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Abstract: Due to regional competition and patient migration, the efficiency of health care 

provision at the regional level is subject to spatial dependence. We address this issue by 

applying a spatial autoregressive model to longitudinal data from Germany at the district 

(‘Kreis’) level. The empirical model is specified to explain efficiency scores, which we derive 

through non-parametric order-m efficiency analysis of regional health production. The focus 

is on the role of health policy of federal states (‘Bundesländer’) for district efficiency. 

Regression results reveal significant spatial spillover effects. Notably, accounting for spatial 

dependence does not decrease but increases the estimated effect of federal states on 

district efficiency. It appears that genuinely more efficient states are less affected by positive 

efficiency spillovers, so that taking into account spatial dependence clarifies the importance 

of health policy at the state level. 
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1  Introduction 

The efficiency of health care provision has become a major topic in health policy and applied 

economics. In a recent survey Hollingsworth (2008) lists as many as 317 pertinent articles 

published before mid-2006. These papers mostly analyze efficiency differentials at the level 

of individual health care providers, foremost hospitals (e.g. Sloan, 2000; Street, 2003; Chen 

et. al., 2005; Harrison et al., 2004; Staat, 2006; Herr, 2008; Pilyavsky & Staat, 2008; Herr et 

al., 2011), but also nursing homes (e.g. Anderson et al., 1999; Crivelli et al., 2002 Björkgreen 

et al., 2004;), general practitioners and primary care facilities (e.g. Staat, 2003; Puig-Junoy & 

Ortun, 2004; Collier, 2006).
1
 Poor coordination e.g. between out- and in-patient care rather 

than the inefficiency of individual providers, however, might in fact present a major source 

of technical and economic inefficiency. This applies in particular to Germany, where a rigid 

separation of health care sectors, free and direct access to medical specialists, and generous 

coverage by social health insurance are frequently blamed for generating inefficiencies such 

as the over-use of services, redundant medical treatments, and medical malpractice due to 

insufficient exchange of information. These potential sources of inefficiency, which are 

located at the level of the health system rather than the individual provider level, can hardly 

be addressed using individual provider data. 

A second set of papers analyses the efficiency of health systems based on aggregated cross-

country data (e.g. Afonso & St. Aubyn, 2005; Bhat, 2005; Grosskopf et. al, 2006). However, 

cross-country comparisons are of limited value for measuring efficiency due to fundamental 

structural and institutional differences across countries, which cannot easily be controlled 

for. Few analyses use intra-country regional variation (e.g. Thanassoulis et al., 1996; Kathuria 

& Sankar, 2005), where the units of observation are more homogeneous, and hence more 

comparable, albeit at a level, which is still aggregated. The present paper takes the latter 

path by using data at the district level for the efficiency analysis. Districts (‘Kreise’) seem to 

be the appropriate regional production unit for an efficiency analysis, as they are typically 

the subject of public planning in Germany (Kopetsch, 2007). 

Recent studies have already followed this approach by investigating quality, effectiveness, 

and efficiency of health care provision in Germany using district-level data (e.g. Schwierz & 

Wübker, 2010; Augurzky et al., 2009b; Sundmacher & Busse, 2009). However, the implicit 

assumption – inherent in conventional regression analyses of regionally aggregated data – of 

statistically independent observation units becomes almost indefensible.
2
 As regional health 

care systems are not strictly separated, the shape of regional health care efficiencies is 

subject to different sources of spatial interdependence. On the one hand, spatial efficiency 

spillovers from competition for patients result in positive cross-border effects on quality and 

efficiency. Moreover, regional distribution of labor in health care provision also contributes 

                                                      
1
 See Hollingsworth (2003, 2008) and Hollingsworth et al. (1999) for comprehensive surveys. Pilyavsky & Staat (2008) is 

most relevant for the present analysis as it also employs the order-m efficiency approach; see section 4.1. Key references 

include Staat (2006), Herr (2008), and Herr et al. (2011) as they address the German health care system. 
2
  To some degree, Schwierz & Wübker (2010) allow for inter-regional correlation by carrying out a ‘multi-level analysis’. 

But in fact they account for correlation at the state level rather than spatial dependence. 
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to cross-border interdependence. Medical specialists and specialized hospital departments 

not available everywhere will provide services to neighboring regions. On the other hand, 

spatial error correlation also matters. Unobserved net patient migration – that is patients 

provided with services in regions other than the one they reside in – generate a spatial 

pattern of error correlation, as districts exhibiting net patient inflows provide services to 

their neighbors which are not accounted for in efficiency measures based on outputs such as 

reductions in mortality or morbidity. While little is known about patient flows in outpatient 

care in Germany, Augurzky et al. (2009b) provide detailed figures on flows for the hospital 

sector. Indeed, in some regions the share of patients treated locally is substantially lower 

than 50%. 

Ignoring spatial interdependence will thus result in misleading empirical evidence on the 

quality and efficiency of health care provision at the regional level. Conventionally computed 

standard errors will be incorrect in the presence of spatial error correlation (Anselin, 1988, 

59). Even worse, results on the determinants of regional efficiency will suffer from omitted 

variables bias if the endogenous variable following a spatial autoregressive process is 

ignored (LeSage & Pace, 2009: 65). For instance, spatial dependence not properly addressed 

at the district level will affect estimates of differentials in the efficiency of health care 

provision at higher geographic levels, e.g. at federal state (‘Bundesland’) level.  

In Germany, the question of potential differentials in the efficiency of health care provision 

at the state level has recently attracted much interest, as health inequality is a controversial 

issue in the public debate. Institutional factors do suggest the existence of such differentials: 

Firstly, the states are responsible for investments in inpatient care, such as the construction 

and closure of hospitals. Secondly, public planning at the state level determines the number 

of hospitals and hospital beds. Thirdly, state-level associations of Statutory Health Insurance-

accredited physicians regulate the regional provision of outpatient care. Although 

nationwide guidelines exist for the required number of resident physicians, the state-level 

physicians’ associations exert substantial influence on the supply of physicians. Moreover, 

empirical analyses (cf. Augurzky et al. 2009a) report substantial differentials in state-level 

efficiency.  

This paper investigates the spatial dependence of health production efficiency at the district 

level in Germany. It addresses the question whether estimated state efficiency differentials 

reported in the literature to date are possibly due to ignored spatial dependence. The paper 

brings together two previously unconnected strands of literature on efficiency measurement 

of health production as discussed above and a recent literature on spatial dependence in the 

health care sector. As an early example for the latter, Mobley (2003) employs a spatial 

autoregressive regression model to analyze interactive pricing behavior in California’s 

hospital market. Taking into account possible interaction between authorities as well as 

unobserved heterogeneity, Costa-Font & Moscone (2008) identify some degree of 

interdependence in the health spending decisions of neighboring regions in Spain. Similarly, 

Moscone et al. (2007) as well as Moscone & Knapp (2005) analyze mental health spending in 
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England and find evidence of spatial autocorrelation in local government expenditure 

decisions. In analyzing the long-run economic relationship between health care expenditures 

and income in the OECD countries, Baltagi & Moscone (2010) consider spatial dependence. 

They find income elasticities much smaller than those estimated in earlier studies. Moscone 

& Tosetti (2010) is a similar investigation for states in the US. More closely related to the 

topic of the present analysis, but based on a different modeling approach, Cohen & Morrison 

Paul (2008) find a positive agglomeration effect on the cost efficiency of Washington state 

hospitals by including spatially weighted characteristics of other hospitals as explanatory 

variables. The papers by Moscone & Knapp (20405), Moscone et al. (2007), and Costa-Font & 

Moscone (2008) are of particular relevance, as they address intra-country regional 

interdependence. 

The remainder of the paper is organized as follows: section 2 illustrates  the possible bias in 

regression results if spatial dependence is not controlled for, section 3 introduces the data, 

section 4 discusses our two-step empirical approach of conducting a non-parametric 

efficiency analysis and subsequently explaining district-level efficiency using a Cliff-Ord 

modeling framework (Cliff & Ord, 1973), section 5 presents and discusses the estimation 

results, and section 6 concludes. 

 

2  An Illustrating Model 

The key argument that ignored spatial interdependence results in spurious regression results 

on the impact of states on regional efficiency can be illustrated in a simple model. Here none 

of the exogenous determinants of efficiency – including state policies – vary across districts 

and states and can thus be captured by a single scalar 0µ > . Assume that district efficiency 

follows a spatial autoregressive process according to y J Wyµ λ= + , where y  denotes the 

vector of districts’ efficiency scores, J  is a vector of ones, W  denotes a spatial weighting 

matrix that measures the distance between districts, and the scalar λ  captures the direction 

and strength of spatial spillover effects. Efficiency in one district is thus affected by the 

efficiency of any other district, depending on the distance between them. ( ) 1
y I W Jµ λ −= −  

then holds for the equilibrium efficiency score at the district level. In consequence, for 0λ ≠
, the efficiency scores exhibit heterogeneity across districts because of spatial spillover and 

feedback effects, unless the overall level of spatial interdependence is the same for all 

districts. Moreover, as the distance in space is the sole source of efficiency differentials, the 

distribution of efficiency scores will exhibit a distinct spatial pattern.  
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Figure 1: Spatial distribution of artificial efficiency  

scores (µ = 0.5, λ = 0.5, i.e. positive spillover effects) 

Source: Own calculations  

Figure 1 maps the districts in Germany. It displays the pattern of efficiency scores for 

0.5,λ =  i.e. positive spillover effects, and for real distances between districts in Germany 

entering the matrix W  (we chose inverse squared travel time as the measure of adjacency 

and applied eigenvalue normalization to W , see section 4.2). In the absence of spatial 

dependence, i.e. 0λ = , all districts would exhibit a uniform artificial efficiency of 0.5µ = . 

With positive spillover-effects, all artificial efficiency scores exceed this value, the minimum 

is 0.57, and the maximum is 1.63. This implies a factor of 16 between the minimal and the 

maximal gain in artificial efficiency due to spillovers.
3
 In other words, positive spillover-

effects are heterogeneous and heterogeneity exhibits a distinct spatial pattern. Districts in 

the center of the country are clearly subject to much stronger spillover effects than their 

counterparts at the periphery. This pattern carries over to the states, marked by thick border 

lines. The average efficiency in states at the periphery, e.g. Mecklenburg-Vorpommern 

located in the remote north-east of the country, is less strongly affected by spatial 

interdependence than the average efficiency in more centrally located states.  

Indeed, naively regressing the artificial efficiency scores on a set of state dummies yields 

distinct state differentials. These spurious state effects cannot be explained by state policies, 

which are absent by assumption in this model. Consequently, any health policy proposal 

based on this model would be misleading at the state level. Evidently, reality is far more 

complex. For instance, genuinely more efficient states might be located in remote areas and 

                                                      
3
 

1
(1.63 0.5)(0.57 0.5) 16

−
− − ≈ . The absolute values have no economic meaning as the value 0.5 is arbitrarily assigned to the 

parameter µ . 
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benefit less from positive spillovers. In this case, the corresponding effects might cancel out 

in an empirical analysis that ignores spatial dependence. Moreover, the spatial distribution 

of covariates will play an important role, and the data generating process will be stochastic 

rather than deterministic. Nevertheless, the above example reveals that not taking into 

account spatial dependence may overestimate state differentials and bias the effect of state 

policies on district level efficiency.  

 

3  The Data 

The empirical analysis is based on German district-level data for the years 2004-2006. During 

this time Germany was sectioned into 439 districts with an average of 190,000 inhabitants 

and 800 km
2
 in area. Districts exhibit pronounced heterogeneity with respect to both 

population and territory. This is partly due to the typical pattern of large and medium-size, 

sometimes even small, cities and towns constituting one district (urban district, ’Stadtkreis’) 

and their surrounding countryside constituting another (rural district, ’Landkreis’). Thus, 

large rural districts often border directly on densely populated urban districts. The two 

largest German cities, Berlin and Hamburg, constitute urban districts as well. District 

populations hence range from less than 35,000 to almost 3.5 million people. 

Comprehensive district-level data is provided by the Federal Statistical Office (dataset 

‘Statistik Regional‘) as well as by the Federal Office for Building and Regional Planning 

(dataset ‘INKAR’). We added information from two additional sources: the German Hospital 

Register from the Federal Statistical Office and resident physician data provided on request 

by the Federal Association of Statutory Health Insurance Physicians (Kassenärztliche 

Bundesvereinigung). Specifically, we use (i) demographic information, i.e. population and 

deaths by gender and age, (ii) the number of hospital beds by medical specialty, (iii) the 

number of physicians by medical specialty, and (iv) territory, from which we calculate 

population density, (v) per capita income, (vi) district unemployment rates, (vii) the share of 

hospital beds by type of ownership (private, public, non-profit), and (vii) a dummy indicating 

urban districts. The data for (i)-(iii) serve to derive inputs and outputs of health production 

for the efficiency analysis. The remaining variables, along with the demographic information, 

enter the subsequent spatial regression model as explanatory variables. 

The state within which a district is located is also included in the regression analysis. Here 

the city states Berlin, Hamburg and Bremen – each single districts in their own right, except 

for Bremen which is divided into two urban districts (‘City of Bremen’ and ‘Bremerhaven’) – 

establish a joint category. Data are available for the years 2004 to 2006.
4
 A few districts were 

excluded due to missing data, giving rise to a slightly unbalanced panel data set of 1286 

                                                      
4
  The observation period is restricted to three years for several reasons. First, there are missing values in the data, e.g. the 

‘INKAR’ data base did not release an issue every year. Second, a major district reform in East Germany in 2007 and 2008 

impedes the construction of a consistent district-level panel for a longer period of time. 
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district-year-observations altogether (2004: 436, 2005 and 2006: 425 observations). Table 1 

displays descriptive statistics for the variables included in the empirical analyses. 

Table 1: Descriptive statistics (pooled sample) 

Variable Mean S.D. Median Min Max 

standardized mortality 1.014 0.085 1.012 0.787 1.264 

hospital beds (per 10,000 inhabitants) 66.60 38.45 57.64 1.75 235.08 

general practitioners
 a

 (per 100,000 inhabitants) 72.14 9.60 70.70 48.52 111.42 

resident medical specialists (per 100,000 inhabitants) 83.67 46.98 65.45 13.75 302.83 

input-oriented order-m efficiency (m = 100)
 b

 0.850 0.149 0.856 0.484 2.457 

population (million people) 0.190 0.222 0.135 0.035 3.404 

females (share in population) 0.510 0.007 0.509 0.488 0.540 

aged 21 to 40 (share in population) 0.252 0.024 0.247 0.202 0.362 

aged 41 to 60 (share in population) 0.293 0.016 0.291 0.250 0.358 

aged 61 to 80 (share in population) 0.208 0.022 0.207 0.153 0.300 

aged above 80 (share in population) 0.046 0.007 0.045 0.026 0.077 

population density (1,000 people per km
2
) 0.515 0.661 0.201 0.039 4.171 

per capita disposable income (100,000 € per year) 0.172 0.023 0.172 0.126 0.280 

unemployment rate 0.113 0.052 0.098 0.034 0.293 

non-profit hospital ownership (share in beds) 0.281 0.329 0.161 0 1 

private hospital ownership (share in beds) 0.155 0.273 0.011 0 1 

urban district (indicator) 0.271 0.444 0 0 1 

Notes: 
a
 including paediatrician and internists operating as general practitioners and; 

b
 see section 4; descriptive statistics are reported for 

the pooled sample, i.e. 1286 district-year observations; years 2004, 2005, and 2006 considered.  

As district populations differ substantially in size and demographic composition, we use 

national gender- and age-specific death rates to standardize the raw regional numbers of 

deaths. That is, for each district and year we divide the actual number of deaths by the 

corresponding, yet hypothetical number that one would observe if national gender and age 

specific death rates did uniformly apply to all districts. Figure 2 indicates substantial 

heterogeneity of standardized mortality across districts in Germany. While in some districts 

mortality is 22% lower than expected on the basis of demographic structure alone, others 

exhibit mortality rates as far as 26% above the expected level. Standardized mortality is 

highest in the northeast of the country – the former GDR – and lowest in the south-west – 

the state of Baden-Wurttemberg and southern Bavaria. 

Figures 3 and 5 show the typical pattern of hospitals and medical specialists located in cities 

or towns, with a much weaker supply of medical infrastructure in the countryside. This 

pattern is particularly distinct in Franconia (marked by a white boundary in Figure 3) and 

some bordering regions, where the arrangement of districts adheres closely to the 

’Stadtkreis-Landkreis’ scheme. Though the distribution of general practitioners (Figure 4) 

exhibits some interesting regional features – e.g. remarkably low numbers for the western 

states of North Rhine-Westphalia and Lower Saxony – the difference between urban and 

rural districts is slightly less distinct. Moreover, high densities of physicians are frequently 

observed in districts close to faculties of medicine, e.g. Gottingen and Heidelberg. This might 

be due to limited mobility among graduates. 
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Figure 2: Standardized mortality, 2004    Figure 3: Hospital beds per 10,000 inhabitants, 2004 
Source: Statistisches Bundesamt, own calculations  Source: Statistisches Bundesamt (Statistik Regional) 

 

 

   
Figure 4: General practitioners per 100,000 inhabitants, 2004 Figure 5: Resident medical specialists per 100,000 

Source: Kassenärztliche Bundesvereinigung         inhabitants, 2004 

    Source: Kassenärztliche Bundesvereinigung 
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4  The Empirical Approach 

4.1  Order-m Efficiency Analysis 

The first step of our empirical analysis is to perform a ‘conventional’ efficiency analysis 

without taking spatial interdependence into account. The purpose is to calculate descriptive 

district-specific performance figures (efficiency scores) rather than to identify structural 

parameters of the underlying production technology. For this reason, we prefer a non-

parametric approach to a structural stochastic frontier model. Data envelopment analysis 

(DEA) is the most common tool for non-parametric efficiency analysis. However, our two-

step framework – using efficiency scores as dependent variable in a subsequent regression 

analysis – requires special attention to the following points: (i) efficiency scores obtained 

from DEA are sensitive to outliers and measurement errors; (ii) DEA generates a complex 

and generally unknown correlation pattern among estimated efficiency scores (Simar & 

Wilson, 2007), which might result in misleading inference in the subsequent regression 

analysis; (iii) estimated scores are bounded from above at one, requiring a generalized 

regression model to take this feature of the data into account (cf. McDonald, 2009). For 

ordinary least squares, Simar & Wilson (2007) developed a truncated regression-based 

bootstrap that considers the latter two problems. But this procedure cannot be applied 

directly to conventional spatial regression analysis. We therefore employ the concept of 

order-m efficiency (Cazals et al., 2002). Also a non-parametric approach, it is less sensitive to 

outliers and measurement errors since efficiency estimates are obtained from a partial 

frontier that does not envelop all data points. The order-m approach is based on enveloping 

artificial subsamples (of size m) that are randomly drawn from the original data. This 

procedure attenuates the impact of extreme observations on the estimated efficiency 

scores. Compared to DEA, the correlation among estimated efficiencies is therefore reduced, 

rendering misleading inference in a subsequent regression analysis only a minor problem 

(Binder & Broekel, 2008). Moreover, as a partial frontier approach, order-m efficiency 

naturally allows for super-efficient observations located beyond the estimated efficiency 

frontier, implying that efficiency scores may exceed the value of one.
5
 The subsequent 

regression analysis thus requires no truncated regression or fractional response (Papke & 

Wooldridge, 1996), allowing for the application of a standard spatial regression model. 

We employ an input-orientation approach to order-m efficiency, where the efficiency scores 

indicate the factor by which input consumption may be reduced while leaving outputs 

unchanged.
6
 This appears adequate, given that inefficiency of health care provision is 

typically discussed in terms of excessive cost in the current policy debate in Germany. Each 

observation year is analyzed separately. 

                                                      
5
  Allowing for super efficient units has great appeal with our data, as they are presumably insufficient for comprehensively 

describing the physical process of health production. Hence, super-efficiency may capture unobserved yet relevant 

information (cf. Daraio & Simar, 2007, 81). 
6
  For order-m efficiency, the distinction between input- and output-oriented efficiency is even more essential than for DEA. 

Input- and output-orientations do not only differ with respect to the direction in which the distance from the production 

frontier is measured, but also with respect to the frontiers themselves. 
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In the order-m approach, input-oriented efficiency scores ( )0 0,my u v  are estimated as 

follows: 

 
( )

0
0 0 1, , | 1, ,

1 0

1
ˆ , min max

= ≥ ∀ ==

   =   
   

∑
… …is s

bB
m ir

i mv v s r R
b r

u
y u v

B u , (1) 

where i ru  with 1, ,r R= …  and isv  with 1, ,s S= …  respectively denote inputs and outputs of 

the analysed production process, and 0u  and 0v  represent the respective vectors of inputs 

and outputs of the unit under consideration. 1, ,i m= …  indexes the observations in an 

artificial sub-sample of size m, drawn with replacement from the original data set. Finally, 

1, ,b B= …  denotes re-sampling repetitions. Calculating (1) involves the following four steps: 

1. For any production unit with a given output vector 0v , a random sample of size m is 

drawn with replacement among those units of the original data set, for which 

0is sv v s≥ ∀  holds. The corresponding input vectors are denoted by 
b

iu , 1, ,i m= … . 

2. ( )0 0
1, , 1, ,

0

ˆ , min max
b

m b ir

i m r R
r

u
y u v

u= =

   =   
   

… …

 is calculated using the artificial sample. 

3. Steps 1 and 2 are carried out B times, with 1, ,b B= … . 

4. ( )0 0ˆ ,my u v  is calculated as the mean ( )0 0
1

1
ˆ ,

B
m b

b

y u v
B =
∑ . 

It is important to note that order-m efficiency represents an outlier-robust variation of the 

‘free disposal hull’ (FDH) approach (Deprins et al., 1984), which relaxes the convexity-

assumption inherent in DEA. More precisely, carrying out step 2 just once with the entire 

sample leads to FDH-based efficiency scores. The measure has intuitive appeal, since the 

observed production unit is compared to those that produce at least the same amount of 

output, and the best-practice unit is the one with minimal input use. As all production units 

that are not dominated by any other unit span the efficiency frontier, the FDH approach 

rests on the principle of weak dominance.  

This measure would be very sensitive to outliers if it depended solely on one sample of 

observations. For this reason, order-m efficiency estimates the expected best practice 

among a fixed number of m peer units producing at least the same amount of output; see 

Cazals et al. (2002) and Daraio & Simar (2007) for a detailed and formal discussion and 

Pilyavsky & Staat (2008) for an application to health production.  

The choice of m becomes relevant for practical applications. For m → ∞, order-m efficiency 

coincides with FDH. Hence, robustness to outliers calls for a relatively small value of m, so 

comparing the observed unit to just a few peers. However, as m gets smaller the share of 

super-efficient units increases, rendering the estimated scores an increasingly degenerated 

measure of efficiency. Bonaccorsi et al. (2006) suggest choosing m such that the share of 

super-efficient observations is 10%. Following this suggestion, we end up with roughly m = 
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100.
7
 Robustness checks carried out with respect to this choice revealed only limited impact 

of the value of m on estimation results in the second-stage regression analysis (see Tables 4 

and 6 in Appendix B for a selection). For the number of re-sampling iterations we choose B = 

2,000.
8
 

 
Figure 6: order-m efficiency scores, 2004 Figure 7: order-m efficiency scores, 2004 (detail) 
Source: Own calculations Source: Own calculations 

Unfortunately, the limited availability of data at the district level restricts the opportunities 

for formulating a rich model of efficiency that includes measures of morbidity as outcome 

variables. Instead, we use the standardized mortality (see section 3) as a single output 

variable of health production.
9
 In order to base the analysis on a desired good rather than an 

unwanted ’bad’, we use the inverse of standardized deaths as output variablev.
10

 We 

consider three inputs to health production at district level: hospital beds, general 

practitioners, and resident medical specialists each measured on a per inhabitant basis (see 

section 3 for detailed description). 

Figure 7 displays the corresponding order-m results (m = 100) in terms of input-oriented 

technical efficiency y. Considering all three years, the districts reach an average efficiency 

level of 0.850, which almost coincides with the median value 0.856. The lowest score is 

                                                      
7
  m = 100 is a large value compared to other applications (e.g. Binder & Broekel, 2008; Pilyavsky & Staat, 2008). But as the 

present analysis considers one output only, the share of observations satisfying vis ≥ v0s for s = 1,…,S is typically larger 

than for multi-output applications. Hence, when a large number of potential benchmark observations is available, a 

relatively large sample of actual observations can be drawn. 
8
  Daraio & Simar (2007) suggest that the substantially smaller value of B = 200 is sufficient. But with our data, increasing 

the number of iterations to B >> 200 markedly changes at least some estimated scores.  
9
  This is not uncommon in applied health economics; see Hall and Jones (2007) for a recent example. 

10
  While DEA would necessarily require such a transformation (cf. Scheel, 2000), order-m analysis allows the use of the 

original variable – with no effect on estimated efficiencies – if the condition vis ≤ v0s is used in (1) instead of vis ≥ v0s. 



12 

 

0.484 while the highest is 2.457. The share of districts classified as super-efficient (efficiency 

score > 1) is 10.7%. Generally, order-m efficiency scores do not exhibit an obvious regional 

pattern. Nevertheless, we still find substantial heterogeneity at the state level. State means 

range from 0.715 (city states) to 0.889 (Baden-Wurttemberg). 

Moreover, for some regions, most prominently those in Franconia
11

, the estimated efficiency 

measures exhibit a distinct local pattern of less efficient urban districts surrounded by highly 

efficient, in most cases even super-efficient, rural ones (see Figures 6 and 7 and Table 2).  

Table 2: Order-m efficiency scores for some Franconian urban and contiguous rural districts  

 Bamberg Bayreuth Cobourg Hof Schweinfurt Wurzburg 

urban district 0.537 0.627 0.647 0.548 0.798 0.576 

rural district 1.118 1.367 1.147 0.910 1.054 1.012 

This pattern corresponds to the regional distribution of hospitals and medical specialists and 

supports our original hypothesis of a strong influence of net patient flows on district-specific 

efficiency scores. Inhabitants of rural Franconia thus receive medical treatment in urban 

districts such as Bamberg, Bayreuth, Schweinfurt and Wurzburg, leading to poor efficiency 

scores there, while the rural contiguous neighbors seem highly efficient. Indeed, Moran’s I 

test based on inverse squared distances indicates a highly significant spatial correlation, 

regardless of whether it is applied unconditionally to the raw efficiency scores or 

conditionally on covariates x.  

4.2  A Spatial Regression Model 

In order to account for spatial spillovers in the regression analysis explaining efficiency of 

health care provision at the district level we include the efficiency scores of neighboring 

districts as right-hand side variables. We allow for spatially correlated errors and regard net 

patient flows as the most likely source of this correlation pattern. This leads us to a spatial 

autoregressive model with autoregressive disturbances (see Anselin, 1988), which 

accommodates both types of spatial interdependence. The basic structure of the model is 

given by 

 y X Wyβ λ ξ= + +  (2) 

 Mξ ρ ξ ε= +  (3) 

 
2with ( ) 0, var( ) , and cov( , ) 0it it it jτε ε σ ε εΕ = = = . 

y indicates the 1N ×  vector of the dependent variables (order-m efficiency scores), where 

N  denotes the total number of district-year observations. Districts are indexed by i  and j  

and years by t  and τ . ξ  denotes the corresponding vector of error terms and X  denotes 

                                                      
11

 A similar pattern is also found in regions other than Franconia, yet, due to the layout of districts, it is less obvious in our 

data. One may, nevertheless, find other examples than Franconia. 
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the N k×  matrix of regressors, where β  is a vector of coefficients subject to estimation. W  

and M  represent N N×  spatial weighting matrices, capturing the pattern of spatial 

dependence. As we consider a period of three years and since spatial interdependence is a 

matter of contemporaneity, W  and M are block-diagonal in our application. These matrices 

are thus composed of three year-specific t tN N×  spatial weighting matrices. The 

endogenous variable y enters the right-hand side of the equation (2) via Wy. The latter 

represents a 1N ×  vector of spatial lags of ity , i.e. weighted sums of ,jy τ  with j i≠  and 

tτ = . Hence, the efficiency of any district i potentially depends on the efficiency of any 

other district under consideration. 

An appropriate spatial weighting matrix must satisfy certain requirements (see e.g. Kelejian 

& Prucha, 2008). In particular, the diagonal elements iiw  and iim  must be zero and the 

intensity of spatial dependence must be restricted and decline sufficiently with increasing 

distance between two spatial units. Formally, each row and column sum must be uniformly 

bounded if the number of spatial units grows to infinity, and ( )I Wλ−  as well as ( )I Mρ−  

must be non-singular. Yet W  and M  need not be symmetric, allowing for different travel 

times between two districts depending on the direction of travel. The model further allows 

for the special case W M= , in which the same pattern of spatial dependence applies to the 

covariance structure among the error terms iξ  and to the pattern of direct spillovers 

between the dependent variables iy . In practical applications, both W  and M  are typically 

exogenously given and not subject to estimation, except for rare cases where panel data are 

available and the number of cross-sectional units is small compared to the number of 

periods. 

In applied work, spatial weighting matrices are normalized in order to allow for a 

straightforward interpretation of the model parameters. The most common practice is to 

row-standardize the weighting matrices, where all matrix elements ijw  and ijm  are divided 

by the corresponding row sum. Other approaches are (i) minmax standardization, i.e. 

standardization by the minimum of the largest row and the largest column sum, and (ii) 

eigenvalue standardization, i.e. standardization by the modulus of the largest eigenvalue of 

the relevant matrix. The latter two approaches allow for spatial dependence being 

differently important across observations. In contrast, by using row standardization, one 

implicitly assumes that spatial interdependence is of equal relevance to all regions. Kelejian 

& Prucha (2008) and Baltagi et al. (2008) therefore argue against row-normalization unless 

its implicit assumption is clearly suggested by economic theory. This does not apply to the 

present case, as districts in Germany evidently vary with respect to remoteness and spatial 

interlinkage to the rest of the country. Hence we prefer eigenvalue normalization. Finally, λ  

and ρ  are unknown scalar coefficients that are estimated along with β . For both, the unit-

interval represents the relevant parameter space; see Kelejian & Prucha (2008) for a detailed 
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discussion. Clearly, no spatial autoregression, i.e. no direct spillover effect, is present for the 

case 0λ = , while for 0ρ =  the errors are spatially uncorrelated.
 
 

The spatial autoregressive model exhibits a close analogy to well-known autoregressive 

time-series models. In fact, (2) and (3) allow for inversion, yielding a reduced form and 

moving average representation of the model  

 ( ) ( ) ( )1 1 1
y I W X I W I Mλ β λ ρ ε− − −= − + − −  (4) 

from which the conditional mean ( | )y XΕ  is directly derived as 

 ( ) 1
( | )y X I W Xλ β−Ε = − . (5) 

Thus, in the spatial autoregressive model a change in an exogenous variable kjx
 
exerts an 

effect not only on region j  but potentially on any other region i  as well. Moreover, due to 

feedback effects from i  to j , kβ  does not represent the total effect on region i . Rather, 

marginal effects of an explanatory variable kx  represent an N N×  matrix 

 ( ) 1( | )
k

k

y X
I W

x
λ β−∂Ε = −

∂ , (6) 

where the ij -element captures the effect of a marginal change of kx  in district j on the 

efficiency in district i . Hence, if one is interested in the effect of an isolated change in kjx  on 

the efficiency of district j , one has to incorporate the diagonal elements of (6). If, however, 

one is interested in the aggregate effects of a uniform and simultaneous change in all 

districts, the row-sums of (6) are the relevant measures; see LeSage & Pace (2009) for a 

detailed discussion of marginal effects in spatial autoregressive models. 

The spatial autoregressive model does not allow for a straightforward estimation of 

equation (2) by OLS as the endogenous variable y  enters the right-hand side via the spatial 

lag, for which ( ' ) 0Wy ξΕ ≠  holds. In order to avoid endogeneity bias, we follow the 

approach suggested by Kelejian & Prucha (1998).
12

 The corresponding three-stage 

estimation proceeds as follows. First, equation (2) is estimated using a conventional 

instrumental variables approach, with X , WX , 2W X , MX , 2M X , and serving as 

instruments for the endogenous spatial lag Wy. Second, based on the residuals obtained 

from the initial two-stage least-squares (2SLS) regression, Kelejian & Prucha (1998) derive a 

set of moment restrictions that allow for estimating ρ  and 
2σ  via GMM.

13
 Finally, with an 

estimate for ρ  in hand, a Cochrane-Orcutt transformation can be applied and a 2SLS 

estimation carried out again using the transformed data. Here, the transformed left-hand 

side variable is ˆy y Myρ≡ −ɶ , while the transformed right-hand side variables are defined 

analogously. 

                                                      
12

 Maximum likelihood estimation represents an alternative approach. Arraiz et al. (2008) argue, however, that ML 

performs poorly even for small deviations from distributional assumptions and involves computational difficulties. We 

therefore prefer the Kelejian & Prucha (1998) estimator. 
13

  All moment restrictions receive equal weight; hence a GMM technically coincides with non-linear least squares. 



15 

 

As a robust alternative, we also report the initial 2SLS results for which we calculated 

heteroscedasticity and autocorrelation consistent (HAC) standard errors, as proposed by 

Kelejian and Prucha (2007); see Appendix B, Table B.4.
14

 We also checked whether the 

estimated standard errors were incorrect due to error correlation induced by efficiency 

measurement, applying a modified Simar & Wilson (2007) procedure; see Appendix A. This 

procedure yields standard errors that deviate only marginally from analytically derived ones, 

vindicating the argument of Binder & Broekel (2008) that order-m efficiency estimates are 

less vulnerable to misleading inference. Hence, we report analytically derived conventional 

standard errors. 

4.3  Extension to Panel Data 

Panel data call for taking into account the error terms most likely to be correlated over time. 

Applying a generalization of the Egger et al. (2005) approach to the original Kelejian & 

Prucha (1998) model, we allow for unobserved individual time-invariant heterogeneity. The 

error term then includes the district-specific component iµ , with 

 
, with cov( , ) 0it i it it jτε µ ς ς ς= + =

, (6) 

which captures unobserved time-invariant determinants of regional efficiency. The Egger et 

al. method accommodates both random and fixed effects, where for the former iµ  is 

assumed to be uncorrelated with the regressors and the innovations itς . The estimation 

procedure for this generalized model closely resembles the original three-stage Kelejian & 

Prucha approach; see Egger et al. (2005) for a detailed discussion. Yet, the first stage – 

irrespective of whether fixed or random effects are considered – uses within-transformed 

data to remove the individual effects, where spatial lags of the within-transformed 

explanatory variables serve as instruments. Subsequently, the estimator employs a set of 

modified moment conditions in order to derive estimates for ρ , 
2

µσ , and 
2

ςσ  from the 

composite first-stage regression residuals ˆˆ( )i itµ ς+  using GMM. Finally, the estimate for ρ  

is used to perform a Cochrane-Orcutt transformation on the data that is also within-

transformed for the fixed effects model and quasi-within-transformed
15

 for the random 

effects model. As in the original Kelejian & Prucha approach, 2SLS estimation is then applied 

to the transformed data where first- and second-order spatial lags of within- (respectively 

quasi-within-) transformed explanatory variables serve as instruments. 

                                                      
14

 Computation of HAC standard errors is based on: (i) a Parzen kernel, (ii) raw travel time as distance measure, (iii) travel 

time of 45 minutes as bandwidth. Point estimates obtained from initial 2SLS are close to the preferred three stage 

results. HAC standard errors estimated for 2SLS are somewhat larger than their conventional counterparts, computed for 

the three stage procedure. Nevertheless, in terms of significance, the majority of the qualitative findings still hold for the 

more robust model variant. 

15
 ˆx x xit it i iθ≡ −ɶ

 
with 

2 2 0.5ˆ ˆ ˆ ˆ1 ( )
i i

Tς µ ςθ σ σ σ
−

= − +  holds for a quasi-within-transformed variable xitɶ , where Ti denotes the number 

of observations on district i and xi denotes the district mean of xit (see e.g. Greene, 2000: 569). For the fixed effects 

model, iθ takes on the value 1. 
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As almost all variables in our data exhibit only small variations over time, a fixed effect 

approach which relies exclusively on within-group variation appears inappropriate. Unlike 

Egger et al. (2005), we therefore use a random effects variant that avoids the within- 

estimator at the first stage of the procedure.
16

 Nevertheless, we also report results for the 

original Egger et al. (2005) fixed effects estimator. 

4.4  Model Specifications and Hypotheses 

Our preferred specification for the spatial autoregressive model considers order-m efficiency 

scores with m = 100 as dependent variable. On the right-hand side we first consider total 

population and population density in order to capture rurality. On the basis of economies of 

scale, one may expect large districts to be more efficient than smaller ones. Rurality likely 

involves lower efficiency scores, as providing a sufficient level of health care in sparsely 

populated regions requires more resources. A further indicator captures the special status of 

urban districts which are expected to seem less efficient, as they typically provide health 

services to the populations of surrounding rural districts as well. 

Although we already account for demographics in the district-specific mortality rates, we 

also consider district-level sex-age-structures in the regression analysis. Specifically, we 

distinguish between men and women and between five age classes (1-20, 21-40, 41-60, 61-

80, 80+ years of age), each measured as shares in total population. Since demand for health 

care is higher in old age, we expect districts with older populations to be less efficient. 

Likewise, the higher demand observed among women should result in a negative correlation 

between a district’s share of women and its efficiency in health production.  

We also include two economic indicators in the regression, the district’s unemployment rate 

and its average disposable household income. Since economic status and health are 

frequently found to be positively correlated, we expect a negative coefficient estimate for 

the former control and a positive coefficient for the latter. We further include hospital 

ownership as an explanatory variable for efficiency (for recent studies with mixed results, 

see Herr, 2008, and Herr et al., 2011). Ownership is measured in terms of share in total 

hospital beds, with public ownership serving as the reference. Private and (private) non-

profit are then considered explicitly. Finally, we include sets of both year- and state-specific 

dummies, the latter being of particular interest to our analysis.  

For the spatial weighting matrices, we consider average travel time by car between two 

districts’ centroids. Travel time appears to be far more important for patient flows and 

efficiency spillovers than distance alone. An inverse-squared-distance matrix is our preferred 

specification. Alternatively, we use a contiguity matrix where ’contiguous’ is defined as a 

travel time between two districts of less than 45 minutes. Estimated coefficients are similar 

(see Table B.3 in Appendix B). All reported results are based on eigenvalue-standardized 

                                                      
16

  Instead, we employ a random effects estimator at the first stage. The moment restrictions (cf. Kapoor et al., 2006) 

exploited at the second stage are derived under general fixed effects conditions, and are also valid for the special case of 

random effects. 
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matrices (while minmax standardization yields similar results, row standardization provides 

substantially different patterns of estimated spatial dependence). The reported variants all 

consider the case where W M= , as we know of no theory in favor of a particular pattern of 

spatial dependence regarding spillovers and error correlation. 

 

5  Estimation Results 

Table 3 displays results from the spatial autoregressive regression model, explaining the 

efficiency scores derived by order-m efficiency analysis. To begin with, the results for the 

pooled estimator (Keleijan & Prucha, 1998) do not indicate any importance of hospital 

ownership for the efficiency of health production at the district level. The same applies to 

income: its coefficient is also not significant. By contrast, the unemployment rate is a 

significant predictor of a district’s efficiency and its coefficient exhibits the expected 

negative sign. It is unlikely that this estimate captures a pure causal effect; it probably also 

reflects the (unobserved) higher morbidity of unemployed individuals. From a spatial point 

of view, labor market status might serve as a proxy for mobility, as employees may need to 

travel long distances to their workplaces (unlike the unemployed). Commuters may in fact 

represent interregional patient flows, especially in outpatient care, if they tend to visit 

physicians near their place of work rather than their place of residence. 

A district’s demographic composition clearly matters for the efficiency of health care 

provision. As expected, a larger share of people beyond the age of 80 decreases the 

efficiency of regional health production. Somewhat surprisingly, this also holds for the age 

class 21 to 40. A possible explanation for this finding is that women of prime child bearing 

age fall into this age class. Pregnancy and birth involve health care consumption. Thus, in 

regions with many women of this age, one should expect an extra supply of – primarily 

gynecological – health care facilities. The share of women in a district’s population is also 

negatively associated with efficiency, which is likely to capture a similar effect.  

The urban district dummy variable is significantly negative, confirming the conjecture that 

urban districts provide health services to the populations of neighboring rural districts. 

Controlling for a district’s type (urban or rural), population density exhibits a significant and 

positive impact on efficiency. This result is intuitively appealing, as a proportionately larger 

stock of health infrastructure is required to provide sufficient primary and emergency health 

care in sparsely populated regions. In contrast to population density, district population size 

has a negative effect on efficiency. This result contradicts the hypothesis that there are scale 

economies in the provision of healthcare services. However, it could well be that small 

districts benefit from services supplied only by adjacent large ones.  
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Table 3: Results for the Spatial Autoregressive Model 

 Pooled Random Effects Fixed Effects 

 Estimate S.E. Estimate S.E. Estimate S.E. 

spatial lag (λ) 0.108*** 0.014 0.093*** 0.024 0.285** 0.119 

Population -0.046** 0.022 -0.044 0.035 0.398 1.219 

population density 0.039*** 0.011 0.032* 0.018 0.198 0.301 

urban district -0.127*** 0.015 -0.158*** 0.024 - - 

Women -4.503*** 0.671 -4.967*** 1.025 -2.786 2.769 

aged 21 to 40 -1.560*** 0.324 -0.969** 0.468 1.786 1.099 

aged 41 to 60  0.910** 0.398 0.414 0.530 0.116 1.013 

aged 61 to 80  -0.756* 0.392 -0.890 0.550 1.976 1.490 

aged above 80  -2.872*** 0.739 -2.085** 1.037 9.909*** 2.692 

unemployment rate -0.706*** 0.156 -0.188 0.153 0.346 0.213 

Income 0.161 0.229 0.338 0.321 -0.887 0.965 

hospitals non-profit 0.011 0.012 0.008 0.017 -0.008 0.037 

hospitals private -0.006 0.012 0.005 0.012 0.009 0.015 

year 2005 0.003 0.007 0.003 0.006 0.004 0.009 

year 2006 -0.012 0.009 -0.002 0.009 0.007 0.016 

state indicators (coefficients expressed as mean-deviations) 

Schleswig-Holstein -0.010 0.016 -0.012 0.027 - - 

Lower Saxony 0.023** 0.011 0.022 0.018 - - 

North Rhine-Westphalia -0.007 0.013 0.006 0.021 - - 

Hesse  -0.044*** 0.014 -0.033 0.023 - - 

Rhineland-Palatinate -0.052*** 0.014 -0.025 0.022 - - 

Baden-Wurttemberg -0.006 0.014 0.008 0.023 - - 

Bavaria -0.040*** 0.013 -0.024 0.020 - - 

Saarland  -0.106*** 0.023 -0.083** 0.040 - - 

Brandenburg 0.036* 0.020 0.025 0.032 - - 

Mecklenburg-West Pomerania 0.013 0.022 -0.009 0.034 - - 

Saxony  0.086*** 0.015 0.068*** 0.024 - - 

Saxony-Anhalt 0.068*** 0.019 0.046 0.029 - - 

Thuringia -0.019 0.017 -0.029 0.027 - - 

city states 0.057 0.038 0.040 0.061 - - 

Constant 3.639*** 0.349 3.768*** 0.541 0.677 1.751 

ρ  -0.206 0.036 -0.334 

σµ - 0.096 0.404 

σς - 0.040 0.039 

σε 0.103 - - 

R
2
 (overall) 0.518 0.508 - 

R
2
 (within) - - 0.041 

joint significance (p-value):      

States 0.000 0.009 - 

hospital ownership 0.494 0.858 0.762 

Age 0.000 0.004 0.003 

Notes: *, **, and *** indicate significance at the 0.1, 0.05, and the 0.01 level, respectively; input oriented order-m (m = 100) efficiency 

scores at the district level serve as dependent variable; regression results based on 1286 district-year observations; years 2004, 2005, and 

2006 considered, spatial weighting matrix based on inverse squared distances. 

We also examine the influence of states on the district-level efficiency of health production. 

The coefficients here represent mean deviations from the average value set at zero; see 

Haisken-DeNew & Schmidt (1997) on how to calculate appropriate standard errors. Clearly, 

the state indicators are jointly significant. Though state dummies capture any persistent 
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differentials in efficiency that are state-specific, this result still points towards a substantial 

impact of state-level health policy on regional efficiency. Individually, the estimated 

coefficients indicate that several East German states (Brandenburg, Saxony, Saxony-Anhalt) 

are among the most efficient – conditional on the control variables – while some West 

German states (notably Saarland, Rhineland-Palatinate, Bavaria and Hesse) display low 

efficiency figures. Moreover, the statistically significant east-west
17

 differential in estimated 

average state effects is 0.067. This might reflect the fact that medical infrastructure was 

renewed in the East after the fall of the Berlin wall. As this process was not influenced 

strongly by district-level politics, the states were able to establish a fairly slim infrastructure. 

By contrast, the process of specialization in inpatient care, including mergers and closures of 

hospitals, has been slow in the West due to political opposition and vested interests. 

Finally, estimation results for the parameters that capture spatial dependence indeed 

indicate that this is a relevant feature of the data. The coefficient λ attached to the spatial 

lag of efficiency scores is highly significant and positive, pointing to substantial positive 

spatial efficiency spillovers. The estimate for ρ, on the other hand, bears a negative sign, 

indicating negative spatial error correlation. By nature, the specific cause of the cross-

section error correlation found in the data is unknown. Hence, one cannot rule out that 

sources of cross-section dependence other than genuine spatial dependence are captured 

by the estimate for ρ.
18 

This applies, for instance, to global shocks exerting heterogeneous 

effects on districts that are not fully captured by the time-specific dummies (Moscone & 

Tosetti, 2010). Nevertheless, the negative sign of ρ corresponds well with our earlier 

reasoning on inter-district patient flows generating a pattern of spatially negatively 

correlated efficiency scores. Hence, we regard cross-border patient migration as the most 

likely explanation for the estimated error correlation pattern. 

Given the empirical relevance of spatial dependence, we examine its impact on the 

estimated coefficients by comparing our results to those obtained from a simple OLS model 

which ignores both spatial spillovers and spatial error correlation; see Table 4. It turns out 

that the OLS model – though apparently misspecifying inter-district dependence – yields 

results similar to those from the spatial autoregressive model. We find the state effects 

jointly significant in both model variants. However, heterogeneity – including the east-west 

pattern for which the differential in average state effects is only half as big and statistically 

insignificant – is less distinct if spatial dependence is ignored. This is most likely due to a 

negative association between the estimated state effects and the state average level of 

spatial dependence (correlation 0.5). That is, on average states that are genuinely more 

efficient benefit less from positive spillover effects. Hence, in a regression that ignores 

spatial dependence and therefore does not disentangle genuine efficiency differentials and 

spillover effects, state effects seem to be smaller. In essence, rather than representing an 

                                                      
17

 City-states are not taken into account. Berlin cannot be classified as either east or west.  
18

 Results for tests on general cross-section dependence (cf. Baltagi & Moscone, 2010) – not necessarily spatial dependence 

– strongly argue in favor of the presence of cross-section dependence in the data. 
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artifact of ignored spatial dependence, state heterogeneity is even more prevalent in the 

efficiency of health production if spatial interdependence is accounted for. 

Applying a random effects model yields similar results. The estimates for σµ and σς indicate 

that roughly 86 percent of the error variance is district-specific.
19

 Hence, unobserved district-

specific heterogeneity is indeed an issue that should be accounted for. Nevertheless, the 

estimated coefficients are very close to our previous results from the pooled model. This 

applies in particular to λ, which is roughly 0.1 and highly significant here as well. Random 

effects estimation also yields a similar pattern of state effects on efficiency, though 

somewhat less distinct in terms of point estimates and statistical significance. With respect 

to the latter, one has to note that standard errors are generally larger for the random effects 

model. The east-west pattern also comes out more clearly here than in the model that 

ignores spatial dependence. Here the east-west differential in estimated average state 

effects is 0.037 for the former compared to 0.013 for the latter. On the other hand, the 

random effects model does not indicate relevant spatial error correlation, as the estimate 

for ρ is virtually zero. Generally, random effects estimation yields slightly larger standard 

errors and, in turn, fewer individually significant coefficients than the pooled model. As the 

latter does not take account of the panel structure of the data, standard errors for the 

random effects model would seem more reliable. 

Finally, we examine results for a fixed effects specification that allows district effects to be 

correlated with the explanatory variables. Interestingly, fixed effects results indicate much 

stronger spatial dependence than our previous specifications. This holds for both λ and ρ, 

the former suggesting substantial positive spillover effects and the latter strong negative 

error correlation.
20

 However, a very low within-R2
 value signals poor explanatory power of 

the within-estimator. And a highly significant and large positive effect of the share of elderly 

people – counter to intuition – raises further suspicion about these results. In general, a 

fixed effects approach seems ill-suited for our data, which display very little variation across 

periods. Hence, we prefer the random effects model to the fixed effects one.  

All in all, our empirical analysis points to significant spatial dependence of health production 

efficiency at the district level. Firstly, the results indicate that net patient flows result in 

misleading district efficiency estimates. Secondly, spatial spillovers are clearly present in 

health production, as districts benefit from efficient service provision in neighboring 

districts. Thirdly, accounting for spatial spillovers does not remove state-specific 

heterogeneity in district efficiency. Rather, the variance in estimated state effects increases 

if spatial dependence between districts is considered. This increases confidence in state 

dummies indeed capturing the impact of state-level health policy on efficiency. 
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2 2 2 1

ˆ ˆ ˆ( )µ µ ςσ σ σ
−

+ = 0.86. 

20
 Fixed effects estimation does not allow for the inclusion of time-invariant explanatory variables. Hence, we cannot 

address state effects directly. But regressing estimates for µi on the time-invariant regressors yields highly significant 

state effects. 
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Table 4: Results for models not considering spatial dependence 

 Pooled Random Effects Fixed Effects 

 Estimate S.E. Estimate S.E. Estimate S.E. 

spatial lag (λ) - - - - - - 

Population -0.065*** 0.022 -0.061* 0.036 0.212 1.258 

population density 0.058*** 0.011 0.051*** 0.018 0.401 0.298 

urban district -0.127*** 0.015 -0.157*** 0.025 - - 

Women -4.399*** 0.692 -4.750*** 1.055 -2.397 2.821 

aged 21 to 40 -1.421*** 0.335 -0.935* 0.481 0.984 1.112 

aged 41 to 60  1.413*** 0.407 0.724 0.536 -0.138 1.066 

aged 61 to 80  -0.630 0.404 -0.924 0.565 0.477 1.445 

aged above 80  -3.570*** 0.760 -2.340** 1.059 9.254*** 2.788 

unemployment rate -0.555*** 0.161 -0.063 0.152 0.377* 0.224 

Income 0.418* 0.237 0.527 0.325 -0.047 0.882 

hospitals non-profit 0.006 0.012 0.004 0.018 -0.007 0.037 

hospitals private -0.007 0.012 0.003 0.012 0.009 0.015 

year 2005 -0.003 0.008 -0.001 0.006 -0.003 0.009 

year 2006 -0.018* 0.010 -0.007 0.009 -0.004 0.015 

state indicators (coefficients expressed as mean-deviations) 

Schleswig-Holstein -0.020 0.017 -0.024 0.028 - - 

Lower Saxony 0.033*** 0.012 0.030 0.019 - - 

North Rhine-Westphalia 0.007 0.013 0.015 0.021 - - 

Hesse  -0.013 0.014 -0.010 0.023 - - 

Rhineland-Palatinate -0.018 0.014 -0.001 0.022 - - 

Baden-Wurttemberg 0.014 0.015 0.021 0.023 - - 

Bavaria -0.015 0.013 -0.004 0.019 - - 

Saarland  -0.097*** 0.025 -0.074* 0.041 - - 

Brandenburg -0.002 0.020 -0.002 0.032 - - 

Mecklenburg-West Pomerania -0.034 0.022 -0.043 0.034 - - 

Saxony  0.082*** 0.015 0.065*** 0.025 - - 

Saxony-Anhalt 0.060*** 0.020 0.045 0.030 - - 

Thuringia -0.026 0.018 -0.031 0.028 - - 

city states 0.030 0.039 0.013 0.063 - - 

Constant 3.373*** 0.359 3.549*** 0.555 1.065 1.777 

ρ  - - - 

σµ - 0.099 0.398 

σς - 0.040 0.040 

σε 0.106 - - 

R
2
 (overall) 0.505 0.494 - 

R
2
 (within) - - 0.053 

joint significance (p-value):      

States 0.000 0.015 - 

hospital ownership 0.674 0.955 0.763 

Age 0.000 0.001 0.011 

Notes: *, **, and *** indicate significance at the 0.1, 0.05, and the 0.01 level, respectively; input oriented order-m (m = 100) efficiency 

scores at the district level serve as dependent variable; regression results based on 1286 district-year observations; years 2004, 2005, and 

2006 considered. 

Accounting for spatial dependence yields fairly small effects on estimation results for the 

determinants of district-level efficiency. Nevertheless, this still substantially alters the 

structure of the model, in particular the marginal effects that exhibit substantial 

heterogeneity across districts due to spillover and feedback effects. If, for instance, health 
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policy in one state managed to initially increase efficiency within the state, spatial spillovers 

will make this effect carry over to neighboring regions in other states. Moreover, federal 

policies with a uniform effect of e.g. one percentage point on efficiency in all districts will 

result in heterogeneous equilibrium effects ranging from 1.02 to 1.23 percentage points in 

the districts, with regional heterogeneity exhibiting the pattern illustrated in Figure 1. 

Analyses ignoring spatial spillovers would miss both effects. 

Our main results are robust to several variations of the specification of the model, in 

particular to the choice of the spatial weighting matrix as well as to the choice of m for 

estimating order-m efficiencies. Even the use of DEA-efficiency scores – ignoring the 

shortcomings discussed earlier – yields similar results to those presented. Only if we employ 

an output-oriented efficiency measure rather than an input-oriented one do results not 

indicate strong spatial dependence in efficiency. 

 

6  Conclusions 

This paper investigates potential spatial dependence in the district-specific efficiency of 

health production in Germany. If spatial dependence applies – more specifically: if regional 

efficiency follows a spatial autoregressive process – regular empirical analyses might be 

biased and result in misleading policy advice. Our initial descriptive analysis of efficiency at 

the district level reveals patterns that indicate the presence of spatial error correlation 

and/or spatial spillovers. The subsequent regression analysis supports this conjecture, as we 

detect both significant spatial error correlation and spatial spillovers.  

Estimation results indicate that federal state-specific heterogeneity does not vanish once 

spatial dependence is controlled for. Rather, state differentials are even more prominent in 

the model specifications considering spatial spillovers. This supports the notion that state 

indicators do indeed capture the effects of state policy on the efficiency of health 

production. Our spatial regression analysis hence confirms the important role of states 

which has been found in several empirical studies. In turn, state efficiency differentials do 

not represent an artifact of (ignored) spatial dependence. Inefficient states are, thus, well 

advised to review and adjust the regulation of health care provision. 

We conclude that spatial dependence represents a major feature of district-level efficiency 

in health production in Germany. Empirical applications using regionally disaggregated 

health care data should therefore consider taking spatial dependence into account. This 

applies particularly if the focus is on quantitative effects of exogenous changes that are 

relevant not just to one but potentially to all districts. 
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Appendix A: A modified Simar & Wilson procedure 

Following the estimation of β̂ , λ̂ , ρ̂ , and σ̂  obtained by the Kelejian & Prucha (1998) 

approach, we apply and attune the four-step procedure by Simar & Wilson (2007) to the 

spatial autoregressive model: 

1. A vector 
dεɶ  of independent errors is drawn from the ( )2ˆ0,N σ  distribution and an 

artificial, spatially correlated error vector 
dξɶ  is computed as ( ) 1ˆ dI Mρ ε−− ɶ . 

2. From this, a vector of artificial bootstrap efficiency scores is derived as 

( ) ( )1ˆ ˆd dy I W Xλ β ξ
−

= − + ɶɶ . 

3. dyɶ  is used as dependent variable to obtain bootstrap estimates ˆdβ  and ˆdλ , once 

again following the estimation procedure of Kelejian & Prucha (1998). 

4. Steps 1 to 3 are repeated D times, with 1, ,d D= … , and standard errors for β̂  and 

λ̂  are computed from the bootstrap distribution of ˆdβ  and ˆdλ . 

In contrast to the original Simar & Wilson (2007) procedure, neither drawing from the 

truncated normal distribution nor truncated regression is required, as order-m efficiencies – 

unlike DEA efficiency scores – are not bounded from above. In our application we choose D

= 250. While the described procedure yields standard errors for β̂  and λ̂  that are robust to 

efficiency measurement-induced error correlation, this does not apply to ρ̂  and σ̂ , as 

these estimates enter the distribution from which the bootstrap error vector 
dξɶ  is drawn. 

Moreover, the estimate for ρ  will eventually capture efficiency measurement-induced error 

correlation along with spatial error correlation. 
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Appendix B: Results for alternative model specifications 

 

 Table B.1: Descriptive statistics for alternative efficiency measures (pooled) 

Efficiency Measure Mean S.D. Median Min Max 
Super-efficient 

(share) 

DEA (var. returns, input-oriented) 0.746 0.107 0.741 0.448 1.000 0.000 

FDH (input-oriented) 0.798 0.128 0.798 0.448 1.000 0.000 

order-m (m = N, input-oriented) 0.808 0.126 0.812 0.452 1.106 0.059 

order-m (m = 250, input-oriented) 0.819 0.127 0.826 0.460 1.371 0.073 

order-m (m = 100, input-oriented)
a 

 0.850 0.149 0.856 0.484 2.457 0.107 

order-m (m = 50, input-oriented) 0.886 0.209 0.880 0.507 3.863 0.156 

order-m (m = 25, input-oriented) 0.935 0.324 0.912 0.533 6.213 0.226 

order-m (m = 10, output-oriented) 0.912 0.072 0.912 0.709 1.118 0.120 

Notes:
 a
 preferred measure; descriptive statistics are reported for the pooled sample, i.e. 1286 district-year observations; years 2004, 2005, 

and 2006 considered; efficiency scores are estimated separately for each year.  
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Table B.2: Regression results for alternative efficiency measures (pooled regression) 

 order-m (50) order-m (250) DEA 

 Estimate S.E. Estimate S.E. Estimate S.E. 

spatial lag (λ) 0.187*** 0.019 0.051*** 0.013 0.074*** 0.014 

population -0.051 0.035 -0.040** 0.016 -0.038** 0.015 

population density 0.028* 0.017 0.045*** 0.008 0.035*** 0.008 

urban district -0.123*** 0.024 -0.127*** 0.011 -0.084*** 0.010 

women -4.730*** 1.076 -4.595*** 0.510 -3.465*** 0.473 

aged 21 to 40 -1.624*** 0.518 -1.497*** 0.247 -1.118*** 0.229 

aged 41 to 60  1.992*** 0.636 0.291*** 0.305 0.450 0.284 

aged 61 to 80  -0.407 0.630 -0.992 0.297 -0.408 0.276 

aged above 80  -3.689*** 1.190 -2.293*** 0.561 -3.639*** 0.521 

unemployment rate -0.904*** 0.248 -0.653*** 0.121 -0.483*** 0.113 

income -0.201 0.361 0.552*** 0.179 0.629*** 0.167 

hospitals non-profit 0.020 0.019 0.000 0.009 0.005 0.008 

hospitals private -0.009 0.019 -0.008 0.009 -0.006 0.008 

year 2005 -0.001 0.011 0.009 0.007 0.012* 0.007 

year 2006 -0.024* 0.014 -0.004 0.008 0.015** 0.008 

state indicators (coefficients expressed as mean-deviations) 

Schleswig-Holstein 0.021 0.025 -0.012 0.027 -0.029** 0.012 

Lower Saxony 0.035** 0.017 0.022 0.018 0.018** 0.008 

North Rhine-Westphalia -0.009 0.020 0.006 0.021 -0.004 0.010 

Hesse  -0.068*** 0.021 -0.033 0.023 -0.017* 0.011 

Rhineland-Palatinate -0.069*** 0.021 -0.025 0.022 -0.035*** 0.011 

Baden-Wurttemberg -0.023 0.022 0.008 0.023 0.009 0.011 

Bavaria -0.012 0.020 -0.024 0.020 -0.049*** 0.009 

Saarland  -0.129*** 0.036 -0.083** 0.040 -0.065*** 0.018 

Brandenburg 0.023 0.032 0.025 0.032 0.032** 0.014 

Mecklenburg-West Pomerania 0.028 0.034 -0.009 0.034 -0.004 0.016 

Saxony  0.075*** 0.023 0.068*** 0.024 0.067*** 0.011 

Saxony-Anhalt 0.044 0.030 0.046 0.029 0.064*** 0.014 

Thuringia -0.040 0.027 -0.029 0.027 -0.011 0.012 

city states 0.125** 0.061 0.040 0.061 0.025 0.027 

constant 3.561*** 0.557 3.749*** 0.267 2.857*** 0.248 

ρ  -0.470 0.198 0.266 

σε 0.166 0.078 0.072 

R
2
 0.345 0.625 0.547 

joint significance (p-value):      

states 0.000 0.000 0.000 

hospital ownership 0.440 0.638 0.561 

age 0.000 0.000 0.000 

Notes: *, **, and *** indicate significance at the 0.1, 0.05, and the 0.01 level, respectively; input oriented order-m efficiency (m = 100, m  

= 250) and DEA input oriented efficiency scores at the district level serve as dependent variables; regression results based on 1286 

district-year observations; years 2004, 2005, and 2006 considered, spatial weighting matrix based on inverse squared distances. 
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Table B.3: Results for the Model using contiguity spatial weighting matrix 

 Pooled Random Effects Fixed Effects 

 Estimate S.E. Estimate S.E. Estimate S.E. 

spatial lag (λ) 0.047*** 0.018 0.085*** 0.026 0.281*** 0.097 

population -0.054** 0.022 -0.045 0.036 0.606 1.197 

population density 0.042*** 0.012 0.030 0.018 0.193 0.292 

urban district -0.127*** 0.015 -0.152*** 0.024 - - 

women -4.644*** 0.682 -4.956*** 1.030 -2.329 2.739 

aged 21 to 40 -1.257*** 0.332 -0.913* 0.469 1.723 1.048 

aged 41 to 60  1.253*** 0.413 0.485 0.529 0.240 0.987 

aged 61 to 80  -0.630 0.401 -0.991* 0.551 1.705 1.374 

aged above 80  -3.186*** 0.766 -1.763* 1.051 9.530*** 2.604 

unemployment rate -0.568*** 0.162 -0.130 0.151 0.343 0.211 

income 0.449* 0.241 0.405 0.318 -0.684 0.881 

hospitals non-profit 0.007 0.012 0.008 0.018 -0.012 0.037 

hospitals private -0.005 0.012 0.004 0.012 0.007 0.015 

year 2005 0.000 0.009 0.001 0.006 0.001 0.009 

year 2006 -0.017 0.011 -0.005 0.009 0.003 0.015 

state indicators (coefficients expressed as mean-deviations) 

Schleswig-Holstein -0.019 0.017 -0.021 0.027 - - 

Lower Saxony 0.026** 0.012 0.020 0.018 - - 

North Rhine-Westphalia -0.003 0.015 0.001 0.021 - - 

Hesse  -0.022 0.015 -0.025 0.022 - - 

Rhineland-Palatinate -0.021 0.015 -0.022 0.022 - - 

Baden-Wurttemberg 0.010 0.015 0.018 0.022 - - 

Bavaria -0.023* 0.013 -0.014 0.019 - - 

Saarland  -0.103*** 0.026 -0.082** 0.040 - - 

Brandenburg 0.013 0.021 0.020 0.032 - - 

Mecklenburg-West Pomerania -0.019 0.023 -0.019 0.033 - - 

Saxony  0.083*** 0.016 0.069*** 0.024 - - 

Saxony-Anhalt 0.064*** 0.021 0.048* 0.029 - - 

Thuringia -0.027 0.018 -0.025 0.027 - - 

city states 0.041 0.039 0.033 0.062 - - 

constant 3.485*** 0.359 3.733*** 0.543 0.493 1.741 

ρ  0.334 -0.027 -0.480 

σµ - 0.097 0.420 

σς - 0.040 0.039 

σε 0.104 - - 

R
2
 (overall) 0.510 0.501 - 

R
2
 (within) - - 0.041 

joint significance (p-value):      

states 0.000 0.010 - 

hospital ownership 0.733 0.865 0.798 

age 0.000 0.007 0.003 

Notes: *, **, and *** indicate significance at the 0.1, 0.05, and the 0.01 level, respectively; input oriented order-m (m  = 100) efficiency 

scores at the district level serve as dependent variable; regression results based on 1286 district-year observations; years 2004, 2005, and 

2006 considered. 
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Table B.4: Initial 2SLS estimates (pooled model) 

  

 Estimate HAC standard errors 

spatial lag (λ) 0.098*** 0.027 

population -0.048 0.039 

population density 0.040** 0.016 

urban district -0.130*** 0.033 

women -4.634*** 1.794 

aged 21 to 40 -1.439*** 0.546 

aged 41 to 60  0.982 0.706 

aged 61 to 80  -0.604 1.103 

aged above 80  -3.125** 1.458 

unemployment rate -0.729** 0.349 

income 0.181 0.356 

hospitals non-profit 0.011 0.031 

hospitals private -0.004 0.071 

year 2005 0.004 0.011 

year 2006 -0.011 0.017 

state indicators (coefficients expressed as mean-deviations) 

Schleswig-Holstein -0.011 0.018 

Lower Saxony 0.023 0.018 

North Rhine-Westphalia -0.004 0.024 

Hesse  -0.040* 0.024 

Rhineland-Palatinate -0.046* 0.025 

Baden-Wurttemberg -0.003 0.030 

Bavaria -0.038 0.030 

Saarland  -0.107*** 0.024 

Brandenburg 0.031 0.037 

Mecklenburg-West Pomerania 0.007 0.053 

Saxony  0.086*** 0.026 

Saxony-Anhalt 0.067* 0.038 

Thuringia -0.023 0.042 

city states 0.059 0.057 

constant 3.640*** 0.901 

R
2
 0.519 

joint significance (p-value):  

states 0.000 

hospital ownership 0.928 

age 0.000 

Notes: *, **, and *** indicate significance at the 0.1, 0.05, and the 0.01 level, respectively; computation of HAC standard errors 

based on (i) a Parzen kernel, (ii) raw travel time as distance measure, (iii) travel time of 45 minutes as bandwidth parameter; 

input oriented order-m (m  = 100) efficiency scores at the district level serve as dependent variable; regression results based on 

1286 district-year observations; years 2004, 2005, and 2006 considered; the spatial lag is calculated using inverse squared 

distances. 

 

 


