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Abstract

Principal component analysis (PCA) is a widely used dimension reduction tool in the anal-

ysis of high-dimensional data. However, in many applications such as risk quantification in

finance or climatology, one is interested in capturing the tail variations rather than variation

around the mean. In this paper, we develop Principal Expectile Analysis (PEC), which gen-

eralizes PCA for expectiles. It can be seen as a dimension reduction tool for extreme value

theory, where one approximates fluctuations in the τ -expectile level of the data by a low

dimensional subspace. We provide algorithms based on iterative least squares, prove upper

bounds on their convergence times, and compare their performances in a simulation study.

We apply the algorithms to a Chinese weather dataset and fMRI data from an investment

decision study.

Keywords: principal components; asymmetric norm; dimension reduction; quantile; expec-

tile; fMRI; risk attitude; brain imaging; temperature; functional data

JEL Classification: C38, C55, C61, C63, D81

1 Introduction

Principal component analysis (PCA) and its functional version (FPCA) are widely used for

dimension reduction. This method has been successfully applied in many fields such as gene

expression measurements, weather, natural hazard, and environment studies, demographics, etc.

The monographs of Jolliffe (2004) and Ramsay and Silverman (2005) contain many examples.

The basic principle is to find a basis for a k-dimensional affine linear subspace that best approx-

imates the data. If the data points are finite-dimensional vectors, the basis vectors are called

principal components, or factors. If the data points are in an infinite-dimensional Hilbert space,

the basis functions are called functional principal components. One then views each observation

as residual plus a point in this subspace, which is expressed as a vector in Rk of coefficients, also

∗This research was supported by Deutsche Forschungsgemeinschaft through the SFB 649 ”Economic Risk” and

the International Research Training Group IRTG 1792 ”High Dimensional Non Stationary Time Series”. Ngoc

Tran was also supported by DARPA (HR0011-12-1-0011) and an award from the Simons Foundation (# 197982

to The University of Texas at Austin).
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called loadings. A classic example is the Canadian temperature dataset in Ramsay and Silver-

man (2005), where they considered temperature curves recorded daily over a year at multiple

stations in an area. The premise is that there are only a few factors influencing the tempera-

ture across stations, and that the temperature curve from each station is well-approximated on

average by a specific linear combinations of these factors.

In classical PCA and FPCA, the optimal k-dimensional subspace is one that minimizes

the L2-norm of the residual. When k = 0, this is the mean of the data. Thus, classical

(F)PCA decomposes the data around its mean subspace. In fact, much research in the larger

field of functional data analysis have focused on the variation around an average pattern, as

seen in the monographs Horváth and Kokoszka (2012), Ferraty and Vieu (2006). In many

applications such as risk analysis, however, one is not only interested in functional variations

around the mean, but rather those around the tail of the data. For example, one may be

interested in the extreme phenomena like drought, rainfall, or heat wave. Can one decompose

the data around the 99-th quantile, for instance, and produce some ‘best’ principal component

where only 1% of the observations have positive loadings? In the previous temperature data,

for example, this principal component can be interpreted as one that influence locations with

extreme temperatures.

Note that the above problem is different from finding the 99-th quantile of the loadings in

classical PCA. Doing so corresponds to keeping the same PCA-optimal subspace, and translating

it so that each component has 1% positive loadings. The principal components are the same;

the data’s tail is reflected by the loadings. In our setup, one wants to find a low-dimensional

subspace that best approximates the data by some tail measure, say, an appropriate analogue of

99-th quantile. In this case, the data’s tail is reflected by the principal components. As we shall

show in Section 4, only in some special cases do these two methods give the same subspace.

In this paper, we generalize PCA to Principal Expectile Analysis, a method that for a given

expectile level τ produces k principal expectile components (PECs) that best decompose the data

around its τ -expectile. Classical PCA corresponds to the case τ = 0.5. Expectiles, proposed by

Newey and Powell (1987), are natural analogues of quantiles for the mean. While the τ -quantile

minimizes asymmetric `1-error, the τ -level expectile minimizes asymmetric `2-error.

Expectiles enjoy several advantages over quantiles, including computational efficiency, see

Schnabel (2011). It is also more sensitive to extreme values in the data, and thus is preferred

in the calculation of risk measures of a financial asset or a portfolio. For instance, value-at-risk

(VaR) is commonly used to measure the downside risk, especially in portfolio risk management.

Given a predetermined probability level, VaR represents the quantile of the portfolio loss dis-

tribution, see Jorion (2000). Since VaR, which is not a coherent measure, merely depends on

the probability value and neglects the size of the downside loss, it has been criticized as a risk

measure. Alternative risk measures based on expectiles have been investigated, see Kuan et al.

(2009) or Daouia et al. (2016).

Our definitions of PECs are related to the principal directions for quantiles of Fraiman

and Pateiro-López (2012). These authors are focused on doing classical PCA for quantile level

sets. Since the quantile has to be computed in each direction, their definitions can only be

explicitly computed in small dimensions in general. In contrast, we focus on using quantiles

and expectiles to generalize PCA. Since its conception, Principal Expectiles Analysis have seen

numerous applications, mainly in quantifying risks. In climate analysis, Burdejova et al. (in

press 2016) looks for trends and critical changing points in the strength of tropical storms in
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two different areas over several decades. Analysis considers the wind data observed every 6 hours

represented as functional data for several τ -expectile levels. A proposed test based on principal

components shows that there is a significant trend in the shape of the annual pattern of upper

wind speed levels of hurricanes. In this setup, PECs yield time varying information of storm

strength which lies between ‘typical’ and ‘extreme’ behavior. This approach can be applied to

any environmental data as which can be represented as annual curves which evolve from year

to year, such as daily temperature or log-precipitation curves at specific locations.

The second example concerns energy markets; their fair pricing procedure is driven by func-

tions of the extremal of the data distribution; see López Cabrera and Schulz (2016). In the later

paper, functional principal components of precomputed tail event curves are used for forecasting

of electricity load. Essentially, with a help of defining the ”τ -variance”, PEC approach could

simplify this 2-step methodology into one step only. Even though in case of electricity load we

get the similar results, generally one should be careful, especially in case of dependent data,

where the condition of weak-dependence is not fulfilled.

We present two other applications. First one analyzes the climate data of daily temperature

over last 5 decades for 159 Chinese stations. This is an analogue to the commonly known

approach of Ramsay and Silverman (2005). However, we show that PECs significantly differ

from PCs. Further, we observe that while the first component shows the long-term behaviour,

the second component is also crucial and corresponds to temporal seasonal extremes. The second

application demonstrates the usefullness of PEC in a specific neurobilogical task. Recently,

via the RPID (Risk Perception in Investment Decision) experiment data Majer et al. (2015)

found strong relations between fRMI reactions and diagnosed risk perception. Empirical results

show that one can predict the risk perception parameter of each individual better based on the

principal components of the fMRI data. However, their work analyses only the average brain

reactions. In other words, we devise to analyse if extreme fMRI reactions can correspond to

more extreme behaviors against risk and show that one can have better results for higher level

of τ=0.6 than for a commonly taken τ = 0.5, which corresponds to classical PCA.

Our paper is organized as follows. In Section 2 we review quantiles, expectiles and PCA. We

then discuss the issues in generalizing PCA to expectiles, and propose a definition for principal

expectile components, PrincipalExpectile algorithm and two other variations named TopDown

and BottomUp. In Section 4, we prove statistical properties of these estimators. In Section 5, we

provide algorithms to compute PEC, TopDown and BottomUp based on iterative weighted least

squares, and prove upper bounds on their convergence times. We compare their performances

in a simulation study in Section 6. In Section 7, we show an application to a Chinese weather

dataset and fMRI data. The last section summarizes our findings.

2 Background

2.1 Quantiles and Expectiles

Let us assume that the data dimension p is fixed. For y ∈ Rp, we define y+
def
= max(0, y),

y−
def
= max(0,−y) coordinatewise. For τ ∈ (0, 1), let ‖ · ‖1 denote the L1-norm in Rp, that is,
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‖y‖1 =
∑p

j=1 |yj |. The L1-norm with weight τ in Rp is

‖y‖τ,1 = τ‖y+‖1 + (1− τ)‖y−‖1 =

p∑
j=1

|yj | · {τI(yj ≥ 0) + (1− τ)I(yj < 0)} ,

where I(·) is the indicator function. Similarly, let ‖ · ‖2 denote the L2-norm in Rp, ‖y‖22 =∑p
j=1 y

2
j . The asymmetric L2-norm with weight τ in Rp is

‖y‖2τ,2 = τ‖y+‖22 + (1− τ)‖y−‖22.

When τ = 1/2, we recover constant multiples of the L1 and L2-norms, respectively. These two

families of norms belong to the general class of asymmetric norms with sign-sensitive weights.

These have appeared in approximation theory, see Cobzaş (2013). Some properties we use in

this paper are the fact that these norms are convex, and their unit balls restricted to a given

orthant in Rp are weighted simplices for the ‖ · ‖τ,1 norm, and axis-aligned ellipsoids for the

‖ · ‖τ,2 norm. In other words, they coincide with the unit balls of axis-aligned weighted L1 and

L2 norms.

Let Y ∈ Rp be a random variable with cumulative distribution function (cdf) F . The

τ -quantile qτ (Y ) ∈ Rp of FY is the solution to the following optimization problem

qτ (Y ) = argmin
q∈Rp

E‖Y − q‖τ,1.

Similarly, the τ -expectile eτ (Y ) ∈ Rp of FY is the solution to

eτ (Y ) = argmin
e∈Rp

E‖Y − e‖2τ,2.

By Cobzaş (2013), the solution exists and is unique, assuming that E(Y ) is finite. This

definition guarantees that the τ -quantile qτ (Y ) is unique even when the cdf F is not invertible.

When F is invertible with inverse function F−1, qτ (Y ) coincides with F−1(τ), see Cobzaş (2013).

2.2 Classical principal component analysis

There are multiple, equivalent ways to define classical PCA, which generalize to different def-

initions of principal components for quantiles and expectiles. We focus on two formulations:

minimizing the residual sum of squares, and maximizing the variance captured. For further

details, see Jolliffe (2004).

Suppose we observe n vectors Y1, . . . , Yn ∈ Rp with empirical distribution function (edf) Fn.

Write Y for the n× p data matrix. PCA solves for the k-dimensional affine subspace that best

approximates Y1, . . . , Yn in L2-norm. In matrix terms, we are looking for the constant m∗ ∈ Rp

and the matrix E∗k , the rank-k matrix that best approximates Y − 1(m∗)> in the Frobenius

norm. That is,

(m∗k, E
∗
k) = argmin

m∈Rp,E∈Rn×p:rank(E)=k

‖Y − 1m> − E‖21/2,2. (1)
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As written, m is not well-defined: if (m,E) is a solution, then (m + c, E − 1c>) is another

solution for any c in the column space of E. Geometrically, this means we can express the affine

subspace m+ E with respect to any chosen point m. It is intuitive to choose m to be the best

constant in this affine subspace that approximates Y . By a least squares argument, the solution

is m∗k = E(Y ). That is, it is independent of k and coincides with the best constant approximation

to Y . Thus, it is sufficient to assume E(Y ) = m ≡ 0, and consider the optimization problem in

(1) without the constant term.

Suppose Y is full rank and the eigenvalues of its covariance matrix are all distinct. This is

necessary and sufficient for principal components to be unique. Again by least squares argument,

for 1 ≤ k < p, one can show that

E∗k ⊂ E∗k+1, (2)

and E∗k+1 − E∗k is the optimal rank-one approximation of Y − E∗k . This has two implications.

Firstly, there exists a natural basis for E∗k . Indeed, there exists a unique ordered sequence of

orthonormal vectors v∗1, v
∗
2, . . . , v

∗
p ∈ Rp such that E∗1 = U1V

>
1 , E∗2 = U2V

>
2 , and so on, where

the columns of Vk are the first k v∗i ’s. The v∗i ’s are called the principal components, or factors.

For fixed k, Vk is the component, or factor matrix, and Uk is the loading. The second implication

of (2) is that one can compute the principal components by a greedy algorithm which solves k

iterations of the one-dimensional version of (1).

The one-dimensional version of (1) has another characterization. The first principal com-

ponent v∗ is the unit vector in Rp which maximizes the variance of the data projected onto

the subspace spanned by v∗. That is,

v∗ = argmax
v∈Rp,v>v=1

Var{vv>Yi : 1 ≤ i ≤ n} = argmax
v∈Rp,v>v=1

n−1
n∑
i=1

(v>Yi − v>Y )2, (3)

where Var{·} is the variance of the sequence in the argument, while v>Y = n−1
∑n

i=1 v
>Yi is

the mean of the projected data, or equivalently, the projection of the mean Ȳ onto the subspace

spanned by v. Given that the first principal component is v∗1, the second principal component

v∗2 is the unit vector in Rp which maximizes the variance of the residual Yi−(v∗1)>Ȳ −v∗1(v∗1)>Yi,

and so on. In this formulation, the data does not have to be pre-centered. The sum (v∗1)>Ȳ +

(v∗2)>Ȳ + . . . + (v∗k)
>Ȳ is the overall mean Ȳ projected onto the subspace spanned by the first

k principal components.

For the benefit of comparisons to Theorem 4.2, let us reformulate (3) as follows. Define

C = n−1
n∑
i=1

(Yi − Ȳ )(Yi − Ȳ )>. (4)

Then v∗ is the solution to the following optimization problem.

maximize v>Cv

subject to v>v = 1.

It is clear from this formulation that this optimization problem has a solution unique up to sign

if and only if C has a unique largest eigenvalue. For this reason, we shall implicitly assume that

all eigenvalues of C are unique.
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3 Principal Expectile Analysis

We now generalize the above definitions of PCA to those for expectiles, leading to principal

expectile analysis. While we exclusively focus on expectiles in this paper, we note that the

generalization for quantiles follows similarly, and algorithms for L1 matrix factorization can also

be adapted to this case.

The two views of PCA, minimizing-least-squares in (1), and maximizing-projected-variance

in (4), are no longer equivalent when one optimizes these functions under the asymmetric L2-

norm. This is because the asymmetric norm is not a projection. The analogue of (1) is the

following low-rank matrix approximation problem

(m∗k, E
∗
k) = argmin

m∈Rp,E∈Rn×p:rank(E)=k

‖Y − 1m> − E‖2τ,2. (5)

Again, we may define m to be the best constant approximation to Y on the affine subspace

determined by (m,E). For a fixed affine subspace, such a constant is unique, and is the coordi-

natewise τ -expectile of the residuals Y −E. However, the expectile is not additive for τ 6= 1/2.

Thus in general, the column space of E∗k is not a subspace of the column space E∗k+1, the con-

stant m∗k depends on k, and is not equal to the τ -expectile eτ (Y ). In other words, even when

E∗k is a well-defined subspace, it does not come with a natural basis, and hence there are no

natural candidates for ‘principal components’.

To define principal expectile components, one can furnish E∗k with two types of basis, which

we call TopDown and BottomUp. In TopDown, one first finds E∗k . Then for j = 1, 2, . . . , k − 1,

one finds Ej , the best j-dimensional subspace approximation to Y −m∗k, subjected to Ej−1 ⊂
Ej ⊂ E∗k . This defines a nested sequence of subspace E1 ⊂ E2 ⊂ . . . ⊂ Ek−1 ⊂ E∗k , and

hence a basis for E∗k , such that Ej is an approximation of the best j-dimensional subspace

approximation to Y − m∗k contained in E∗k . In BottomUp, one first finds E∗1 . Then for j =

2, . . . , k, one finds (mj , Ej), the optimal j-dimensional affine subspace approximation to Y ,

subjected to Ej−1 ⊂ Ej . In each step we re-estimate the constant term. Again, we obtain

a nested sequence of subspaces E∗1 ⊂ E2 ⊂ . . . ⊂ Ek, and constant terms m1, . . . ,mk, where

(mj , Ej) is the best affine j-dimensional subspace approximation to Y .

When τ = 1/2, that is, when doing usual PCA, both definitions correctly recover the principal

components. For τ 6= 1/2, they can produce different output. Interestingly, both in simulations

and in practice, their outputs are not significantly different (see Sections 6 and 7). See Section 5

for a formal description of the TopDown and BottomUp algorithms and computational bounds

on their convergence times.

Generalization of (3) is more fruitful, both theoretically and computationally. First we need

a weighted definition of the variance. Let Y ∈ R be a random variable with cdf F . Its τ -variance

is

Varτ (Y ) = E‖Y − eτ‖2τ,2 = min
e∈R

E‖Y − e‖2τ,2,
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where eτ = eτ (Y ) is the τ -expectile of Y . When τ = 1/2, this reduces to the usual definition of

variance. The direct generalization of (3) is

v∗τ = argmax
v∈Rp,v>v=1

Varτ{v>Yi : 1 ≤ i ≤ n} (6)

= argmax
v∈Rp,v>v=1

n−1
n∑
i=1

(v>Yi − µτ )2wi (7)

where µτ ∈ R is the τ -expectile of the sequence of n real numbers v>Y1, . . . v
>Yn, and

wi = τ if

p∑
j=1

Yijvj > µτ , and wi = 1− τ otherwise. (8)

Definition 3.1. Suppose we observe Y1, . . . , Yn ∈ Rp. The first principal expectile component

(PEC) v∗τ is the unit vector in Rp that maximizes the τ -variance of the data projected on

the subspace spanned by v∗τ . That is, v∗τ solves (7).

Like in classical PCA, the other components are defined based on the residuals, and thus

by definition, they are orthogonal to the previously found components. Therefore one obtains

a nested sequence of subspace which captures the tail variations of the data.

The τ -variance measures the spread of the data relative to the τ -expectile eτ . For τ very

close to 1, for example, observations above eτ receives the very high weight τ , while those below

receives very little weight. Similarly, for τ very close to 0, observations below eτ receives most

of the weight. In other words, the τ -variance is dominated by the observations more extreme

than eτ . Thus, PEC, the direction that maximizes that τ -variance of the projected data, can

be interpreted as the direction with the most ‘extreme’ behavior in the loadings.

Generalizing principal components to quantiles via its interpretation as variance maximizer

is not new. Fraiman and Pateiro-López (2012) define the first principal quantile direction ψ

to be the one that maximizes the L2 norm of the τ -quantile of the centered data, projected in

the direction ψ. That is, ψ is the solution of

max
v∈Rp:v>v=1

‖v>qτ (Y − EY )‖1/2,2.

Their definition works for random variables in arbitrary Hilbert spaces. Kong and Mizera (2012)

proposed the same definition but without centering Y at EY . These authors are focused on doing

classical PCA for quantile level sets in small dimensions. In contrast, we focus on using expectiles

to generalize PCA.

For ease of comparison with Fraiman and Pateiro-López (2012) and the related literature,

we give the quantile analogue of our definition of PEC. By replacing the ‖ · ‖2τ,2 norm with the

‖ · ‖τ,1 norm, one can define the analogue of principal component for quantiles. The analogue of

τ -variance is the τ -deviation

Devτ (Y ) = E‖Y − qτ (Y )‖τ,1 = min
q∈R

E‖Y − q‖τ,1.
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This leads to the optimization problem

v∗τ,L1
= argmax

v∈Rp:
∑

j |vj |=1
Devτ{v>Yi : 1 ≤ i ≤ n}.

One can define the first principal quantile component (PQC) v∗τ,L1
as the L1-unit vector in Rp

that maximizes the τ -deviation captured by the data projected on the subspace spanned by v∗τ,L1
.

Like the definition of Fraiman and Pateiro-López (2012), one can generalize PEC to the case

where Y is a variable in an infinite-dimensional Hilbert space H by replacing the set v ∈
Rp, v>v = 1 with the unit ball in H. Furthermore, our definition of PEC satisfies many ‘nice’

properties, some of which are shared by the principal directions of Fraiman and Pateiro-López

(2012). For example, the PEC coincides with the classical PC when the distribution of Y is

elliptically symmetric, see Proposition 4.2.

4 Statistical properties of PEC

We now show that our definition of PEC satisfies many important properties, such as being com-

patible to orthogonal transformation of the data, and coinciding with classical PC for elliptically

symmetric distributions (cf. Proposition 4.2). More important, we show that the empirical es-

timator in (7) is consistent under some mild uniqueness assumptions akin to the unique leading

eigenvalue assumption in classical PCA.

Proposition 4.1 (Properties of τ -variance). Let Y ∈ R be a random variable. For τ ∈ (0, 1),

the following statements hold:

• Varτ (Y + c) = Varτ (Y ) for c ∈ R,

• Varτ (sY ) = s2Varτ (Y ) for s ∈ R, s > 0,

• Varτ (−Y ) = Var1−τ (Y ).

Proof. The first two follow directly from corresponding properties for eτ . We shall prove

that last assertion. Recall that eτ (−Y ) = −e1−τ (Y ). Thus

Varτ (−Y ) = E‖ − Y − eτ (−Y )‖2τ,2 = E‖ − {Y − e1−τ (Y )}‖2τ,2 = E‖Y − e1−τ (Y )‖21−τ,2
= Var1−τ (Y ). 2

As a corollary, we see that PECs are sign-sensitive in general, unless if the distribution of Y

is symmetric, or if τ = 1/2.

Corollary 4.1. For τ ∈ (0, 1), random variable Y ∈ Rp, suppose v∗τ is a first τ -PEC of Y .

Then

−v∗τ = v∗1−τ ,

that is, −v∗τ is also a first (1− τ)-PEC of Y . Furthermore, if the distribution of Y is symmetric

about 0, that is, Y
L
= −Y , then −v∗τ is also a first τ -PEC of Y .

Proof. By Proposition 4.1, Varτ (v∗>τ Y ) = Var1−τ{(−v∗>τ )Y }. Thus if v∗τ solves (6) for τ , then

(−vτ )∗ solves (6) for 1− τ . If the distribution of Y is symmetric about 0, then

Varτ (v∗>τ Y ) = Var1−τ{v∗>τ (−Y )} = Varτ (v∗>τ Y ).
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In this case −v∗τ = v∗1−τ is another τ -PEC of Y . 2

Proposition 4.2. [Properties of principal expectile component] Let Y ∈ Rp be a random variable,

v∗τ (Y ) its unique first principal expectile component as given in Definition 3.1.

1. For any constant c ∈ Rp, v∗τ (Y + c) = v∗τ (Y ). In words, the PEC is invariant under

translations of the data.

2. If B ∈ Rp×p is an orthogonal matrix, then v∗τ (BY ) = Bv∗τ (Y ). In words, the PEC respects

change of basis.

3. If the distribution of Y is elliptically symmetric about some point c ∈ Rp, that is, there

exists an invertible p×p real matrix A such that BA−1(Y −c) L= A−1(Y −c) for all orthog-

onal matrices B, then v∗τ (Y ) = v∗1/2(Y ). In this case, the PEC coincides with the classical

PC regardless of τ .

4. If the distribution of Y is spherically symmetric about some point c ∈ Rp, that is, B(Y −
c)
L
= Y − c for all orthogonal matrix B, then all directions are principal.

Proof. By the first part of Proposition 4.1:

Varτ{v>(Yi + c) : i = 1, . . . , n} = Varτ (v>Yi + v>c : i = 1, . . . , n)

= Varτ (v>Yi : i = 1, . . . , n).

This proves the first statement. For the second, note that

Varτ (v>BYi : i = 1, . . . , n) = Varτ{(B>v)>Yi : i = 1, . . . , n}.

Thus if v∗τ is the first τ -PEC of Y , then (B>)−1v∗τ is the first τ -PEC of BY . But B is orthogonal,

that is, (B>)−1 = B. hence Bv∗τ is the τ -PEC of BY . This proves the second statement. For

the third statement, by statement 1, we can assume c ≡ 0. Thus Y = AZ where BZ
L
= Z for all

orthogonal matrices B. Write A in its singular value decomposition A = UDV , where D is a

diagonal matrix with positive values Dii = di for i = 1, . . . p, and U and V are p× p orthogonal

matrices. Choosing B = V −1 gives

v∗τ (Y ) = v∗τ (UDZ) = Uv∗τ (DZ).

Now, by Proposition 4.1, since dj ≥ 0 for all j,

Varτ (v>DZ) = Varτ (

p∑
j=1

djZjvj) =
∑
j

v2jd
2
jVarτ (Zj).

Since
∑

j v
2
j = 1, Varτ (v>DZ) lies in the convex hull of the p numbers d2jVarτ (Zj) for j = 1, . . . p.

Therefore, it is maximized by setting v to be the unit vector along the axis j with maximal

d2jVarτ (Zj). But Z
L
= BZ for all orthogonal matrices B, thus Zj

L
= Zk, hence Varτ (Zj) =

Varτ (Zk) for all indices j, k = 1, . . . , p. Thus Varτ (v>DZ) is maximized when v is the unit

vector along the axis j with maximal dj . This is precisely the axis with maximal singular value

of A, and hence is also the direction of the (classical) principal component of DZ. This proves

the claim. The last statement follows immediately from the third statement. 2
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We now prove consistency of local maximizers of (7). The main theorem in this section is

the following.

Theorem 4.1. Fix τ > 0. Let Y be a random variable in Rp with finite second moment,

distribution function F . Suppose v∗ = v∗τ is a unique global solution to (7) corresponding to

Y . Suppose we observe n i.i.d copies of Y , with empirical distribution function Fn. Let Yn be

a random variable whose cdf is Fn. Then for sufficiently large n, for any sequence of global

solutions v∗n of (7) corresponding to Yn, we have

v∗n
F−a.s.−→ v∗ in Rp as n→∞.

For the proof, we first need the following lemma.

Lemma 4.1. Under the assumptions of Theorem 4.1, uniformly over all v ∈ Rp with v>v = 1,

and uniformly over all τ ∈ (0, 1),

Varτ (Y >n v)
F−a.s.−→ Varτ (Y >v).

Proof. Since Yn is the empirical version of Y and the set of all unit vectors v ∈ Rp, v>v = 1

is compact, by the Cramer-Wold theorem, Y >n v
L→ Y >v uniformly over all such unit vectors

v ∈ Rp. It then follows that eτ and Varτ , which are completely determined by the distribution

function, also converge F − a.s. uniformly over all v. 2

Proof of Theorem 4.1. Let Sp−1 denote the unit sphere in Rp. Equip Rp with the Euclidean

norm ‖ · ‖. Define the map VY : Sp−1 → R, VY (v) = Varτ (Y >v). Fix ε > 0. We shall prove that

there exists a δ > 0 such that the global minimum of VYn is necessarily within δ-distance of v∗.

Since VY is continuous, Sp−1 is compact, and v∗ is unique, there exists a sufficiently small

δ > 0 such that

|VY (v)− VY (v∗)| < ε⇒ ‖v − v∗‖ < δ

for v ∈ Sp−1. In particular, if ‖v − v∗‖ > δ, then

VY (v∗) + ε < VY (v).

By Lemma 4.1, VYn → VY as n→∞ uniformly over Sp−1. In particular, there exists a large N

such that for all n > N ,

|VYn(v)− VY (v)| < ε/6

for all v ∈ Sp−1. Thus for v ∈ Sp−1 such that ‖v − v∗‖ > δ,

VYn(v)− VY (v∗) > ε− ε/6 = 5ε/6.

Meanwhile, since VY is continuous, one can choose ε′ = ε/6, and thus obtain δ′ such that

|VY (v)− VY (v∗)| < ε/6⇐ ‖v − v∗‖ < δ′.

Then, for v such that ‖v − v∗‖ < δ′,

VYn(v)− VY (v∗) ≤ |VYn(v)− VY (v)|+ |VY (v)− VY (v∗)| < ε/6 + ε/6 = ε/3.
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So far we have shown that if ‖v − v∗‖ > δ, then VYn(v) is at least 5ε/6 bigger than VY (v∗).

Meanwhile, if ‖v − v∗‖ < δ′, then VYn(v) is at most ε/3 bigger than VY (v∗). Thus the global

minimum v∗n of VYn necessarily satisfy ‖v∗n − v∗‖ < δ. This completes the proof. 2

4.1 PEC as constrained PCA

To compute the principal expectile component v∗τ , one needs to optimize the right-hand side

of (7) over all unit vectors v. Although this is a differentiable function in v, optimizing it is a

difficult problem, since µτ also depends on v, and does not have a closed form solution. However,

Theorem 4.2 below shows that in certain situations, for given weights wi, not only µτ but also v∗τ
have closed form solutions. In particular, in this setting, PEC is the constrained classical PC of

a weighted version of the covariance matrix of the data, centered at a constant possibly different

from the mean. This theorem forms the backbone of our iterative algorithm for computing PEC

discussed in Section 5.

Theorem 4.2. Consider (7). Suppose we are given the true weights wi, which are either τ or

1− τ . Let τ+ = {i ∈ {1, . . . , n} : wi = τ} denote the set of observations Yi with ‘positive’ labels,

and τ− = {i ∈ {1, . . . , n} : wi = 1 − τ} denote its complement. Let n+ and n− be the sizes of

the respective sets. Define an estimator êτ ∈ Rp of the τ -expectile via

êτ =
τ
∑

i∈τ+ Yi + (1− τ)
∑

i∈τ− Yi

τn+ + (1− τ)n−
. (9)

Define

Cτ =
τ

n

∑
i∈τ+

(Yi − êτ )(Yi − êτ )>

 +
1− τ
n

∑
i∈τ−

(Yi − êτ )(Yi − êτ )>

 . (10)

Then v∗τ is the solution to the following optimization problem:

maximize v>Cτv

subject to v>Yi > v>êτ ⇔ i ∈ τ+ (11)

v>v = 1.

Proof. Since the weights are the true weights coming from the true principal expectile component

v∗τ , clearly v∗τ satisfies the constraint in (11). Now suppose v is another vector in this constraint

set. Then v>êτ is exactly µτ , the τ -expectile of the sequence of n real numbers v>Y1, . . . , v
>Yn.

Therefore, the quantity we need to maximize in (7) reads

1

n

n∑
i=1

(v>Yi − µτ )2wi =
τ

n

∑
i∈τ+

(v>Yi − v>êτ )2 +
1− τ
n

∑
i∈τ−

(v>Yi − v>êτ )2

=
τ

n

∑
i∈τ+

v>(Yi − êτ )(Yi − êτ )>v +
1− τ
n

∑
i∈τ−

v>(Yi − êτ )(Yi − êτ )>v

= v>Cτv.
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Thus the optimization problem above is indeed an equivalent formulation of (7), which was used

to define v∗τ . Finally, the last observation follows by comparing the above with the optimization

formulation for PCA, see the paragraph after (4). Indeed, when τ = 1/2, ê1/2 = Ȳ , C1/2 = C,

and we recover the classical PCA. 2

5 Algorithms

5.1 Principal Expectile Components

Suppose the conditions of Theorem 4.2 are satisfied, so finding PEC is the problem of solving

a constrained PCA given in (11), but with unknown weights depending on the true principal

direction. Since êτ is a linear function in the Yi, (11) defines a system of linear constraints

in the entries of Yi and v∗τ . Thus for each fixed sign sets (τ+, τ−), there exist (not necessarily

unique) local optima v∗τ (τ+, τ−). There are 2n possible sign sets, one of which corresponds to the

global optima v∗τ that we need. It is clear that finding the global optimum v∗τ by enumerating

all possible sign sets is intractable. However, in many situations, the constraint in (11) is

inactive. That is, the largest eigenvector of Cτ satisfies (11) for free. In such situations, we call

v∗τ a stable solution. Just like classical PCA, stable solutions are unique for matrices Cτ with

unique principal eigenvalue. More importantly, we have an efficient algorithm for finding stable

solutions, if they exist.

Definition 5.1. For some given sets of weights w = (wi), define eτ (w) via (9), Cτ (w) via (10).

Let vτ (w) be the largest eigenvector of Cτ (w). If vτ (w) satisfies (11), we say that vτ (w) is a

locally stable solution with weights w.

To find locally stable solutions, one can solve (3) using iterative reweighted least squares: first

initialize the wi’s, compute estimators µτ (w) and vτ (w) ignoring the constraint (11), update the

weights via (8), and iterate. At each step of this algorithm, one finds the principal component

of a weighted covariance matrix with some approximate weight. Since there are only finitely

many possible weight sets, the algorithm is guaranteed to converge to a locally stable solution if

it exists. In particular, if the true solution to (3) is stable, then for appropriate initial weights,

the algorithm will find this value. We call this algorithm PrincipalExpectile.

We now describe the details of this algorithm for the case k = 1, that is, the algorithm for

computing the first principal expectile component only. To obtain higher order components, one

iterates the algorithm over the residuals Yi − v̂1(v̂>1 Yi + µ̂1), where µ̂1 is the τ -expectile of the

loadings v̂>1 Yi.

For n observations Y1, . . . , Yn, there are at most 2n possible labels for the Yi’s, and hence

the algorithm has in total 2n possible values for the wi’s. Thus either Algorithm 1 converges

to a point which satisfies the properties of the optimal solution that Theorem 4.2 prescribes, or

that it iterates infinitely over a cycle of finitely many possible values of the wi’s. In particular,

the true solution is a fixed point, and thus fixed points always exist. In practice, we find that

the algorithm converges very quickly, and can get stuck in a finite cycle of values. In this case,

one can jump to a different starting point and restart the algorithm. Choosing a good starting

value is important in ensuring convergence. Since the τ -variance is a continuous function in τ ,

we find that in most cases, one can choose a good starting point by performing a sequence of

12



Algorithm 1 PrincipalExpectile

1: Input: data Y ∈ Rn×p.
2: Output: a vector v̂, an estimator of the first principal expectile component of Y .
3: procedure PrincipalExpectile(Y )

4: Initialize the weights w
(0)
i

5: Set t = 0.
6: repeat

7: Let τ
(t)
+ be the set of indices i such that w

(t)
i = τ , and τ

(t)
− be the complement.

8: Compute e
(t)
τ as in equation (9) with sets τ

(t)
+ , τ

(t)
− .

9: Compute C
(t)
τ as in equation (10) with sets τ

(t)
+ , τ

(t)
− .

10: Set v(t) to be the largest eigenvector of Ctτ (Ctτ )>

11: Set µ
(t)
τ to be the τ -expectile of (v(t))>Yi

12: Update wi: set w
(t+1)
i = τ if (v(t))>Yi > µ

(t)
τ , and set w

(t+1)
i = 1− τ otherwise.

13: Set t = t + 1
14: until wti = w

(t+1)
i for all i.

15: return v̂ = v(t).
16: end procedure

such computations for a sequence of τ starting with τ = 1/2, and set the initial weight to be

that induced by the previous run of the algorithm for a slightly smaller (or larger) τ .

5.2 TopDown and BottomUp

We now describe how iterative weighted least squares can be adapted to implement TopDown

and BottomUp. We start with a description of the asymmetric weighted least squares (LAWS)

algorithm of Newey and Powell (1987). The basic algorithm outputs a subspace without the

affine term, and needs to be adapted. See Guo et al. (2015) for a variation with smoothing

penalty and spline basis.

Proposition 5.1. The LAWS algorithm is well-defined, and is a gradient descent algorithm.

Thus it converges to a critical point of the optimization problem (1).

Proof. First, we note that the steps in the algorithm are well-defined. For fixed W and V ,

J(U, V,W ) is a quadratic in the entries of U . Thus the global minimum on line 8 has an explicit

solution, see Srebro and Jaakkola (2003); Guo et al. (2015). A similar statement applies to line

9.

Note that J(U, V,W ) is not jointly convex in U and V , but as a function in U for fixed V , it

is a convex, continuously differentiable, piecewise quadratic function. The statement holds for

J(U, V,W ) as a function in V for fixed U . Hence lines 8 and 9 is one step in a Newton-Raphson

algorithm on J(U, V,W ) for fixed V . Similarly, lines 10 and 11 is one step in a Newton-Raphson

algorithm on J(U, V,W ) for fixed U . Thus the algorithm is a coordinatewise gradient descent

on a coordinatewise convex function, hence converges. 2

If some columns of U or V are pre-specified, one can run LAWS and not update these

columns in lines 8 and 10. Thus one can use LAWS to find the optimal affine subspace by

writing 1m> + E = Ũ Ṽ with the first column of Ũ constrained to be 1. Similarly, we can use

this technique to solve the constrained optimization problems:

13



Algorithm 2 Asymmetric weighted least squares (LAWS)

1: Input: data Y ∈ Rn×p, positive integer k < p
2: Output: Ê∗k , an estimator of E∗k , expressed in product form Ê∗k = Û V̂ >, where Û ∈

Rn×k, V̂ ∈ Rp×k.Û , V̂ are unique up to multiplication by an invertible matrix.
3: procedure LAWS(Y, k)
4: Set V (0) to be some rank-k p× k matrix.
5: Set W (0) ∈ Rn×p to be 1/2 everywhere.
6: Set t = 0.
7: repeat
8: Update U : Set U (t+1) = argminU∈Rn×k J(U, V (t),W (t)).

9: Update W : Set W
(t+1)
ij = τ if Yij −

∑
l U

(t+1)
il V

(t)
lk > 0, W

(t+1)
ij = 1− τ otherwise.

10: Update V : Set V (t+1) = argminV ∈Rk×p J(U (t+1), V,W (t+1)).

11: Update W : Set W
(t+1)
ij = τ if Yij −

∑
l U

(t+1)
il V

(t+1)
lk > 0, W

(t+1)
ij = 1− τ otherwise.

12: Set t = t + 1
13: until U (t+1) = U (t), V (t+1) = V (t),W (t+1) = W (t).
14: return Êk = U (t)(V (t))>.
15: end procedure

• Find a rank-k approximation Ek whose span contains a given subspace of dimension r < k.

• Solution: Constrain the first r columns of V (0) to be a basis of the given subspace.

• Find a rank-k approximation whose span lies within a given subspace of dimension r > k.

• Solution: Let B ∈ Rn×r be a basis of the given subspace. Then the optimization problem

becomes

min
U∈Rr×k,V ∈Rp×k

‖Y −BUV >‖2τ,2.

One can then apply the LAWS algorithm with variables U and V .

• Find a rank-k approximation whose span contains a given subspace of dimension r < k,

and is contained in a given subspace of dimension R > k.

• Solution: Combine the previous two solutions.
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Algorithm 3 TopDown

1: Input: data Y ∈ Rn×p, positive integer k < p
2: Output: Ê∗k , an estimator of E∗k , expressed in product form Ê∗k = Û V̂ >, where Û ∈

Rn×k, V̂ ∈ Rp×k are unique.
3: procedure TopDown(Y, k)
4: Use LAWS(Y,k) to find m̂∗k, Ê

∗
k . Write Ê∗k = UV > for some orthonormal basis U .

5: Use LAWS to find Û1, the vector which spans the optimal subspace of dimension 1
contained in U .

6: Use LAWS to find Û2, where (Û1, Û2) spans the optimal subspace of dimension 1 con-
tained in U and contains the span of Û1

7: Repeat the above step until obtains Û .
8: Obtain V̂ through the constraint Ê∗k = Û V̂ >.

9: return m̂∗k, Ê
∗
k , Û , V̂

>.
10: end procedure

Algorithm 4 BottomUp

1: Input: data Y ∈ Rn×p, positive integer k < p
2: Output: Ê∗k , an estimator of E∗k , expressed in product form Ê∗k = Û V̂ >, where Û ∈

Rn×k, V̂ ∈ Rp×k are unique.
3: procedure BottomUp(Y, k)
4: Use LAWS to find Ê∗1 . Let Û1 be the basis vector.
5: Use LAWS to find Û2 such that (Û1, Û2) is the best two-dimensional approximation to
Y , subjected to containing Û1.

6: Repeat the above step until obtains Û . We obtain V̂ and Ê∗k in the last iteration. return

Ê∗k , Û , V̂
>.

7: end procedure

With these tools, we now define the two algorithms, TopDown and BottomUp. The TopDown

algorithm requires the weights wij and the loadings on previous principal components to be re-

evaluated when finding the next principal component. A variant of the algorithm would be to

keep the weights wij . In this case, the algorithm is still well-defined. However, it will produce

a different basis matrix Û , since the estimators are no longer optimal in the ‖ · ‖2τ,2 norm.

5.3 Performance bounds of TopDown and BottomUp

We now show that the dependence on k only grows polylog in n. Thus both TopDown and

BottomUp are fairly efficient algorithms even for large k.

Theorem 5.1. For fixed V of dimension k, LAWS requires at most O{log(p)k} iterations,

O{npk2 log(p)k} flops to estimate U .

In other words, if V has converged, LAWS needs at most O{npk2 log(p)k} flops to estimate

U . The role of U and V are interchangeable if we transpose Y . Thus if U has converged, LAWS

needs at most O{npk2 log(n)k} to estimate V . We do not have a bound for the number of

iterations needed until convergence. In practice this seem to be of order log of n and p. For the

proof of Theorem 5.1 we need the following two lemmas.
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Lemma 5.1. If Y1, . . . , Yn ∈ R are n real numbers, then LAWS finds their τ -expectile eτ in

O{log(n)} iterations.

Proof. Given the weights w1, . . . , wn, that is, given which Yi’s are above and below eτ , the τ -

expectile eτ is a linear function in the Yi as we saw in (9). As shown in Proposition 5.1, LAWS is

equivalent to a Newton-Raphson algorithm on a piecewise quadratic function. Since the points

Yi’s are ordered, it takes O{log(n)} to learn their true weights. Thus the algorithm converges

in O{log(n)} iterations. 2

Lemma 5.2. An affine line in Rp can intersect at most 2p orthants.

Proof. Recall that an orthant of Rp is a subset of Rp where the sign of each coordinate is

constrained to be either nonnegative or nonpositive. There are 2p orthants in Rp. Let f(λ) =

Y +λv be our affine line, λ ∈ R, Y, v ∈ Rp. Let sgn : Rp → {±1}p denote the sign function. Now,

sgn{f(0)} = sgn(Y ), sgn{f(∞)} = sgn(v), and sgn{f(λ)} is a monotone increasing function in

λ. As λ → ∞, sgn{f(λ)} goes from sgn(Y ) to sgn(v) one bit flip at a time. Thus there are at

most p flips, that is, the half-line f(λ) for λ ∈ [0,∞) intersects at most p orthants. By a similar

argument, the half-line f(λ) for λ ∈ (−∞, 0) intersects at most p other orthants. This concludes

the proof. 2

Corollary 5.1. An affine subspace of dimension k in Rp can intersect at most O(pk) orthants.

Proof. Fix any basis, say ψ1, . . . , ψk. By Lemma 5.2, ψ1 can intersect at most 2p orthants. For

each orthant of ψ1, varying along ψ2 can yield at most another 2p orthants. The proof follows

by induction. (This is a rather liberal bound, but it is of the correct order for k small relative

to p). 2

Proof of Theorem 5.1. By Corollary 5.1, it is sufficient to consider the case k = 1. Fix V of

dimension 1. Since U, V are column matrices, we write them in lower case letters u, v. Solving for

each ui is a separate problem, thus we have n separate optimization problem, and it is sufficient

to prove the claim for each i for i = 1, . . . , n.

Fix an i. As ui varies, Yi − mi − uiv defines a line in Rp. The weight vector (wi1, . . . , wip)

only depend on which coordinates are the orthant of Rp in which Yi − mi − uiv is in. The

later is equivalently to determining the weight of the p points Yi−mi
vi

. By Lemma 5.1, it takes

O{log(p)} for LAWS to determine the weights correctly. Thus LAWS takes at most O{log(p)}
iterations to converge, since each iteration involves estimating w, then v. Each iteration solves

a weighted least squares, thus take O(npk2). Hence for fixed v, LAWS can estimate u after at

most O{npk2 log(p)} flops for k = 1. This concludes the proof for fixed v. By considering the

transposed matrix Y , we see that the role of u and v are interchangeable. The conclusion follows

similarly for fixed u. 2

6 Simulation

To study the finite sample properties of the proposed algorithms we do a simulation study. We

follow the simulation setup of Guo et al. (2015), that is, we simulate the data Yij , i = 1, . . . , n,

j = 1, . . . , p as

Yij = µ(tj) + f1(tj)α1i + f2(tj)α2i + εij , (12)
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where tj ’s are equidistant on [0,1], µ(t) = 1 + t + exp{−(t − 0.6)2/0.05} is the mean function,

f1(t) =
√

2 sin(2πt) and f2(t) =
√

2 cos(2πt) are principal component curves, and εij is a random

noise.

We consider different settings 1 and 2 each with five error scenarios:

1. α1i ∼ N(0, 36) and α2i ∼ N(0, 9) are both iid and εij ’s are (1) iid N(0, σ21), (2) iid t(5), (3)

independent N{0, µ(tj)σ
2
1}, (4) iid logN(0, σ21) and (5) iid sums of two uniforms U(0, σ21)

with σ21=0.5.

2. α1i ∼ N(0, 16) and α2i ∼ N(0, 9) are both iid and εij ’s are (1) iid N(0, σ22), (2) iid t(5), (3)

independent N{0, µ(tj)σ
2
2}, (4) iid logN(0, σ22) and (5) iid sums of two uniforms U(0, σ22)

with σ22=1.

Note that the settings imply different ratios of coefficient-to-coefficient-to-noise variations. In

the setting 1 scenario (1) we have a ratio 36:9:0.5, whereas in the setting 2 scenario (1) we have

16:9:1. Apart from standard Gaussian errors, we also consider ”fat tailed” errors in scenario (2),

heteroscedastic in (3) and skewed errors in (4). We study the performance of the algorithms for

three sample sizes: (i) small n=20, p=100; (ii) medium n=50, p=150; (iii) large n=100, p=200.

For every combination of parameters we repeat the simulations 500 times and record the mean

computing times, the mean of the average mean squared error (MSE), its standard deviation,

and convergence ratio for each algorithm. We label the run of the algorithm as unconverged

whenever after 30 iterations and 50 restarts from a random starting point the algorithms fail to

converge.

We compare computational times and MSEs of the three methods TopDown (TD), BottomUp

(BUP) and PrincipalExpectile (PEC) in the Appendix. In general, PEC is the fastest, however,

it has lower convergence rate than TopDown (TD) and BottomUp (BUP). From the MSEs, we

conclude that whenever the error distribution is fat-tailed or skewed, or by small samples PEC

is likely to produce more reliable results in terms of its MSE, whereas by errors close to normal

and moderate or large samples TD is likely to produce smaller MSEs.

7 Empirical Study

We apply the proposed algorithms to two different datasets. In section 7.1 we investigate the

fMRI data from Risk Perception in Investment Decisions (RPID) study. Since the technical

details of experiment are complex and beyond the scope of this research, we provide the extended

extended introductory summary of experiment and refer the reader to Mohr et al. (2010), Mohr

and Nagel (2010) and Majer et al. (2015) for more details about experiment or book of Ashby

(2011) for analysis fMRI data in general. In section 7.2 we analyze the daily temperature dataset

over multiple Chinese stations.

7.1 Application to fMRI data

Risk Perception in Investment Decisions (RPID) Study performed an experiment over 19 indi-

viduals. Each participant was asked 256 investment questions, where past returns were presented

and participants had to make a choice whether they would invest in a bond with 5% fixed return

or the displayed investment. Individual responses reflect the risk attitude of every participant.
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Figure 1: Loadings for the 1-st principal expectile component for active regions of individual
No.1. (left) and No. 19 (right).

PEC fmri

Following the common Markowitz mean-variance approach one can evaluate the this risk atti-

tude, see details Mohr and Nagel (2010) and assign the corresponding values between -0.1 and

1.1 reflecting individual risk perception. We show the values in Figure 2 (right) on vertical axes.

Higher values represent the higher risk aversion. The individual No.19 is considered as the most

risk seeking and individual No.1 as the most risk averse participant in the population sample.

The aim of experiment was to study if individual’s risk perception can be interpreted and

recovered by brain activities. With Functional magnetic resonance imaging (fMRI) one can

measure such neural activity by the blood oxygen level-dependent (BOLD) signal.

Regarding the settings of our dataset, scans of voxels were taken every 2 seconds and as a re-

sult the high-dimensional data were obtained for each individual. Majer et al. (2015) identified

three brain regions (clusters) which are activated during the experiment: anterior insula (aINS;

left and right) and dorsomedial prefrontal cortex (DMPFC). From a statistical point of view the

scan of all voxels in certain brain area can be considered as a multi-dimensional time series of

round 300-400 voxels for every individual, however very noisy. In order to capture the variability

in these series of every region we use principal expectile components.

Following the notation from Section 4, denote Y
(r)
t the response, N (r)-dimensional vector,

obtained at specific region, r = aINSleft, aINSright, DMPFC at time t = 1, . . . , 1400, where

N (r) is a number of voxels in a specific region r. Further, φkτ,(r) its k-th principal expectile

component (PEC) at level τ and ψkτ,(r) corresponding projections, also known as loadings. PECs

provide us with necessary dimension reduction; each region dynamics is now captured by uni-

variate time series of loadings. The loadings of all three regions for indiviuals No.1 and No.19

at level τ = 0.6 are presented in Figure 1.
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Since the response function usually achieves the peak only shortly after stimulus, i.e. portfolio

question, we focus on average loadings after stimulus. The average loadings of three active

regions are considered as the regressors for explanation of this risk attitude. In order to be able

to compare the results of previous work, we follow Majer et al. (2015) and model the relationship

of the risk attitude atti and brain reactions via linear regression, which provides the simplest

however quite accurate comparison. More precisely for individuals i = 1, . . . , 19 and any fixed

τ -level we have:

atti = β0 +
∑
k=1,2

r=aINS l,
aINS r,
DMPFC

βk,rψ
k
τ,(r),i + εi. (13)

We performed the PrincipalExpectile algorithm for different τ = 0.05, 0.1, . . . , 0.9, 0.95. It is

interesting to see that the best result with respect to coefficient of determination R2 is obtained

not for τ = 0.5, however for τ = 0.6. We report the coefficients of determinations for all

considered τ -level in Figure 2 together with the regression fit for model (13) at level τ = 0.6.

The usage of τ = 0.6 over-performs the traditional usage of τ = 0.5.
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Figure 2: Coefficients of determinations for all considered τ -level (left) and the regression fit for
model (13) at τ = 0.6 (right). Horizontal axis represents âtti, the best linear combination of

regressors ψkτ,(r),i.

PEC fmri

19

https://github.com/QuantLet/PCA-in-an-Asymmetric-Norm/tree/master/PEC_fMRI


7.2 Application to Chinese Weather Data

We apply the algorithms BottomUp, TopDown and PrincipalExpectile to Chinese tempera-

ture data using daily average temperature data of 159 weather stations in mainland China for

the years 1957 to 2009 provided by Chinese Meteorological Administration via its website. We

did not pre-smooth the data. Original data averaged over years for every country are presented

in Figure 3.
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Figure 3: Observed averaged daily temperature on 159 stations (upper panel) and decentred
data (lower panel) with expectiles for level τ= 0.9, 0.5 and 0.1.

PEC temperature

We run the algorithms to estimate principal expectile components for the weather stations

at each of the τ -levels 10%, 50% and 90% with respect to days of a year from 1 to 365. Our

analysis for the 50% expectile corresponds to the classical PCA. We estimate first two principal

component functions.The estimation results of the three proposed algorithms are rather similar.

In Figure 4 we present the estimated principal component functions for τ = 0.1 and τ = 0.9.
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Figure 4: The estimated first PEC (left) and 2nd PEC (right) for τ = 0.1 (dashed) and τ = 0.9
(solid, multiplied by -1) computed with three proposed algorithms TopDown (red), BottomUp
(black) and PrincipileExpectile (blue).

PEC temperature

We see that all three algorithms give really similar results. However, one can be more

interested in differences among the levels of τ . Thus, in Figure 5 we show the differences of

PEC component at level τ = 0.9 (red), τ = 0.1 (blue) respectively, and PEC component at level

τ = 0.5, which corresponds to the ordinary principal component, i.e. φk0.9−φk0.5, resp. φk0.1−φk0.5.
We observe that both components differ from ordinary principal compoment. Moreover, we plot

also differences for τ = 0.8 (dashed gray) and τ = 0.7 (solid gray) to show that in case of the 2nd

component, the difference increases with higher level of τ .
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Figure 5: The differences of estimated PECs for τ = 0.1 (blue) and τ = 0.9 (red, multiplied by
-1) from estimeted PEC for τ = 0.5, computed with PrincipileExpectile algorithm. Differences
for 1st component are shown in left, for 2nd component in right.
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The obtained first and second components indicate the changes in the temperature distri-

bution from lighter to heavier tails and the other way around within a typical year. A positive

score on the first component would mean heavier than average tails in winter and lighter than

average tails during the rest of the year. Similar, a positive score on the second component

would indicate lighter than average tails of the temperature distribution in winter months, and

heavier in summer.

Figure 6: The scores for 1st (left) and 2nd (right) PECs computed by Principile expectile
algorithm for τ = 0.9.

PEC temperature

.

Figure 7: Map of Chinese climate zones by Gao et al. (2014) (left) and distribution of trends in
temperature percentile index TX90p for the period 1961-2010 by Zhou et al. (2016) (right).

For better interpretation we also provide the map of scores in Figure 6. The scores of

the first principal expectile component correspond to the climate regions, see Figure 7, explaining

the short-term periodic behaviour precisely. On the contrary, the scores of the second principal

expectile component correspond more to the increasing trend in extremes observed for different

areas, shown in Figure 7 via temperature index TX90p. TX90p - Warm days indicator is a

percentage of time when daily max temperature is higher than 90th percentile. It is also of

the 27 core indicators for temperature and perspiration recommended by WMO - ETCCDI

(World Meteorological Organization- Expert Team on Climate Change Detection and Indices),
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see Klein Tank et al. (2009). It is obvious that the scores of second component do not necessary

coincide with the climate regions but with areas of TX90p index, which explains more long-term

behaviour and trend.

8 Summary

We proposed two definitions of principal components in an asymmetric norm and provided

consistent algorithms based on iterative least squares. We derived the upper bounds on their

convergence times as well as other useful properties of the resulting principal components in an

asymmetric norm.

The algorithms TopDown and BottomUp minimize the projection error in a τ -asymmet-

ric norm, and PrincipalExpectile algorithm maximizes the τ -variance of the low-dimensional

projection. The later algorithm was shown to share ’nice’ properties of PCA as invariance

under translations and changes of basis, moreover, it coincides with classical PCA for elliptically

symmetric distributions. In simulations, PrincipalExpectile and TopDown have very satisfactory

performances in terms of the MSE. In addition, PrincipalExpectile showed robustness to ’fat-

tails’ and skewness of the data distribution.

We applied the algorith to fMRI data to analyze the possibility of better explanation of

individual risk attitude by brain reactions. We have shown that one can achieve a better results

with a help of higher τ -level rather than by commonly used τ = 0.5.

We also applied the algorithms to Chinese weather dataset with a view to analyzing weather

extremes and long-term behaviour. Analogously to principal components by Ramsay and Sil-

verman (2005) we estimated the first two principal expectile component functions of the tem-

perature as functions of days over a year. The resulting component functions indicate relative

changes in the tails of the temperature distribution from light to heavier and vice versa. Our fur-

ther results clarify the meaning of 1st component as seasonal component explaining short-term

variance of climate areas, while the 2nd component corresponds to the long-term changes.

The proposed algorithms appear to be a good way to study extremes of multivariate data.

They are easy to compute, relatively fast and their results are easy to interpret.
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9 Appendix

Table 1 and 2 show the runtimes of the simulations. PrincipalExpectile (PEC) is the fastest

algorithm, however, it has relative low convergence rate: for all sample sizes only around 80%

of algorithm runs were convergent. In 20% cases the algorithm keeps iterating between two sets

of weights which possibly indicates an adverse sample geometry, i.e. that two eigevalues of the

scaled covariance matrix are too close to each other. TD, on the contrary, converges almost

always in medium and large sample sizes.

sample small medium large
τ/sec BUP TD PEC BUP TD PEC BUP TD PEC

0.900 1.15 0.70 0.57 2.87 1.59 1.39 7.44 4.02 2.71
0.950 1.52 1.13 0.55 3.94 2.68 1.57 10.34 6.88 3.03
0.975 2.47 2.32 0.56 5.49 4.62 1.56 14.37 10.96 3.54

Table 1: Average time in seconds for convergence of the algorithms by 500 simulations

sample small medium large
τ/rate BUP TD PEC BUP TD PEC BUP TD PEC

0.900 0.11 0.00 0.24 0.07 0.00 0.23 0.03 0.00 0.20
0.950 0.17 0.00 0.22 0.13 0.00 0.26 0.11 0.00 0.21
0.975 0.25 0.03 0.21 0.22 0.01 0.25 0.22 0.00 0.24

Table 2: Nonconvergence rates of the algorithms by 500 simulation runs

The results on the MSEs for both simulation settings are presented in Tables 3 and 4. For

the settings 1 and 2 solely the magnitude of the average MSE differs; there is no substantial

qualitative difference in relative performance of the algorithms. BUP performs the worst of the

three algorithms in terms of its MSE in all scenarios. TD and PEC are comparable in terms of

their MSEs. PEC shows robustness against skewness and fat tails in the error distribution since

it produces the lowest MSEs in scenarios (2) and (4). Yet TD tends to slightly outperform PEC

in medium and large samples by errors close to iid normal or normal heteroscedastic; by small

sample sizes PEC outperforms TD in all scenarios but (5).

Figures 8 and 9 illustrate the difference in the quality of component estimation for the 95%

expectile when coefficient-to-coefficient-to-noise variation ratio changes (setting 1 versus setting

2 respectively). The results are shown for the error scenario (1) and small sample size. We

observe that as the ratio changes from 36:9:0.5 (setting 1, Figure 8) to 16:9:1 (setting 2, Figure

9) the variability of the estimators of both component functions increases. The overall mean of

the estimators remains very close to the true component functions.
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Figure 8: Estimated component functions (solid gray) by 500 simulation runs for simulation
setting 1 scenario 1 small sample size and 95% expectile. The rows from the top to the bottom
show respectively results produced by BUP, TD and PEC. Left panel corresponds to the first
component function, right panel - to the second. The true functions are shown as solid black
curves. The overall mean across simulation runs is shown as dashed black curve. The later can
not be distinguished from the true curve.

PEC algorithm princdir
PEC algorithm topdown

27

https://github.com/QuantLet/PCA-in-an-Asymmetric-Norm/tree/master/PEC_algorithm_princdir
https://github.com/QuantLet/PCA-in-an-Asymmetric-Norm/tree/master/PEC_algorithm_topdown


−
2

−
1

0
1

2

0 0.5 1

−
2

−
1

0
1

2

0 0.5 1

−
2

−
1

0
1

2

0 0.5 1

−
2

−
1

0
1

2

0 0.5 1

−
2

−
1

0
1

2

0 0.5 1

−
2

−
1

0
1

2

0 0.5 1

Figure 9: Estimated component functions (gray) by 500 simulation runs for simulation setting
2 scenario 1 small sample size and 95% expectile. The rows from the top to the bottom show
respectively results produced by BUP, TD and PEC. Left panel corresponds to the first compo-
nent function, right panel - to the second. The true functions are shown as solid black curves.
The overall mean across simulation runs is shown as dashed black curve. The later can not be
distinguished from the true curve.
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