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Abstract

The increasing exposure to renewable energy has ampli�ed the need for

risk management in electricity markets. Electricity price risk poses a major

challenge to market participants. We propose an approach to model and fore-

cast electricity prices taking into account information on renewable energy

production. While most literature focuses on point forecasting, our method-

ology forecasts the whole distribution of electricity prices and incorporates

spike risk, which is of great value for risk management. It is based on func-

tional principal component analysis and time-adaptive nonparametric density

estimation techniques. The methodology is applied to electricity market data

from Germany. We �nd that renewable infeed e�ects both, the location and

the shape of spot price densities. A comparison with benchmark methods and

an application to risk management are provided.

JEL classi�cation: C1, Q41, Q47

Keywords: electricity prices; residual load; probabilistic forecasting; value at

risk; expected shortfall; functional data analysis

∗The �nancial support from the Deutsche Forschungsgemeinschaft via SFB 649 �Ökonomisches
Risiko�, Humboldt-Universität zu Berlin is gratefully acknowledged.
†Ladislaus von Bortkiewicz Chair of Statistics, Humboldt-Universität zu Berlin, Spandauer

Straÿe 1, 10178 Berlin, Germany. Email: lopezcab@wiwi.hu-berlin.de, sulzfran@hu-berlin.de

1



1. Introduction

In recent years electricity markets have changed signi�cantly. In Germany, the
energy transition triggered by the regulators caused a rapid growth of renewable
energy and has exposed the electricity market to new risk factors. The share of
consumed electricity coming from renewable sources rose from 6.2% in 2000 to 32.6%
in 2015 (BMWi 2016). This change in the structure of energy markets also a�ects the
behavior of electricity spot prices: recently they have exhibited frequent downward
spikes and negative prices have occurred regularly.

Low or even negative prices appear when low demand concurs with high infeed
from renewable sources. Recent studies have shown that the level as well as the
volatility of electricity prices are to a large extent determined by residual load, de-
�ned as the di�erence between total demand and renewable infeed (Nicolosi and
Fürsch 2009; Hu 2009). The large volatility of renewables thus carries over to
electricity prices. In order to cope with this increasing uncertainty, probabilistic
forecasts and risk measures of electricity prices are crucial for market participants.

Several methods has been applied to electricity price forecasting over the last
years. They range from machine learning techniques and statistical methods to
structural models. An extensive review on recent methods is provided by Weron
(2014). He points out that probabilistic forecasting is still rare in the electricity
price forecasting literature. A recent overview on probabilistic forecasting in energy
markets is given by Hong et al. (2016). Most papers that deal with probabilistic
forecasts of electricity prices focus on prediction intervals (see e.g. Misiorek et al.
(2006), Wan et al. (2014), Nowotarski and Weron (2015)). Literature on density
forecasts is even more scarce. Exceptions are Serinaldi (2011), who use a general-
ized additive model for location, scale and shape in order to model and forecast the
distribution of electricity prices. Panagiotelis and Smith (2008) use a combination of
multivariate time series models and Markov chain Monte Carlo methods to compute
predictive densities of spot prices. Jónsson et al. (2014) produce probabilistic fore-
casts using quantile regression combined with an exponential distribution to explain
the distribution tails. In a recent work, Bello et al. (2015) conduct probabilistic
forecasts in the medium-term using a fundamental market equilibrium model.

We propose to model the distribution of electricity spot prices conditional on
residual load. This approach enables us to capture the e�ect of the interaction
between demand and renewable infeed on electricity prices and to incorporate spikes
that occur due to extremes in residual load.

Literature on modeling residual load is rare, one exception is Wagner (2014), who
uses a stochastic model for wind and solar power to derive residual load. We propose
to model daily residual load curves directly using Functional Principal Component
Analysis (FPCA), a common tool in Functional Data Analysis (FDA) that reduces
the dimensionality of the problem by decomposing curves into a low number of
risk drivers. See Ramsay and Silverman (2005) for an introduction to FDA and
Shang (2014) for a survey on FPCA. In our context, daily residual load curves
are regarded as realizations of a functional time series. Dynamics over time of
the curves are analyzed and forecasted using multivariate time series techniques.
Similar methodologies have been applied to load forecasting by Shang (2013) and
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López Cabrera and Schulz (2016). Others, like Antoch et al. (2008) or Goia et al.
(2010) use functional linear models to predict electricity load curves. Nonparametric
functional regression techniques are applied to load and price forecasting by Vilar
et al. (2012).

Next, we use these daily curves to model the conditional density of daily spot
price indices. This way, we can not only take into account information on the amount
of residual load, but also on the distribution of residual load over the day. We
suggest to model the relationship between residual load and prices using a �exible
nonparametric approach with functional covariates. This technique is based on
functional conditional kernel density estimation. The approach has the advantage
that predictive densities can have any form, in particular they can be asymmetric,
multimodal or fat-tailed. In order to accommodate potential time-varying behavior,
we include an exponential decay factor. From the conditional density interval and
point forecasts and risk measures like Value at Risk (VaR) or Expected Shortfall
can be derived.

We apply the proposed methodology to prices of the Physical Electricity Index
(Phelix) day base and Phelix day peak. Both indices are traded at the German
electricity exchange EEX and serve as common underlyings for electricity derivatives.
Phelix day base is the average of all 24 hourly spot prices, while Phelix day peak is
the average of the spot prices during peak hours from 9am to 8pm.

The proposed methodology is evaluated based on 300 day-ahead out-of-sample
forecasts. We compare the performance with regard to point, interval and density
forecasting to several benchmark models, including a similar day approach and an
autoregressive moving average model. The proposed model turns out to alomst
always outperform the benchmark models.

Our article is structured as follows. Section 2 gives a brief introduction of the
German electricity market and data. In Section 3 we describe the functional data ap-
proach to model and forecast residual load curves. Section 4 presents the functional
conditional density estimator and introduces the time-adaptive approach. Section
5 discusses the modeling and estimation of residual load data and the density fore-
casting of electricity prices. In section 6 the forecasting performance is evaluated
and compared to benchmark methods using several performance measures. An ap-
plication to energy risk management is given in Section 7. Section 8 concludes the
article. All computations in this article were carried out in R.

2. German electricity market and data

The German electricity market, which was liberalized in 1998, is Europe's largest,
with annual power consumption of around 500 TWh and an annual production of
around 600 TWh. In 2015, roughly one third of total production came from renew-
able sources (BMWi 2016). This poses new risk factors to market participants, as
they have to cope with uncertain renewable infeed. Electricity is traded on the Euro-
pean Electricity Exchange (EEX), which contains a spot market (EPEX Spot) and
a derivative market. EPEX Spot operates a day-ahead market, where market par-
ticipants buy electricity for all 24 hours of the next day in a daily auction that takes
place at 12pm. The EPEX Spot established two price indices, the Phelix base and
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Phelix peak, which serve as reference prices for the European market. Market-based
reference prices form an essential basis for market participants' decision making.
Furthermore, the indices serve as underlying assets for Phelix futures, provided by
the EEX. Hourly prices are set according to a merit order. This means that power
plants are ordered according to their marginal costs and the price of electricity for a
speci�c hour corresponds to the marginal costs of the last power plant that is needed
to cover demand in that hour. The resulting merit order curve directly links elec-
tricity demand and prices. Conventionally, nuclear and lignite power plants serve
base electricity demand, whereas the more expensive gas and oil power plants are
only operated during hours of peak demand. Since renewable power plants have a
feed-in guarantee and low marginal costs, they lower the entrance price and push
conventional power plants down the merit order curve. Hence, increasing infeed
from renewable energy results in lower electricity spot prices. This is also referred
to as merit order e�ect. An overview on literature addressing the merit order e�ect
is e.g. provided by Würzburg et al. (2013).

While the merit order e�ect has been subject of many researchers, the e�ect of
renewable infeed on the volatility of electricity prices has been studied much less.
A notable exception is Ketterer (2014), who applies a GARCH model to electricity
prices in Germany in order to investigate the e�ect of renewable infeed on the mean
and volatility of prices. She �nds that while the electricity price is falling due to
increased renewable infeed, the volatility of prices is increasing. A similar �nding
is reported by Woo et al. (2011), who investigate the Texas electricity market and
point out that increasing share of renewable energy requires a higher degree of price
risk management.

For a sustainable price risk management information of uncertainty and disper-
sion of future prices is crucial. In our analysis, we model and forecast the distribution
of Phelix day base and Phelix day peak prices, taking into account information about
electricity demand and renewable infeed. Distributional forecasts provide valuable
information about uncertainty of prices and can be directly used to derive interval
forecasts and risk measures.

Total demand Solar Wind RL Phelix Base Phelix Peak

Mean 56024.59 3974.07 5966.80 46083.73 34.66 38.72
Median 55871.00 241.88 4293.75 45793.25 34.36 38.18
SD 10276.44 5889.91 5353.44 10591.75 9.90 13.13
Min 29550.00 0.00 28.75 8958.00 −4.13 −18.99
Max 79120.00 25811.75 30582.50 78069.50 62.89 80.50

Table 1: Summary statistics. Total demand, solar, wind and residual load (RL) in
MW. Phelix base and Phelix peak in EUR/MWh.

For the empirical work of this article, we use daily data on Phelix day base and
Phelix day peak prices as well as hourly data on electricity consumption, wind infeed
and solar infeed. The price data is obtained from Bloomberg. Electricity consump-
tion data is obtained from the European Network of Transmission System Oper-
ators for Electricity (ENTSO-E). Data on wind and solar infeed is obtained from
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the four German transmission system operators (50Hertz, Amprion, TennetTSO,
TransnetBW). The analysis is based on data from 2013-01-01 to 2015-10-31. Sum-
mary statistics are given in Table 1. The time series of Phelix day base and Phelix
day peak prices are displayed in Figure 1. It can be seen that the Phelix day peak
has a larger volatility and more pronounced spikes than the Phelix day base. This
is also visible from the summary statistics and not surprising, since the Phelix day
peak corresponds to hours with high and variable demand. Both price series ex-
hibit positive skewness and an excess kurtosis of about 1, implying a heavy-tailed
unconditional distribution that is skewed to the right.
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Figure 1: Phelix day base (black) and Phelix day peak (red) index from 2013-01-01
to 2015-10-31. The red dottet line marks the end of the in-sample period.
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Figure 2: Residual Load in GW from 2013-01-01 to 2015-10-31

As pointed out above, prices of electricity do not only depend on total con-
sumption, but rather on the amount of electricity that has to be produced from
conventional energy sources. We refer to this as residual load which we de�ne as:

Rt = Lt −Wt − St, (1)
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where Lt is total demand, Wt is wind infeed and St is solar infeed at time t.
That is, residual load corresponds to total consumption minus electricity infeed
from renewable sources. Since biomass and hydro power are still negligible in the
German electricity market, we do not consider them in this study.

Figure 2 displays the residual load data. Typical load pro�les on a day with high
and low renewable infeed respectively are shown in Figure 3. It is clearly visible that
residual load contains annual, weekly and intraday seasonal cycles. They closely
follow the seasonalities of consumption which is lower during winter than during
summer and lower during weekends than during the week.

Typically, the intraday load pro�le shows a peak around noon, followed by valley
in the afternoon and another peak in the evening. The valley during the afternoon
becomes more pronounced the more solar infeed is present.
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Figure 3: Total consumption (thick black line), solar infeed (orange), wind infeed
(green) and residual load (gray) on a day with high renewable infeed (left) and low
renewable infeed (right).

Since the seasonal patterns of load curves are quite predictable, we model them
deterministically. We express the observed residual load R̃t as

R̃t = Λt +Rt, t = 1, . . . , T, (2)

where Λt is a deterministic seasonal component and Rt is a stochastic component.
We estimate the deterministic seasonal component separately for every quarter-hour
of a day. It is speci�ed as

Λs,k = as + bs · k + c1,s sin

(
2πk

365

)
+ c2,s cos

(
2πk

365

)
+

7∑
i=1

di,s ·Di,k, (3)

where s = 1, . . . , S denotes time within the day in hours and k = 1, . . . , n the
day, such that S = 24 and S · n = T . The parameters as,bs,c1,s,c2,s and di,s are
estimated by ordinary least square regression. Di,k is a set of dummy variables
consisting of six dummies for the weekdays and one dummy for public holidays.
They capture weekly seasonal behavior, while the sine and cosine functions capture
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yearly seasonalities. This approach is very close to the so called similar-day approach
which is a commonly used approach in industry to model and forecast electricity
load.

3. Methodology

3.1 Modeling and forecasting residual load

We divide the univariate time series of residual load into segments and treat them as
a time series of curves, where each curve represents one day. Since daily load curves
show a similar pattern, this is a natural approach. Each of the daily segments of
residual load contains 24 hourly observations. We denote these segments as Rs,k,
where s = 1, . . . , 24 denotes the time within the day and k denotes the day. They are
regarded as realizations Rk(s) of a functional time series {Rk, k ∈ Z} de�ned on a
compact set S, where S corresponds to one day. For an overview on functional time
series we refer to Horváth and Kokoszka (2012). Under stationarity Rk(s) have a
common mean function E{R(s)} = µ(s) and a common covariance function C(s, t) =
Cov{R(s), R(t)} with s, t ∈ S. Note that functional observations are intrinsically
in�nite dimensional. We model the time series of intra-daily residual load curves
using functional principal component analysis (FPCA). FPCA is a tool to reduce
the dimensionality of the problem that exploits the common structure of the residual
load curves. It decomposes the functional process into the sum of the common mean
function µ(s) and a linear combination of orthogonal principal component functions.
The principal component functions are the eigenfunctions φi, i = 1, 2, . . ., of the
Kernel operator K : φ 7→ Kφ de�ned by (Kφ)(s) =

∫
S C(s, t)φ(t)dt. The Karhuhen-

Lo`{e}ve expansion provides a representation of the intra-daily residual load curves
as:

Rk(s) = µ(s) +
∞∑
i=1

αikφi(s), (4)

where αi, i = 1, 2, . . . are the principal component scores de�ned as 〈R(s), φi〉,
where 〈·, ·〉 denotes the inner product. That is, the principal component scores
are the projection of the residual load curves in the direction of the correspond-
ing principal components. They satisfy E(αi) = 0 and Var(αi) = λi, where λi is
the non-increasing and non-negative sequence of eigenvalues corresponding to the
eigenfunctions φi of the operator K. By taking only the �rst m principal component
functions, the truncated Karhuhen-Lo`{e}ve expansion approximates the functions
Rk(t):

Rk(s) ≈ µ(s) +
m∑
i=1

αikφi(s). (5)

In practice, the mean, the principal components and the principal component
scores have to be estimated from a sample of the functional process. We estimate
the mean of the functions by
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µ̂(s) =
1

n

n∑
k=1

Rk(s), (6)

where n is the sample size. The kernel operator is estimated by

(K̂φ)(s) =

∫
S
Ĉ(s, t)φ(t)dt, (7)

where

Ĉ(s, t) =
1

n

n∑
k=1

{Rk(s)− µ̂(s)}{Rk(t)− µ̂(t)}. (8)

From (7) we estimate eigenfunctions and eigenvalues and denote them by φ̂i
and α̂ik, i = 1, . . . ,m. Hörmann and Kokoszka (2010) show that these estimates
are
√
n-consistent for a large group of stationary functional time series, including in

particular linear functional processes. To choose the number of principal component
functions m in Equation (5) there exist various rules. Here, the number is chosen
such that at least an a priori �xed amount of variation in the data is explained by
the principal component functions.

It is noted that only the principal component scores are varying over time,
whereas the mean and principal component functions are time invariant. Hence,
the dynamics over time of the residual load curves are fully captured by the dynam-
ics of the principal component scores. The estimated principal component scores α̂ik
form a m-variate time-series of length n. Hence, the dimension of the problem has
been reduced from in�nite tom. We model the dynamics of the principal component
scores using a vector autoregressive (VAR) process of order p. It is given by

α̂k =

p∑
i=1

Φiα̂k−i + ηk (9)

where α̂k is the vector of estimated principal component scores, Φi is a coe�cient
matrix and ηk is a white noise process (Lütkepohl 2005). The lag order p of the
VAR process is determined by an Akaike information criterion. The VAR(p) model
is then used to produce forecasts of the principal component scores α̂i,n+h, where
h denotes the forecast horizon. Plugging these forecasts into (5) yields forecasts of
the whole residual load curve:

R̂n+h(s) = µ̂(s) +
m∑
i=1

α̂i,n+hφ̂i(s), (10)

where R̂n+h(t) is the h-step ahead forecast of the residual load curve.
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3.2 Functional kernel density estimation of electricity prices

conditional on residual load

As described above, electricity demand and prices are inherently connected through
the merit order curve. We model the relation between demand and prices using
methods for functional data. This has the advantage that we can take the informa-
tion of the whole residual load curve into account to model the distribution of the
daily prices. We chose a functional conditional kernel density (fCKD) estimator to
estimate the density of electricity prices conditional on the residual load curves. The
estimator requires neither assumption on the resulting density of prices nor on the
functional form of the relationship between prices and residual load. This �exibility
is desirable in this context, since prices are generally asymmetric and heavy-tailed.
Furthermore, the functional form of the relationship between prices and residual
load is unknown and not straightforward to derive.

The fCKD estimator (Ferraty and Vieu 2006) is given by :

f̂(y|R) =

1
g

∑n
k=1 K [h−1d{R(s), Rk(s)}] K0{g−1(y − Yk)}∑n

k=1 K [h−1d{R(s), Rk(s)}]
, (11)

where K and K0 are kernels, h and g are positive bandwidth parameters and
d(·, ·) is a semi-metric that measures the proximity of curves. It is a functional
extension of the well known Nadaraya-Watson estimator (Nadaraya 1964; Watson
1964), where the main change comes from the introduction of the semi-metric d. We
choose a semi-metric that is based on principal component analysis. It is de�ned as

dPCAq (Rk, R) =

√√√√ q∑
m=1

[∫
{Rk(s)−R(s)}vm(s)ds

]2
, (12)

where v1, . . . , vq are the �rst q eigenvectors of the covariance matrix of the curves
Rk, with q being a tuning parameter that has to be �xed a priori. The idea of
the PCA-based semi-metric is to compute proximities between curves in a reduced
dimensional space, where q determines the resolution at which curves are compared.
For more details and di�erent choices of the semi-metric we refer to Ferraty and
Vieu (2006).

The two bandwidth parameters h and g are chosen based on cross-validation. The
cross-validation is done as follows. We compute day-ahead density forecasts for the
cross-validation sample and choose the bandwidth such that the forecasting accuracy
in the cross-validation sample is maximized. As a measure of forecasting accuracy
we choose the logarithmic score which evaluates location as well as concentration
of the density forecasts and is a local proper scoring rule (Gneiting and Katzfuss
2014).

Looking at scatterplots of electricity prices and average daily residual load for
di�erent time periods (see Section 4) indicates that the relationship between prices
and residual demand is varying over time. This happens due to factors that impact
the market environment and that we do not capture in our model. A way to address
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this time-varying behavior is to give more weight to recent observations and to weight
observations less that are more far away in time. We implement a time-adaptive
algorithm that is based on an exponential decay factor. For this, we adjust the time-
adaptive conditional kernel density approach proposed by Jeon and Taylor (2012)
to the functional estimator. The time-adaptive functional kernel density estimator
(TA-fCKDE) is given by:

f̂(y|R) =

1
g

∑n
k=1 λ

n−k K [h−1d{R(s), Rk(s)}] K0{g−1(y − Yk)}∑n
k=1 λ

n−k K [h−1d{R(s), Ri(s)}]
, (13)

where λ ∈ (0, 1] is an exponential time decay factor. The smaller λ, the faster
the factor decays and the more weight is given to recent values. We determine λ
together with the bandwidth parameters in the cross-validation.

The fCKD estimator and TA-fCKD estimator yield estimates of the electricity
spot price density conditional on a given residual load curve. If we use the fCKD
estimator for forecasting, the future residual load curve is of course unknown. The
purpose of the FPCA described in the previous section is to produce high quality
forecasts of the residual load curve that can be used to obtain a forecast of the
electricity price density.

4. Modeling and forecasting dynamics of residual load and

spot price densities

Since the relationship between prices and residual load curves is too complex to
display visually, in order to illustrate the relationship between both we show a
scatterplot of prices and average daily residual load in Figure 4. A clear positive
relationship is visible, with slightly increasing variance for higher residual load. The
right panel of the plot indicates that the relationship is not invariant over time.
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Figure 4: Phelix day base prices vs. average daily residual load for the whole in-
sample period (left) and for the �rst four month (black dots) and the last four month
(blue triangles) of the in-sample period (right).

In the �rst step we model residual load curves for the in-sample period from 2013-
01-01 to 2014-12-31 as described in Section 3.1. We choose the number of principal
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components such that at least 95% of the variation in the data is explained. It
turns out that three principal components are su�cient. The �rst three principal
components together with their principal component scores are displayed in Figure
5. The �rst principal component explains already 80% of the variance. Variations
in the �rst principal components correspond mainly to shifts in the level of the load
curve. Principal components two and three explain 10% and 6% respectively and
are responsible for variations in the curvature of the load curve.

The dynamics of the principal component scores are modeled using model (9).
We determined the lag order p of the VAR model based on the Akaike information
criterion (AIC) and considered lags up to order 14. We �nd that a VAR(1) model
has the lowest AIC. Estimation results of the coe�cient matrix Φ1 are reported in
table 2. They show that although the principal components are instantaneously
uncorrelated by construction, they do exhibit dependencies over time.

α1,t−1 α1,t−2 α1,t−3

α1,t 0.62 −0.53 0.86
(0.00) (0.00) (0.00)

α2,t 0.11 0.01 0.51
(0.00) (0.87) (0.00)

α3,t −0.01 0.14 0.25
(0.51) (0.00) (0.00)

Table 2: Estimates of the coe�cients of the VAR(1) model. P-values in parentheses.
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Figure 5: First three principal component scores and the corresponding principal
component scores for the in-sample period (2013-01-01 to 2014-12-31). Explained
variance: 80%, 10% and 6%

Day-ahead forecasts of the residual load curves are computed according to (10).
We achieve a mean squared percentage error of 1.75% based on 300 day-ahead out-
of-sample forecasts.
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In the second step, forecasted residual load curves are used to produce forecasts
of the conditional electricity price density as described in Section 3.2.

Figure 6 shows exemplary forecasted densities of the Phelix day base price to-
gether with the corresponding residual load for a day with high residual load, low
residual load and medium residual load. It can be seen that the location as well as
the shape of the price density varies with residual load. Especially on the day with
low residual load, it is highly asymmetric and bimodal. Interestingly, the realized
price almost coincides with the lower mode.
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Figure 6: Residual load (upper panel) and forecasted spot price density (lower panel)
together with 0.05 and 0.95 Quantile (gray shades), median (black solid line) and
observed price (red dashed line).

5. Forecast evaluation

We compare the forecast performance of the functional conditional kernel density
estimator (fCKDE) and the time-adaptive functional conditional kernel density es-
timator (TA-fCKDE) to the results of several benchmark models. The �rst two
years of data are used for in-sample �tting. For the remaining data, we compute
H = 300 day-ahead out-of-sample forecasts using a rolling window approach. For
the cross-validation of the bandwidth parameters and the exponential decay factor
λ we keep the last third of the in-sample period as a cross-validation sample.

The forecasts are computed under two scenarios for the residual load: (1) we
assume that we have a perfect forecast, that is we use measured residual load as
input for our price forecast, (2) we use forecasted residual load from our model
proposed in Section 3.1 as input for our price forecasts. In this way we can on the
one hand compare the performance of the price forecasting models fairly on the
basis of a perfect forecast. On the other hand, we obtain an idea of how much of
the uncertainty in price forecasting comes from the uncertainty in load forecasting.
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5.1 Benchmark Models

We estimate the following benchmark models and compare their performance for
day-ahead forecasting to the performance of the fCKDE and the TA-fCKDE.

I Naive similar day approach
II ARMAX
III Kernel density estimator (KDE)
IV Conditional kernel density estimator (CKDE)

The �rst benchmark model (I) is a simple or naive model that is based on the
idea that a good prediction of today's electricity price, is the price on the same
weekday one week ago. It is often called similar day approach and popular due to
its simplicity. The model is given by

yk = yk−7 + εk, (14)

where εk is a white noise process.
As a further benchmark model (II) we choose the autoregressive moving average

model (ARMA). ARMA models and variations of it are very often used in literature,
see e.g. Cuaresma et al. (2004), Weron and Misiorek (2008), Kristiansen (2012) and
serve as common benchmark models. We include weekday dummy variables in order
to account for weekly seasonalities. The ARMA(p,q) model with exogenous variables
(ARMAX) is given by:

yk = c+

p∑
i=1

φiyk−i +

q∑
j=1

θjεk−j + βxk + εk, (15)

where c is a constant, φ, θ and β are parameters that have to be estimated, xk
are exogenous variables and εk is a white noise process. The lag orders p and q are
chosen according to the Akaike information criterion.

Models I and II can be used to produce point forecasts of electricity spot prices.
They do not yield information about the future price distribution.

Model III is a simple unconditional kernel density estimator (KDE) given by:

f̂(y) =
1

ng

n∑
k=1

K0{g−1(y − Yk)}, (16)

where K0 is a kernel function and g is a bandwidth parameter. It has the
advantage that only information about past electricity prices is needed. Therefore,
it does not rely on forecasted values of residual load.

Furthermore, we chose the Nadaraya-Watson conditional kernel density estima-
tor (CKDE) as a benchmark (IV), where the conditional variable is the average daily
residual load. It is given by:
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f̂(y|R̄) =

1
g

∑n
k=1 K{h−1(R̄− R̄k)}K0{g−1(y − Yk)}∑n

k=1 K{h−1(R̄− R̄k)}
, (17)

where R̄k denotes average daily residual load on day k, K and K0 are kernels, h
and g are positive bandwidth parameters. This estimator takes into account the in-
formation about the amount of electricity that has to be produced from conventional
power plants, but it does not consider its distribution over the day.

5.2 Point Forecasting

The main focus of our analysis is density forecasting. However, we also look at the
performance of point forecasts for two reasons. First, point forecasts provide useful
information about the location of the predicted density and are of great importance
for users. Second, most established methods for electricity price forecasting only
yield point forecasts. This way, we are able to compare our results to other well es-
tablished methods, as the similar day approach and the ARMA model. We compute
mean and median of the predicted densities and evaluate them using the root mean
squared error (RMSE) and the mean absolute percentage error (MAPE), respec-
tively. Thus, we take the respective loss function of the mean and the median into
account when evaluating the forecast (Gneiting 2011). The forecasts of the similar
day approach and the ARMA model are evaluated based on the RMSE only, as they
do not provide forecasts of the median. RMSE and MAPE are de�ned as

RMSE =

√√√√ 1

H

H∑
h=1

(yn+h − ŷn+h)2, (18)

MAPE =
1

H

H∑
h=1

|yn+h − ŷn+h
yn+h

|, (19)

where H denotes the total number of forecasts, yn+h is the observed price at day
n+ h and ŷn+h denotes the day-ahead point forecast of day n+ h.

The results are shown in Table 3. The TA-fCKDE performs best in forecasting
the mean as well as the median. Surprisingly, the similar day approach performs
relatively good as well, given its simplicity. Both the similar day approach and
the ARMAX model outperform the unconditional kernel density estimator (KDE)
in point forecasting, though they do not provide information about the density.
Naturally, forecasts under scenario (1) are better than forecasts under scenario (2).
The ranking of the models does however not change.

5.3 Density Forecasting

We evaluate the density forecasts using probability integral transforms (PIT) of the
predicted densities (Diebold et al. 1998) as well as logarithmic scores (LS) (Gneiting
and Katzfuss 2014). The PIT is de�ned as:
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Scenario (1) Scenario (2)
MAE RMSE MAE RMSE

Base Peak Base Peak Base Peak Base Peak

SD - - 9.16 10.64 - - 9.16 10.64
ARMA - - 7.23 9.73 - - 7.23 9.73
KDE 15.15 18.02 8.84 11.50 15.15 18.02 8.84 11.50
CKDE 7.03 8.06 4.64 5.83 7.03 6.77 5.91 7.37
fCKDE 6.64 7.70 4.77 5.89 6.64 6.72 6.06 7.52
TAfCKDE 5.94 7.21 3.61 4.70 5.78 6.48 4.88 6.19

Table 3: Mean absolute error (MAE) and root mean squared error (RMSE) based
on H = 300 day-ahead forecasts.

PITh =

∫ yn+h

−∞
f̂n+h(u)du, (20)

where h = 1, . . . , H denotes the day-ahead forecasts and f̂n+h(·) is the predicted
density of the price at day n + h. That is, the PIT is the cumulative density
function of the predicted density evaluated at yn+h. Note, that if the predicted
density equals the true data generating process, then PITh ∼ U(0, 1). In Figures
7 and 8 we plot histograms of the PIT. High bars indicate that the corresponding
part of the distribution is underestimated and vice versa. Under scenario (1) the
KDE overestimates the right tail, while the CKDE overestimates both tails. The
PIT from the fCKDE and the TA-fCKDE look more uniform. Under scenario (2)
the TA-fCKDE underestimates the tail-risk for peak load, but seems to capture the
distribution of base load quite well.
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Figure 7: Probability integral transform for peak load (upper panel) and base load
(lower panel) based on H = 300 day-ahead forecasts under scenario (1).

Though, as pointed out by (Hamill 2001), uniformity of the PIT does not guar-
antee unbiasedness of the forecasts. Hence, it is a necessary condition for a good
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Figure 8: Probability integral transform for peak load (upper panel) and base load
(lower panel) based on H = 300 day-ahead forecasts under scenario (2).

forecast, but not a su�cient one. Therefore, we additionally compute the LS, which
is a local proper scoring rule. It is de�ned as

LSh(f̂n+h, yn+h) = − log{f̂n+h(yn+h)}, (21)

where f̂n+h(·) is the predicted density of the price at day n + h and yn+h is the
observed price. The LS evaluates the quality of a probabilistic forecasts based on the
paradigm of maximizing sharpness subject to calibration. In other words, it takes
into account both, the concentration of the predicted distribution (sharpness) and
its location relative to the observed values (calibration). The average LS over the
out-of-sample period are reported in table 4. Again, the TA-fCKDE outperforms
the other methods.

Scenario (1) Scenario (2)
Base Peak Base Peak

KDE 3.59 3.88 3.59 3.88
CKDE 2.95 3.16 3.25 3.47
fCKDE 2.94 3.16 3.23 3.45
TA-fCKDE 2.70 2.94 3.07 3.34

Table 4: Mean logarithmic score (LS) based on H = 300 day-ahead forecasts.

5.4 Quantile and Interval Forecasting

Special interest often lies in certain quantiles of the distribution and the intervals
spanned by them. In section 6 we show how they can be used for risk management.

We evaluate the accuracy of conditional quantile forecasts using the pinball loss
function given by:
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L(q̂τ,n+h, yn+h) = |τ − I(yn+h≤q̂τ,n+h) ||yn+h − q̂τ,n+h|, (22)

where q̂τ,n+h denotes the day-ahead quantile forecast with level of asymmetry τ on
day n+h and yn+h is the observed price on that day. The pinball loss function can be
interpreted as a weighted absolute error, where the weight re�ects the asymmetry of
the quantiles. It is a popular tool to evaluate quantile forecasts that has for example
been suggested by Hong et al. (2016) and Steinwart et al. (2011).

Table 6 shows the average loss function over all H = 300 day-ahead forecasts.
The smaller the value, the better. For reasons of compactness, we only show the
results under scenario (1), as the results for scenario (2) do not di�er in their con-
clusion. We �nd that the TA-fCKDE performs best for most of the considered
quantile levels for both, base and peak load prices. Only for the 0.01 quantile it is
outperformed by both the fCKDE and the CKDE.

τ = 0.01 0.05 0.25 0.5 0.75 0.95 0.99

KDE 0.35 1.09 2.77 3.32 2.71 0.96 0.26
CKDE 0.10 0.44 1.33 1.80 1.60 0.65 0.17
fCKDE 0.10 0.42 1.33 1.75 1.56 0.63 0.17
TA-fCKDE 0.13 0.40 1.12 1.37 1.09 0.39 0.11

Table 5: Mean pinball loss based on H = 300 day-ahead quantile forecasts (base).

τ = 0.01 0.05 0.25 0.5 0.75 0.95 0.99

KDE 0.42 1.28 3.55 4.35 3.63 1.30 0.36
CKDE 0.12 0.52 1.57 2.16 2.04 0.84 0.22
fCKDE 0.12 0.48 1.62 2.16 1.98 0.81 0.22
TA-fCKDE 0.21 0.54 1.40 1.73 1.41 0.50 0.14

Table 6: Mean pinball loss based on H = 300 day-ahead quantile forecasts (peak).

6. Application to Risk Management

Deregulated electricity markets provide opportunities for market participants to
trade electricity and its derivatives. While this can be bene�cial, the speci�c char-
acteristics of electricity spot prices also pose major challenges at market participants.
In order to cope with these challenges, e�ective risk management is advantageous.
A �rst step in risk management is the measurement of risk. This quanti�cation of
uncertainty provides relevant information for the decision-making of market partici-
pants and forms the basis for trading strategies that meet their risk attitude. From a
�rm's perspective, as pointed out by Chan and Gray (2006), over-capitalization due
to overestimation of risk implies idle capital which compromises the �rms's prof-
itability. On the other hand, under-capitalization may cause �nancial distress in
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case the �rm is unable to meet the obligations of its trading contracts. Therefore,
risk measurement is a central part in establishing optimal trading limits. Our proba-
bilistic forecasts yield a complete picture of future electricity prices and can directly
be used to measure uncertainty. Given the spike risk of electricity prices associ-
ated with tail events, knowledge about the tail dynamics rather than the variations
around the mean is crucial for a sustainable risk management. We compute two dif-
ferent risk measures, Value at Risk (VaR) and Expected Shortfall (ES), based on the
forecasts generated by the fCKDE and the TA-fCKDE using numerical integration
techniques.

VaR is de�ned as:

VaR(τ) = F−1y (τ), (23)

where τ ∈ (0, 1) corresponds to the probability that the spot price will fall below
the amount given by the VaR. That is, VaR(τ) is exactly the τ · 100% quantile of
the price distribution. VaR is a measure of price risk and a standard tool in �nance
(Du�e and Pan 1997; Holton 2003). However, it is not a coherent risk measure
(see e.g. Artzner et al. (1999)). For a discussion of VaR in energy markets see
e.g. Eydeland and Wolyniec (2003). A popular tool to compute VaR are GARCH
models, which were shown to perform well for energy markets, if they have fat-
tailed and possibly skewed distributions (Aloui 2008; Füss et al. 2010; Giot and
Laurent 2003). Bunn et al. (2016) compute VaR levels for electricity spot prices using
quantile regression with fundamental factors and volatility as explanatory factor in
order to capture the speci�c behavior of electricity prices. Here, we use a di�erent
methodology that takes into account the e�ect of the interaction between demand
and renewable infeed on electricity prices and incorporates the risk of extremes in
spot prices. We show a plot of the 1% VaR for our out-of-sample forecasting period
based on the fCKDE and the TA-fCKDE in Figure 9. While in the beginning of the
period they provide comparable results, for the second part of 2015 the TA-fCKDE
estimates a lower tail risk than the fCKDE. Furthermore, it can be seen that price
spikes are captured quite well.

Next, we compute the Expected Shortfall, that is, the expected value of a random
variable below a given threshold. It is a more accurate risk measure compared to the
VaR, since it takes diversi�cation and risk aggregation e�ects properly into account
and thus is a coherent risk measure (Acerbi and Tasche 2002; Delbaen 2002). ES is
de�ned as

ES(τ) =
1

τ

∫ τ

0

VaR(θ)dθ, τ ∈ (0, 1). (24)

The right panel of Figure 9 shows estimates of the 1% Expected Shortfall. By
construction, ES is lower than VaR. Though, it shows a similar pattern to the
VaR. While the TA-fCKDE again estimates a lower tail risk, the di�erence is less
distinctive.

VaR ignores losses below the VaR level, whereas ES has the advantage that it
captures this tails risk. Though, as pointed out by Yamai and Yoshiba (2005), ES
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is less reliable to estimate for fat-tailed distributions, which we face in electricity
markets. For a comprehensive risk monitoring, it is recommended to take into
account both, VaR and ES.

The high forecasting performance of the TA-fCKDE model is re�ected in the
accuracy of both risk measures. It considers the risk of market price �uctuations,
the e�ects of the interaction between demand and renewable infeed, spike risk and
the time-varying behavior of the risk factors in the electricity spot market. Our
methodology can as well be used to compute other risk measure, as e.g. Risk ad-
justed Return on Capital (RAROC), which was used by Prokopczuk et al. (2007)
to quantify risks related to wholesale electricity contracts.
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Figure 9: Observed load (black dots) together with estimated 1% VaR (left panel)
and 1% expected shortfall (right panel) for TA-fCKDE (blue solid line) and fCKDE
(red dashed line).

7. Conclusion

Since electricity markets have been liberalized in many countries, price forecasting
is becoming an important task. Residual load - the di�erence between consump-
tion and renewable infeed - plays a key role in the electricity price formation. For
the purpose of modeling and forecasting electricity spot prices, a new prediction
methodology that considers the uncertainty of future residual load and its stochastic
relationship with prices is proposed. The methodology yields forecasts of the whole
density of electricity prices, which is of great value for trading and risk management.
It is able to capture spike risk associated with tail events, which is especially relevant
in electricity markets. We �nd that the location as well as the shape of the price
distribution depends on residual load. Predicted price distributions are generally
asymmetric and fat-tailed. We evaluate density forecasts as well as point and in-
terval forecasts derived from the methodology against several benchmark methods
and �nd that the proposed methodology performs best in almost all cases. More-
over, we demonstrate how to apply the methodology to risk management and derive
risk measures from the predicted densities. A possible further application would be
futures pricing, as e.g. done by Bierbrauer et al. (2007).
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