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on a random variable, which is the first time to study ranking approach for transformations
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rules is that each FSD condition is represented by the transformation functions and each SSD
condition is characterized by the transformation functions and the probability distributions of the
random variable. This is different from the existing SD approach where they are described by
cumulative distribution functions. In this way, the authors construct a new theoretical paradigm for
transformations on the discrete random variable. Finally, a numerical example is provided to show
the effectiveness of the new SD rules.
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1  Introduction 

In real world, many human activities in insurance and financial fields induce risk transformations. For 

example, we assume that an investor owns a house where X denotes the value of the house (a random 

variable). The investor can insure the house with various levels of deductions. By choosing two 

different deduction policies, the investor creates different transformations ( )m X  and ( )n X . Then an 

interesting question occurs: which deduction policy (transformation) dominates the other? In other 

words, how to find an effective approach for ranking these transformations so as to choose the 

beneficial one? 

Stochastic dominance (SD) is the most famous approach to compare pairs of prospects. Presented 

in the context of expected utility theory, SD approach has the advantage that it requires no restrictions 

on probability distributions. Well-known specifications of SD are first degree SD (FSD) and second 

degree SD (SSD), which attract by far the most attention in SD research. Due to the advantage 

mentioned above, SD approach has been proved to be a powerful tool for ranking random variables 

and employed in various areas of finance, decision analysis, economics and statistics (See e.g., Meyer, 

1989; Levy, 1992, 2006; Chiu 2005; Li 2009; Blavaskyy, 2010, 2011; Tzeng et al.,2013; Loomes et 

al., 2014; Tsetlin et al., 2015). Unfortunately, SD approach for ranking random variables is inefficient 

to rank transformations on random variables because it relies on the cumulative distribution functions 

(CDFs) of random variables, which are hard to calculate. In other words, SD approach cannot be used 

directly to rank transformations.  

To the best of the authors’ knowledge, there are only three papers studying SD rules for 

transformations on the continuous random variables under the conditions of increasing, continuous, 

and piecewise differentiable transformations (see, Meyer,1989; Brooks and Levy, 1989; Levy,1992). 

However, there is little research which focuses on ranking transformations on the discrete framework. 

It should be pointed out that the outcomes of transformations for continuous random variables cannot 

be extended directly to the discrete system. In real life, we notice that the discrete random variables 

are ubiquitous and even the continuous random variables should be discretely handled in many cases, 

so it is significant to find new SD criteria for ranking transformations on the discrete random variable. 

The paper aims to develop some new SD rules for ranking transformations on the discrete random 

variable, which is the first time to investigate the ranking approach for the discrete system. In order to 

construct such theoretical paradigm, we start from the FSD rule by applying the expected utility 

theory, and derive a sufficient condition (See Theorem 1). We further extend the sufficient condition 

into the sufficient and necessary condition by introducing the monotonicity of transformations, this 

FSD relation is determined only by the difference between the compared transformation functions 

(See Theorem 2). For the case of SSD, we first divide the monotonic transformation functions into 

increasing case and decreasing situation, respectively. For the increasing transformation functions, we 
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respectively develop a sufficient condition and a sufficient and necessary condition for SSD by means 

of the transformation functions and the probability distributions of the random variable (See Theorem 

3 and Theorem 4). For the decreasing transformation functions, we also respectively obtain a 

sufficient condition and a sufficient and necessary condition for SSD, while these dominant 

conditions are different from the increasing situations (See Theorem 5 and Theorem 6). In addition, 

for two different discrete random variables with the same possible states, we provide the sufficient 

and necessary conditions for FSD and SSD, respectively (See Theorem 7). 

Compared with the existing SD rules, the advantages of the new SD rules we derived are as follows: 

(1) the new SD rules can rank transformations on a discrete random variable, while the existing SD 

rules do not work; (2) the new SD rules make us avoid the tedious computation of CDFs, whereas this 

can not be done in the existing SD rules. In this sense, the new theoretical paradigm we derived can 

be regarded as a useful complement to the existing SD theory. Finally, a numerical example is 

provided to show the effectiveness of the new SD rules. 

The rest of this paper is organized as follows. Section 2 reviews the existing SD rules. Section 3 

and Section 4 present the SD rules of transformations by FSD and SSD, respectively. Section 5 makes 

a comparison between the new SD rules and the existing SD rules. Section 6 gives a numerical 

example to show the efficiency of the new SD method and Section 7 draws the conclusions.  

2  Preliminaries 

This section introduces the definition of stochastic dominance, and the SD rules for transformation on 

the continuous random variable. 

Let X andY be two random variables with support in the finite interval [ , ]a b , and their CDFs will 

be denoted by ( )F x and ( )G x , respectively. Define
( ) ( 1)( ) ( )

x
n n

a
F x F x dx  ( 2,3,n  )with 

(1) ( ) ( )F x F x , and define
( ) ( )nG x  similarly. Moreover, we denote

nU as the class containing all 

the functionsu with
1 ( )( 1) 0 ( 1,2, , )k ku k n   . 

Definition 1. (Levy, 1992) (i) X dominatesY by FSD if ( ) ( )F x G x  for any real number x ;  

(ii) X dominatesY by SSD if
(2) (2)( ) ( )F x G x for any real number x ; 

(iii) X dominatesY by n th degree SD ( 3n  ) if  

( ) ( )( ) ( )k kF b G b  for 1,2, ,k n ,        (1) 

and 

( ) ( )( ) ( )n nF x G x  for all a x b  .           (2) 

The SD rules and the relevant class of preferences
kU are related in the following way: 

X dominatesY by FSD if and only if [ ( )] [ ( )]E u X E u Y for any 
1u U . 
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X dominatesY by SSD if and only if [ ( )] [ ( )]E u X E u Y for any
2u U . 

X dominatesY by n th degree SD ( 3n  ) if and only if [ ( )] [ ( )]E u X E u Y for any
nu U  and 

( ) ( )( ) ( )k kF b G b for 1,2, ,k n . 

Integral conditions (1) and (2) mean that SD approach relies on CDFs of the random variables, and 

it is inefficient to rank transformations on the random variable. To overcome this shortcoming, Meyer 

(1989) proposes the following results. 

Lemma 1. (Meyer, 1989) Given a continuous random variable X with the density ( )f x and support 

in the interval [ , ]a b . If ( )m x and ( )n x are non-decreasing, continuous and piecewise differential 

functions, then 

(i) the transformed random variable ( )m X dominates ( )n X by FSD if and only if 

{ ( ) ( )} ( ) 0m x n x f x   for all x in [ , ]a b ,                                          (3) 

(ii) the transformed random variable ( )m X dominates ( )n X by SSD if and only if 

{ ( ) ( )} ( ) 0
x

a
m t n t f t dt   for all x in[ , ]a b .                                        (4) 

Lemma 1 provides the FSD and SSD rules, which are only valid for non-decreasing, continuous 

and piecewise differential functions, and these SD rules cannot be directly applied to ranking 

transformations on the discrete random variable. However, in the real world, the discrete random 

variables are ubiquitous and even the continuous random variables should be discretely handled in 

many cases, so it is significant to find SD criteria for ranking transformations on the discrete random 

variable. Considering that FSD and SSD have more practical implication than higher degree SD rules, 

this paper will focus on FSD and SSD rules in the remaining part of the paper.  

3  Dominance Conditions for FSD 

Let X be a discrete random variable whose prospects are characterized by
1 1{ , ; , , }n np x p x with 

1 2 nx x x   and support in the finite interval [ , ]a b . Assume that two transformed random 

variables ( )m X and ( )n X are denoted as
1 1{ , ( ); , , ( )}n np m x p m x and

1 1{ , ( ); , , ( )}n np n x p n x , or 

shortly as
1 1{ , ; , , }n np m p m and

1 1{ , ; , , }n np n p n , respectively. Then, an interesting question 

arises: given by a discrete random variable X and two transformed random variables ( )m X and 

( )n X , under what conditions will one transformation dominate the other for a given order?  

Since Lemma 1 is only suitable for transformations on the continuous random variable, and it is 

invalid for the discrete random variable case, we need to develop new SD rules for transformations on 

the discrete random variable. 

We will first discuss the FSD conditions for ranking ( )m X and ( )n X by expected utility theory. 
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That is, when is [ ( ( )]E u m X larger than or equal to [ ( ( )]E u n X for all increasing utility functions?  

Theorem 1. The transformed random variable ( )m X dominates ( )n X by FSD if  

i im n for all 1,2, ,i n .               (5) 

Proof. For any utility function
1( )u x U , we have 

[ ( ( )] [ ( ( )]E u m X E u n X
1

[ ( ) ( )]
n

i i i

i

u m u n p


 
1

( )( ) 0
n

i i i i

i

u m n p


   . 

In order to better understand the meaning of Theorem 1, Fig. 1 shows its graphical illustration. 

Different from the existing SD rules, the areas
1,S 2 ,S  , nS in Fig. 1 are derived by the difference 

between ( )m x and ( )n x at
ix ( 1,2, ,i n ) multiplying the corresponding probability of

ix , rather 

than the CDFs. Here we let ( ) ( ) ( )d x m x n x  , then
i i id m n  denotes the difference of ( )m x  

and ( )n x at
ix ( 1,2, ,i n ). Furthermore, we take n points

1 2, , , nA A A at the horizontal axis, such 

that
1 1,OA p  

1 2 2 ,A A p  ,  
1n n nA A p  . We stipulate that a geometric area takes a positive 

value when it lies above the horizontal axis and takes a negative value when it lies below the 

horizontal axis, and then we can use the notation
iS to represent the algebra value of a rectangular area 

whose base and height are denoted as
ip and

id , respectively ( 1,2, ,i n ). From Fig.1 we notice 

that i im n is equivalent to 0iS  ( 1,2, ,i n ). Therefore, we can conclude that ( )m X dominates 

( )n X by FSD if all the n areas 
1 2, , , nS S S are all non-negative. 

 

 

 

 

 

 

 

 

 

        Figure 1: The graphical illustration about Theorem 1. 

Theorem 1 presents a sufficient condition for determining FSD relations which only involves the 

transformation function. Apparently, it is much easier to compare the transformation functions than to 

compare the CDFs of transformed random variables.  

However, we see that condition (5) is only a sufficient condition for ( )m X dominating ( )n X by FSD, 
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necessary? The following example shows that the answer is negative and the rest of this section is 

devoted to finding the necessary and sufficient condition. 

Example 1. Suppose that a random variable X yields the outcomes 1, 0 and 1 with equal 

probabilities
1

3
. If

2( ) 1m x x  ,
2( ) 1n x x  and ( ) 1p x x  , then their probability distributions 

are shown as follows (See, Table 1). 

Table 1: Probability distributions of , ( ), ( )X m X n X and ( )p X . 

X  -1 0 1 

( )m X  

( )n X  

( )p X  

Pr( )x  

0 

0 

2 

1
3  

1 

-1 

1 

1
3  

0 

0 

0 

1
3  

 (a) Table 1 reports that the transformed random variable ( )m X takes 0 with probability
2

3
and1 

with probability
1

3
. Then, from Theorem 1, we see that ( )m X dominates X by FSD. However, it 

follows from Table 1 that
3 3( ) 0 1m x x   . This fact shows that condition (5) is not necessary 

when the dominating transformation ( )m x is non-monotonic. 

(b) From Table 1 we see that the transformed random variable ( )n X takes 1 with probability
1

3
 

and 0 with probability
2

3
. Hence, by comparing CDFs of X and ( )n X , from Theorem 1 we can 

deduce that X dominates ( )n X by FSD. On the other hand, Table 1 shows that
1 11 0 ( )x n x    , 

which means that condition (5) is not necessary when the dominated transformation ( )n x is non- 

monotonic. 

(c) We notice that from Table 1 the transformed random variable ( )p X takes values 0,1and 2 with 

equal probability
1

3
. Then, the relative position of CDFs of X and ( )p X indicates that ( )p X  

dominates X by FSD, whereas we have 3 3( ) 0 1p x x   , which indicates that condition (5) is still 

not necessary when one transformation is increasing and the other is decreasing. 

Based on the above analysis, we conclude that condition (5) is not necessary if ( )m x and ( )n x are 

not comonotonic. The following theorem shows that condition (5) will be sufficient and necessary 

when the transformation functions are comonotonic. 
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Theorem 2. Suppose that the transformation functions ( )m x and ( )n x are comonotonic, we derive 

that the random variable ( )m X dominates ( )n X by FSD if and only if i im n for all 1,2, ,i n . 

Proof. The sufficiency is obvious from Theorem 1. We then only need to prove the necessity, and 

this process is divided into the following three steps. 

Step 1. Suppose that ( )m x and ( )n x are both increasing, we will use the reduction to absurdity to 

prove this conclusion. 

If there exists a number j such that1 j n   and 
j jm n , then we can define the utility function 

with the following form: 

,

( ) ,

,

j j

j j

j j

m x m

u x x m x n

n x n

 


  




.                       (6) 

From the function (6), it is easy to see that
1( )u x U , ( )j ju m m , ( )j ju n n and 

(a) if i j , then ( )i ju m m and ( ) ( )i iu m u n since jm is the minimum of ( )u x ; 

(b) if i j , then from the monotonous property of ( )u x and ( )n x , we get ( )i ju n n and 

( ) ( )i iu m u n since jn is the maximum of ( )u x . 

Therefore, from the analyses of (a) and (b), we can conclude that ( ) ( )i iu m u n for all1 i n  and 

i j . Combining it with the assumption j jm n , we have that 

[ ( ( )] [ ( ( )]E u m X E u n X
1

[ ( ) ( )]
n

i i i

i

u m u n p


   

1

1 1

[ ( ) ( )] [ ( ) ( )] [ ( ) ( )]
j n

i i i j j j i i i

i i j

u m u n p u m u n p u m u n p


  

        

[ ( ) ( )] ( ) 0j j j j j ju m u n p m n p     ,     (7) 

which is a contradiction with the assumption of ( )m X dominating ( )n X by FSD. 

Step 2. We will prove that for any two random variables X andY with the corresponding CDFs 

( )XF x and ( )YF x , Y dominates X by FSD if and only if X dominatesY by FSD. 

X  dominates Y  by FSD 

, ( ) ( )X Yx R F x F x   , ( ) ( )x R P X x P Y x      

, ( ) ( )x R P X x P Y x     , ( ) ( )x R P X x P Y x        
 

,1 ( ) 1 ( )x R P X x P Y x           , ( ) ( )x R P Y x P X x        
 

, ( ) ( )Y Xx R F x F x      , ( ) ( )Y Xx R F x F x   
 

Y dominates X by FSD. 
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Step 3. When the transformations ( )m x and ( )n x are both decreasing, it is obvious that ( )m x and 

( )n x are both increasing. Then from Step 1 and Step 2, we derive that 

( )m X dominates ( )n X by FSD 

 ( )n X dominates ( )m X by FSD 

 ( ) ( )i in x m x   for all 1,2, ,i n  

 ( ) ( )i im x n x for all 1,2, ,i n . 

Fig.1 can also illustrate the graphical presentation of Theorem 2, that is, ( )m X dominating ( )n X by 

FSD is equivalent to the situation that the n areas
1 2, , , nS S S are non-negative. 

Remark 1. Theorem 2 provides a sufficient and necessary condition by introducing the monotonic 

condition of transformations, which only depends on the transformation functions, and in this way it 

presents a simple way for determining FSD relations between two comonotonic transformations. This 

situation is different from the case of the existing SD rules for FSD in which we need to take a 

tedious calculation to get the CDFs of the transformed random variables. Therefore, Theorem 2 plays 

an active part in dealing with realistic problems via the new SD rules we derived. The assumption of 

monotonous condition is appropriate because it seems to be a common feature of transformations in 

the fields of insurance and decision analysis (see Meyer 1989).  

4  Dominance Conditions for SSD 

In this section, we try to find some dominant rules for SSD. It is well known that SSD condition in 

the existing SD approach is more complicated than the case of FSD. In order to find SSD rules for 

ranking transformed discrete random variables, we will divide the monotonic transformation 

functions into increasing and decreasing ones, respectively. 

Theorem 3. If ( )m x is increasing and 

1

( ) 0
k

i i i

i

m n p


   for all 1,2, ,k n ,   (8) 

then the transformed random variable ( )m X dominates ( )n X by SSD. 

Proof. If ( ) ( )i im x n x holds for all 1,2, ,i n , then by Theorem 1, we can derive that ( )m X  

dominates ( )n X by FSD. Hence, ( )m X dominates ( )n X by SSD via the hierarchical property of SD rules. 

Otherwise, let
1 2{ |1 , } { , , , }i i ri i n and m n j j j      denote the set of all the subscripts which 

violate the condition (1), where
1 21 rj j j n     . 

  According to the condition (8), we have that
1

1

( ) 0
j

i i i

i

m n p


  and
1

1 1 1

1

1

( ) ( )
j

i i i j j j

i

m n p n m p




   . 

Then, there exist
rj numbers 11 21 1, , ,

rj
p p p , such that  
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1 10 (1 )i ip p i j    ,
1 10( )i rp j i j   ,        (9) 

and 

1

1 1 1

1

1

1

( ) ( )
j

i i i j j j

i

m n p n m p




    .           (10) 

 Similarly, from
2

1

( ) 0
j

i i i

i

m n p


  , we get that 

1 2

1 1 1 2 2 2

1

1 1

1 1

( ) ( ) ( ) ( )
j j

i i i j j j i i i j j j

i i j

m n p m n p m n p n m p
 

  

        .   (11) 

Substituting Eqs. (9) and (10) into (11), we obtain that 

1 2

2 2 2

1

1 1

1 1

1 1

( )( ) ( )( ) ( )
j j

i i i i i i i i j j j

i i j

m n p p m n p p n m p
 

  

        . 

Therefore, there exist
rj numbers 12 22 2, , ,

rj
p p p  such that  

2 1 20 (1 )i i ip p p i j     , 
1 2 0jp  , 

2 20 ( )i rp j i j   ,                      (12) 

and 

2

2 2 2

1

2

1

( ) ( )
j

i i i j j j

i

m n p n m p




    .    (13) 

  Repeating this process for r times, we can conclude that there exist
rj numbers 1 2, , ,

rr r j rp p p  

such that 

( 1)0 (1 )ir i i r rp p p i j     ,
1

0
r rj r j rp p

  ,   (14) 

and 

1

1

( ) ( )
r

r r r

j

i i ir j j j

i

m n p n m p




   .       (15) 

  For any utility function
2( )u x U , by using the differential mean value theorem, we have that 

[ ( ( )] [ ( ( )]E u m X E u n X  

1

[ ( ) ( )]
n

i i i

i

u m u n p


 
1

( )( )
n

i i i i

i

u m n p


   

1 1

( )( ) ( )( )
r

r

j n

i i i i i i i i

i i j

u m n p u m n p 
  

      ,   (16) 

where
i is among

im and
in for all1 i n  . 

  Obviously, ( ) 0iu   and ( ) 0i i im n p  for all 1rj i n   . Then, we have 

 



 

 10 

[ ( ( )] [ ( ( )]E u m X E u n X
1

( )( )
rj

i i i i

i

u m n p


   

1

1

( )( ) ( )( )
r

r r r r

j

i i i i j j j j

i

u m n p u m n p 




      

1 1

1 1

( )( ) ( ) ( )
r r

r

j j

i i i i j i i ir

i i

u m n p u m n p 
 

 

      .           (17) 

For any1 1ri j   , it follows from the increasing property of ( )m x and ( )n x that
1ri jm m   

and
1ri jn n  . Hence, we can derive that 1 1 1max{ , }

r r r ri j j j jm n m m      . Due to the decreasing 

property of ( )u x and
r rj jm  , we can conclude that 

[ ( ( )] [ ( ( )]E u m X E u n X

1

1

[ ( ) ( )] ( )( ) 0
r

r r

j

j j i i i ir

i

u m u m n p p




      .              (18) 

Fig. 2 makes a graphical explanation about Theorem 3. We investigate these n rectangular areas 

from left to right in Fig.2 and find that if the sum of the first k ( 1,2, ,k n ) rectangular areas are 

all non-negative, then we can conclude that ( )m X dominates ( )n X by SSD. In other words, the 

condition of
1

( ) 0
k

i i i

i

m n p


  is equivalent to the case of
1

0
k

i

i

S


 ( 1,2, ,i n , 1,2, ,k n ). 

 

 

 

 

 

 

 

  

             Figure 2: The graphical illustration about Theorem 3. 

Remark 2. Theorem 3 presents a sufficient condition for one transformation dominating the other 

by SSD via the transformation functions and the probability distributions of the random variable, 

which makes us avoid the tedious computation of CDFs, whereas this can not be done in the existing 

SD theory.  

Similar to Theorem 1, the condition (8) in Theorem 3 only indicates the sufficient condition rather 

than the necessary and sufficient condition. What we focus on is the sufficient and necessary 

condition, then, is the condition (8) necessary? The following example will answer this question. 

Example 2. We assume that a random variable X yields the outcomes 1, 0 and1with equal 

O A1 A2 A3 An-1 An p 

d1 

d2 

d3 

dn 
S1 

S2 

S3 

Sn 
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probability
1

3
, and that

2( ) 1n x x  and ( ) 2q x x  . Their probability distributions are listed in 

Table 2.  

Table 2. Probability distributions of , ( )X n X and ( )q X . 

X  -1 0 1 

( )n X  

( )q X  

Pr( )x  

0 

2 

1
3  

-1 

0 

1
3  

0 

-2 

1
3  

By analyzing the data in Table 2, we can make the following statements. 

(a) We find that X dominates ( )n X by SSD via the hierarchical property of the SD rules. However, 

1 1 1

1
[ ( )] 0

3
x n x p    , which implies that condition (8) is not necessary if the dominating 

transformation is increasing and the dominated transformation is non-monotonic. 

(b) We derive that X dominates ( )q X by SSD, while
1 1 1[ ( )] 1 0x q x p    , meaning that the 

condition (8) is not necessary if the dominating transformation is increasing and the dominated 

transformation is decreasing. 

  (c) We have that
1

[ ( ) ] 0( 1,2,3)
k

i i i

i

q x x p k


   . However, step (b) tells us that X dominates 

( )q X by SSD, rather than ( )q X dominates X . This implies that the condition (8) could not be 

sufficient if the dominating transformation is not increasing. 

  Based on the above statements (a)-(c), we conclude that if either of the two transformations is not 

increasing, the condition (8) will not be sufficient and necessary. This situation indicates that we 

should concentrate on the case of two increasing transformations. 

Theorem 4. Suppose that ( )m x  and ( )n x are both increasing. Then, ( )m X dominates ( )n X by SSD 

if and only if
1

( ) 0
k

i i i

i

m n p


  for all 1,2, ,k n . 

Proof. The sufficiency of this theorem can be immediately obtained from Theorem 3. We then only 

need to prove the necessity. 

Suppose that the condition of
1

( ) 0
k

i i i

i

m n p


  (for all 1,2, ,k n )is invalid, we then let S  

denote the set of all subscripts violating this condition, i.e.,
1

{ | ( ) 0,1 }
k

i i i

i

S k m n p k n


     . 
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Let r be the minimum of S , we then have
r rm n . Define

,
( )

,

r

r r

x x n
u x

n x n


 


, we find that

2( )u x U . 

According to the definition of ( )u x and the monotonicity of ( )m x , ( )n x and ( )u x , we conclude that 

(a) if1 i r  , we get ( )i iu m m , ( )i iu n n ; 

(b) if r i n  , we have ( ) ( )i iu m u n  because ( )i ru n n and
rn is the maximum of ( )u x . 

So, 

[ ( ( )] [ ( ( )]E u m X E u n X
1

[ ( ) ( )]
n

i i i

i

u m u n p


   

1 1

[ ( ) ( )] [ ( ) ( )]
r n

i i i i i i

i i r

u m u n p u m u n p
  

      

1

( ) 0
r

i i i

i

m n p


   ,    (19) 

which is a contradiction with ( )m X dominating ( )n X by SSD. 

Theorem 4 can also be illustrated by Fig.2. Recall that in Fig. 2 the SSD conditions depend on 

the n rectangular areas, we investigate these rectangular areas from left to right and find that if the 

cumulative sum of the first ( 1,2, , )k k n rectangular areas is non-negative, then ( )m X  

dominates ( )n X by SSD; If the cumulative sum of the first ( 1,2, , )k k n  rectangular areas is 

non-positive, then ( )n X dominates ( )m X by SSD; Otherwise, there is no SSD relation between 

( )m X and ( )n X .    

Compared with Theorem 2, Theorem 4 reduces the requirement of the n rectangular areas. That is, 

any of the n rectangular areas except for the first one may take negative value, but the cumulative sum 

of the first ( 1,2, , )k k n rectangular areas (from left to right) must be non-negative. It also means 

that if ( )m X dominates ( )n X by FSD, then ( )m X dominates ( )n X by SSD, which is in accordance with 

the hierarchical property of SD rules.  

Remark 3. Theorem 4 shows that we can determine the SSD relations between two transformed 

random variables by the transformation functions and the probability function of the original random 

variable, rather than CDFs of the transformed random variables. To be more precise, the signs of the 

tail conditional expectations [ ( ) ( ) | ]( 1,2, , )kE m X n X X x k n   determine the SSD relations 

between the two transformed random variables. Compared with the existing SSD rule, CDFs of 

random variables are absent in Theorem 4, which make us avoid the tedious computation of CDFs. 

As a result, Theorem 4 provides us a simple way to determine the SSD relations only by means of the 

transformation functions and the probability function of the random variable. 

Recall that when ( )m x and ( )n x are comonotonic, there exists a unified necessary and sufficient 



 

 13 

condition for FSD case (see Theorem 2). However, this statement is not valid for SSD. That is, we 

need to seek a necessary and sufficient condition for SSD if ( )m x and ( )n x are both decreasing. 

We first provide a sufficient condition as follows. 

Theorem 5. If ( )m x is decreasing and 

( ) 0
n

i i i

i k

m n p


   for all 1,2, ,k n ,  (20) 

then the transformed random variable ( )m X dominates ( )n X by SSD. 

Proof. If ( ) ( )i im x n x holds for all 1,2, ,i n , then by Theorem 1, we derive that ( )m X  

dominates ( )n X by FSD. We further conclude that ( )m X dominates ( )n X by SSD via the hierarchical 

property of SD rules. Otherwise, let
1 2{ |1 , } { , , , }i i ri i n and m n l l l      denote the set of 

all the subscripts which violate condition (20), where
2 11 rl l l n     . 

  According to condition (20), we have

1

( ) 0
n

i i i

i l

m n p


  and
1 1 1

1 1

( ) ( )
n

i i i l l l

i l

m n p n m p
 

   . Then 

there exist 
rn l numbers 11 ( )1, ,

rn lp p  , such that
1 10 ( )i ip p l i n    ,

1 10( )i rp l i l    and  

1 1 1

1

1

1

( ) ( )
n

i i i l l l

i l

m n p n m p
 

   .     (21) 

  Similarly, we can derive

2

( ) 0
n

i i i

i l

m n p


  , and then 

1

1 1 1 2 2 2

2 1

1

1 1

( ) ( ) ( ) ( )
l n

i i i l l l i i i l l l

i l i l

m n p m n p m n p n m p


   

        , 

or  

1

2 2 2

2 1

1

1 1

1 1

( )( ) ( )( ) ( )
l n

i i i i i i i i l l l

i l i l

m n p p m n p p n m p


   

        . 

Hence, there exist
rn l numbers 12 22 ( )2, , ,

rn lp p p  , such that
2 1 20 ( )i i ip p p l i n     , 

1 2 0lp  , 2 20( )i rp l i l   and  

2 2 2

2

2

1

( ) ( )
n

i i i j j j

i l

m n p n m p
 

   .       (22) 

  After repeating this process for r times, we can draw the conclusion that there exist
rn l numbers 

1 2 ( ), , ,
rr r n l rp p p  such that ( 1)0 ( )ir i i r rp p p l i n     ,

1
0

rl rp

 and 

1

( ) ( )
r r r

r

n

i i ir l l l

i l

m n p n m p
 

   .  (23) 
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  For any utility function
2( )u x U , by using the differential mean value theorem, we have that 

[ ( ( )] [ ( ( )]E u m X E u n X
1

[ ( ) ( )]
n

i i i

i

u m u n p


   

1

( )( )
n

i i i i

i

u m n p


  (
i is among

im and
in ) 

1

1

( )( ) ( )( )
r

r

l n

i i i i i i i i

i i l

u m n p u m n p 


 

      .  (24) 

It is obvious that ( ) 0iu   and ( ) 0i i im n p  for all 1 1ri l   . Then 

[ ( ( )] [ ( ( )]E u m X E u n X ( )( )
r

n

i i i i

i l

u m n p


   

1

( )( ) ( )( )
r r r r

r

n

i i i i l l l l

i l

u m n p u m n p 
 

      

1 1

( )( ) ( )( )
r

r r

n n

i i i i l i i ir

i l i l

u m n p u m n p 
   

                                        (25) 

  Since ( )u x is decreasing, 1 1 1max{ , }
r r r ri l l l lm n m m      for any 1rl i n   and

r rl lm  , 

we get that 

[ ( ( )] [ ( ( )]E u m X E u n X
1

[ ( ) ( )] ( )( ) 0
r r

r

n

l l i i i ir

i l

u m u m n p p
 

      .      (26) 

  In order to better understand the meaning of Theorem 5, Fig.3 shows the graphical illustration 

about Theorem 5. We investigate these n rectangular areas from right to left (just the opposite 

directions as what we do with Fig. 2.), and obtain that if the cumulative sum of the first 

( 1,2, , )k k n  rectangular areas is non-negative, then ( )m X dominates ( )n X by SSD. In other 

words, the condition of ( ) 0
n

i i i

i k

m n p


  can be expressed by S 0
n

i

i k

  ( 1,2, ,k n ). 

 

 

 

 

 

 

 

 

 

  

Figure 3: The graphical illustration about Theorem 5. 

p O 
S1 

S2 

d1 

d2 

A1 A2 An-2 An-1 An 

dn 

dn-1 

Sn 

Sn-1 



 

 15 

Remark 4. Compared with Theorem 3, a new condition (20) in Theorem 5 is introduced to 

substitute condition (8) in Theorem 3. This new formulation is suitable for discussing the SSD 

relations of the decreasing transformations.  

  Theorem 6. Suppose that ( )m x and ( )n x are both decreasing. Then, ( )m X dominates ( )n X by SSD if 

and only if ( ) 0
n

i i i

i k

m n p


  for all 1,2, ,k n . 

Proof. The sufficiency of this theorem can be immediately obtained from Theorem 5. We then only 

need to prove the necessity. 

Suppose that the condition of ( ) 0
n

i i i

i k

m n p


   (for 1,2, ,k n )is invalid, we then letT  

denote the set of all subscripts violating this condition, i.e., { | ( ) 0,1 }
n

i i i

i k

T k m n p k n


     . In 

addition, we denote l as the maximum of T . Let
,

( )
,

l

l l

x x n
u x

n x n


 


, we then have

2( )u x U . 

According to the definition of ( )u x and the monotonicity of ( ), ( )m x n x and ( )u x , we conclude that 

(a) if1 i l  , we get ( )i lu n n and ( ) ( )i iu m u n since
ln is the maximum of ( )u x ; 

(b) if l i n  , we have ( )i iu m m , ( )i iu n n . 

So, 

[ ( ( )] [ ( ( )]E u m X E u n X
1

[ ( ) ( )]
n

i i i

i

u m u n p


   

1

1

[ ( ) ( )] [ ( ) ( )]
l n

i i i i i i

i i l

u m u n p u m u n p


 

      

( ) 0
n

i i i

i l

m n p


   ,     (27) 

which is a contradiction with the assumption that ( )m X dominates ( )n X by SSD. 

The graphical illustration about Theorem 6 can also be expressed by Fig.3. We investigate these 

n rectangular areas in Fig. 3 from right to left. If the cumulative sum of the first ( 1,2, , )k k n  

rectangular areas is non-negative (resp. non-positive), then ( )m X dominates ( )n X (resp. ( )n X  

dominates ( )m X ) by SSD. Otherwise, there is no SSD relation between ( )m X and ( )n X . 

In addition, from Fig.1, Fig.2 and Fig.3, we find that Theorem 6 and Theorem 4 both reduce the 

condition requirement of Theorem 2 in which all the n rectangular areas are non-negative, that is, 

Theorem 6 and Theorem 4 argue that these n rectangular areas can take negative values, but the 

precondition is that the cumulative sum of the first ( 1,2, , )k k n rectangular areas should be 
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non-negative. The difference between Theorem 6 and Theorem 4 is that Theorem 6 sums up the 

rectangular areas from right to left, while Theorem 4 does it from left to right. Undoubtedly, Theorem 

6 and Theorem 4 are homogeneous in essence except that the former deals with increasing 

transformations while the latter copes with decreasing ones. 

5  Comparison of the new SD Rules and the existing SD Rules 

Notice that the existing SD rules only rank transformations of the continuously distributed random 

variables with the piecewise differentiable transformations, while the new SD rules we developed can 

rank transformations of the discrete random variable. Therefore, the new SD rules we developed can 

be regarded as an extension to the existing SD rules. In particular, the new SD rules are used to rank 

the transformed random variables, while the existing SD rules are applied to compare the risk of any 

two random variables, and the existing SD rules is ineffective when dealing with transformations on 

the same random variable. In this sense, the new SD rules developed in Section 3 and Section 4 

remedy the weakness of the existing SD approach.  

With regard to the expression form, the major difference is that the existing SD approach is 

presented in the framework of CDFs while the new SD rules are expressed by transformation 

functions and the probability function of the original random variable, so it avoids the tedious 

computation of CDFs and their integral.  

To better understand these two types SD rules, Table 3 shows their main differences from three 

aspects: application scope, expression approach and the specific criteria.  

Table 3. Comparison of the new SD rules and the existing SD rules. 

 The new SD rules  The existing SD rules 

Application  

scope  

two transformed random variables 

( )m X and ( )n X  

two ordinary random 

variables X andY  

Expression 

approach 

transformation functions ( )m x , ( )n x and 

probability function ( )p x of X  

difference of CDFs of 

X andY  

FSD rule 
( ) ( )i im x n x for all 1,2, ,i n  

( ( )m x and ( )n x are comonotonic) 

( ) ( )F x G x for all real 

numbers x  

SSD rule 

(1)
1

( ) 0
k

i i i

i

m n p


  for all 1,2, ,k n  

( ( )m x and ( )n x are both increasing) 

(2) ( ) 0
n

i i i

i k

m n p


  for all 1,2, ,k n  

( ( )m x and ( )n x are both decreasing) 

(2) (2)( ) ( )F x G x for all 

real numbers x  
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  Remark 5. It should be pointed out that as a partial order relation, the existing SD can not rank all 

the random variables. However, as a screening device, the existing SD rules can divide the whole 

decision making set into an efficient set and an inefficient one, and then the decision maker can make 

decision under the efficient set (See, e.g., Li 2009; Blavaskyy, 2010, 2011; Tzeng et al.,2013; Loomes 

et al., 2014; Tsetlin et al., 2015). Such statements are also suitable to our new SD rules. 

We further study the intrinsic links between the two types SD rules in the following. Note that the 

two transformations ( )m X and ( )n X on a random variable can also be regarded as two special random 

variables, then there should exist the corresponding random variables X andY generating similar SD 

rules as ( )m X and ( )n X behave. Given two comonotonic transformation functions ( )m X and ( )n X , if 

we apply these functions to a discrete random variable, we get the same pair of random variable 

1 1{ , ; , , }n nX p x p x with
1 2 nx x x   and

1 1{ , ; , , }n nY p y p y with
1 2 ny y y   . On 

the contrary, if the above two discrete random variables have the same possible states, then they can 

be regarded as two increasing transformation functions applied to a discrete random variable. 

Following Theorem 2 and Theorem 4, we have the following conclusion: 

Theorem 7. If the two discrete random variables
1 1{ , ; , , }n nX p x p x with

1 2 nx x x   and 

1 1{ , ; , , }n nY p y p y with
1 2 ny y y   have the same possible future states, then we have: 

(1) X dominatesY by FSD if and only if i ix y for all 1,2, ,i n ; 

(2) X dominatesY by SSD if and only if
1

( ) 0
k

i i i

i

x y p


  for all 1,2, ,k n . 

Theorem 7 shows that the new SD rules can rank not only the transformations on a discrete random 

variable, but also different random variables with the same possible future states.  

6  Numerical Example  

This section provides a numerical example to illustrate how to determine the SD relations for 

transformations by using the new SD rules and further determine the efficient set of decision 

making set. 

  With the accelerating trend of population aging, the pension fund gap of China is becoming 

increasingly wide. For example, the World Bank stated that the size of China's 2001 to 2075 pension 

fund gap is 9.15 trillion Yuan (Wang et al. 2014). To effectively control the pension fund gap, one of 

the important approaches is to increase the investment return of the pension fund. However, in real 

world, the government pension sector of China can not directly invest the pension fund, but authorize 

several institutional investors to invest. Then, there is a principal-agent relationship between the 

government pension sector of China and each institutional investor. For a given return rate on 
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investment, different institutional investors may provide different revenue-sharing proposals except 

for the common commission for the agency. Notice that as a screening device, the new SD rules can 

divide the whole decision set into an efficient and inefficient sets. Then, how to determine the 

efficient set of these revenue-sharing proposals is an interesting question.  

Owing to the uncertainty of the stock market, there is an enormous risk for investing money in the 

stock market. Let X denote the rate of return on investing money in stock market and its probability 

distribution is shown as in Table 4. Assume that there are four institutional investors who can provide 

revenue-sharing proposals denoted by X , ( )m X , ( )n X and ( )r X , respectively. Table 5 shows the 

probability distributions of the four different revenue-sharing proposals. 

Table 4.The probability distribution of the rate of return on investment X . 

X  -50% -10% 5% 20% 50% 

Pr( )x  1
8  

1
4  

1
4  

1
4  

1
8  

  We assume that revenue-sharing proposals ( )m X , ( )n X and ( )r X are as follows: 

2
, 0

5
( )

4
, 0

5

x x

m x

x x




 
 


,   

4
, 0

( ) 5

, 0

x x
n x

x x




 
 

 ,  and 
3

( ) 5%
5

r x x  . 

  Here, ( )m X denotes that the institutional investor A will allocate four fifths of investment return 

rate to the government pension sector of China if the return rate is positive, and he will allocate two 

fifths of the the return rate to the government pension sector if the return rate is negative. 

While ( )n X represents the institutional investor B will distribute the total return rate to the 

government pension sector if the return rate is positive (meaning he only takes the commission in this 

situation), otherwise, he will distribute four fifths to the government pension sector if the return rate is 

negative. The meaning of ( )r X is that institutional investor C will allocate three fifths of the return 

rate plus five percent (regarded as risk-free interest rate) to the government pension sector. In addition, 

the implication of the revenue-sharing proposal X is that the institutional investor D will assign the 

total return rate to the government pension sector and he only takes the commission. 

       Table 5. Probability distributions of revenue-sharing proposals , ( ), ( )X m X n X , ( )r X . 

X  -50% -10% 5% 20% 50% 

( )m X  -20% -4% 4% 16% 40% 

( )n X  -40% -8% 5% 20% 50% 

( )r X  -25% -1% 8% 17% 35% 

Pr( )x  1
8  

1
4  

1
4  

1
4  

1
8  
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  To find the efficient set and the inefficient set, we need to perform pairwise comparisons. Note that 

the four revenue-sharing proposal functions are all increasing, so we can determine the FSD and SSD 

relations between them by Theorem 2 and Theorem 4, respectively. The following analyses (a1) to 

(a3) are to determine the FSD relations and (b1) to (b2) are to determine the SSD relations.  

(a1) The revenue-sharing proposal X does not dominate any other revenue-sharing proposals by 

FSD because
1 50%x   is far less than the values of

1 1,m n and
1r ; The proposal ( )m X does not 

dominate X by FSD because
4 4m x ; The proposal ( )n X dominates X by FSD because

i in x holds 

for 1,2, ,5i  . Therefore, X should be ruled out from the efficient set of the revenue-sharing 

proposals, and only ( ), ( )m X n X and ( )r X are kept in the efficient set. 

(a2) There is no FSD relation between ( )m X and ( )n X because
1 1m n while

5 5m n . Similarly, 

there is no FSD relation between ( )m X and ( )r X for
1 1m r while

3 3m r . So, no revenue-sharing 

proposals in this step will be deleted from the efficient set. 

(a3) There is no FSD relation between ( )n X and ( )r X because
1 1n r but

5 5n r . Therefore, in this 

step, there will be no revenue-sharing proposals removed from the efficient set. 

(b1) In this step, we will determine the SSD relations between ( )m X and ( )n X .  

Since
1 1 1( ) 0.025m n p  ,

2 2 2( ) 0.01m n p  ,
3 3 3( ) 0.0025m n p   ,

4 4 4( ) 0.01m n p    

and
5 5 5( ) 0.0125m n p   ,it is easy to verify that

1

( ) 0
k

i i i

i

m n p


   for all 1,2, ,5k  . 

Therefore, according to Theorem 4, we can conclude that ( )m X dominates ( )n X by SSD. That is, 

( )n X should be ruled out from the efficient set, and only ( )m X and ( )r X are kept in the efficient set. 

(b2) In this step, we will determine the SSD relations between ( )m X and ( )r X .  

  On the one hand, from Table 5 we obtain that
1 1 1( ) 0.00625m r p  , 

2 2 2( ) 0.0075m r p    

and
1 1 1 2 2 2( ) ( ) 0.00125 0m r p m r p      , so ( )m X does not dominate ( )r X by SSD. On the 

other hand,
1 1r m implies that ( )r X does not dominate ( )m X by SSD. 

Therefore, according to Theorem 2 and Theorem 4, we can determine the FSD relations and SSD 

relations among the four revenue-sharing proposals. The above computational procedure shows that 

( )n X dominates X by FSD, and ( )m X dominates ( )n X by SSD, so X and ( )n X are ruled out from 

the efficient set. That is, ( )m X and ( )r X are kept in the efficient set, and X and ( )n X are included in 

the inefficient set. 

7  Conclusion 

Very often insurance activities induce transformations of an initial risk, which results in a new 
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problem of how to rank transformations on the same random variable. This paper developed the new 

FSD and SSD rules for ranking transformations on a discrete random variable, which is the first time 

to consider the ranking approach for transformations on the discrete system. We start from the FSD 

rule by applying the expected utility theory, and derive the sufficient condition by FSD, and further 

extend the sufficient condition into the sufficient and necessary condition by introducing the 

monotonicity of transformations. For the case of SSD, we first divide the transformations into 

increasing and decreasing ones, and then respectively derive the necessary and sufficient conditions 

for the increasing and decreasing situations. For two different discrete random variables with the 

same possible states, we present the sufficient and necessary conditions for FSD and SSD, 

respectively. 

The feature of our new SD rules lies in that each FSD condition is represented by the 

transformation functions and each SSD condition is characterized by the transformation functions and 

the probability distributions of the original random variable. This feature is different from the existing 

SD rules where FSD and SSD are described by CDFs. We notice that the SD rules proposed by 

Meyer (1989) are only suitable for the continuous random variables under the conditions with the 

piecewise differentiable transformations. Therefore, the existing SD rules can not be applied directly 

to the discrete system, in addition, it is very difficult for the existing SD rules to get the CDFs of the 

transformed random variables. However, the new SD rules we derived just overcame the above 

limitations. In this sense, the new theoretical paradigm we derived can be regarded as a useful 

complement for the existing SD approach.  

  The new SD rules we derived only study transformations on the same random variable. In the 

future study, it is significant to extend the ranking transformations on different random variables, and 

it would be interesting to consider higher-degree SD rules for transformations. 
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