglected.

If the player abstains from effort, he receives a certain flow payoff that we
normalize to 0. If the player decides to exert effort, he earns a stochastic payoff

dπt,i =αt,i(µt − ci)dt+σα1/2
t,i dZt,i, (4)

where µt is the product value at time t as defined in (1), ci > 0, i ∈ {1, ..., N}, is the
cost of effort and σ> 0 the volatility of the player’s profit.

We assume that µ > ci for all i such that the effort is valuable in the high
state. Moreover,

∑N
i=1δi = γ, where γ ∈ (0,1] is a constant independent of the total

number of players N. Notice that if γ = 1, the high state st = 1 is absorbing,
conditional on the players exerting full effort.

The players only observe (4) and not the exact decomposition of the profits.
Thus, profit is a noisy signal about the state. The player faces two sources of
uncertainty: the uncertainty about the product value µt and an exogenous shock
that is driven by the Brownian motion Zi. The accuracy of information increases
with the aggregate effort αt. Thus, higher effort both makes the high value more
likely and facilitates information acquisition.

Both the players’ actions and the payoffs are common knowledge. The drift µt
is the same across the players, but the Brownian motions Zi are independent
across them. When the players exert effort, they receive independent signals
about the state. The more the players exert effort the more accurate is the ag-
gregate information that they receive. Thus, the player learns not only from his
own payoffs, but also by observing the payoffs of the other players. Moreover,
higher effort by one player makes the high state more likely for all players.

The filtration Fα keeps track of the public history. Let φt denote the prior
probability that the players assign to the high state st = 1 at time t. At any point
of time t, each player chooses the optimal effort αt,i to maximize the expected
payoff

v0,i = Eφ

[∫ ∞

0
e−rtdπt,idt

]
= Eφ

[∫ ∞

0
e−rtαt,i(µφt − ci)dt

]
. (5)

The equality follows using law of iterated expectations and E[st|Fα]=φt.

6The assumptions are sufficient to guarantee that the efficient policy is a threshold policy that
can be solved using standard dynamic programming tools. Fryer and Harms (2013) provide very
general sufficient conditions for applicability of standard dynamic programming tools in a single
player’s experimentation problem in a related setting.
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3 Beliefs
This section presents a heuristic derivation for the evolution of the players’ beliefs
that they assign to the high state at time t; the formal derivation is delegated to
the Appendix. The effect of the players’ efforts on the state as well as the fact that
the state may change due to exogenous circumstances, make the players’ belief
updating nonstandard.

When the players exert effort, they both learn about the current state of the
world and affect the probability distribution over the future states. Thus, effort
has two effects: First, it increases the probability that the state is high in the fu-
ture. Second, it allows the players to learn if their past efforts resulted in success.

We derive the filtering equation that governs the players’ belief that they as-
sign to the high state. The filtering equation consists of two terms. The first
term summarizes the effect of the state transition and is anticipated by the play-
ers. Even if the state is high, it may become low. At time t, the players be-
lieve that the value is high with probability φt, but becomes low with probability
λ(1−δ>αt) = λ(1−∑N

i=1δiαt,i) by (2). This effect decreases the players’ belief by
−λ(1−δ>αt)φtdt.

Moreover, even if the state is low, it may become high if the players keep on
exerting effort. The players assign the probability 1−φt to the low state but a
probability λδ>αt to the transition to the high state. The latter effect increases
the players’ belief by λδ>αt(1−φt)dt. By summing up the effects, we can write
the drift of the filtering equation as

λ(δ>αt −φt)dt. (6)

In particular, the players’ belief increases in effort. If the players abstain from
effort, they anticipate that they gradually lose the market. The parameter λ tells
how quickly this happens. δi is the long term mean of the belief conditional on the
player i exerting full effort.

Next, if the players exert effort, they receive informative signals about the
state. Based on their observations, they update their beliefs according to Bayes
rule. Since the players learn from Brownian signals, this part of the filtering
equation follows a martingale. The players incorporate all available information
in their belief and any deviation from their estimate comes as a surprise.

The variance of the belief depends on the model parameters. Learning is more
accurate if the high value µ is high relative to the low one that we normalized to
0. Similarly, if σ is higher, the profit is more volatile and the signal are noisier.
Similarly, learning is faster close to the diffuse belief φt = 1/2 when the players are
very uncertain about the state and becomes slower as beliefs tend towards 0 or 1.
Finally, the players learn more by exerting higher effort αt,i. By summarizing the

8



effects, we find that learning affects the players’ posterior by

µ

σ
φt(1−φt)(α1/2

t )>dZα
t (7)

with α1/2
t = (α1/2

t,1 , ...,α1/2
t,N)> and dZα

t = (dZα
t,1, ...,dZα

t,N)> denoting vectors summa-
rizing all players’ efforts and the Brownian motions that disturb they signals.

By summing up the drift and volatility terms (6) and (7), we find the law of
motion for the players’ common belief. The result is summarized in the following
proposition

Proposition 1 (Beliefs). Fix a prior belief φt and a strategy αt. The common pos-
terior belief, that the players assign to the high state satisfies the following filtering
equation7

dφt =λ(δ>αt −φt)dt+ µ

σ
φt(1−φt)(α1/2

t )>dZα
t , (8)

with α1/2
t = (α1/2

t,1 , ...,α1/2
t,N)> and dZα

t = (dZα
t,1, ...,dZα

t,N)>.

Proof. See Appendix.

If λ> 0 such that the state changes over time, the players are never completely
certain about the current market conditions. Indeed, (8) suggests that the beliefs
are mean-reverting. They have the tendency to return to their long-term mean
which depends on the players’ collective efforts. The next corollary confirms the
observation

Corollary 1. Fix a strategy profile αt. The player’s common belief for the high
state at time t is

φt =φ0e−λt +λ

∫ t

0
e−λ(t−s)δ>αsds+

∫ t

0
e−λ(t−s)µ

σ
φs(1−φs)(α1/2

s )>dZα
s

Proof. Define
y(φt, t)=φteλt

By Itô’s lemma

d y(φt, t)=λφteλtdt+ eλtdφt = eλtλδ>αtdt+ eλtµ

σ
φt(1−φt)(α1/2

t )>dZα
t .

The result follows by substituting back, integrating from 0 to t and multiplying
by e−λt.

One can show that if λ> 0 and αt,i = 1 for all i and t ≥ 0, i.e. the players always
exert full effort, the long term mean of the belief is

∑
i δi = γ. The model includes

the following special cases
7Cf. Liptser and Shiryayev (1977) and Keller and Rady (1999).
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• If λ = 0, the state is fixed over time. In particular, if the players keep on
exerting effort, they learn the true mean as t → ∞. This is the classical
Brownian bandit problem that is comprehensively examined by Bolton and
Harris (1999).

• If λ → ∞, with any positive effort the state becomes i.i.d. Then there is
no learning. One can show that if δiµ > ci, the noncooperative game has a
unique Markov perfect equilibrium in which all players exert full effort in
perpetuity. Moreover, if γµ< ci, effort is never optimal for the player i.

4 Social Planner’s Solution
Before analyzing the noncooperative game, we solve for the social planner’s prob-
lem when she decides about the optimal effort. In particular, we derive the op-
timal strategy in two benchmark cases: observable and unobservable state. The
social planner’s solution coincides with the players’ optimal effort decision if they
could coordinate on effort.

4.1 Complete Information Solution
Before moving to the incomplete information problem, we first solve for the social
planner’s problem when the state is observed. The planner’s value function of the
complete information solution can be solved in closed form.

With complete information, the planner always exerts full effort if the state is
high. If the state is low, the optimal strategy depends on the switching rate λ and
the long term gains γµ relative to the cost ci. If γµ− ci ≥ 0, effort is has positive
value in the long run. Then if λ is very high, the state is very likely to recover if
it becomes low and it is always optimal to exert full effort.

Otherwise, if the long term gains are not high enough compared to the cost of
effort, it is optimal to bandon the technology if the state becomes low. From (2)
it follows that if the state is low, and the planner does not exert effort, the state
stays low. If the planner loses the market, she never exerts positive effort again.

The complete information payoff can be solved in closed form and is summa-
rized in the following proposition

Proposition 2 (Complete Information Solution). Suppose that the state is ob-
served by the players; i.e. φ ∈ {0,1}. Then if the following condition holds

λ(γµ− ci)≥ ci, (9)
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the social planner exerts full effort independent of the state. The expected payoff at
time 0 is

vi(φ)= φ(µ− ci)
r+λ(1−γ)

. (10)

Vice versa, if (9) does not hold, the planner stops exerting effort if the state becomes
low. The expected time 0 payoff is

vi(φ)= µ(φr+λγ)
r(r+λ)

− ci

r
. (11)

Proof. See Appendix.

4.2 Incomplete Information Solution
We next solve for the social planner’s problem when she does not observe the state,
but learns from it by observing the payoffs. The social planner’s solution provides
both an appropriate benchmark for efficiency considerations and useful insights
that help to solve the noncooperative game.

Recall from the previous section that if the long-term gain of effort is very high,
it is optimal to exert full effort, regardless of the current state. When the state
is observed, this is the case if the long term gains exceed the myopic cost; i.e. if
the condition (9) holds. Otherwise, it is optimal to never exert effort if the state
becomes low. A similar logic applies for the planner’s optimal decision when the
state is unobserved. However, since the planner does not observe the true state,
she conditions her strategy on her belief. We focus here on the analysis in the case
in which the planner stops exerting effort if she becomes too pessimistic.

The social planner’s optimal effort only depends on the belief that she assigns
to the high state. The belief summarizes both the long-term effect of the planner’s
efforts and her information about the current state. The social planner’s optimal
decision is a bang-bang policy: she either exerts full effort or entirely abstains
from it. Effort is optimal if the belief is high enough, i.e. the planner is sufficiently
optimistic about the state.

Formally, the planner’s optimal decision can be derived using standard dy-
namic programming tools. At any point of time, and for each i ∈ {1, ..., N}, the
social planner chooses αi(φt) such that it maximizes (5). We assume that both
the long term mean of the efforts and the costs are identical across the play-
ers such that δi = δ j and ci = c j = c for all i, j ∈ {1, ..., N}. Then by symmetry,
αi(φt)=∑

iαi(φt)/N.
Using symmetry together with

∑N
i=1δi = γ, we can write the social planner’s

Hamilton-Jacobi-Bellman equation at any point φ as

rvi(φ)= sup
αi(φ)

{
αi(φ)(µφ− c) +λ(γα(φi)−φ)v′i(φ)+αi(φ)

N
2
µ2

σ2φ
2(1−φ)2v′′i (φ)

}
(12)
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for each i. From (12) we can immediately see that the social planner’s objective is
linear in αi(φ). We will show below that the optimal policy is characterized by two
regimes: If the belief is high, it is optimal to exert full effort; i.e. αi(φ) = 1. If the
belief falls below a certain cutoff, it becomes optimal to set αi(φ)= 0. By symmetry,
the same effort strategy is optimal for all i. Moreover, if the planner stops exerting
effort, she anticipates that she gradually loses the market.8 Therefore, it is never
optimal to exert effort again.

Now suppose that λ > 0 such that the state evolves over time. Then with
bad enough luck, the social planner eventually stops exerting effort even if the
state is high. Then over long enough time horizon, the planner loses the market
with probability 1. Thus, the model entails self-fulfilling predictions. Of course,
the converse is also possible: a sequence a good outcomes may occur even if the
state is low. Then the social planner keeps on exerting effort, which eventually
results in success over time. The resulting predictions are in contrast with Fryer
and Harms (2013) in which the players eventually get trapped in abstaining from
effort even if the product value is high.

We next derive some key properties of the planner’s value function vi(φ). Since
αi(φ)= 0 is always feasible, the value function is nonnegative. Moreover, we show
that the social planner’s value function is convex and increasing in her belief.
Convexity reflects the fact that value of information is positive. The planner can
only benefit from the resolution of uncertainty since it allows her to make a more
efficient decision. The result is summarized in the following lemma

Lemma 1. Social planner’s value function vi(φ) is nonnegative, nondecreasing
and convex in φ.

Proof. We first prove that the value function is convex. Notice that for arbitrary,
fixed αi(φ), the social planner’s objective (5) is linear in φ. Let vαi (φ) denote the
planner’s value from such a strategy. Next, consider φ = ηφ1 + (1−η)φ2 with η ∈
[0,1]. Then

vαi (φ)=ηvαi (φ1)+ (1−η)vαi (φ2)

≤ηsupvαi (φ1)+ (1−η)supvαi (φ2)

=ηvi(φ1)+ (1−η)vi(φ2).

Taking the supremum on left hand side proves convexity.
Next, if αi(φ) = 0, the belief drifts down according to (8). Therefore, if the

planner stops exerting effort, she stops exerting effort in perpetuity. Since αi(φ)=
0 is feasible, we must have vi(φ)≥ 0. Moreover, if αi(φ)= 0 in perpetuity, v′i(φ)= 0.
Since v′′i (φ)≥ 0 by the first part of the proof, we must have that v′i(φ)≥ 0.

8Formally, as we can see from (8), the planner’s belief drifts downwards.
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We show that the social planner’s optimal decision has an isomorphic interpre-
tation as an optimal stopping problem. In particular, we first show that there is
a cutoff belief φ∗ ≥ 0 above which the planner always exerts full effort and below
which she abandons the risky technology. Formally,

Lemma 2. For all i, there exists a unique cutoff belief φ∗ such that αi(φ) = 1 for
all φ≥φ∗ ≥ 0 and αi(φ)= 0 otherwise. φ∗ is an absorbing boundary.

Proof. Let φ∗ denote the highest belief at which αi(φ)= 0 and recall from the proof
of Lemma 5 that if the planner stops exerting effort, she never exerts positive
effort again. Thus, αi(φ)= 0 for all φ≤φ∗ and φ∗ is an absorbing boundary.

Next, notice that (12) implies that αi(φ) ∈ [0,1] is optimal only if

c−µφ=λγv′i(φ)+ N
2
µ2

σ2φ
2(1−φ)2v′′i (φ), (13)

otherwise, either αi(φ)= 1 or αi(φ)= 0. Substituting (13) into (12) implies that

rvi(φ)=−λφv′(φ)= 0,

where the second equality follows since vi(φ)≥ 0 and v′i(φ)≥ 0 by Lemma 5. Then
(13) implies that αi ∈ [0,1] is optimal at most at the single point φ∗.

Notice that Lemmas 1 and 2 imply that the social planner always exerts effort
longer than is myopically optimal. Let φM ≡ c/µ denote the cut-off belief at which
a myopic player stops.

Corollary 2. The social planner keeps on exerting effort longer than myopically
optimal; i.e. φ∗ ≤φM .

Proof. Since φ∗ is the optimal threshold belief, at which the planner abandons the
product and v′i(φ

∗)= 0 by Lemmas 1 and 2, we have

c−µφ∗ = N
2
µ2

σ2φ
∗2(1−φ∗)2v′′i (φ∗)≥ 0.

The last inequality follows by Lemma 1. The result follows by reorganizing.

The result holds for an arbitrary number of players, including N = 1. A single
player always keeps on exerting effort beyond the myopic belief. We will show
below that the same result holds in the noncooperative game since the aggregate
effort can never cease as long as it is optimal for a single, isolated player to exert
effort.

We can now write the social planner’s problem as a standard optimal stopping
problem. The result is summarized in the following proposition

13



Proposition 3 (Social Planner’s Solution). For all φ ≥ φ∗, the planner’s value
function is the unique solution of the ordinary differential equation

rvi(φ)=µφ− c+λ(γ−φ)v′i(φ)+ N
2
µ2

σ2φ
2(1−φ)2v′′i (φ) (14)

with the boundary conditions rvi(1)=µ−c−λ(1−γ)v′i(1), vi(φ∗)= 0 and v′i(φ
∗)= 0.

Proof. See Appendix.
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(a) λ= 0.5, γ= 1; φ∗ = 0.25.
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(b) λ= 0.01, γ= 0.5; φ∗ = 0.47.

Figure 1: The effect of varying λ and γ on the social planner’s optimal policy.
The solid curve describes the pure experimentation problem for which φ∗ = 0.43;
the dashed line describes the problem with an endogenous state. The parameter
values are µ= 5, c = 4.5, σ= 5, r = 0.1 and N = 2.

Unfortunately, explicit solutions are only available for the special case λ = 0
that is carefully analyzed in Bolton and Harris (1999). Figure 1 examines numeri-
cally how the changing state changes the optimal policy in comparison to the pure
experimentation problem. Figure 1a describes the model in which γ= 1 such that
the good state is absorbing. Then increasing λ increases the probability that the
planner is able get to the good state by exerting effort. Consequently, the planner
has a very strong incentive to exert effort also at low beliefs. As we will see below,
this turns out to be a very strong prediction that holds also in the noncooperative
game. Increasing λ always increases the players’ incentives to exert effort.

Figure 1b demonstrates the effect of lowering the low term mean γ of beliefs
conditional on effort. We can see that the planner’s value decreases if γ is lower,
but that the incentives to exert effort at low beliefs are hardly affected. We will
show below that this effect is very different in the noncooperative game. A lower
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long-term mean strengthens the players’ temptation to free-ride on each other
impact on the state. This results in a lower level of aggregate effort which again
results in an earlier unraveling of the noncooperative game.

5 Noncooperative Solution
The main section of the paper studies the noncooperative game in which each firm
decides individually how much effort it wants to exert. The state is the same for
all players and they benefit from each others’ efforts. However, effort is eventually
costly since the state may be low. While effort benefits all firms, it is only profitable
if the state is high.

We find several effects that drive the players’ optimal decision at equilibrium.
First, the players always have the possibility to delay their effort and benefit from
each others’ actions. This gives incentives to free-ride. Second, value of infor-
mation is positive and exerting higher effort encourages other players to exert
effort. The two effects are familiar from the classical experimentation literature.
The free-riding effect is affected if effort affects the distribution over future pay-
offs. In particular, the players are more likely to lose the market if they abstain
from effort. This alleviates free-riding. However, the players have an incentive
to free-ride on each others’ impact on the state. The latter effect strengthens the
free-riding effect.

Next, the players’ incentives to exert effort depend on the state which again
depends on the players’ actions. Thus, if the players exert higher effort, they also
encourage other players to exert higher effort. We show that if the players start
restricting effort above the long term mean, the two effects play in the same direc-
tion, which leads to multiple symmetric Markov Perfect equilibria of the noncoop-
erative game. Notice that multiplicity does not arise in the pure experimentation
problem. While the players’ incentives to exert effort do depend on state, the state
does not depend on the actions. As a consequence, the belief uniquely pins down
the symmetric Markov Perfect equilibrium.9

Finally, we show that if the state depends on the players’ actions, they even-
tually get trapped in low effort, leading to an inefficient unraveling of the game.
The unraveling is a consequence of the players’ free-riding together with the fact
that a sufficiently high level of effort is needed to keep the market. In the non-
cooperative solution, the aggregate effort is too low, which quickly drives down
the state. Such unraveling is inefficient and does not occur in the social planners’
optimum. Moreover, it cannot occur in Bolton and Harris (1999) in which the

9Of course, learning games typically have asymmetric equilibria that are qualitatively differ-
ent. See, for example, Keller et al. (2005).
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state does not depend on the players’ action. In contrast, learning slows down but
experimentation goes on indefinitely.

5.1 Markov Perfect Equilibria
We start the analysis by defining the players’ strategies and the equilibrium con-
cepts formally. In continuous time, a strategy is a stochastic process on which we
impose appropriate measurability conditions

Definition 1 (Strategy). A strategy of player i is a stochastic process αi = {αi,t ∈
[0,1],0≤ t <∞} progressively measurable with respect to the filtration Fα

t .

We restrict the attention on a strict subset of possible strategies, stationary
Markovian strategies. Each player chooses his strategy as a function of the belief
φt only. Formally, we define

Definition 2 (Stationary Markovian Strategy). A strategy αi is a stationary Marko-
vian strategy if αt,i =αi(φt) for all 0≤ t <∞.

At equilibrium, each player chooses his strategy such that it is a best response
to the other players’ strategies. In Markov perfect equilibria, all players play
stationary Markovian strategies. At time t let

α−i(φt)≡ (α1(φt), ...,αi−1(φt),αi+1(φt), ...,αN(φt))

denote the vector summarizing a stationary Markovian strategy profile chosen by
the players other than i. We formally define the equilibrium as follows

Definition 3 (Markov Perfect Equilibrium). A Markov perfect equilibrium is a
Nash equilibrium in which

(i) the players update their common belief according to the filtering equation (8),
starting from the initial value φ0 =φ;

(ii) each player i chooses a stationary Markovian strategy αi(φ) such that it is a
best response to the stationary Markovian strategy profile α−i(φ) chosen by
the other players.

The restriction on stationary Markovian strategies is made for tractability and
allows us to use standard dynamic programming tools to derive the players’ best
response correspondences. Fix a stationary Markovian strategy profile α−i(φt) by
the other players and consider the decision problem of player i. At any point,
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the player i’s optimal effort can be derived from his Hamilton-Jacobi-Bellman
equation10

rvi(φ)= sup
αi(φ)∈[0,1]

{
αi(φ)(µφ− ci)+λ(δiαi(φ)+δ>−iα−i(φ)−φ)v′i(φ)

+1
2

(αi(φ)+1>α−i(φ))
µ2

σ2φ
2(1−φ)2v′′i (φ)

}
, (15)

where δ−i = (δ1, ...,δi−1,δi+1, ...,δN) summarizes the impact of the other players’
efforts on the state. Fixing the other players’ strategies, we can derive the player
i’s best response from (15).

By comparing an individual player’s decision problem (15) with the social plan-
ner’s Hamilton-Jacobi-Bellman equation (12), we can immediately see that the
players’ efforts have an externality to the other players’ value that a player does
not fully internalize when choosing his strategy. We analyze the resulting free-
riding problem in detail below.

Each player chooses his strategy to maximize his value in (15). Taking into
account the strategies chosen by the other players, the optimal choice implies a
best response by the player. The best response correspondence is summarized in
the following lemma

Lemma 3 (Best Response). A stationary Markovian strategy (αi(φt))t≥0 is a best
response to the stationary Markovian strategy profile (α−i(φt))t≥0 with respect to
the belief process (φt)t≥0 if and only if it solves

αi(φ) ∈ arg sup
α∈[0,1]

{
−λφv′i(φ)+α>

−i(φ)
(
λδ−iv′i(φ)+ 1

2
1
µ2

σ2φ
2(1−φ)2v′′i (φ)

)
+αi(φ)

[
φµ− ci +λδiv′i(φ)+ 1

2
µ2

σ2φ
2(1−φ)2v′′i (φ)

]}
. (16)

Proof. See Appendix.

If λ = 0, (16) reduces to the player i’s best response correspondence in Bolton
and Harris (1999). If λ > 0, the player’s best response correspondence contains
additional terms that describe the effects of the evolving state on the players’
optimal choice.

The term in the parenthesis on the second line of (16) describes the player i’s
opportunity cost of effort. The first term, µφ− ci, which is eventually negative,
describes the player’s flow profit of effort. The second term, λδiv′i(φ) describes
the player’s benefit from the effect of his own effort on the state. The last term,

10We let 1= (1, ...,1)> denote the vector of ones of appropriate length.
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1/2µ2/σ2φ2(1−φ)2v′′i (φ) is the shadow value of information from learning. We will
show below that v′i(φ)≥ 0 and v′′i (φ)≥ 0 such that both a higher state and learning
have positive value for the player.

The last term in the parenthesis of the first line of (16) describes the exter-
nality that the other players’ effort has on the player i’s value. The first term,
λδ−iv′i(φ), describes the externality that results from the other players’ efforts im-
proving the state. The second term, 1/2µ2/σ2φ2(1−φ)2v′′i (φ), is the shadow value
of information provided by the other players. Both effects are positive such that
the other players’ efforts have a positive externality on the player i’s value.

We will show below that the player i’s effort increases in his value vi(φ). Now
the other players’ effort has a positive externality on the player i’s value. This in-
creases the players’ effort at equilibrium and implies that the players exert effort
longer than a single player would. Bolton and Harris (1999) first discovered the
encouragement effect which is also present in our model.

However, the player does not fully internalize the effect of his effort on the
other players’ value, but has an incentive to free-ride on the other players’ actions.
Also this effect was first discovered by Bolton and Harris (1999), and it is affected
by the fact that the players have an incentive to free-ride on each others’ impact
on the state, not only on their learning. In particular, recall that when the players’
action affects the state, the value deteriorates if the players’ abstain from effort.
The second term in (16), −λφv′i(φ), describes how quickly the players lose the
market if they do not exert effort. We will show below that this alleviates free-
riding and increases the players’ effort at the noncooperative equilibrium.

5.2 Symmetric Equilibria
We next analyze the symmetric Markov perfect equilibria in more detail. In a
symmetric equilibrium, each player faces the same decision problem and the equi-
librium best responses coincide. The restriction allows us to make more detailed
predictions about the properties of the equilibrium.

We analyze the equilibria in the game with N ≥ 2 players. To facilitate sym-
metry, we again assume that each player’s effort has the same effect on the state
and that the players face the same cost. Thus, δi = δ j = γ/N and ci = c j = c for all
i, j ∈ {1, ..., N}.

Formally, a symmetric Markov perfect equilibrium (MPE) is defined as follows

Definition 4 (Symmetric MPE). A Markov perfect equilibrium is symmetric if
αi(φt)=α j(φt) for all t ≥ 0, and all players i and j.

In the symmetric Markov perfect equilibria, we can identify three qualitatively
different effort regimes. If the players are very optimistic about the state, exert-
ing full effort is a dominant strategy. Similarly, if the players are very pessimistic,

18



abandoning the technology is optimal. However, at intermediate beliefs, the play-
ers have an incentive to free-ride on each others’ actions. At equilibrium, they
do not exert full effort. Individually, each player is just indifferent between her
strategies.

The player’s optimal effort can be found by applying symmetry on (16) and is
summarized in the following proposition

Proposition 4 (Effort Regimes). The symmetric Markov perfect equilibria are
characterized by three effort regimes:

1. If c−φµ<λγ/Nv′i(φ)+µ2φ2(1−φ)2v′′i (φ)/(2σ2), it is optimal to set αi(φ)= 1.

2. If c−φµ=λγ/Nv′i(φ)+µ2φ2(1−φ)2v′′i (φ)/(2σ2), the players choose the interior
level of effort

αi(φ)= rvi(φ)+λφv′i(φ)
(N −1)(c−φµ)

. (17)

3. If c−φµ>λγ/Nv′i(φ)+µ2φ2(1−φ)2v′′i (φ)/(2σ2), it is optimal to set αi(φ)= 0.

(17) suggests that the incentives to exert effort are stronger when the exoge-
nous switching rate λ is higher. If λ> 0, constant effort is needed for the players’
not to lose the market. Higher λ implies that abstaining effort results in the play-
ers losing the market more quickly. This makes free-riding less attractive and
increases the players’ effort at equilibrium.

Proof. The Hamilton-Jacobi-Bellman equation (15) if linear in αi(φ). The optimal
control is a bang-bang policy. If c−φµ< λγ/Nv′i(φ)+µ2φ2(1−φ)2v′′i (φ)/(2σ2), it is
optimal to set αi(φ) = 1. If c−φµ > λγ/Nv′i(φ)+µ2φ2(1−φ)2v′′i (φ)/(2σ2), αi(φ) = 0
is optimal.

Finally, consider φ such that λγ/Nv′(φ)+φ2(1−φ)2v′′i (φ)/(2σ2) = c−µφ. Then
(15) implies that αi(φ) ∈ [0,1] is optimal. Substituting for αi(φ) = α j(φ), we find
that

rvi(φ)=αi(φ)(φµ− c)+λ
(
γαi(φ)−φ

)
v′i(φ)+ N

2
αi(φ)

µ2

σ2φ
2(1−φ)2v′′i (φ)

=αi(φ)(φµ− c)−λφv′i(φ)+Nαi(φ)r(c−φµ)
=−λφv′i(φ)+αi(φ) (N −1)(c−φµ).

Rearranging yields the interior solution (17) for the equilibrium effort level.

Now, let φ̄ denote the highest belief at which αi(φ)< 1 and ¯̄φ the highest belief
at which αi(φ) = 0. We will show below that the two beliefs are cutoff beliefs
at which the players switch between the regimes. First if the players become
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pessimistic enough, such that their belief falls below φ̄, they start to restrict effort.
Next, if they become even more pessimistic, such that their belief falls below ¯̄φ,
they stop exerting effort. In absence of effort, losing the market becomes more and
more likely.; the belief drifts down deterministically according to (8). The players
never exert effort again.

Before writing down the main result that characterizes the equilibria, we first
derive some key properties of the equilibria. Recall from Corollary 2 that the social
planner keeps on exerting effort longer than is myopically optimal. In particular,
the result holds if there is only one player; i.e. N = 1. We argue that also in the
noncooperative game, the players exert effort longer than a myopic player would.
The argument follows by contradiction. Suppose that none of the players would
exert effort at the myopic cutoff. in a symmetric Markov perfect equilibrium as
long as one player alone would. But then, once the players stop developing the
product, exerting effort would still be profitable for each player alone. This is a
profitable deviation and cannot be part of an equilibrium strategy.

The following lemma summarizes the result

Lemma 4. In the N-player noncooperative game, ¯̄φ≤φM .

Proof. The proof follows by contradiction. The single player’s decision problem
is a special case of the social planner’s problem with N = 1. Let φ̂1 denote the
corresponding threshold belief at which the single player abandons the technology.

Suppose that there exists a Markov perfect equilibrium of the noncooperative
game with the strategy profile αMPE(φ) such that the players stop exerting effort
at some belief ¯̄φ > φ̂1. Now for φ ∈ [φ̂1, ¯̄φ] positive effort is a profitable deviation
for any single player. Thus, αMPE(φ) cannot be an equilibrium. It follows that
¯̄φ≤ φ̂1. The result follows since φ̂1 ≤φM by Corollary 2.

The next lemma shows that at the symmetric Markov perfect equilibrium, the
value of information is positive; i.e. the value function vi(φ) is convex. The players
can only benefit from the resolution of uncertainty since this helps them to find
the more efficient action. Moreover, we show that the value function increasing;
the expected payoff is higher at higher beliefs.

Lemma 5. At any symmetric Markov perfect equilibrium, v′i(φ)≥ 0, v′′i (φ)≥ 0 and
λγ/Nv′i(φ)+µ2φ2(1−φ)2v′′i (φ)/(2σ2)≥ 0.

Proof. Suppose first that φ≥φM . At φ= 1, the boundary condition rv(1)=αi(1)(µ−
ci)−λ(1−γ/Nαi(φ)−N/(N −1)α j)v′i(1), i 6= j, implies that αi(1) = 1 is optimal. At
the neighborhood of φ = 1, v′i(φ) > 0 and v′′i (φ) ≥ 0 by (5), and therefore αi(φ) = 1
by (17). The result follows by repeating the argument.
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Next, suppose that φ ≤ φM . Again, if αi(φ) = 1, the result follows from (5). If
αi(φ)< 1 is optimal, Proposition 4 implies that

λδiv′i(φ)+ 1
2
µ2

σ2φ
2(1−φ)2v′′i (φ)= ci −φµ≥ 0, (18)

with strict inequality if φ < φM . Therefore, we must have that either v′i(φ) ≥ 0
or v′′i (φ) ≥ 0 or both. Notice that since v′i(

¯̄φ) = 0, we must have both v′i(φ) ≥ 0
and v′′(φ) ≥ 0 at the neighborhood of ¯̄φ. Moreover, (5) implies that v′i(φ) ≥ 0 and
v′′i (φ) ≥ 0 at the neighborhood of φ̄. This implies that we would need to have
v′′i (φ)< 0 on a set of positive measure. We show that this cannot be the case.

Suppose that v′′i (φ) < 0 on a set of positive measure and let φ1 denote the
largest point at which v′′i (φ)≥ 0. Such a point exists since v′′i (φ) is continuous and
v′′i (φ̄) ≥ 0. Let [φ1,φ2], with φ1 < φ2 denote an interval on which v′′i (φ) ≥ 0. Then
v′i(φ

1)≤ v′i(φ
2). (18) together with c−µφ1 > c−µφ2 and v′′i (φ1) implies that

λδiv′i(φ
1)>λδiv′i(φ

2)+ 1
2
µ2

σ2 (φ2)2(1−φ2)2v′′i (φ2)≥λδiv′i(φ
2)

a contradiction. Thus, we must have v′′i (φ)≥ 0.

Lemma 5 implies that the players’ value increases with other players’ effort.
This demonstrates the encouragement effect in the model with an endogenous
state. Indeed, we can conclude that

Corollary 3. In a symmetric Markov perfect equilibrium, if 1>α−i(φ) ≥ 1>α̃−i(φ),
then vi(φ)≥ ṽi(φ).

Now it follows from Lemma 5 that the noncooperative solution is characterized
by three regimes that depend on the belief and can be separated by two threshold
beliefs: the threshold φ̄ at which the players start restricting their effort and the
threshold ¯̄φ at which the players stop exerting effort. Between φ̄ and ¯̄φ the players
gradually decrease their effort. The next lemma confirms the observation

Lemma 6. There exist two cutoff beliefs φ̄ and ¯̄φ such that (i) αi(φ)< 1 if and only
if φ< φ̄; (ii) αi(φ)= 0 if and only if φ< ¯̄φ; (iii) ¯̄φ is an absorbing boundary.

Proof. Recall that ¯̄φ denotes the highest φ such that αi(φ) = 0. The argument
that ¯̄φ is an absorbing boundary follows along the same lines than in the social
planner’s problem in Lemma 2. Since the bad state becomes more and more likely
over time in absence of effort, the players never start to exert effort again.

Next, notice that we can write the player i’s strategy as

αi(φ)=max

{
min

{
rvi(φ)+λv′i(φ)
(N −1)(c−µφ)

,1

}
,0

}
(19)
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by Proposition 4. Then (19) together with Lemma 5 implies that αi(φ) is nonde-
creasing in belief. Let φ̄ denote the highest belief at which αi(φ) = 1. The result
follows.

Finally, by Corollary 3, the players’ incentives to exert effort depend on the
other players’ effort. Now if the state is evolving, the players’ incentives to exert
effort depend on the state transition which again depends on the players’ effort.
We show that if φ̄ > γ, such that the players start restricting effort above the
long term mean,11 these two effects play in same direction. Then the game has
multiple symmetric Markov Perfect equilibria.

Similarly to the social planner’s problem, the solution to the noncooperative
game has an isomorphic interpretation as a standard optimal stopping problem
with which it is easier to deal. The symmetric Markov perfect equilibria are sum-
marized in the following proposition

Theorem 1 (Symmetric Markov Perfect Equilibria). There exists a symmetric
Markov perfect equilibrium. Starting from a prior belief φ0, the player i’s pay-
off admits the following dynamics

• As long as φ> φ̄, αi(φ) = 1 for all i ∈ {1, ..., N} and the player i’s payoff is the
unique solution of the following ordinary differential equation

rvi(φ)=φµ− c+λ(γ−φ)v′i(φ)+ N
2
µ2

σ2φ
2(1−φ)2v′′i (φ) (20)

with the boundary conditions (N −1)(c−µφ̄) = rvi(φ̄)+λφ̄v′i(φ̄) and rvi(1) =
µ− c−λ(1−γ)v′i(1).

• When ¯̄φ<φ≤ φ̄, αi(φ) ∈ [0,1] for all i and the player i’s payoff solves

c−µφ= λγ

N
v′i(φ)+ µ2

2σ2φ
2(1−φ)2v′′i (φ). (21)

The boundary conditions are vi( ¯̄φ)= 0 and v′i(
¯̄φ)= 0.

• As soon as φ reaches ¯̄φ, αi(φ)= 0 for all i.

Moreover, the game has multiple symmetric Markov perfect equilibria if φ̄ > γ;
otherwise the symmetric Markov perfect equilibrium is unique.

Proof. See Appendix.

11Notice that this implies that unraveling starts immediately at φ̄.
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(21) is an indifference condition and describes the players’ value in the region
of beliefs at which they choose an interior effort level. (20) describes the players’
value on the region on which they exert full effort. By comparing the value func-
tions in the social planner’s problem (12) and the noncooperative game (15), we
immediately see that they coincide. Free-riding is the only source of inefficiency
that restricts the players’ efforts at equilibrium.

In our framework, constant effort is needed for the players not to lose the mar-
ket. The assumption has several consequences. First, free-riding is alleviated.
Second, if the players become too pessimistic about the state, it eventually be-
comes optimal to abandon the technology. If the players stop exerting effort, they
gradually become more pessimistic. Then the players never exert positive effort
again. Moreover, as we will show below, the players eventually get trapped in low
effort, causing an inefficient unraveling of the equilibrium.
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(a) Bolton and Harris (1999); φ∗ = 0.43 φ̄ =
0.82, ¯̄φ= 0.60.
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(b) λ = 0.1, γ = 1; φ∗ = 0.40 φ̄ = 0.73, ¯̄φ =
0.41.

Figure 2: Increasing λ alleviates free-riding. The dashed-dotted line describes
the social planner’s solution. Along the solid line the players exert full effort;
along the dashed line the effort is restricted. The parameter values are µ = 5,
c = 4.5, σ= 5 r = 0.1 and N = 2.

Figures 2 and 3 examine the player’s value function in noncooperative solution
relative to the corresponding efficient benchmark. Figure 2 displays the numeri-
cal solution of Bolton and Harris (1999) on the left compared to a game with an
endogenous state, λ> 0, but an absorbing good state, γ= 1. We can see that free-
riding is alleviated and the players exert effort almost as long as a social planner
would, already for a small increase in λ. The player become very eager to win the
market, which increases their effort at equilibrium.

Figure 3 illustrates numerically the equilibrium unraveling result. For the
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(a) λ= 0.04, γ= 0.85; φ̄= 0.8, ¯̄φ= 0.53.
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(b) λ= 0.01, γ= 0.5; φ̄= 0.85, ¯̄φ= 0.60.

Figure 3: Unraveling. The dashed-dotted line describes the social planner’s so-
lution. Along the solid line the players exert full effort; along the dashed line the
effort is restricted. The parameter values are µ = 5, c = 4.5, σ = 5 r = 0.1 and
N = 2. φ∗ = 0.47 in both cases.

left panel, the long term mean is relatively high conditional on effort, γ= 0.85; the
exogenous switching rate is λ = 0.04. For the right panel, the long term mean is
relatively low γ= 0.5; the switching rate is λ= 0.01. For both solutions, the social
planner abandons the technology at the same belief. However, we can see that
the noncooperative solution is relatively more inefficient in the right panel. In
particular, ∆φ̄= 0.80−0.85=−0.05 while ∆ ¯̄φ= 0.53−0.60=−0.07. Thus, there is
an almost 30% higher decrease in the threshold ¯̄φ, at which the players abandon
the technology, than in the threshold φ̄, at which the players start restricting
effort. While higher switching rate λ alleviates free-riding, a lower long term
mean γ leads to an earlier unraveling of the noncooperative game.

The rest of the chapter studies the unraveling result formally. Because of free-
riding, the aggregate effort is not high enough, and the value deteriorates while
learning slows down. Indeed, (8) implies that the belief drifts down if

γαi(φt)≤φt (22)

It is immediate from (22) that unraveling is more likely if γ, i.e. the long term
mean is lower conditional on effort.

Notice that such unraveling is not possible if λ = 0. Free-riding slows down
the learning rate, but effort goes on indefinitely, see Bolton and Harris (1999).
Moreover, the unraveling is inefficient and does not occur at the social planners’
optimum. In contrast the social planner would exert every effort to improve the
state.
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Next, a natural question arises if free-riding can lead to unraveling if the state
is high at time t. The next proposition derives conditions under which this is
possible. In particular, the market size is not allowed to be too large. If the
market is very large, the players always obtain a large number of signals, even
if they exert very low effort. Then information acquisition dominates, and causes
the players’ belief to drift towards the true state.

The next proposition confirms the observations

Proposition 5 (Unraveling). Consider a symmetric Markov perfect equilibrium of
the noncooperative game with N <∞ players. Then

• There exists a belief φ̃ such that if φt < φ̃t, the players’ common belief is a
(strict) supermartingale in the noncooperative game.

• Suppose that ¯̄φ≤φ< φ̃. Then if

(rvi(φ)+λv′i(φ))
(
γ

N
+ µ2

λσ2φ(1−φ)2
)
< N −1

N
φ(c−µφ), (23)

the players’ belief is a (strict) supermartingale conditional on st = 1.

Proof. Suppose that ¯̄φ ≤ φ < φ̄ such that the players do not exert full effort. We
identify the cutoff belief φ̃, below which the belief (8) drifts down, and argue that
φ̃ > ¯̄φ. Indeed, recall that the belief drifts down if (22) holds. Let φ̃ denote the
belief such that the condition holds with equality. By substituting for (17) and
reorganizing, we find that φ̃ is implicitly defined in

vi(φ̃)+λv′i(φ̃)= φ̃

γ
(c−µφ̃)(N −1).

Since vi( ¯̄φ)= v′i(
¯̄φ)= 0, and 0< ¯̄φ< c/µ=φM for N <∞, we find that φ̃> ¯̄φ.

To the second point, suppose that st = 1 such that the state is high at time t.
One can show that from the point of view of someone, who observes the true state,
the players’ common belief evolves according to12

dφt =λ(γαi(φt)−φt)dt+Nαi(φt)
µ2

σ2φt(1−φt)2dt+µφt(1−φt)(α(φt)1/2)>dZt

at the noncooperative equilibrium. Reasoning along the same lines than in the
first part of the proof, one can show that the drift of the true belief process is
nonpositive if and only if (23) holds.

12See Keller and Rady (1999); Liptser and Shiryayev (1977).
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6 Discussion
We examine a new model of strategic experimentation in which the players’ action
affects the distribution over future payoffs. The players need to exert effort to
improve the value of a product that is uncertain and unobserved by the players.
Effort is needed both to enhance the product value and to learn about its viability
in the market.

The main focus of the analysis is a version of the model in which each player
individually decide how much effort to exert to develop and sell the product. We
show that whenever the product value depends on the players’ efforts, they even-
tually get trapped in the low action, which leads to an inefficient unraveling in the
noncooperative equilibrium. For intermediate beliefs, the players have a strong
incentive to free-ride on each others’ actions, which results in them reducing their
effort at the noncooperative equilibrium. The aggregate level of effort remains
too low and the players gradually lose the market. The result is in sharp contrast
with the results in pure experimentation problems, in which learning slows down,
but experimentation goes on indefinitely.

Moreover, we show that if unraveling starts immediately when the players
start restricting effort, the noncooperative game has multiple Markov Perfect
equilibria. The players’ incentives to exert effort depend on the belief that they
assign for the state. However, now the state also depends on the players’ efforts.
Higher aggregate effort does not only lead to more accurate signals, but also to a
higher value. This drives multiplicity of equilibria in our framework.

This paper only derives the equilibrium for a restricted class of processes and
actions. In particular, we only consider the case in which the signals are dis-
tributed by Brownian noise and the low state becomes more and more likely if the
players do not exert effort. The latter assumption implies that the players never
start exerting effort again if they stop. An important line of future research seems
to be allowing for a more general dependence of the state on the action, possibly in
a framework with Poisson distributed profits. Also the Levy version of the bandits
still remains unexplored in our framework.
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7 Appendix
The appendix is organized as follows

1. We first derive the filtering equation governing the law of motion for the
common beliefs. Since the players’ actions affect the distribution over future
payoffs, belief updating is nonstandard.

2. We solve for the social planner’s problem when she optimizes the profits
of all N players simultaneously. We analyze both the case in which she
observes the state and the case in which the state is unobserved.

3. We solve for the symmetric Markov perfect equilibrium in which each player
chooses his effort individually.

We start by deriving the filtering equation for the beliefs in Section 3. When
the players exert effort, they both increase the probability of the good state in
the future and learn from the success of past efforts. The filtering equation, that
governs the evolution of beliefs, takes into account both effects.

Proof of Proposition 1. The payoffs in (4) are observationally equivalent to the sig-
nals

dπ̃t,i ≡
dπt,i

α1/2
t,i

=α1/2
t,i φtµdt+σdZt,i

for each player i, given the strategy αt,i. The players observe, not only their own
signal, but also the other players’ signals.

After observing the signals the players update their common belief about the
current state using Bayes rule

φt− = φξt

φξt +1−φ
,

where the likelihood ratio ξt evolves according to

dξt = µ

σ
ξt(α1/2

t )>dZt. (24)

This uses Girsanov’s theorem and the fact that the Brownian motions Zi are in-
dependent across the players.

By Itô’s lemma, the players’ posterior belief evolves according to

dφt− = (α1/2
t )>

µ

σ
φt−(1−φt−)dZα

t

prior to the state transition. The Brownian motions are related by dZα
t = dZt −

α1/2
t µφt−dt, i.e. the ith row of the vector dZα

t is dZα
t,i = dZt,i −µφt−α

1/2
t,i dt.

27



Next, the players anticipate that the state eventually changes over time. The
change depends on the players’ efforts. For s ∈ {0,1}, let ∆Ns

t = Ns
t −Ns

s− , where

∆Ns
t =

{
1 if st 6= st− ,
0 if st = st− .

The process Ns
t follows the continuous-time Markov chain (2).

At time t, the players assign a belief φt− for the high state and a probability of
1−∆N1

t for the game actually remaining in the high state. Similarly, the players
belief that the state is low with probability 1−φt− , but becomes high with prob-
ability ∆N0

t . Thus, taking into account the possibility of the state transition, the
players assign the belief

φt = (1−∆N1
t )φt− + (1−φt−)∆N0

t

to the high state.
Applying Itô’s formula for jump diffusions,13 we find that

dφt =−φt−dN1
t + (1−φt−)dN0

t + (1− (N1
t− −N1

t−))dφt− − (N0
t−−N0

t−)dφt−

=λ(δ>αt −φt)dt+ µ

σ
φt(1−φt)(α1/2

t )>dZα
t .

The last equality follows since φt is continuous almost everywhere.

We next derive the social planner’s expected payoff when she observes the
current state. In particular, we derive conditions under which the social planner
always exerts effort and conditions under which she abandons the technology if
the state becomes low.

Proof of Proposition 2. Let vi(φ) denote the complete information payoff from the
product i. We first derive the planner’s expected payoff if she stops as soon as the
state becomes low. Then we derive the expected payoff when the planner always
exerts effort and determine conditions under which effort is optimal in both states.

Suppose first that the planner stops exerting effort if the state becomes low.
Now as long as the state remains high, full effort is optimal, i.e. αt = 1. However,
the state eventually becomes low, an event after which the planner stops exerting
effort. The distribution of st follows (2) and is now observed. At t = 0, s0 = 1 with
probability φ. The expected profit is

vi(φ)=φ

[∫ ∞

0
e−rte−λ(1−γ)t(µ− ci)dt

]
= φ(µ− ci)

r+λ(1−γ)
.

13See Øksendal and Sulem (2005).
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Next, suppose that the planner always exerts effort. Conditional on st ∈ {0,1},
the planner’s payoff solves the system of equations

rv1
i =µ− ci +λ(1−γ)v0

i −λ(1−γ)v1
i ,

rv0
i =− ci +λγv1

i −λγv0
i .

The solution is

v1
i =

(r+λγ)µ
r(r+λ)

− ci

r
, (25)

v0
i =

λγµ

r(r+λ)
− ci

r
, (26)

and the expected payoff is (11).
Finally, we derive conditions under which it is optimal to stop if the state

becomes low. If the planner exerts no effort, she earns a continuation payoff 0. If
she keeps on exerting effort, the payoff is (26). By comparing the payoffs, we find
that it is optimal to keep on exerting effort in the low state only if (9) holds.

The next step is to analyze the social planner’s problem in the case in which
she does not observe the state.

Proof of Proposition 3. The proof follows in two steps: We first verify that the
threshold policy suggested in Section 4 maximizes the social planner’s expected
payoff. Then we apply an appropriate change of variables to recast the problem in
a new domain in which standard theorems imply existence and uniqueness of the
solution.

Since (12) is linear in αi(φ), the optimal policy satisfies

α


= 1 if c−µφ<λγv′i(φ)+Nµ2φ2(1−φ)2v′′i (φ)/(2σ2),

∈ [0,1] if c−µφ=λγv′i(φ)+Nµ2φ2(1−φ)2v′′i (φ)/(2σ2),
= 0 if c−µφ>λγv′i(φ)+Nµ2φ2(1−φ)2v′′i (φ)/(2σ2).

(27)

We first verify optimality of the effort strategy (27). In particular, we show that
the process

St =
∫ t

0
e−rsαi(φs)(µφs − c)ds+ e−rtvi(φt) (28)

is a supermartingale for an arbitrary effort strategy, and a martingale if the strat-
egy (27) is chosen.

Applying Itô’s lemma with (8) on (28), we find that

ertdSt =αi(φt)(µφt − c)dt− rvi(φt)dt+λ(δ>α(φt)−φt)dt

+1>α(φt)
1
2
µ2

σ2φ
2
t (1−φt)2v′′i (φt)dt+ µ

σ
φt(1−φt)(α(φt)1/2)>dZα

t .
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From (12), we can see that St is a supermartingale and it is a martingale only if
the effort policy (27) is chosen. The firm value at t = 0 satisfies

E
[∫ ∞

0
e−rtαi(φt)(φtµ− c)dt

]
= E[S∞]≤ S0 = vi(φ0),

with equality if and only if the optimal policy is chosen.
Now it follows from Lemma 2 that αi(φ) = 1 is optimal if φ≥ φ∗ and αi(φ) = 0

otherwise. Since vi(φ) = v′i(φ) = 0 for all φ < φ∗, standard arguments imply that
the value function has to satisfy the value matching condition vi(φ∗) = 0 and the
smooth pasting condition v′i(φ

∗)= 0. The optimal value function solves the optimal
stopping problem in Proposition 3.

It remains to prove that the solution exists and is unique. We apply the change
of variables x = (1−φ)/(1−φ∗) to rewrite (12) as an ordinary differential equation
with an unknown parameter φ∗ on the domain [0,1]

ry(x;φ∗)=µ(1− x(1−φ∗))− c

− λ(γ−1+ x(1−φ∗))
1−φ∗ y′(x;φ∗)+Φ(1− x(1−φ∗))2x2 y′′(x;φ∗), (29)

with Φ= Nµ2/(2σ2) and the boundary conditions

ry(0;φ∗)− λ(1−γ)
1−φ∗ y′(0;φ∗)− (µ− c)=0, (30)

y(1;φ∗)=0, (31)
y′(1;φ∗)=0. (32)

and an unknown parameter φ∗. Since φ∗ ≤ φM < 1, (29) satisfies the standard
Lipschitz and growth conditions in x and φ∗. Then by standard arguments, the
solution of (29)-(32) exists and is unique.

The rest of the Appendix examines the noncooperative solution. We first verify
that the strategies described in Lemma 3 form best responses when the players
play stationary Markov strategies.

Proof of Lemma 3. We can conclude from (16) that the player i’s optimal invest-
ment strategy satisfies

α


= 1 if c−φµ<λδiv′i(φ)+µ2φ2(1−φ)2v′′i (φ)/(2σ2),
∈ [0,1] if c−φµ=λδiv′i(φ)+µ2φ2(1−φ)2v′′i (φ)/(2σ2),
= 0 if c−φµ>λδiv′i(φ)+µ2φ2(1−φ)2v′′i (φ)/(2σ2).
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Optimality follows again from a standard verification argument. We show that
the process

Vt =
∫ t

0
e−rtα(φs)(φsµ− c)ds+ e−rtvi(φt) (33)

is a supermartingale for an arbitrary control and a martingale if the optimal con-
trol is chosen.

Applying Itô’s lemma with (8) on (33), we find that

ertdVt =αi(φt)(φtµ− c)dt− rvi(φt)

+λ(δi(αi(φt)+1>α−i(φt))−φt)v′i(φt)dt

+ 1
2

(αi(φt)+1>α−i(φt))
µ2

σ2φ
2(1−φ)2v′′i (φt)dt

+ µ

σ
φt(1−φt)v′i(φt)(α1/2(φt)dZt,i +α1/2

−i (φt)dZα
t,−i).

We can now see from (15) that Vt is a supermartingale. It is a martingale only if
the optimal control is applied.

The firm value at time 0 satisfies

E
[∫ ∞

0
e−rtαi(φt)(φtµ− c)dt

]
= E[V∞]≤V0 = vi(φ0)

with equality if and only if the optimal control is chosen.

We next proof existence of solution and examine the uniqueness properties of
the symmetric Markov perfect equilibria.

Proof of Theorem 1. We apply the change of variables x = (1−φ)/(1−φ̄) on (φ̄,1] and
x = (φ̄−φ)/(φ̄− ¯̄φ) on ( ¯̄φ, φ̄] to recast (15) and (21) as solving a system of ordinary
differential equations on x ∈ [0,1], with unknown parameters φ̄ and ¯̄φ

ry1(x; φ̄, ¯̄φ)=µ(1− x(1− φ̄))− c− λ(γ−1+ x(1− φ̄))
(1− φ̄)

y′1(x; φ̄, ¯̄φ)

+Φ1(1− x(1− φ̄))2x2 y′′1 (x; φ̄, ¯̄φ), (34)

− λγ

N(φ̄− ¯̄φ)
y′2(x; φ̄, ¯̄φ)+ Φ2(φ̄− x(φ̄− ¯̄φ))2(1− φ̄+ x(φ̄− ¯̄φ))2

(φ̄− ¯̄φ)2
y′′2 (x; φ̄, ¯̄φ)

= c−µ(φ̄− x(φ̄− ¯̄φ)), (35)
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where Φ1 = N/2µ2/σ2 and Φ2 =µ2/(2σ2); with the boundary conditions

ry1(0; φ̄, ¯̄φ)− λ(1−γ)
1− φ̄

y′1(0; φ̄, ¯̄φ)− (µ− c)= 0, (36)

ry1(1; φ̄, ¯̄φ)− λφ̄

1− φ̄
y′1(1; φ̄, ¯̄φ)− (N −1)(c−µφ̄)= 0, (37)

y′2(1; φ̄, ¯̄φ)= 0, (38)

y2(1; φ̄, ¯̄φ)= 0, (39)

− y′1(1; φ̄, ¯̄φ)

1− φ̄
+ y′2(0; φ̄, ¯̄φ)

φ̄− ¯̄φ
= 0, (40)

y1(1; φ̄, ¯̄φ)− y2(0; φ̄, ¯̄φ)= 0. (41)

Since 0< ¯̄φ< φ̄< 1, the system (34)-(35) satisfies Lipschitz and growth conditions
in x, φ̄ and ¯̄φ on x ∈ [0,1].

The last step is to examine the uniqueness properties of the symmetric Markov
Perfect equilibria. Recall that

y′1(x, φ̄, ¯̄φ)=−(1− φ̄)v′(φ; φ̄, ¯̄φ)≤ 0 and y′2(x, φ̄, ¯̄φ)=−(φ̄− ¯̄φ)v′(φ; φ̄, ¯̄φ)≤ 0 (42)

and

y′′1 (x; φ̄, ¯̄φ)= (1− φ̄)2v′′(φ; φ̄, ¯̄φ)≥ 0 and y′′2 (x, φ̄, ¯̄φ)= (φ̄− ¯̄φ)2v′′(φ; φ̄, ¯̄φ)≥ 0 (43)

by Lemma 5. In particular, we show that we can find two solutions y(x; φ̄1, ¯̄φ1) and
y(x; φ̄2, ¯̄φ2) such that

φ̄1 > φ̄2, ¯̄φ1 > ¯̄φ2 and φ̄1 − ¯̄φ1 < φ̄2 − ¯̄φ2 (44)

that both satisfy the system (34)-(41). The last assumption states that the game
unravels more quickly if the players start to restrict effort at a higher belief.

Notice that (38) and (39) imply that

y2(0; φ̄1, ¯̄φ1)= y2(1; φ̄2, ¯̄φ2)= 0 and y′2(1; φ̄1, ¯̄φ1)= y′2(1; φ̄2, ¯̄φ2)= 0.

Then (35) implies that at x ∈ [0,1]

− λγ

N

(
y2(x; φ̄1, ¯̄φ1)

φ̄1 − ¯̄φ1
− y′2(x; φ̄2, ¯̄φ2)

φ̄2 − ¯̄φ2

)

+Φ2

(( ¯̄φ1(1− ¯̄φ1)

φ̄1 − ¯̄φ1

)2

y′′2 (1; φ̄1, ¯̄φ1)−
( ¯̄φ2(1− ¯̄φ2)

φ̄2 − ¯̄φ2

)2

y′′2 (1; φ̄2, ¯̄φ2)

)
=−µ(1− x)(φ̄1 − φ̄2)−µx( ¯̄φ1 − ¯̄φ2)< 0. (45)
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Now since φ̄1 − ¯̄φ2 < φ̄2 − ¯̄φ2 it is immediate that we can find φ̄1, φ̄2, ¯̄φ1, ¯̄φ2,
y′2(x; φ̄1, ¯̄φ1) ≤ y′2(x; φ̄2, ¯̄φ2) and y′′2 (x; φ̄1, ¯̄φ1) ≥ y′′2 (x; φ̄2, ¯̄φ2) such that (45) is satis-
fied.14 Notice that since φ̄1−φ̄2 < ¯̄φ1− ¯̄φ2, the right hand side of (45) increases as x
decreases. Also, the left hand side increases since y′(x; ·, ·) increases. This demon-
strates that the earlier unraveling of the first equilibrium drives the difference
between the thresholds.

At x = 1, (40) and (41) imply that y1(x; φ̄1, ¯̄φ1) ≤ y1(x; φ̄2, ¯̄φ2) and y′1(x; φ̄1, ¯̄φ1) ≤
y′1(x; φ̄2, ¯̄φ2). Moreover, (37) is satisfied since φ̄1/(1− φ̄1)> φ̄2/(1− φ̄2), and

r(y(1; φ̄1, ¯̄φ1)− y(1; φ̄2, ¯̄φ2))−λ

(
φ̄1

1− φ̄1 y′(1; φ̄1, ¯̄φ1)− φ̄2

1− φ̄2 y′(1; φ̄2, ¯̄φ2)
)

=−(N −1)µ(φ̄1 − φ̄2)< 0.

(34) is satisfied at any x ∈ [0,1] if

r(y1(x; φ̄1, ¯̄φ1)− y1(x; φ̄2, ¯̄φ2))=µx(φ̄1 − φ̄2)

+λ

(
1− x− (γ− φ̄1x)

1− φ̄1 y′1(x; φ̄1, ¯̄φ1)− 1− x− (γ− φ̄2x)
1− φ̄2 y′1(x; φ̄2, ¯̄φ2)

)
+Φ1((1− x(1− φ̄1))2x2 y1(x; φ̄1, ¯̄φ1)− (1− x(1− φ̄2))2x2 y1(x; φ̄2, ¯̄φ2)). (46)

Clearly, (46) can only be satisfied if the second term in the right hand side is
negative. This is the case if φ̄1 > γ, that is, the players start restricting effort
above the long term mean. In that case, unraveling starts at φ̄ and the game has
multiple equilibria. If φ̄1 < γ, the belief drifts up at the point, at which the players
start restricting effort.

Now focus on the case in which φ̄1 > γ. Then (36) implies that

r(y1(0; φ̄1, ¯̄φ1)− y1(0; φ̄2, ¯̄φ2))=λ(1−γ)

(
y′1(0; φ̄1, ¯̄φ1)

1− φ̄1 − y′1(0; φ̄2, ¯̄φ2)

1− φ̄2

)

which is satisfied if
y(0; φ̄1, ¯̄φ1)< y(0; φ̄2, ¯̄φ2)

and
y′1(0; φ̄1, ¯̄φ1)

1− φ̄1 < y′1(0; φ̄2, ¯̄φ2)

1− φ̄2 .

Changing back the variables to recast the problem on the original domain, we
have

v(1; φ̄1, ¯̄φ1)< v(1; φ̄2, ¯̄φ2) and v′(1; φ̄1, ¯̄φ1)> v′(1; φ̄2, ¯̄φ2).

14Notice that y2(x; φ̄1, ¯̄φ1)≤ y2(x; φ̄2, ¯̄φ2) for all x ∈ [0,1].
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rvi(φ)

µ− c

µ− c−λ(1−γ)v′H(1)

µ− c−λ(1−γ)v′L(1)

φ1¯̄φH
¯̄φL φ̄H φ̄L

Figure 4: Multiple equilibria in the model with γ< 1 and λ> 0.

The players do not only have a lower value at the upper boundary φ = 1, but
the value also falls more rapidly. Since the players start restricting effort earlier,
the game unravels earlier, which leads to them losing value more rapidly, even at
high beliefs. Figure 4 describes the situation in a phase diagram.
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