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Abstract 

Gender Differences in Tournament Choices:  
Risk Preferences, Overconfidence or Competitiveness? 

by Roel van Veldhuizen* 

A large number of recent experimental studies show that women are less likely to sort into 
competitive environments. While part of this effect may be explained by gender 
differences in risk attitudes and overconfidence, previous studies have attributed the 
majority of the gender gap to gender differences in a separate ‘competitiveness’ trait. We 
re-examine this result using a powerful novel experimental technique that allows us to 
separate competitiveness from alternative explanations by experimental design. In 
contrast to the literature, the results from our experiment imply that the whole gender 
gap is driven by risk attitudes and overconfidence. We show that our results are due to our 
experimental approach, which circumvents concerns raised against the regression-based 
method used by previous studies. Our results have important implications for policy and 
future research. 
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I. Introduction

Increased gender parity in the labor market remains an important policy goal.1

Women earn lower wages for similar positions, and are under-represented in positions

of leadership (Goldin, 2014). In order to better understand and reduce the gender

gap, it is important to know its causes. Traditional explanations focus on gender

discrimination, family, preferences for certain occupations, and a number of other

factors (see e.g., Goldin, 2014, for an overview).

More recently, a number of highly influential studies have noted that prestigious

and lucrative jobs often take place in competitive environments. Starting with the

seminal work of Niederle and Vesterlund (2007), these studies suggest that women

have a lower willingness to seek out such environments. This idea has received support

from a large number of laboratory experiments (see e.g., Almås et al., 2016; Dreber,

von Essen, and Ranehill, 2014; Gillen, Snowberg, and Yariv, 2015; Reuben, Wiswall,

and Zafar, 2015, and others).

But what is it about competition that attracts men but pushes women away?

While part of the effect may be explained by gender differences in overconfidence and

risk preferences, the current view is that the majority of the gap can be explained by

gender differences in competitive attitudes (see e.g., Niederle and Vesterlund, 2011;

Niederle, 2016; Buser, Niederle, and Oosterbeek, 2014, or the literature review be-

low). Indeed, the identification of ‘competitiveness’ as a separate trait – independent

of risk preferences, overconfidence, and other factors – is often regarded as a key con-

tribution of this literature (Bertrand, 2011; Gillen, Snowberg, and Yariv, 2015). This

is particularly evident in recent work that examines whether laboratory measures of

1. Many organizations and governments have set up specialized task forces, including the US
government, the European Union, and the World Economic Forum. Examples of affirmative action
policies include the Lilly Ledbetter Fair Pay Act of 2009 in the US, and Norway’s policy that there
is at least a 40% minimum of female board members.
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‘competitiveness’ are predictive of real world labor market outcomes (Buser, Niederle,

and Oosterbeek, 2014; Reuben, Sapienza, and Zingales, 2015; Berge et al., 2015).

By contrast, this study presents evidence that the importance of the competitive-

ness trait is considerably smaller than previously thought. We use a novel experimen-

tal approach that allows us to differentiate between risk preferences, overconfidence

and competitiveness by experimental design. We start by replicating Niederle and

Vesterlund’s (2007) seminal laboratory experiment in which participants are tasked

with solving addition problems and have to choose whether to be paid according to

piece rate or tournament incentives. We then directly compare this choice to several

(within-subject) control treatments where competitiveness and/or overconfidence are

controlled for by design.

The results are striking. Like previous studies, we find a large gender gap in

competitive choices. But unlike these studies, our results imply that the whole gender

gap is explained by gender differences in risk attitudes and overconfidence. Women

are less confident and more risk averse than men, and this is what causes them to sort

out of the tournament. Taken together, the results from our four treatments imply

that gender differences in overconfidence, risk attitudes, and their interaction effect

explain 48%, 28%, and 37% of the gender gap respectively. In sharp contrast to the

literature, competitiveness explains -13% of the gender gap in competitive choices.

Why do our results differ so strongly from the existing literature? We identify the

effect of competitiveness using direct treatment comparisons. By contrast, previous

studies have used an indirect approach, where risk preferences and overconfidence are

controlled for using regressions, and the residual gender gap is then attributed to com-

petitiveness. We compare the two approaches using our data and the data from seven

previous experiments, and show that the regression-based method overestimates the

importance of competitiveness by approximately 50 percentage points. We therefore
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contribute to a recent discussion highlighting the pitfalls of controlling for important

confounds using regressions (Green, Ha, and Bullock, 2010; Gillen, Snowberg, and

Yariv, 2015; Westfall and Yarkoni, 2016), and propose a new way to circumvent these

issues by experimental design.

Our results have important implications. The idea that women are less compet-

itive than men has been very influential.2 Our results imply that the gender gap in

tournament choices is instead a manifestation of gender differences in risk attitudes

and overconfidence, not a separate competitiveness trait.3 This implies that future

research and policies aiming to better understand or reduce gender differences in la-

bor market outcomes would do well to focus on overconfidence, risk attitudes, and

other factors not captured by these experiments, rather than competitiveness.

These results are also important because risk preferences and overconfidence (i.e.,

beliefs) are the main ingredients of decision theory. A long research tradition in this

area has greatly expanded our knowledge of how these factors can best be modeled and

measured, and has greatly increased our understanding of individual differences. This

has made it possible to do structural analyses, counterfactual predictions, theoretical

evaluations, policy recommendations, etc. By contrast, we are not aware of any study

that attempts to model competitiveness, or indeed measures it directly. In this sense,

our results are therefore reassuring. Rather than requiring further research into a

2. As of August 2016, Niederle and Vesterlund (2007) has been cited more than 1,400 times
(Google Scholar). The idea has also received wide media coverage, for recent examples see
www.washingtonpost.com/news/storyline/wp/2015/01/02/why-do-some-studies-show-that-women-
are-less-competitive-then-men/
or www.economist.com/news/finance-and-economics/21692938-lesbians-tend-earn-more-
heterosexual-women-girl-power.

3. The importance of separating competitiveness from competing explanations has previously
been noted by Bertrand (2011), who writes that “Future research in this area should also aim to
confirm that the gender differences in performance in competitive settings and willingness to enter
competitive settings are more than just a reflection of already identified gender differences, such as
attitudes towards risk and overconfidence.” For a similar argument see Flory, Leibbrandt, and List
(2015).
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novel, not yet well-understood concept (competitiveness), they imply that policy and

future research can address the gender gap using the well-understood and much-tested

theory on decision under risk and uncertainty.

Hence, we contribute to the literature in three ways. First, we present a powerful

new experimental technique to directly identify the effect of competitiveness and

separate it from overconfidence and risk attitudes. Second, we show that the gender

difference in tournament choices is caused by gender differences in risk preferences

and overconfidence, and not a separate competitiveness trait, which has important

implications for policy and future research. Third, we introduce and illustrate the

general usefulness of direct treatment comparisons as a way to avoid the problems

inherent to the indirect regression approach that has become standard in much of the

experimental literature.

II. Literature Review

This study is motivated by a large literature that studies gender differences in

competitive choices. Most evidence comes from laboratory experiments, typically

variations of Niederle and Vesterlund’s (2007) seminal design. In these experiments,

participants work on real-effort tasks and are asked to choose their remuneration

scheme. Typically, participants have two options, a piece rate and a winner-takes-all

tournament. The tournament involves actively competing against other participants,

and is therefore considered to be the more competitive environment. The standard

result is that women are significantly less likely to choose the tournament. This result

has been replicated in a large number of studies, discussed below.

There are at least three reasons why men and women may differ in their tendency

to sort into the tournament. First, the tournament is riskier than the piece rate.
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Participants who choose the winner-takes-all tournament end up with nothing if they

fail to win. There is considerable evidence that women are more risk averse than men,

though the exact gap varies in size and significance (Croson and Gneezy, 2009; Filippin

and Crosetto, 2016). Gender differences in risk preferences therefore provide one

potential explanation as to why women are less likely to opt for a risky tournament

environment.

A second explanation is that men and women differ in their beliefs or overconfi-

dence. Previous experiments investigating gender differences in competitive choices

almost universally find that men are more overconfident than women. For example,

Niederle and Vesterlund (2007) find that 75% of men and 43% of women think they

are the best performer in a four-person group. Being more overconfident, men are

more optimistic about their chances of success, which could in turn make them more

likely to choose the tournament.

Finally, it has been argued that men may also be more competitive than women.

In this view, competitiveness (i.e., a preference for competition) is seen as a trait

that is independent from factors such as risk preferences or overconfidence (see e.g.,

Niederle, Segal, and Vesterlund, 2013; Buser, Niederle, and Oosterbeek, 2014; Gneezy,

Pietrasz, and Saccardo, 2016). Thus, even in cases where men and women are equally

risk tolerant and equally confident in their abilities, women may still be less likely to

select into competitive environments because they lack the required taste for tour-

naments. This idea was first introduced by Niederle and Vesterlund (2007) and has

since become very influential.4

The popularity of the competitiveness explanation is based on the claim that it has

large explanatory power above and beyond risk attitudes and beliefs/overconfidence.

4. Additional explanations for the gender gap in tournament choices include gender differences in
ability, social preferences, ambiguity attitudes, and feedback aversion. We cover these explanations
in more detail in the discussion.
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Figure I: Previous Estimates of the Importance of Competitiveness

Notes. The figure plots the fraction of the total gender difference in tournament
choices that is attributed to gender differences in competitiveness. Each dot represents
the result of a single experiment. For more details concerning the individual studies,
see Table VI in Appendix A2.

Niederle and Vesterlund (2007) support this claim by econometrically controlling for

laboratory measures of risk attitudes and beliefs. While these variables explain part

of the gender gap, a large and significant gender gap remains. They interpret this

residual gender gap as the effect of competitiveness. Specifically, they conclude that

“the residual ‘competitive’ component is 43 percent” (p. 1096) of the original gender

gap.

A similar approach is used in a large number of studies, summarized in Figure

I. On average, controlling for overconfidence and risk preferences eliminates 31% of

the gender difference in tournament choices. The residual gender gap (69%) is then

attributed to gender differences in competitiveness.
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The finding that competitiveness explains most of the gender gap in tournament

choices is an important result. Risk attitudes and beliefs (and hence overconfidence)

are the main ingredients of standard decision theory. Both they and their gender dif-

ference are therefore relatively well understood. By contrast, the competitiveness ex-

planation is relatively novel, having first been introduced by Niederle and Vesterlund

in 2007. Its implied importance therefore created an immediate need for follow-ups in-

vestigating its drivers and correlates, and ways in which its effect could be mitigated

through policy design. It has also allowed the literature to start linking tourna-

ment choices directly to real-world outcomes (Buser, Niederle, and Oosterbeek, 2014;

Reuben, Sapienza, and Zingales, 2015; Berge et al., 2015), and to interpret ensuing

correlations as evidence that a ‘competitiveness trait’ can explain gender differences

in these real-world outcomes.

To our knowledge, the regression-based method summarized in Figure I is the

only method used in the literature to quantify the importance of competitiveness.

However, it is not entirely without controversy. It relies heavily on the ability of

regression techniques to successfully control for every relevant factor (other than

competitiveness). In practice, it may not be possible to control for every relevant

variable and, even when it is, measurement error and misspecification may bias the

results (Hausman, 2001; Green, Ha, and Bullock, 2010; Gerber and Green, 2012;

Westfall and Yarkoni, 2016). In particular, Gillen, Snowberg, and Yariv (2015) show

that measurement error in laboratory measures of risk attitudes and beliefs leads to a

systematic upward bias in the implied importance of competitiveness. If these effects

are important, the true impact of competitiveness may therefore be substantially

smaller than the 69% implied by Figure I.

Given the importance of this literature and the potential concerns with regression-

based identification techniques, it therefore seems critical that the importance of com-
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petitiveness is established using a different method. This is the purpose of our paper.

We distinguish competitiveness from alternative explanations by directly comparing

tournament choices to individual-specific control treatments. This allows us to esti-

mate the impact of competitiveness on tournament choices, while circumventing the

concerns raised by Gillen, Snowberg, and Yariv (2015) and others.

III. Design

The experiment consisted of six tasks. The first three tasks were a direct replica-

tion of Niederle and Vesterlund (2007). The remaining tasks were used to differentiate

between the three competing explanations.

The experiment was conducted at the experimental economics laboratory of the

Technical University of Berlin. There were six sessions, one with 20 participants and

five with 24. Each session had an equal number of men and women, for a total of

140 participants (70 men and 70 women). The experiment was programmed using

PHP/MySql, and participants were recruited using ORSEE (Greiner, 2015).

Participants were assigned to a random computer upon entering the laboratory.

They received an 8e show-up fee for the experiment, and were told that they would

have to complete six separate tasks, one of which would be randomly selected for

payment. Instructions for the respective tasks were only provided after the previous

task had ended, feedback on earnings and performance was only provided at the end

of the experiment. All instructions can be found in Appendix B.

III.A. Replication

The first three tasks in the experiment were identical to Tasks 1–3 in Niederle

and Vesterlund (2007) and many subsequent studies. In each task, participants had
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five minutes to solve addition problems consisting of five two-digit numbers. Each

participant faced the same sequence of problems in each task, which was randomly

determined before the first session. After participants submitted their answer, they

learned whether it was correct and were simultaneously presented with the next ex-

ercise.

The three tasks differed only in their incentive schemes. In Task 1 (Piece Rate),

participants were paid 50 cents per correct answer. In Task 2 (Tournament), partic-

ipants were matched into groups of four. In each group, the top performer was paid

2e for each correct answer. Second, third, and fourth-placed participants did not

receive any payment. In case of a tie, the computer randomly drew one of the top

performers as the winner.

In Task 3 (Choice), participants had to choose whether they wanted to apply piece

rate or tournament incentives to their next performance. Tournament incentives were

such that participants earned 2e per correct answer in case their score exceeded the

score of their teammates in Task 2. This guaranteed that participants’ actions in

Task 3 did not impose externalities on the earnings of other participants.

III.B. Identifying Competitiveness

Our identification strategy in this experiment relies on comparing the choices made

in Task 3 (the ‘baseline’) to the decisions made in individual-specific control treat-

ments. Let us therefore start by considering the decision process of a participant i in

Task 3. Suppose she expects to solve xi exercises, and expects to win the tournament

with probability psi. This implies that her choice will be as follows.
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Baseline (Task 3)

Piece Rate Tournament

0.5xi psi chance of getting 2xi

Standard expected utility theory predicts that participant i will choose the tour-

nament if:

(1) psiU(2xi) > U(0.5xi)

This requires the participant to be sufficiently confident (psi large enough) and not too

risk averse (as reflected by the curvature of her utility function U). Competitiveness,

by contrast, implies that tournament payoffs are evaluated through a different utility

function UT (). In this case, participant i chooses the tournament if:

(2) psiUT (2xi) > U(0.5xi)

If competitiveness is unimportant, UT () = U(), and hence (1) and (2) are identical.

By contrast, if competitiveness is important, they may differ. For example, for a

participant who is sufficiently competitive, it is possible that psiUT (2xi) > U(0.5xi),

even when psiU(2xi) < U(0.5xi).

To identify the importance of competitiveness, we compare the baseline to our

first control treatment, which presents participant i with the following choice:

Treatment NoComp

Fixed Amount Lottery

0.5xi psi chance of getting 2xi

10



Treatment NoComp is a non-competitive version of the baseline. As with the

baseline, the choice is between obtaining 0.5xi with certainty and obtaining 2xi with

probability psi. The key difference is that the second option is now a lottery instead

of a tournament. Otherwise, the payoffs are constructed to closely approximate the

payoffs of the baseline.

Note that while we present treatment NoComp here in a way that makes the

similarity to the baseline somewhat obvious, this was not the case in the experiment.

The exact procedure we use to elicit treatment NoComp is described below.

Our identification strategy assumes that competitiveness can explain choices in

the baseline, but not in treatment NoComp, while the effect of risk attitudes and

beliefs is identical in the two cases. The former is achieved by transforming the

right option into a lottery, which is no longer competitive. The latter is achieved by

constructing treatment NoComp to have the same payoff structure as the baseline.

A more formal discussion of our identifying assumption is presented in the discussion

and Appendix A4.

Hence, irrespective of competitiveness, participant i in treatment NoComp chooses

the lottery if:

(3) psiU(2xi) > U(0.5xi)

We are interested in gender differences. If competitiveness is unimportant, the choice

(3) faced in treatment NoComp is identical to the choice (1) faced in the baseline.

In this case, the gender difference in treatment NoComp and the baseline should

be identical. By contrast, the literature tells us that competitiveness matters, and
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women W are less competitive than men M , i.e.,

UT,W (2xi)− UW (2xi) < UT,M(2xi)− UM(2xi)

It is easy to see that the gender difference should then be smaller in treatment No-

Comp. Intuitively, transforming the tournament into a non-competitive lottery makes

it less attractive to competitive types and more attractive to the competition-averse.

If the former group is composed primarily of men and the latter primarily of women

(as suggested by the literature), more women and fewer men should choose the lottery

in treatment NoComp. Hence, we can identify the importance of competitiveness by

comparing the gender gap across treatment NoComp and the baseline.

III.C. Risk Preferences and Overconfidence

To also distinguish between overconfidence (i.e., beliefs) and risk preferences, we

present participants with a second alternative:

Treatment JustRisk

Fixed Amount Lottery

0.5xi poi chance of getting 2xi

Treatment JustRisk is similar to NoComp, except that the lottery is based on

participant i’s true objective probability of winning the tournament (poi ). Replacing

psi with poi eliminates the effect of overconfidence (which is defined as psi − poi ). This

is important, because the literature tells us that men are more overconfident than

women (i.e., psM − poM > psW − poW > 0). By eliminating the effect of overconfidence,

we can compare treatment JustRisk to treatment NoComp to separate overconfidence

from risk preferences.
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Specifically, replacing psi with poi makes the lottery less attractive to overconfident

participants. While this makes both genders less prone to choose the lottery if over-

confidence is important, the effect will be larger for men, who are likely to be more

overconfident. If overconfidence is important, the gender difference will therefore be

smaller in treatment JustRisk than in treatment NoComp.

By eliminating the other two explanations, treatment JustRisk also allows us to

establish the importance of risk preferences. If risk preferences are important, there

should still be a gender gap in treatment JustRisk. Even when both genders face

equally attractive lotteries, men will be more likely to choose them if they are more

tolerant to taking risks. We can therefore use the gender gap in treatment JustRisk

as an estimate of the importance of risk preferences.

III.D. Interaction Effects

By using linear regressions and related techniques such as probit, the literature

has implicitly assumed that (latent) tournament choices are a linear function of risk

preferences, beliefs, and competitiveness. In practice, however, the relationship may

be non-linear and characterized by interaction effects.

For example, standard expected utility theory (equation (1)) predicts that risk

preferences and beliefs interact in a non-linear way. Intuitively, pessimistic partici-

pants (psi close to zero) will always choose the piece rate, regardless of their risk prefer-

ences, because it has a much higher expected value. Similarly, optimistic participants

(psi close to one) will always choose the tournament, unless they are extremely risk

averse. By contrast, for more intermediate beliefs, the expected values of the two

options are more similar, and risk preferences may start to matter. Expected utility

theory therefore predicts a non-linear interaction effect between risk preferences and
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beliefs, where risk preferences matter most for intermediate beliefs. To our knowl-

edge, we are the first to examine this interaction effect in the literature on gender

differences in tournament choices.

To identify the importance of this interaction effect, we run a final treatment,

treatment IntEff:

Treatment IntEff

Fixed Amount Lottery

0.5xi pni chance of getting 2xi

The goal of treatment IntEff is to eliminate gender differences in overconfidence

(pnM = pnW ), without eliminating overconfidence per se (pni > poi still). pni can be

thought of as the gender-neutral version of participant i’s subjective belief. One way

to construct gender-neutral beliefs is to replace the subjective beliefs psi of all men with

beliefs drawn from the belief distribution of the women. More details are presented

below.

Treatment IntEff allows us to separate the direct effect of overconfidence from its

interaction with risk preferences. As a first step, the comparison between treatment

IntEff and NoComp establishes the importance of the direct effect of overconfidence.

Relative to NoComp, treatment IntEff eliminates the gender difference in overcon-

fidence. Any gender gap observed in treatment IntEff can therefore no longer be

attributed to the direct effect of overconfidence. Hence, if men are more overconfi-

dent and the direct effect of overconfidence is important, the gender gap in treatment

IntEff should be smaller than in treatment NoComp.

The comparison between treatment IntEff and JustRisk then allows us to identify

the importance of the interaction effect. Relative to treatment IntEff, treatment

JustRisk also eliminates overconfidence per se. The interaction effect predicts that

14



TABLE I: The Four Treatments

Treatment Safe Risky Mechanisms

Baseline 0.5xi e Tournament: 2xi e with probability psi C, R, O, R*O

NoComp 0.5xi e Lottery: 2xi ewith probability psi R, O, R*O

JustRisk 0.5xi e Lottery: 2xi ewith probability poi R

IntEff 0.5xi e Lottery: 2xi ewith probability pni R, R*O

Notes. This table displays the four treatments studied in the experiment. The baseline ask
participants to choose between a piece rate and a tournament. The other treatments ask
participants to choose between a safe prospect and a risky lottery. psi , p

o
i , and pni are the

subjective, objective and gender-neutral probability of winning respectively. The final column
summarizes the mechanisms that can explain the gender gap in each row. The four mechanisms
are Competitiveness (C), Risk Preferences (R), Overconfidence (O), and the interaction of the
latter two (R*O).

this decreases the importance of risk preferences for overconfident participants who

have intermediate subjective probabilities psi (say .4 to .7) but are actually not very

good (a poi of less than .25). Given that the median participant has a probability

of winning of approximately (0.5)3, we expect this to be true for most participants.

Hence, if the interaction effect is important, the gender gap will be larger in treatment

IntEff than in treatment JustRisk.

III.E. Overview and Predictions

Table I summarizes the four treatments. Comparing the gender gap in the baseline

to treatment NoComp gives us the importance of competitiveness. The comparison

between NoComp and IntEff gives the importance of overconfidence, and the com-

parison between JustRisk and IntEff gives the importance of the interaction between
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Figure II: Predicted Choices by Gender

Notes. This figure gives the predicted fraction of men and women choosing the tournament or lottery
in each of the four treatments, based on the literature. The size of the baseline gender gap is taken
from Niederle and Vesterlund (2007). For treatment NoComp, we reduce the baseline gender gap
by the percentage attributed to competitiveness in the studies reviewed in Figure I and Table VI
(69.2%). For treatment JustRisk and IntEff, we reduce the gender gap by the percentage attributed
to overconfidence (21.5%, determined by an analysis similar to Table VI; full results available on
request). Since the risk overconfidence interaction has not been previously studied, the gender gap
in treatment IntEff is predicted to be identical to treatment JustRisk.

risk preferences and overconfidence. The residual gender gap in treatment JustRisk

provides an estimate of the effect of risk preferences.

We can use the results of previous experiments to predict the gender gap in each

of the four treatments (Figure II). If competitiveness indeed explains 69% of the

gender gap in the baseline, as suggested by the literature, the gender gap in treatment

NoComp should be 69% smaller than the baseline. Overconfidence is typically found

to have some effect as well, explaining why treatment IntEff’s predicted gender gap

is even smaller. Risk preferences typically matter little, as reflected by the nearly

non-existent gender gap in treatment JustRisk. Finally, the interaction effect has

not been studied in the literature and is therefore assumed to have no effect, which
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implies that the gender gaps in treatment JustRisk and IntEff are identical.

III.F. Procedures

We will now move on to explain exactly how we elicited the choices in treatments,

NoComp, JustRisk and IntEff. Doing so required us to acquire the values for the

parameters xi, p
s
i, p

o
i and pni and obtain participants’ choices given these parameters.

III.F.1. Belief Elicitation

We elicited the subjective probability of winning psi using a belief elicitation task

taken from Mobius et al. (2014). Our goal was to elicit a precise measure of the

subjective probability of winning psi. For this purpose, we required an incentive-

compatible procedure with sufficient scope for variation. Another requirement was

for the elicitation technique to not be confounded by risk preferences. The reservation

probability or “crossover” method used by Mobius et al. (2014) meets both criteria.

In a recent survey of the literature, Schlag, Tremewan, and van der Weele (2015)

recommended the use of this method as a way to prevent bias resulting from risk

aversion.

In order to minimize the effect of belief changes over the course of the experiment

(as a response to learning or performance feedback), we elicited beliefs directly before

participants chose between tournament and piece rate. Since the belief elicitation

procedure is not trivial, a potential concern is that the elicitation task may detract

participants from the choice between tournament and piece rate. To test whether

such effects were relevant, we included both a choice without belief elicitation (Task

3) and one with belief elicitation (Task 4).

In Task 4 (Belief Elicitation), participants were asked to choose between piece
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rate and tournament incentives, and then solved addition problems for five minutes,

similar to Task 3. In addition, just before participants chose their preferred incentive,

they were first asked to indicate their subjective belief. A comparison between choices

in Task 3 and Task 4 allows us to see whether the belief elicitation procedure per se

influenced participants’ decisions.

The belief elicitation task itself required participants to specify the reservation

probability (pr) for which they were indifferent between the following two options:

1. Receiving 2e if they win the tournament (i.e., their performance exceeds the

Task 2 performance of their teammates).

2. Receiving 2e with probability pr ∈ 0, 0.01, 0.02, . . . , 0.99, 1.

It is incentive-compatible for participants to report a reservation probability equal

to their subjective belief. The mechanism itself was carefully explained following the

wording used by Mobius et al. (2014), and understanding was tested using a check-up

question. After finishing the instructions, participants first reported their reservation

probability and only then did they choose between piece rate and tournament.

If Task 4 was selected for payment, participants received their earnings for the

exercises depending on whether they had chosen the piece rate or tournament, in

a similar fashion to Task 3. In addition, a random value p was drawn for each

participant. If p was above the reservation probability, the respective participant was

paid according to a lottery with probability p. Otherwise, participants were paid 2e

if their performance was high enough to win the tournament.

III.F.2. Obtaining Other Parameters

What remains is to obtain values for xi, the objective probability poi and the

gender-neutral belief pni . For xi, we used participants’ actual performance in the
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forced tournament task (Task 2). Using a participant-specific value for xi allowed us

to ensure that the stakes involved in treatments NoComp, JustRisk and IntEff were

similar to Task 3. We used Task 2 as a proxy for ability because performance in

Task 2 could not be affected by the choice of incentives. This is a typical approach

in the literature. In any case, performance across Tasks 1–4 is highly correlated

(.75 < r < .83 for each individual correlation).

We obtained the objective probability of winning poi in the following way. After

the last session of the experiment, we compared each participant’s performance in

Task 2 with the performance of every other participant in the experiment. We then

computed the empirical probability that the participant’s performance would beat

three competitors chosen randomly from all participants in the experiment (across

all sessions). For example, for a participant who solved 12 exercises, we would check

the probability that he or she would randomly be matched to only participants with

a performance of 11 or less, or would win a random tiebreaker with another person

(or people) with a score of 12. This represents a participant’s objective probability

of winning the tournament given his or her performance xi and the performance of

all other participants in the experiment.

For the gender-neutral belief pni , we ranked the subjective beliefs psi elicited over

all sessions from largest to smallest, separately for each gender. For each man in the

sample, we then replaced his elicited belief with the belief of the woman with the

corresponding rank. For example, we replaced the beliefs of the 27th most confident

man with the beliefs of the 27th most confident woman. This has the effect of imposing

‘female beliefs’ on men, allowing us to eliminate gender differences in overconfidence

without eliminating overconfidence per se.5

5. Imposing ‘male’ beliefs on women instead, or taking some average of the two beliefs, yields
similar results, see Appendix A1
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TABLE II: Task 5 Choice Menu

Option A Option B

1 0.5xi e 100% chance to obtain 2xi e; 0% chance to obtain 0 e

2 0.5xi e 95% chance to obtain 2xi e; 5% chance to obtain 0 e

3 0.5xi e 90% chance to obtain 2xi e; 10% chance to obtain 0 e

. . . . . . . . .

19 0.5xi e 10% chance to obtain 2xi e; 90% chance to obtain 0 e

20 0.5xi e 5% chance to obtain 2xi e; 95% chance to obtain 0 e

Notes. xi in the experiment was equal to performance in Task 2 (the forced tournament). In practice,
the average value of the left option ranged from 2e to 12.50e, with an average of 5.35e.

III.F.3. Eliciting Choices

Obtaining participants’ choices in treatments NoComp, JustRisk and IntEff re-

quired us to elicit three binary choices between a safe outcome and a lottery, that

differed only in the probability of payment of the lottery. We elicited these choices

using a separate Task, Task 5 (Multiple Choice List). In Task 5, each participant

made 20 choices between a fixed amount 0.5xie and a lottery with prize 2xie, as per

Table II. The probability of the lottery varied from 1 for the first row to .05 for the

20th row. For the analysis, we use only the three choices made in the three rows for

which the probability corresponded to treatment NoComp (psi), JustRisk (poi ), and

IntEff (pni ) respectively. These choices are what we refer to as treatment NoComp,

JustRisk, and IntEff in this paper.

Presenting treatments NoComp, JustRisk and IntEff to participants in this way

has several important advantages relative to separately presenting three binary choices.

First, it means that the belief elicited in Task 4 did not directly affect the attrac-
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tiveness of the lottery in Task 5. Second, it allowed us to compute poi and pni using

the actual ex post distribution of performances over all sessions, rather than having

to compute them during each session. Third, it gives us access to the full range of

potential probabilities, which will allow us to check the robustness of our results to

perturbations of psi, p
o
i and pni . Fourth, using a choice list greatly reduces the similarity

between the baseline and treatments NoComp, JustRisk and IntEff, reducing the in-

fluence of order effects caused by preferences for consistency (Falk and Zimmermann,

2011; Cialdini, 1984; Cialdini, Trost, and Newsom, 1995) and similar phenomena.

Note that Task 5 varies the probability in increments of .05. In cases where a

probability is not a multiple of .05 (say .44), we therefore take the average of the

closest rows (.4 and .45). For 98.3% of the choices in treatments NoComp, JustRisk

and IntEff, the choices on the two closest rows are identical. In the remaining cases,

we classify participants as indifferent between the two options.

Finally, it is important to emphasize that the payoffs faced in Task 5 are individual-

specific. For example, a participant who correctly solved 14 exercises in Task 2,

received 20 choices between 7e and 28e with varying probability. A participant who

solved 9 exercises was instead choosing between 4.50e and a probability of getting

18e. This allowed the stake size to be similar to Task 3 (the baseline).

III.G. Other Parts

Between Task 4 and Task 5, participants went through one additional Task: Task

4b (Universal Feedback). Task 4b was identical to Task 4, with one exception. In

Task 4, participants only received feedback on their relative performance if they chose

the tournament (i.e., they found out whether they won). In Task 4b, we also told

participants who chose the piece rate whether they would have won the tournament.
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This eliminates the effect of an alternative explanation of the gender difference in

tournament choices. This explanation suggests that women may avoid tournaments in

order to avoid receiving a signal about their relative ability (Niederle and Vesterlund,

2007). However, since gender differences in feedback aversion are not discussed in

subsequent papers and we find no evidence for it in Task 4b, we postpone its main

discussion to Appendix A1.

After the end of Task 5, one of the participants in the session was asked to roll

a die to determine the task selected for payment. Participants then received feed-

back on their selected task, but not the other tasks. Feedback included absolute

performance, total earnings and – when applicable – the outcome of the tournament

and belief elicitation task. After receiving feedback, paticipants then went through a

questionnaire containing basic demographic questions as well as the Holt and Laury

(2002), Eckel and Grossman (2002) and SOEP measures (Dohmen et al., 2011) of risk

preferences. The first two measures were incentivized.6

Each session took approximately 90 minutes. Average earnings in the experiment

were 21.73e with a minimum of 8.20e and a maximum of 75.40e. Of the partic-

ipants, 98.6% were students, most commonly majoring in engineering (26%), eco-

nomics (15%) or dual majoring in economics and engineering or mathematics (16%).

The mean and median age of participants in the experiment was 24.

6. For the SOEP measure, participants were asked, on a scale from 1 to 10, whether they were
persons who were willing to take risks, both in general and in five specific areas. We used the exact
wording found in the German Socio-Economic Panel (SOEP). For the Holt-Laury task, participants
made 10 choices between two lotteries. Lottery A resulted in either 1e or 80 cents. Lottery B
resulted in either 1.90e or 10 cents. The probability of obtaining the higher payoff was identical for
A and B, and varied from 10% to 100% across choices. One of the 10 choices was randomly chosen
and paid out at the end of the experiment. For the Eckel-Grossman measure, participants chose
between 6 options. Option 1 was a fixed payoff of 1.40e. Option 2–5 were progressively more risky,
but with a higher expected value. Option 6 was riskier than option 5, but had the same expected
value.
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IV. Results

Turning to the results, we first examine whether we replicate the gender difference

in tournament choices in the baseline. We then compare the baseline to the control

treatments. The results are summarized in Figures III and IV, which plot the raw

data and the implied importance of the respective mechanisms.

IV.A. Baseline

There were no gender differences in performance in the piece rate (men: 9.03

vs. women: 8.80, p=.723, t-test) and the tournament (men: 10.90 vs. women:

10.51, p=.569, t-test). Based on Task 2 performance, 24 men and 26 women would

have maximized their expected payoffs by competing. Nevertheless, men (59%) were

far more likely to choose the tournament than women (27%). The gender gap is

comparable in size to Niederle and Vesterlund (2007), and significant (p<.001, Fisher’s

exact test).

Before moving to the control treatments, it is important to note that adding the

belief elicitation task did not affect the gender gap in competitive choices. In Task 4,

women (34%) were still significantly less likely to choose the tournament than men

(67%, p<.001, Fisher’s exact test). Since Task 4 is more closely connected to the

beliefs used to generate treatments NoComp and IntEff, we will therefore use Task

4 as the baseline for the comparisons below. In Appendix A1, we show that all the

results are robust to using Task 3 instead.

IV.B. Competitiveness

We identify the importance of competitiveness by comparing the baseline to treat-

ment NoComp. If competitiveness is important, the gender gap should be smaller
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Figure III: Summary of Choices by Gender.

Notes. This figure gives the fraction of participants choosing the tournament (baseline) or lottery
(remaining bars) by gender.
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Raw Gap: 32.9pp

Competitiveness: -13%

Overconfidence: 48%

Interaction Effect: 37%

Risk Preferences: 28%

NoComp: 37.1pp

Baseline: 32.9pp

IntEff: 21.5pp

JustRisk: 9.3pp

MechanismsGender Gap

Figure IV: The Gender Gap in Tournament Choices is Fully Explained
by Overconfidence, Risk Preferences, and their Interaction.

Notes. This figure displays the gender gap in each treatment, and the importance of overconfidence,
risk preferences, their interaction effect, and competitiveness in explaining the raw gender gap in
tournament choices (baseline). The percentages are calculated by taking the difference between
the gender gap in the respective treatments, and dividing the difference by the raw gender gap in
tournament choices.
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in treatment NoComp. However, this is not what we find. Instead, men (68.6%)

were still significantly more likely than women (31.4%) to choose the risky option

(p<.001, Fisher’s exact test). The size of the gender gap (37.1 percentage points) is

not significantly smaller than in the baseline (32.9pp; p=.672, one-sided t-test). If

anything, it is slightly larger.7

Given the existing literature, this is a very surprising result. Previous studies

found that competitiveness, on average, explained 69.2% of the gender difference in

tournament choices. By contrast, our results suggest that it explains -13.1% (i.e.,

−4.3
32.9

). We clearly reject the hypothesis that competitiveness explains at least 69.2%

of the gender difference in tournament choices (p<.001, one-sided Wald test). Indeed,

our results suggest that the gender difference can be explained by risk preferences and

beliefs, and competitiveness is unimportant.

IV.C. Risk Preferences and Overconfidence

Having established that competitiveness does not explain the gender difference

in tournament choices, we next investigate the role of risk preferences and overconfi-

dence. For these factors to explain the gender gap, it needs to be true that women

are respectively more risk averse and less overconfident. We find both to be the case:

women are indeed more risk averse (Holt-Laury: p=.009; Eckel-Grossman: p<.001;

SOEP: p<.001, t-tests) and less overconfident (p=.007, t-test).

We identify the effect of overconfidence by comparing treatment NoComp to treat-

ment IntEff. If overconfidence is important, the gender gap should be smaller in

treatment IntEff. This is indeed what we find: 52.9% of the men and 31.4% of the

7. These results are robust to removing the eight participants (5.7%) who made dominated choices
or switched multiple times in Task 5. After removing these eight participants, the gender gap is 34.7
percentage points.
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women chose the lottery (p=.015, Fisher’s exact test). The resulting gender differ-

ence (21.5pp) is significantly smaller than in treatment NoComp (37.1pp; p=.001,

one-sided t-test). As illustrated by Figure IV, these results imply that overconfidence

explains 48% (37.1−21.5
32.9

) of the gender difference in tournament choices.

To identify the importance of risk attitudes, we examine the gender gap in treat-

ment JustRisk. Even though this treatment eliminates the effect of both overconfi-

dence and competitiveness, we still find that men (25.0%) were more likely to choose

the lottery than women (15.7%). However, this difference is no longer significant

(p=.197, Fisher’s exact test), which implies that risk attitudes – by themselves – do

not generate a significant gender gap for our sample size. At the same time, the

observed gender difference does imply that risk attitudes can explain 28% ( 9.3
32.9

) of

the gender gap in tournament choices.

Similar to the literature, our results therefore suggest a greater role for overconfi-

dence than for risk attitudes. Importantly, however, both the effect of overconfidence

and the effect of risk attitudes in our study are more than twice as large as the effect

implied by previous studies (see Figure II).

IV.D. The Interaction Effect

Finally, we investigate the interaction effect between risk attitudes and overcon-

fidence. For this effect to be important, it needs to be true that men and women

are both overconfident. This is indeed the case. Men on average, think they have a

58.9% chance of winning the tournament, versus 48.8% for women. Both numbers

are significantly greater than the true probability of around 25% (p<.001, t-test, for

each gender individually or combined).8

8. Finding that both genders are significantly overconfident is not uncommon. For example,
Niederle and Vesterlund (2007) found that 75% of men and 43% of women thought they ranked first
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Given that participants are highly overconfident, the interaction effect implies that

the gender gap should be larger in treatment IntEff than in treatment JustRisk. To

see this, note that the lottery faced by the median participant in treatment IntEff had

a 48.5% chance of payment – as implied by the median female subjective probability

of winning. By contrast, the median probability in treatment JustRisk was 9.6% –

as implied by the median objective probability. As a result, risk preferences had less

scope to explain a gender gap in this treatment.

In line with this reasoning, we indeed find a smaller gender gap in the JustRisk

treatment (9.3pp vs. 21.5pp), see Figure IV. The treatment difference is marginally

significant (p=.107, one-sided t-test) for our sample size. Hence, our results imply

that the interaction effect explains 37% (i.e., 21.5−9.3
32.9

) of the gender difference in

tournament choices.

These results illustrate the importance of accounting for interaction effects. For

example, our results imply that – conditional on beliefs – removing the gender dif-

ference in risk attitudes would eliminate 65% of the gender difference in tournament

choices. Without investigating the interaction effect, we would have estimated it to

be 28%, and would hence have substantially underestimated the scope for risk prefer-

ences to eliminate the gender difference in tournament choices. To our knowledge, we

are the first to study the interaction effect between risk attitudes and overconfidence

in this literature.

V. Discussion

The key result of the previous section is that competitiveness does not explain the

gender difference in tournament choices. In fact, the importance of competitiveness

in a four-person tournament.
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(-13%) is 82 percentage points smaller than implied by the literature (69%). This

raises the question of why our results differ so starkly from the existing literature.

Could our data be merely a large outlier? Or is there something more systematic

about our experiment and the way we analyze the data that causes our results to be

so different? And are there any potential confounds that could have interfered with

our identification strategy?

V.A. Identification Strategy

We start our discussion by taking a closer look at our identification strategy.

The identifying assumption for our treatment comparisons is that one treatment

eliminates the effect of the variable of interest, but does not change the effect of other

relevant variables. In this section, we examine whether this identifying assumption is

reasonable by separately investigating the implications of these assumptions for the

three main variables and potential confounds. For a more formal discussion we refer

the interested reader to Appendix A4.

V.A.1. Identifying Competitiveness

We identify the effect of competitiveness by comparing the gender gap across the

baseline and treatment NoComp. For this comparison, the identifying assumption

requires that treatment NoComp eliminates the influence of competitiveness, but

does not change the effect of risk preferences, overconfidence, and any other variables

that could explain the gender difference.

Is this assumption reasonable? The literature treats competitiveness as a prefer-

ence for being in a competitive environment, such as a tournament. Lotteries are not

typically considered to be competitive. Hence, it seems reasonable that competitive-
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ness cannot explain participants’ choices in treatment NoComp.

The assumption also requires the effect of risk preferences and beliefs to be con-

stant across these two treatments. For risk preferences, this holds if individual risk

attitudes are constant across treatments, as seems reasonable. It also holds under

weaker conditions, for example if individual risk attitudes vary across treatments,

but the distribution of risk attitudes in the population stays constant. More details

are presented in Appendix A4.

For beliefs, the assumption requires the distribution of elicited beliefs – which are

used to generate treatment NoComp – to be a sufficiently accurate representation

of actual latent beliefs. Perfectly measured beliefs are not required. Intuitively, we

are only interested in comparing gender differences. Although inaccurately measured

beliefs may distort the choices of individuals in treatment NoComp, they need not

affect the gender difference since, e.g., mistakes may cancel out on average. We

explore potential distortions caused by inaccurate beliefs in Appendix A4 and A5,

where we show that such distortions are unlikely and, if anything, would lead us to

overestimate the importance of competitiveness.

V.A.2. Identifying Other Variables

The comparisons we use to identify the effect of the other variables assume that

treatment IntEff eliminates gender differences in overconfidence and treatment Just-

Risk eliminates the effect of overconfidence per se. Both are true by construction. To

identify risk preferences, we also need to assume that choices in treatment JustRisk

can only be driven by risk attitudes. We see no reason for these assumptions to be

violated.
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V.A.3. Potential Confounds

One potential confound may arise when treatment comparisons vary more than

just the variable of interest. For example, treatment NoComp is not only less compet-

itive than the baseline. It is also less ambiguous, and removes some social preferences,

rank effects, performance feedback and the real-effort task per se. This could affect

our results if one of these variables both (1) explains tournament choices and (2) is

correlated with gender. We are, however, unaware of consistent evidence that any of

these variables meet both criteria.9

Moreover, to obscure a positive effect of competitiveness and explain its null effect

in our data, these variables would have to contribute to an increased gender difference

in treatment NoComp. This would require women to be more feedback-seeking, more

ambiguity-seeking, less altruistic, and/or have a lower cost of effort in the real-effort

task, all of which seem unlikely.

Another potential concern are order effects caused by preferences for consistency

and related phenomena. Since we have a within-subject design (as is custom in

the literature), choices made in earlier parts of the experiment could conceivably

have affected later choices. While we cannot fully exclude these effects, we sought

to minimize them by presenting treatments NoComp, JustRisk and IntEff using a

multiple choice list. This greatly reduced the similarity between the baseline (a

single binary choice between tournament and piece rate) and the other treatments

(20 choices between lotteries and certain amounts of money).

Finally, to separate beliefs from risk attitudes and competitiveness, it is also im-

9. There is little or no evidence that ability, social preferences, ambiguity attitudes or feedback
aversion differ systematically by gender. Previous studies investigating social preferences (e.g., Alm̊as
et al., 2016; Kamas and Preston, 2012, and ambiguity attitudes (e.g., Gneezy, Pietrasz, and Saccardo,
2016) find that these cannot explain tournament choices; an exception is Balafoutas, Kerschbamer,
and Sutter (2012).
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portant that elicited beliefs are not confounded by risk attitudes or competitiveness.

If, for example, the elicitation method were to systematically overestimate the beliefs

of risk tolerant or competitive individuals, part of the effects of these variables would

incorrectly be attributed to overconfidence.

For risk attitudes, we can almost certainly exclude this possibility, since neither

the utility-maximizing belief nor the actual reported belief depends on risk attitudes

(-.26 < r < .22 depending on gender and the measure used). For competitiveness,

we lack the theory and direct independent measure of competitiveness required to

make similar claims. However, the beliefs we elicit are similar to the literature: both

genders are overconfident and men are more overconfident than women. This is not

consistent with competitiveness confounding our belief estimates, unless a similar

confound is also present in earlier studies.10

V.A.4. Additional Considerations

Finally, it is important to highlight that our identification strategy does not im-

pose any requirements on the consistency of the responses of individual participants.

The reason is that our treatment comparisons aim to explain gender differences, not

individual behavior. Provided that the ways individuals change their choices across

treatments is not correlated with gender, such changes do not affect the gender dif-

ference in choices. Hence, our treatment comparisons are unaffected.

However, this also implies that we cannot pinpoint the exact reason why any

individual may have changed their choice across treatments. For example, we cannot

explain exactly why 43 participants (31%) changed their choice (e.g., from piece rate

10. Further, our results are robust to even a large competitiveness confound that would lead us
to overestimate the gender difference in beliefs by 50%. Specifically, artificially reducing the gender
gap in beliefs by 50% only lowers the gender gap in treatment NoComp to 32.9pp. The implied
importance of competitiveness would then be 0% (instead of -13%).
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to lottery) from the baseline to treatment NoComp. Some participants may have

switched because they were ambiguity averse, some because they were feedback averse,

and others may have switched by mistake. Still others may actually have switched

because of a competitiveness trait, or for a combination of reasons. Our design does

not allow us to identify the exact reason (or reasons) why each individual switched,

nor is it our goal to do so. Instead, the fact that switches are not correlated with

gender tells us that these factors do not explain the gender difference in tournament

choices.

V.B. Regression Analysis

If our identifying assumption holds, it is natural to ask why our results differ so

starkly from the existing literature. As we previously noted, a key difference between

our study and previous work is that we use treatment comparisons rather than re-

gression analysis to differentiate between mechanisms. It seems conceivable that this

may at least in part explain the lesser importance attached to competitiveness in our

study.

To investigate whether this is the case, we replicate the regression analysis of pre-

vious studies. Comparing the results of this analysis to the results of our treatment

comparisons allows us to establish whether the smaller importance attached to com-

petitiveness in our study is driven by our treatment-based identification strategy, or

by some idiosyncratic characteristics of our data.

Table III presents the results. Column (1) presents the gender gap after control-

ling for gender differences in ability (the raw gender gap is 32.9 percentage points).

Following Buser, Niederle, and Oosterbeek (2014), column (2) adds the belief elicited

in Task 4 and two measures of risk preferences as controls. Even after controlling for
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TABLE III: Regression-Based Approach in our Data

Coefficient (p-value)
(1) (2) (3)

Dependent Variable: Tournament Choice (Task 4)

Female -0.303*** -0.223** -0.160*
(0.081) (0.089) (0.093)

Confidence 0.228
(0.230)

Eckel-Grossman 0.036
(0.025)

SOEP 0.018
(0.017)

Treatment NoComp Choice 0.190
(0.134)

All Risk Measures F=.84
p=.500

All Conf. Measures F=.01
p=.987

Constant 0.065 -0.199 -0.328
(0.214) (0.224) (0.257)

Ability Controls yes yes yes
Observations 140 140 140

Notes. OLS Estimates, robust standard errors in parentheses. Dependent variable is the Task-4
choice of compensation scheme (1-tournament, 0-piece rate). Ability controls include performance
in Task 2, the difference between performance in Task 2 and Task 1, and the objective probability
of winning po, conditional on Task 2 performance. Confidence is the elicited probability of winning
from Task 4. Eckel-Grossman and SOEP are the Eckel and Grossman (2002) and SOEP measures of
risk preferences, respectively. Treatment NoComp choice is the choice made in treatment NoComp.
In column 3, the confidence measures include the elicited beliefs from Task 4 and Task 4b. The risk
measures include the Eckel-Grossman, Holt-Laury, and SOEP measures plus the number of risky
choices taken in Task 5.
*** p<0.01, ** p<0.05, * p<0.1
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risk preferences and overconfidence, a 22.3 percentage point gender gap remains. Fol-

lowing the standard approach in the literature, these results would imply that 73.6%

( .223
.303

) of the gender gap in tournament choices can be attributed to competitiveness.

Even when we add several additional measures of risk attitudes and confidence to our

regressions in column 3, the residual gender gap is still 16 percentage points, which

would imply that competitiveness explains 52.8% of the gender gap in tournament

choices.11

The 53–74% attributed to competitiveness in Table III is considerably more than

the -13% we obtained using treatment comparisons, and is similar to the 69% obtained

by the literature using similar regressions. In other words, when we analyze our data

the conventional way, our results closely replicate the standard result in the literature.

This implies that the smaller importance of competitiveness in our data is driven by

our treatment-based identification strategy, not by some idiosyncratic characteristics

of our data.

V.C. Regression Analysis versus Treatments

Why are the results in Table III so different from the ones obtained using treatment

comparisons? Table III uses regressions to control for risk attitudes and overconfi-

dence, and attributes the residual gender coefficient to competitiveness. Among other

things, this implicitly assumes that tournament choices are a linear function of com-

petitiveness, risk attitudes and beliefs – and no other variables. The experimental

results already show that the linearity assumption is unrealistic, since risk attitudes

and beliefs interact in a non-linear way, as predicted by expected utility theory.

11. Following Niederle and Vesterlund (2007), we use the choice taken in treatment NoComp as a
proxy for risk attitudes and overconfidence. Other new variables in this column are Holt-Laury, the
total number of risky choices in Task 5 and the beliefs elicited in Task 4b.
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Another problem arises when overconfidence and/or risk attitudes are measured

with error.12 Specifically, it is well known (see e.g., Hausman, 2001) that in such

cases the coefficients for risk attitudes and overconfidence are downward biased and

inconsistently estimated. Importantly, Gillen, Snowberg, and Yariv (2015) show that

this in turn implies that the effect of competitiveness is overestimated. In Appendix

A6 and A7 we present evidence that our control variables are subject to substantial

measurement error, in part by showing that the estimated importance of competi-

tiveness in Table III is substantially reduced after adjusting for measurement error

econometrically.13

These results have important implications. Using an unbiased method (treatment

comparisons) to identify competitiveness, it appears to explain -13% of the gender

gap in tournament choices. Using regressions, we instead attribute 53-74% to compet-

itiveness. The difference between these numbers suggests that the regression results

may have overestimated the importance of competitiveness by as much as 87 percent-

age points. Since other studies have relied exclusively on regressions, this therefore

implies that these studies may also have strongly overestimated the importance of

competitiveness in explaining gender differences in tournament choices.

V.D. Literature Comparison

Taken together, our results also generate a prediction: regressions such as Table

III will overestimate the importance of competitiveness, relative to direct treatment

12. Measurement error in these variables is intuitive. Participants make mistakes, may not per-
fectly know their own preferences, preferences may vary across contexts or over time, etc. Formally,
Gillen, Snowberg, and Yariv (2015); Holt and Laury (2014); Beauchamp, Cesarini, and Johannesson
(2015) and Kimball, Sahm, and Shapiro (2008) show that measurement error is indeed a substantial
part of standard measures of risk preferences, typically representing more than half the total variance
in the elicited variable. We present similar results in Appendix A7.

13. Appendix A8 uses simulations to present an intuitive illustration of the effects of measurement
error on treatment comparisons and regressions such as Table III.
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comparisons. In this section, we test the prediction using the data of Niederle and

Vesterlund (2007) and six other studies.

These studies include a control treatment where participants are asked to choose

whether they want to submit their past performance (from Task 1) to piece rate or

tournament incentives. The argument is that this choice is similar to the baseline,

except that participants no longer have to face the stress or thrill of actually solving a

task in a competitive environment. Thus, the control treatment is argued to eliminate

the competitive element, but retain the effect of overconfidence and risk preferences.

Each of these studies then use the control treatment as a proxy for risk preferences

and overconfidence in a regression. The idea is that the control treatment is more

similar to the baseline than standard measures of risk preferences and beliefs, and

may therefore serve as a better proxy for these variables. Otherwise, these studies

follow the approach of Table III and assume that after controlling for this variable,

any remaining gender difference is due to competitiveness.

However, the data from the control treatment also allow for a direct treatment

comparison. If competitiveness is important, the gender gap should be significantly

smaller in the control treatment. The difference between treatments can then serve as

an estimate of the importance of competitiveness, similar to the comparison between

treatment NoComp and the baseline in our experiment. Interestingly, none of these

studies make this comparison themselves.

Figure V presents the results of the seven studies that allow for a direct compari-

son. For more details on each individual study, we refer the reader to Table VII and

Appendix A3. The results are line with our prediction. Removing the competitive

element decreases the gender gap by 35% on average. Using the approach taken in

this paper, this would imply that around 35% of the gender gap is driven by com-

petitiveness. The regressions presented in these studies instead imply that 78% of
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Figure V: Regressions and Treatment Comparisons in the Literature

Notes. The figure plots the fraction of the total gender difference in tournament choices that is
attributed to gender differences in competitiveness in seven different studies, using either regressions
or direct treatment comparisons. For more details concerning the individual studies, see Table VII
in Appendix A3

the gender gap is due to competitiveness. The difference between the two approaches

is large (43 percentage points) and present in the predicted direction in all seven

studies.14

The message is clear. In eight separate experiments, including our own, regressions

attribute a considerably larger fraction of the total gender gap to competitiveness.

Assuming that the treatment comparisons are unbiased, this implies that previous

studies relying on regressions have substantially overestimated the importance of

competitiveness.

14. It is worth noting that the fraction attributed to competitiveness in these studies (35%) is
larger than in our study (-13%). One possible reason is that the control treatment also eliminates
the effect of optimism about future performance. If men are more optimistic than women, the 35%
may therefore reflect gender differences in optimism (i.e., overconfidence) as well as competitiveness.
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V.D.1. Other Related Work

While the studies in Figure V allow us to investigate the importance of compet-

itiveness, there are also studies that allow us to investigate overconfidence. These

studies decrease or eliminate gender differences in overconfidence by design, either

by using a less stereotypically male task (Dreber, von Essen, and Ranehill, 2014;

Shurchkov, 2012; and Dreber, von Essen, and Ranehill, 2014) or by providing perfor-

mance feedback (Ertac and Szentes, 2011; and Wozniak, Harbaugh, and Mayr, 2014).

Assuming competitiveness and risk preferences are unaffected by these changes (a

strong assumption), these studies allow us to use treatment comparisons to isolate

overconfidence from other factors.

The results of the direct treatment comparisons imply that respectively 62, 64,

70, 87, and 74% of the gender gap are due to gender differences in overconfidence.15

Note that these numbers may also partially capture the interaction effect between

risk attitudes and overconfidence, and are therefore in line with our results (48-85%).

These studies therefore suggest a substantially larger effect of overconfidence than

studies relying on regressions.

A direct comparison to the regression-based method is more difficult, since only

Shurchkov (2012) and Wozniak, Harbaugh, and Mayr (2014) report a regression that

controls for overconfidence without also controlling for risk preferences. However,

the results of these two studies are in line with the previous section. Regressions

attribute respectively -5% and 39.1% of the gender gap to overconfidence, consider-

ably less than the 64% and 74% estimated through treatment comparisons. Once

again, the regression approach therefore appears to underestimate the importance of

15. The numbers are calculated by taking one minus the ratio between the gender gap in the
control treatment and the gender gap in the baseline. For Shurchkov (2012) we take the data from
the high pressure treatment only.
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overconfidence (and overestimate the importance of the residual component), relative

to a direct treatment comparison.

Finally, Flory, Leibbrandt, and List (2015) run a field experiment that compares

gender differences in application rates for real jobs with different incentive schemes.

In line with the results from the lab, they find that women disproportionally shy

away from competitive jobs. More importantly for our purposes, they find a near-

identical gender gap for a non-competitive job with similar wage uncertainty. Similar

to our results, their study therefore suggests that removing the competitive element

by design does not affect the gender difference in people’s choices.

VI. Conclusion

There is ample evidence from laboratory experiments that women are less likely

to sort into competitive environments. While part of the gap may be explained by

gender differences in overconfidence and risk preferences, the current view is that the

majority can be explained by gender differences in a separate competitiveness trait.

Indeed, the idea that women are less competitive than men has grown to be very

influential.

We replicate the basic result, but provide new evidence that the gender gap in

these studies reflects not competitiveness, but is the result of gender differences in

risk preferences, and overconfidence. Our ability to distinguish between competitive-

ness and these alternative mechanisms comes from a powerful, novel, experimental

design. Our design allows us to directly and cleanly identify the importance of com-

petitiveness, while avoiding the criticisms raised against the techniques used in earlier

work.

Our message is clear. Gender differences in tournament choices in our experiment
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are fully explained by risk preferences, overconfidence and their interaction effect.

This has important implications for policy and future research. Rather than com-

petitiveness, our results suggests that attempts at understanding and fighting gender

differences in labor market outcomes would be better served by targeting overcon-

fidence, risk attitudes, and other factors not captured by these experiments. Our

results are reassuring, in the sense that rather than requiring us to further study

a novel, not yet well-understood concept (competitiveness), they imply that poli-

cies and future research can address the gender gap using the well-understood and

much-tested theory on decision under risk and uncertainty.

Our results also illustrate the importance of accounting for the interaction of risk

attitudes and overconfidence. Policies reducing gender differences in overconfidence

may be less effective or even counterproductive if, by changing the level of overcon-

fidence, they simultaneously increase the importance of risk attitudes. In a similar

vein, policies that change the appeal of competitive environments may change the

gender gap by lowering the impact of risk preferences. An interesting recent example

is Petrie and Segal (2015), who show that gender differences are largely eliminated in

situations where the tournament is very attractive.

On a broader level, our results also contribute to the recent discussion on the

potential pitfalls involved in controlling for risk preferences, beliefs, and other elicited

variables using regressions (most notably, Gillen, Snowberg, and Yariv, 2015). We

are able to obtain a direct measure of the bias involved, and show that it is large: the

importance of competitiveness is overestimated by upwards of 50 percentage points.

Importantly, the method we use circumvents these concerns by controlling for relevant

variables by experimental design. Indeed, we hope that our results illustrate the

usefulness of controlling for important confounds experimentally, and that they will

encourage others to adopt a similar approach in the future.
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Appendix A – For Online Publication

A1. Additional Results

In this section, we present three sets of additional results. First, we discuss the

outcome of Task 4b and the implications for feedback aversion. Second, we examine

the robustness of treatment IntEff to imposing male beliefs on women, rather than

vice versa. Third, we discuss the robustness of our results with respect to using Task

3, rather than Task 4, as our baseline.

A1.1 Feedback Aversion

In addition to being less competitive, more risk averse and less confident, women

may also be more averse to receiving relative performance feedback. Niederle and

Vesterlund (2007) refer to this as feedback aversion, and argue that it could be a

fourth reason why women may want to avoid the tournament. To investigate its im-

portance, we included another Task (4b) in which participants had to choose between

tournament and piece rate. In contrast with the baseline, however, even participants

who chose the piece rate were now told whether they would have won the tournament.

This treatment therefore eliminated the influence of feedback aversion, since choosing

the piece rate was no longer a way for women to avoid relative performance feedback.

If feedback aversion is an important driver of choices in the tournament, the gender

difference should be smaller in Task 4b. However, this is not what we find. Instead,

we find that 62.9% of men and 28.6% of women choose the tournament in Task 4b.

The gender difference is 34.3 percentage points, which is significantly different from

zero (p<.001, Fisher’s exact test), and very similar to the gender difference in Task

4 (32.9 percentage points; p=.853, t-test). Hence, we find no evidence that feedback

aversion contributes to the gender difference in tournament choices.
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A1.2 Treatment IntEff with Male Beliefs

For treatment IntEff, we eliminated gender differences in overconfidence by re-

placing the beliefs of men with the beliefs of the women of corresponding confidence

rank. However, we could just as easily have replaced the beliefs of the women with

the beliefs of the men. When we do this instead, 68.6% of men and 50.7% of women

choose the lottery. The resulting gender difference is 18.1 percentage points (p=.031,

t-test). This is slightly smaller than the one reported in treatment IntEff, but the

difference-in-difference is small (3.3 percentage points) and not significant.

Using male rather than female beliefs therefore slightly increases the implied im-

portance of overconfidence per se, and reduces the importance of the risk and over-

confidence interaction. This does not affect any of our main conclusions: both over-

confidence and the interaction term still explain a non-negligible part of the gender

gap in tournament choices, and overconfidence is the most important factor. Impos-

ing instead a mix of female and male beliefs leads to a gender difference somewhere

between these two cases.

A.1.3 Task 3 and Task 4 Tournament Choices

Since Task 4 is more closely connected to the beliefs used to generate treatments

NoComp and IntEff, we used the tournament choice in Task 4 as our main dependent

variable of interest. However, our results are robust to using Task 3 as the baseline

instead. We already saw that the raw gender gap for Task 3 (31.4%) and Task 4

(32.9%) are very similar. In Table IV we also replicate the regression analysis from

Table III using Task 3 choices. The results are also very similar. After controlling for

beliefs and risk attitudes, the residual gender coefficient in column 3 is .157, nearly

identical to the .160 reported in Table III.
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TABLE IV: Task 3 as Dependent Variable

Coefficient (Std. Error)
(1) (2) (3)

Dependent Variable: Tournament Choice (Task 3)

Female -0.313*** -0.160** -0.157*
(0.078) (0.081) (0.087)

Confidence 0.419**
(0.227)

Eckel-Grossman 0.039*
(0.023)

SOEP 0.057***
(0.016)

Treatment NoComp Choice 0.109
(0.136)

All Risk Measures F=3.01**
p=.021

All Conf. Measures F=.44
p=.647

Constant 0.422** 0.290 -0.001
(0.198) (0.208) (0.244)

Ability Controls yes yes yes
Observations 140 140 140

Notes. OLS Estimates, robust standard errors in parentheses. Dependent variable is the Task-3
choice of compensation scheme (1-tournament, 0-piece rate). Ability controls include performance
in Task 2, the difference between performance in Task 2 and Task 1, and the objective probability
of winning po, conditional on Task 2 performance. Confidence is the elicited probability of winning
from Task 4. Eckel-Grossman and SOEP are the Eckel and Grossman (2002) and SOEP measures of
risk preferences respectively. Treatment NoComp choice is the choice made in treatment NoComp.
In column 3, the confidence measures include the elicited beliefs from Task 4 and Task 4b. The risk
measures include the Eckel-Grossman, Holt-Laury and SOEP measures plus the number of risky
choices taken in Task 5.
*** p<0.01, ** p<0.05, * p<0.1
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A2. Regression Approach in the Literature

In the literature section we discussed the results of a number of previous studies

that used regressions to separate the effect of competitiveness from the effect of other

factors. In this section, we briefly explain this approach using an example. We then

discuss how we selected the studies featured in Figure I and present some additional

details on their designs.

A2.1 Method

The studies we review in this section attempt to distinguish competitiveness from

competing explanations in the following way. First, they obtain separate measures of

risk attitudes, overconfidence, and any other factors of interest. They then use these

measures as control variables in a regression. The idea is that after controlling for

other relevant factors in a regression, any residual gender gap must then be driven

by competitiveness. In the social sciences and statistics, this approach is typically

referred to as mediation analysis (Baron and Kenny, 1986; Bullock, Green, and Ha,

2010).

Table V illustrates this approach using the results of a prominent recent study by

Buser, Niederle, and Oosterbeek (2014). Column (1) shows that women are 23 per-

centage points less likely to choose the tournament, even after controlling for ability

(the raw gender gap is 26 percentage points). Column (2) adds controls for overconfi-

dence by including participants’ guessed rank, elicited following the main experiment.

This lowers the gender gap from 23.3 to 15.8 percentage points. Column (3) adds an

incentivized lottery task (Eckel and Grossman, 2002) and a non-incentivized survey

question (Dohmen et al., 2011) to control for risk attitudes. This further reduces the

gender gap from 15.8 to 12.2 percentage points.
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TABLE V: Regression Approach in Buser et al., (2014)

Coefficient (Std. Error)
(1) (2) (3)

Female -.233*** -.158*** -.122***
(.047) (.045) (.044)

Tournament .037** .011 .011
(.015) (.014) (.014)

Tournament−Piece Rate -.027*** -.022 -.019
(.011) (.010) (.010)

Win Prob .263 .119 .072
(.169) (.157) (.153)

Guessed Tournament Rank -.205*** -.182***
(.027) (.027)

Lottery .042*
(.024)

Risk-Taking .102***
(.021)

Observations 362 362 362

Notes. This table reprints the results of Buser, Niederle, and Oosterbeek (2014), Table 7, columns
1, 2 and 4. It presents coefficients from OLS regressions, where the dependent variable is the
compensation scheme (1, tournament, and 0, piece rate). Each regression also includes school fixed
effects and test version fixed effects. Standard errors are in parentheses; *p<.10, **p<.05, ***p<.01.
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They then compare the gender coefficients in column (1) and (2), and interpret

the difference as evidence that “slightly over 30% of the gender gap can be explained

by gender differences in overconfidence” (p. 1430). Similarly, comparing columns (2)

and (3) suggests that gender differences in risk attitudes can only explain a small

fraction of the gender gap. More importantly, the ratio of the gender coefficient in

columns (1) and (3) suggests that competitiveness can explain 52.4% of the gender

gap in tournament choices.

A2.2 Summary of Studies

Table VI summarizes the studies we incorporated in Figure I. Our main require-

ment was for these studies to report both (1) the raw gender difference in tournament

choices and (2) the residual gender coefficient after controlling for both risk prefer-

ences and overconfidence in a regression. Figure I plots the ratio of these two numbers,

which is what is typically attributed to a competitiveness trait.

The exact specification used differs considerably across studies. Different studies

use different proxies for risk preferences and beliefs. Most studies also include at

least one control for ability or past performance, and several studies also control for

one or more additional factors. Whenever possible, we therefore use the regression

that controls for risk preferences and overconfidence, but otherwise controls for as few

variables as possible. The relevant control variables used in each study are listed in

Table VI.

Several types of risk measures are used. Most common are a non-incentivized

question (RQ) concerning a general tendency to take risks, and one of several versions

of a multiple price list (MPL). These are similar to the SOEP question and Holt-

Laury measure used in this study. One or two studies use variations of the Eckel and

Grossman (2002) measure (EG) or the investment game (IG, Gneezy and Potters,
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TABLE VI: Regression Approach in the Literature

Study Gender Gap Attributed to Controls Comments
Raw Controls Competitiveness

Gillen, Snowberg, and Yariv (2015) 19*** 4.8 25.3 GR,TP,PD,IG,CRT1 Controls set 1
Zhang (2013) 14.6*** 3.7 25.3 OC,EG,PW Han sample

Dreber, von Essen, and Ranehill (2014) 19.1*** 5.8 30.4 TP,GR,MPL
Kamas and Preston (2012) 17.6*** 5.7 32.4 MPL,RQ,GR,EP,PC

Niederle and Vesterlund (2007) 37.9*** 16.2** 42.7 TP,PD,GR,CT
Balafoutas, Kerschbamer, and Sutter (2012) 26.1*** 11.6 44.4 TP,MPL,GR,OC Raw measure already controls for TP

Buser, Geijtenbeek, and Plug (2015) 8.6* 4 46.5 RQ,BO Mathematical Matrix Task
Buser, Niederle, and Oosterbeek (2014) 26*** 12.2*** 46.9 TP,PD,PW,GR,EG,RQ
Niederle, Segal, and Vesterlund (2013) 36*** 17** 47.2 TP,PD,GR,CT
Buser, Dreber, and Mollerstrom (2016) 23.9*** 11.7 49.0 PP,TP,GR,GR1,RQ Experiment 1
Reuben, Sapienza, and Zingales (2015) 26.8*** 13.3** 49.7 TP,PD,GR,MPL

Gillen, Snowberg, and Yariv (2015) 19*** 11*** 57.9 GR,TP,PD,MPL,CRT2 Controls set 2
Reuben, Wiswall, and Zafar (2015) 29*** 18** 62.1 PW,SPW,MPL

Dohmen and Falk (2011) 25*** 15.7 62.8 EP,BO,RQ,SP
Alm̊as et al. (2016) 19.4*** 13.9*** 71.6 TP,BO,MPL,SP,PM

Sutter and Glätzle-Rützler (2014) 21*** 16.7*** 79.5 A,TP,PD,M,GR,MPL Raw measure already controls for age
Gneezy, Pietrasz, and Saccardo (2016) 36.4*** 30.8*** 84.6 EP,BO,MPL,RQ,AA Ball task

Flory, Leonard, Gneezy, and List (2016) 15.6 14.0 89.7 PP,PD,GR,CT American sample
Dargnies (2012) 33.3*** 29.9*** 89.8 CT Own calculation

Buser, Dreber, and Mollerstrom (2016) 28.9*** 27*** 93.4 PP,TP,GR,GR1,RQ Experiment 2
Healy and Pate (2011) 52.7*** 51.2*** 97.2 TP,PD,GR,CT

Flory, Leonard, Gneezy, and List (2016) 7.9** 7.8** 98.7 PP,PD,GR,CT Malawi sample
Zhang (2013) 22.9*** 23.7*** 103.5 OC,EG,PW Yi sample
Zhang (2013) 27.5*** 29.7*** 108.0 OC,EG,PW Mosuo sample

Masclet, Peterle, and Larribeau (2015) 37.6** 41.4** 110.1 TP,EC,MPL,SP,GR Raw measure already controls for TP and EC
Lee, Niederle, and Kang (2014) 7.6*** 9.3*** 122.4 TP,PD,GR,CT OLS results

Average 69.2

Notes. The raw gender gap is the raw gender difference in tournament choices. The gender gap with controls is the gender coefficient in a
regression of tournament choices on gender, risk preferences, ability, overconfidence, and potentially other factors. The fraction attributed to
competitiveness is the ratio between the first two columns. The controls column specifies the exact control variables used in the regression.
More details on these variables are in the main text.
*** p<0.01, ** p<0.05, * p<0.1



1997). One study also controlled for ambiguity aversion (AA) using an MPL.

Many measures are considered for overconfidence. A popular measure is the

guessed rank (GR), typically elicited for the forced tournament (Task 2). One study

includes two guessed rank measures, one for the forced tournament and one for the

Task 1 piece rate (GR1). Several studies subtract the actual rank from the guessed

rank to get a measure of overconfidence (OC). Other studies ask participants to guess

the probability with which they would beat another person in their session (BO).

One study elicits the subjective probability of winning (SPW). A few studies ask par-

ticipants for their expected performance on the task (EP), and one study also asks

participants how certain they are about their prediction (PC). One study also in-

cludes two measures of overconfidence in an unrelated cognitive reflection test (CRT1

and CRT2).

In addition, a few studies also included the choice in a control treatment (CT).

This variable is argued to pick up the effect of overconfidence, risk preferences, and

possibly other variables including ability or feedback aversion. It should also be noted

that even studies that are classified as using similar controls (e.g., MPL) typically use

different versions, e.g., with differently sized incentives.

A large majority of studies also control for ability. Common measures include

performance in a forced tournament (TP), performance in a forced piece rate (PP),

and the difference between the two (PD). Several studies also include a measure for

the true probability of winning the tournament (PW). Some studies also control for

mathematical ability (M). Finally, several studies also control for additional variables,

including age (A), education (EC), various social preferences (SP) and patience (PM).

Several other remarks are in order. First, we include four studies that do not use

the addition problem task, but use a similar design with similar outcomes. Buser,

A-8



Geijtenbeek, and Plug (2015) use a matrix addition task in which participants have

to find two numbers in a 3x3 matrix that jointly add up to 10. Gneezy, Pietrasz, and

Saccardo (2016) use a ball-throwing task, where participants have to throw a ball into

a basket from several meters away. Flory et al. (2016) let participants sort six blocks

from smallest to largest. Masclet, Peterle, and Larribeau (2015) let them decode

numbers into letters. However, we do not incorporate studies that use different tasks

with the aim of finding a smaller gender difference. Instead, we briefly discuss these

studies in the next section.

Second, several studies are included in the sample more than once. Buser, Dreber,

and Mollerstrom (2016), Zhang (2013), and Flory et al. (2016) carried out multiple

experiments within the same study that all fit our criteria. We treated each of these

experiments as a single observation. Gillen, Snowberg, and Yariv (2015) ran a single

experiment, but present many estimates that fit our criteria. We select two represen-

tative ones for Table VI; each of these estimates only receive half the normal weight

in computing the total average effect.

Third, in Dohmen and Falk (2011) and Masclet, Peterle, and Larribeau (2015),

participants choose between a tournament and a fixed amount of money (as opposed

to a piece rate). Risk preferences, overconfidence, and competitiveness can still ex-

plain competitive choices in both cases, and hence we include these studies in our

survey as well. Fourth, Dargnies (2012) does not report a relevant regression, but

sent us her raw data, allowing us to run the regression ourselves.

Fifth, several studies never report the raw gender gap in tournament choices, but

always control for at least one variable (typically ability). Sixth, several studies report

probit coefficients, which cannot directly be compared to the raw gender gap. In both

cases, we compare coefficients between the regression controlling for risk preferences

and overconfidence, and the regression controlling for the smallest number of other
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variables.

A2.3 Results

The key result in Table VI is that the average fraction attributed to competitive-

ness is 69%. We discuss this result extensively in the main text.

It is also interesting that the raw gender gap differs considerably across studies,

ranging from 8 to 53 percentage points. This could be due to a number of factors,

including changes in the design (e.g., shorter tasks, internet versus laboratory exper-

iment), as well as the population studied in the paper (students vs. non-students,

Western vs. non-Western). Nevertheless, the raw gender gap is significant at the 10%

level in all but one of the 26 experiments.

The fraction attributed to competitiveness also differs strongly across studies.

Individual estimates fall anywhere between 25% and 122%. Part of this variation

can likely be explained by differences in the sample and design of the experiments.

Another explanation is that certain control variables may be better than others at fil-

tering out the effect of risk preferences and overconfidence. Indeed, the two estimates

we include from Gillen, Snowberg, and Yariv (2015) use different controls in the same

data, and find very different results. A third potential reason is measurement error,

which increases the variation in estimates that may be obtained.

A3. Literature Comparison: Regressions versus Design

In the discussion, we examined the results of several earlier studies that allow us

to compare regression results to direct treatment comparisons. Here, we discuss each

of the included studies in greater detail.
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TABLE VII: Regressions and Treatment Comparisons in the Literature

Gender Gap Attributed to Competitiveness
Study Tournament Control Treatment Comps Regressions

Niederle and Vesterlund (2007) 38 30 21.1 42.7
Reuben, Sapienza, and Zingales (2015) 26.8 22.0 17.9 49.6

Dohmen and Falk (2011) 25 23.1 7.6 62.8
Sutter and Glätzle-Rützler (2014) 21 14.5 31.0 79.5

Dargnies (2012) 33.3 10.6 68.2 89.8
Healy and Pate (2011) 53 15 71.7 97.0

Lee, Niederle, and Kang (2014) 7.6 5.3 29.7 122.4

Average 35.0 77.7

Notes. The first column presents the gender difference in the percentage of participants who chose
the tournament. The second column presents the gender difference in the percentage of participants
who chose the risky option in the non-competitive control treatment. The percentage attributed to
competitiveness in treatment comparisons equals 1 minus the ratio of the first two columns. For
more details on the regression approach, we refer the reader to Table VI.

A3.1 Method

Table VII presents more details on the studies used to generate Figure V. These

studies were selected if they (1) reported the raw gender difference in tournament

choices, (2) included a regression controlling for overconfidence and risk preferences,

and (3) reported the raw gender difference in a control treatment that could be used

to isolate competitiveness from other factors.

Six of the studies included in the Table have a similar setup. First, participants

solve addition problems and decide between piece rate and tournament incentives,

as in Task 3 in this study. Second, they go through a control treatment in which

they are asked to submit their performance from an earlier part of the experiment

(typically Task 1, the forced piece rate) to either tournament or piece rate incentives.

Starting with Niederle and Vesterlund (2007), it has been argued that this additional

treatment is similar to the standard tournament choice in terms of risk preferences
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and overconfidence, but is no longer competitive.

The other study (Dohmen and Falk, 2011) uses a different design. There, one-

third of the participants choose between tournament incentives and fixed pay. The

other participants instead choose between fixed pay and either a piece rate or revenue

sharing. Where the tournament is competitive, the piece rate and revenue sharing

are not. However, all three options are riskier than fixed pay, and are also more likely

to attract confident participants. If one is willing to assume that risk preferences and

overconfidence play a similar role across the three treatments (a strong assumption),

then the piece rate and revenue sharing treatments can serve as a control for the

tournament treatment.

The data reported in these studies allow for direct treatment comparisons between

the baseline and control treatments. If competitiveness is important, the gender gap

should be smaller in the non-competitive control treatment. Hence, the ratio between

the gender gap in the control treatment and the gender gap in the tournament reflects

the importance of competitiveness in these studies. Interestingly, none of these studies

appear to make this comparison themselves, instead using regressions to control for

risk preferences and overconfidence as per the previous section.

A3.2 Results

The key result in Table VII is the difference between the regressions and treatment

comparisons. Using regressions, these studies estimate that approximately 78% of

the gender difference in tournament choices can be attributed to gender differences

in competitiveness. By contrast, treatment comparisons estimate the corresponding

percentage to be around 35%. A more extensive discussion of this result can be found

in the main text.

Note that our analysis compares gender differences in levels (percentage points).
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An alternative approach would be to compare gender differences in percentages or

ratios. The two approaches may give different results if people are overall more

or less likely to compete in the control treatment as opposed to the baseline. For

example, the former approach would treat a 40/20 and 30/10 gap as equal, while

the latter would consider the second gap to be 50 percent larger. However, for our

sample of studies the percentage/ratio approach attributes 32% of the gender gap to

competitiveness, which is very similar to the level estimate (35%).

A4. Assumption of the Treatment Comparisons

In this section, we discuss the identifying assumption of our treatment comparisons

using a formal framework. We do so by splitting the assumption into distinct parts

for the treatment and control variables, and discussing several sets of sufficient (but

not necessary) conditions under which the identifying assumption holds.

A4.1 A Formal Framework

Let ri, oi, ci be the risk preferences, overconfidence and competitiveness of indi-

vidual i. Let xi be a potential confounding variable that may affect gender differences

in tournament choices, such as ambiguity aversion or social preferences. Further, let

R, O, C and X be the empirical distribution of the respective variables over the whole

population. For our purposes, it is convenient to separate the population into two

parts – men and women – e.g., R = {RM , RF}. Finally, let

(R,O,C,X) = ({RM , RF} , {OM , OF} , {CM , CF} , {XM , XF})

be the joint empirical distribution of the four variables across the population.

We are interested in explaining the gender difference GT (RT , OT , CT , XT ) observed
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in tournament choices T . Our goal in the experiment is to investigate whether GT

changes when we eliminate the effect of gender differences in one of the three explana-

tory variables.

A4.2 Treatment Variables

This can be done in two distinct ways. One approach is to prevent the variable

of interest from affecting tournament choices. We use this approach to identify com-

petitiveness. Specifically, the goal is to compare the tournament T to an otherwise

identical environment T ′ where competitiveness can no longer explain gender differ-

ences in choices, i.e., GT ′(RT , OT , XT ). In the experiment, we approximate GT ′ using

the gender gap GN in treatment NoComp. Hence, our assumption is the following:

Assumption 1. GN(RN , ON , CN , XN)=GT ′(RT , OT , XT )

In words, the gender difference in treatment NoComp (GN) is assumed to be identical

to the difference that would have been observed in the tournament had competitive-

ness not been able to explain tournament choices.

A second approach is to eliminate the gender difference in the variable of interest.

We could, in theory, also have eliminated gender differences in competitiveness, and

then examined GT (RT , OT , C0, XT ), where C0 is such that CM = CF . In that case,

the identifying assumption would have reduced to:

Assumption 2. GN(RN , ON , CN , XN)=GT (RT , OT , C0, XT )

In words, this assumes that the gender difference in treatment NoComp is identical

to the difference that would have been observed in the tournament in the absence of

gender differences in competitiveness. In the experiment, we had no way to eliminate

gender differences in competitiveness, and therefore used the first approach to identify

competitiveness. For the remaining variables, we used the second approach.
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A4.3 Control Variables

In the remainder of this section, we examine several special cases of sufficient

conditions for the control variables under which assumption 1 and 2 hold. This allows

us to formalize the intuition – expressed in the discussion – that potential confounds

and measurement error in beliefs need not affect our results. For illustrative purposes,

we focus on competitiveness as the treatment variable of interest, the conditions for

the other treatment comparisons are analogous. We start by looking at a strong set

of sufficient conditions.

Condition 3. For the treatment variable C at least one of the following holds

1. GN() = GT (., ., C0, .) (No gender differences)

2. GN() = GT ′() (No effect on choices)

Condition 4. For the control variables R, O and X:

(riN , o
i
N , x

i
N) = (riT , o

i
T , x

i
T ) ∀i. (1-to-1 correspondence)

Imposing condition 3 allows us to focus on the control variables. In words, it states

that the treatment either eliminates the gender difference in the treatment variable,

or eliminates the effect of this variable on choices.

Condition 4 requires the risk attitudes, overconfidence, and other control variables

governing choices to be identical in the tournament and treatment NoComp for all

individuals. Since treatment NoComp is constructed using elicited beliefs, in practice

this would also require that beliefs are perfectly measured. However, condition 4 is

unnecessarily strong and the following (weaker) condition is sufficient as well.

Condition 5. For the control variables R, O and X:

(RT , OT , XT ) = (RN , ON , XN) (Identical distribution)
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Condition 5 allows individual risk attitudes, beliefs, and other factors to vary across

treatments, as long as the joint distribution is the same in both cases. This allows

elicited beliefs to be noisy, provided that errors cancel out, on average, in a way

that leaves the distribution unaffected. If we assume that the three variables are

independent conditional on gender, we can also rewrite the condition to apply to the

distribution of each variable individually.

Condition 5 may be violated if, for example, the distribution of elicited beliefs has

a higher variance than the latent belief distribution. However, we can weaken the

condition even further:

Condition 6. GT (RT , BT , C,XT ) = GN(RN , BN , C,XN)

(Changes in control variables do not affect the gender difference)

Condition 6 says that assumptions 1 and 2 will also hold if changes in the control

variables do not affect the gender difference G. For example, beliefs may change

in a way that makes men and women adjust their behavior in a similar direction,

leaving the gender gap unaffected. As discussed in the discussion, we see no reason

for this condition to be violated for risk attitudes or potential confounds. Whether

this condition is realistic for beliefs is an empirical question that will be addressed in

the next section.

A5. Accuracy of Elicited Beliefs

Treatment NoComp is constructed using the beliefs elicited in Task 4. As we saw

in the previous section, it is therefore important that elicited beliefs are a sufficiently

accurate representation of the latent belief distribution.

We took several steps to maximize the accuracy of our elicited belief measure.

First, we used a continuous measure, allowing participants to express a wide range
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of beliefs. Second, we used monetary incentives, which were carefully explained to

participants using instructions taken from Mobius et al. (2014). Third, our belief mea-

sure captures the expected probability of winning the tournament, which is precisely

the belief that expected utility theory says determines participants’ entry decisions.

Fourth, we elicited the expected probability of winning directly before the tournament

choice. This ensures that participants had the same information (past performance

and expected future performance) for both the belief elicitation task and the tourna-

ment choice.

Several indicators suggest that elicited beliefs are indeed similar to the latent belief

distribution. We have already shown that both genders are overconfident, and men

are more overconfident than women, which is in line with the literature. In addition,

there is a sizeable correlation between elicited beliefs and prior (Task 2) tournament

performance (r=.49 for women and r=.48 for men, p<.001 in both cases).

Nevertheless, beliefs in the experiment are elicited, and therefore measured im-

perfectly. Measurement error increases the variance of elicited beliefs, which may

impact results. Specifically, as our discussion of the interaction effect illustrates, gen-

der differences in choices are only going to appear for ‘intermediate’ subjective beliefs.

Increased variance could, in principle, imply both a larger and smaller frequency of

intermediate beliefs. If the case is the latter, the gender gap in treatment NoComp

will be downward biased and will overestimate the importance of competitiveness;

the converse is true if elicited beliefs are more intermediate.

We investigate the empirical effect of measurement error in two steps. First, we

attempt to specify what qualifies as an ‘intermediate’ belief. Naturally, any definition

is somewhat arbitrary, but one important component is that intermediate beliefs

imply substantial variation in the choices made by participants (e.g., due to variation

in risk attitudes). Task 5 elicited choices for the full range of probabilities, giving us
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Figure VI: Choices after Adjusting Overconfidence

Notes. The figure uses simulated data, where the elicited beliefs are perturbed 100 times for every
participant using a mean zero truncated normally distributed disturbance, with 50 different values
for the standard deviation of the disturbance. The disturbance term is truncated such that only
beliefs in the interval [0,100] are generated. The figure plots the average fraction of risky choices
made by each gender as a function of the standard deviation of the disturbance, averaged over all
simulations and participants.

access to the degree of agreement for the whole distribution. For probabilities in the

(0.25,0.75) range, at least 25% of participants still chose the least popular option. If

we define an intermediate belief as a belief that lies in this range, 68% of participants

have intermediate elicited beliefs.

Second, we investigate the effect of additional measurement error by perturbing

elicited beliefs with a truncated normally distributed noise term. Figure VI presents

the results. The added noise term makes beliefs less intermediate which, as expected,

decreases the gender difference. The implications are twofold. First, measurement

error decreases the gender gap. This implies that, if anything, the results of treatment

NoComp may underestimate the gender difference and hence overestimate the impor-
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tance of competitiveness. Second, and more importantly, even substantial measure-

ment error does not greatly affect our results. For example, even when the additional

noise term quadruples the variance of the elicited belief distribution (which happens

when the standard deviation term equals .22), the gender gap is still close to .30, and

hence very similar to the baseline.

In summary, our beliefs appear reasonably accurate in the sense that they strongly

correlate with performance. The results of our simulation suggest that even high levels

of measurement error have only a limited impact on the gender difference observed in

treatment NoComp. Importantly, any bias that does occur would actually decrease

the gender difference in this treatment, which would imply that we are overestimating

the importance of competitiveness. The fact that the gender difference in treatment

NoComp is, in fact, larger than in the baseline therefore suggests that measurement

error did not contribute to our results on competitiveness.

A6. Measurement Error: Econometric Adjustment

Measurement error may explain why previous studies have attached much greater

importance to competitiveness in explaining the gender gap in tournament choices.

We are able to circumvent the measurement error problem using our experimental

design. However, it is also possible to adjust for measurement error through better

measurement or by using statistical techniques. In this section, we apply several

of these techniques to our data. This presents us with additional evidence on the

importance of measurement error and allows us to compare statistical and design-

based ways of adjusting for measurement error.
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TABLE VIII: Regressions with more direct proxies

Coefficient (p-value)
(1) (2) (3) (4)

Female -0.329*** -0.293*** -0.228** -0.226**
(0.080) (0.083) (0.090) (0.089)

Holt-Laury 0.081**
(0.040)

Task 5 Risk 0.125***
(0.045)

Treatment NoComp Choice 0.277***
(.089)

Constant 0.671*** 0.653*** 0.621*** 0.481***
(0.057) (0.057) (0.060) (0.086)

Observations 140 140 140 140

Notes. OLS Estimates, robust standard errors in parentheses. Dependent variable is a dummy for
tournament choice in Task 4. Holt-Laury is the number of risky choices in the Holt-Laury task.
Task 5 Risk is the number of risky choices in Task 5. These variables are both standardized to have
mean zero and standard deviation 1. The remaining variable is the choice in treatment NoComp.
*** p<0.01, ** p<0.05, * p<0.1

A6.1 Better Measurement

Perhaps the most intuitive way to reduce the bias resulting from measurement

error is to use better measures. This could involve using techniques that are thought

to be more reliable in general, as well as using techniques that fit more closely to the

specific experiment. For example, rather than using a standard multiple price list

such as Holt and Laury (2002), one might adapt the payoffs of the price list to more

closely approximate the payoffs involved in the tournament choice.

We do this in Task 5, which was constructed to closely approximate the payoffs

in the tournament choice. In the main text, we used three individual rows from Task

5 to construct our control treatments. Here, we instead use the number of risky

choices taken in Task 5 as a proxy for risk preferences in a regression. In Table VIII,

we compare the results for this measure to Holt-Laury. Note that in the table and
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the rest of this section, we will no longer control for ability, allowing us to focus on

the effect of overconfidence (beliefs) and risk preferences. We also standardize all

non-binary explanatory variables, in order to facilitate comparisons.

Controlling for the Holt-Laury measure reduces the gender coefficient from -.329

to -.293, an 11% decrease (we observe a similar effect for the Eckel-Grossman and

SOEP measure). Controlling for the Task 5 risk measure instead reduces the gender

coefficient to -.228, which is a decrease of 31%. In other words, using a specifically

tailored control variable increases the implied importance of risk preferences by nearly

a factor of three.

Another way to improve measurement is presented by Niederle and Vesterlund

(2007), whose measure of risk preferences and overconfidence (choice in a control

treatment) has a very similar payoff structure to the main experiment. This measure

is more directly tailored to the main experiment, and could therefore be expected

to better reflect the relevant risk preferences and overconfidence than more general

measures. While we did not run the same control treatment, we can use treatment

NoComp as a similar sort of proxy for risk preferences and overconfidence.

The results are presented in column (4) of Table VIII. Relative to the Task 5 risk

measure, the choice in treatment NoComp also controls for overconfidence and could

therefore be expected to decrease the gender difference even further. At the same

time, being a binary variable decreases precision in measurement. Interestingly, the

gender coefficient after controlling for treatment NoComp is nearly identical to the

one obtained using the Task 5 risk proxy. This suggests that the effects of decreased

precision and also controlling for overconfidence cancel out on average.

Though directly tailored measures of risk preference may outperform standard

measures, they are still imperfect. While they may reduce one source of measurement

error (misfit between experiment and proxy), other sources of error (e.g., mistakes,
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binary/ordinal scale) still remain. Indeed, the 31% attributed to risk preferences and

overconfidence in column (4) is considerably less than the 113% attributed to these

variables using treatment comparisons.

A6.2 Multiple Measures

An alternative approach is to measure risk preferences and/or overconfidence sev-

eral times. Multiple measures can then be used to filter out some of the noise from

the regression estimates. One way to use these measures is to include all of them

simultaneously in a single regression. The idea is that these controls may jointly

capture a greater fraction of the total effect than any single control variable on its

own. Following Niederle and Vesterlund (2007) and Buser, Niederle, and Oosterbeek

(2014), we already applied this technique in Table III, where we showed that adding

additional control variables further reduced the gender coefficient.

Column (1) of Table IX does a similar analysis for risk preferences only, omitting

the coefficients for ability and overconfidence. Relative to a regression with just a

single control (columns 2 and 3 of Table VIII), the gender coefficient is smaller. Con-

trolling for additional proxies of risk preferences therefore does increase the fraction

of the gender gap that is attributed to risk preferences. However, the added benefit

relative to controlling for just the Task 5 risk measure is a relatively pedestrian 2

percentage points.

Including all four measures of risk preferences into a single regression may lead

to multicollinearity and overfitting issues. A different approach is to combine the

multiple measures into a single variable. In column (2), we construct a risk index by

taking the average of the four standardized risk measures. In column (3), we instead

use factor analysis to create a weighted sum. The weights assigned to each variable in

the latter case are nearly identical, which explains why we obtain very similar results
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TABLE IX: Regressions with multiple measures

Coefficient (p-value)
(1) (2) (3) (4) (5)

Female -0.204** -0.217** -0.217** -0.221** -0.144
(0.094) (0.091) (0.091) (0.096) (0.124)

Holt-Laury 0.018 0.244***
(0.046) (0.088)

Eckel-Grossman 0.042 0.300**
(0.046) (.120)

SOEP 0.031
(0.042)

Task 5 risk 0.090*
(0.052)

Risk Index 0.133***
(0.043)

Risk Factor 0.134***
(0.043)

Constant 0.609*** 0.616*** 0.616*** 0.617*** 0.579***
(0.062) (0.057) (0.060) (0.065) (0.074)

Method OLS OLS OLS IV IV
Observations 140 140 140 140 140

Notes. Robust standard errors in parentheses. Dependent variable is a dummy for tournament
choice in Task 4. Holt-Laury, Eckel-Grossman, SOEP and Task 5 risk are the standardized scores
on the respective elicitation method. The risk index is the standardized sum of the four methods.
The risk factor is a standardized weighted sum of the four methods, with the weights determined
by a factor analysis. For the IV regressions, the instruments include the female dummy, the SOEP
question, Task 5 risk, and the other omitted risk preference measures.
*** p<0.01, ** p<0.05, * p<0.1
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with both approaches. The results suggest that, relative to including each variable

separately, using an index of risk preferences does not affect the size of the gender

coefficient.

Repeated measures can also be used to filter out the noise using instrumental

variables. The IV estimator filters out measurement error by using one or more proxies

of risk preferences as instruments for another. A key assumption here is that there

is no correlation between measurement error in the two measures. This assumption

may not hold in practice, for example, if participants make similar mistakes in several

elicitation procedures. To our knowledge, this method has only been used in the

experimental literature on gender differences by Gillen, Snowberg, and Yariv (2015).

Columns (4) and (5) of Table IX present the results of an application of this

method to our data. In these columns, we respectively instrument the Holt-Laury and

Eckel-Grossman measure using the other three measures of risk preferences. Using

instrumental variables triples the coefficient of Holt-Laury (compare column 2 of

Table VIII), and has an even larger effect on the Eckel-Grossman coefficient (the

OLS coefficient is .080). Thus, adjusting for measurement error using IV greatly

increases the coefficient estimates for risk preferences in our study.

In column (5), the gender coefficient also decreases strongly, implying that risk

preferences by themselves explain 56% of the gender difference in tournament choices.

This number is no longer very different from the approximately 65% implied by our

data (including the interaction term). However, it is important to note the difference

between column 5 and column 4. When Holt-Laury is the instrumented variable

(column 4), the gender coefficient is similar to the previous columns (-.221). When

Eckel-Grossman is used, the gender coefficient drops to -.144 (column 5). Had we used

one of the other two measures as the instrumented variable, the gender coefficient

would have been either -.154 or -.163. Hence, the conclusions of the IV approach may
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differ based on which variables are selected as instruments.

It is not unusual that the results of IV regressions differ somewhat depending

on which variable(s) are used as instruments. However, this does complicate the

interpretation of the results. Gillen, Snowberg, and Yariv (2015) address this problem

(for the case of two proxies) by separately using each measure as an instrument for

the other. They then take the average of the two coefficients as their estimate of

the true effect, an approach they refer to as obviously related instrumental variables

(ORIV). In our case, taking the average of the four IV regressions gives us a gender

coefficient of .171, implying that 48% of the gender difference in tournament choices

is driven by gender differences in risk preferences. This is a far cry from the 11% we

obtained by using a single general control question for risk preferences, as is common

practice in the literature.

In summary, measuring a noisy explanatory variable several times may alleviate

if not eliminate the measurement error problem, especially through the use of instru-

mental variables. However, in the latter case the results vary considerably depending

on which variables are used as instruments.

A6.3 Errors-in-Variables Regressions

A disadvantage of the techniques in the previous section is that they require

multiple measures. For beliefs, we have only two measures of overconfidence, one for

Task 4 and one for Task 4b. These two measures are highly correlated (.87), implying

either near-perfect measurement or highly correlated measurement error. In the latter

case, which seems more plausible, the IV method would no longer be able to filter

out all measurement error, and would not sufficiently adjust the estimated coefficient

upwards.

However, when the reliability of the independent variables is known, it is possible
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to correct the coefficient estimates directly without the use of instrumental variables.

Following Krashinsky (2004), the vector of adjusted coefficients can be estimated as

(4) βADJ = (X ′X − nΣη)
−1X ′Y

We change our notation such that βADJ is now a vector of adjusted coefficients,

Ση is the variance-covariance matrix of measurement errors, and X = (F,R,B) is a

matrix containing gender, a proxy for risk preferences and a proxy for overconfidence

(i.e., beliefs). We assume that gender is perfectly measured and measurement error

in risk preferences is not correlated with measurement error in beliefs. Further, let

σ∗ be the variance of the latent variable, and let ση the measurement error of the

elicited proxy. For our regressions, we will vary the reliability ratio σ∗
σ∗+ση

and adjust

Ση correspondingly. Assuming that measurement error is not correlated across two

measures of the same variable, the reliability ratio equals the correlation coefficient

between two measures and can thus be estimated in our data.

The regression results are presented in Table X. We use the Task 5 measure of

risk preferences, since it appears to be the least noisy measure based on the results of

Table VIII. Column 1 presents the standard unadjusted OLS results. Both beliefs and

risk preferences are significant, and jointly explain approximately 43% of the gender

difference in tournament choices. For column (2), we assume that both measures

have a reliability of .7. Given the literature, which we review below, this represents

a fairly optimistic estimate that implies that only 30% of the variation in the elicited

measures is due to noise. Nevertheless, the coefficient for gender already falls to -.104,

and is no longer significant.

In columns (3) and (4), we lower the reliability to .6 and .5 respectively, for both

variables. This pushes the gender coefficient even closer to zero; in the second case
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TABLE X: Errors in Variables Regressions

Coefficient (p-value)
(1) (2) (3) (4) (5) (6)

Female -0.187** -0.104 -0.050 0.039 -0.025 -0.140
(0.087) (0.097) (0.105) (0.118) (0.112) (0.093)

Task 5 Risk 0.131*** 0.200*** 0.260*** 0.344*** 0.326*** 0.137***
(0.042) (0.064) (0.078) (0.099) (0.100) (0.042)

Belief 0.081** 0.126** 0.154** 0.200** 0.093** 0.173**
(0.040) (0.057) (0.067) (0.080) (0.038) (0.083)

Constant 0.600*** 0.559*** 0.532*** 0.488*** 0.520*** 0.577***
(0.058) (0.061) (0.064) (0.069) (0.067) (0.060)

Reliability Risk 1 .7 .6 .5 .5 1
Reliability Belief 1 .7 .6 .5 1 .5
Observations 140 140 140 140 140 140

Notes. Robust standard errors in parentheses. Dependent variable is a dummy for tournament choice
in Task 4. Task 5 risk is the standardized number of risky choices in Task 5. Belief is the probability
of winning elicited in Task 4. The reliability ratio is σ∗

σ∗+ση
, the ratio between the assumed variance

of the latent variable, and the variance of the measured variable.
*** p<0.01, ** p<0.05, * p<0.1

the coefficient for gender is even positive, though not significant. Columns (5) and

(6) show that a comparable reduction in the assumed reliability has a larger effect for

risk preferences than for beliefs. This suggests that either risk preferences are more

important in explaining the gender difference in tournament choices or that the risk

preference measure is less noisy than the belief measure (or both).

Do these results imply that the gender difference in tournament choices can be

fully attributed to gender differences in risk preferences and overconfidence? Possibly,

but only if the reliability ratios in these columns are accurate. Though the evidence

presented in the literature and below suggests that risk preference measures may have

considerably smaller reliability ratios than .5, the particular measure we use here was

constructed to be very similar to the tournament choice and may therefore be an

unusually good predictor of behavior in the experiment. Similarly, we have no direct
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way of estimating the reliability of the belief variable, and it may therefore very well

be less noisy (or noisier) than assumed in the table.

A6.4 Structural Equation Modelling

Structural Equation Models (SEMs) are a popular tool in the social sciences for

estimating relationships between latent (i.e., imperfectly measured) variables. We are

interested in the effect of two latent variables – risk preferences and overconfidence –

neither of which is perfectly observed. Using an SEM, it is possible to simultaneously

estimate these latent variables through a measurement model, and estimate their

effect on the variable of interest (tournament choices). Naturally, the method relies

on several strong assumptions, for an overview see, for example, Kline (2005).

For our estimations, we assume that the first latent variable (risk preferences)

is imperfectly measured by four proxy variables: Holt-Laury, Eckel-Grossman, the

SOEP question and the Task 5 risk measure. Similarly, we assume that beliefs are

imperfectly measured by the elicited beliefs from Task 4 and Task 4b. Following

Niederle and Vesterlund (2007), we further assume that the choice made in treatment

NoComp can serve as a proxy for both risk preferences and beliefs. This gives us a

measurement model where the two latent variables are measured by five and three

proxies respectively.

In addition to these measurement models, we also simultaneously estimate two

additional equations. First, we assume that tournament choices are a function of

risk preferences, beliefs, and gender, similar to our earlier regressions. Second, we

assume that differences in beliefs are caused by differences in ability, as reflected

by the objective probability of winning po (as computed using performance in Task

2) and the difference between Task 2 and Task 1 performance. In other words, we

allow ability to influence choices only indirectly, through beliefs. Using standard SEM
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terminology, we will refer to these two equations as structural models.

The results are estimated using maximum likelihood and are presented in Table

XI. With the exception of gender, all variables are standardized to have a mean of

zero and a standard deviation of 1. The first two parts of the table present the results

of the measurement equations. For risk preferences, Task 5 has a considerably larger

weight than the other measures, in line with the idea that it is a better proxy of risk

preferences in this setting. For beliefs, the beliefs elicited in each task have a similar

weight. The dummy variable for choices in treatment NoComp has a smaller weight

than the elicited measures of beliefs.

The first structural model reaffirms the result of the previous section that beliefs

and ability are highly correlated. Better participants (as reflected by their probability

of winning) have more optimistic beliefs. At the same time, the difference between

performance in the tournament and piece rate (which reflects the effect of competitive

incentives on performance) does not significantly correlate with beliefs.

The second structural model shows that latent beliefs and, in particular, risk

preferences have a strong effect on tournament choices. A one standard deviation

increase in risk tolerance increases the probability of entering the tournament by 33

percentage points. The estimated effect for risk preferences greatly exceeds the esti-

mate obtained with standard regressions, and is comparable only to the Instrumental

Variables approach and errors-in-variables regressions with a low assumed reliability.

By contrast, the belief variable has a relatively modest effect. A likely explanation

is that measurement error was correlated across the two elicitations, which implies

that our measurement model for beliefs was unable to filter out all measurement error.

This would then imply that the gender coefficient, which is equal to -.144, may still

be overestimated.

We only discuss the results of a single SEM for reasons of space. Naturally,
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TABLE XI: Structural Equation Model Estimates

Parameter Estimate Std. Error

Measurement Model: Risk Preferences
SOEP 1
Eckel-Grossman 0.989*** (0.229)
Holt-Laury 1.130*** (0.235)
Task 5 Risk 1.843*** (0.326)
Treatment NoComp Choice 1.091*** (0.208)

Measurement Model: Beliefs
Belief Task 4 1
Belief Task 4b 0.877*** (0.056)
Treatment NoComp Choice 0.591*** (0.057)

Structural Model: Beliefs
po 0.406*** (0.085)
T-PR 0.014 (0.031)

Structural Model: Tournament Choice
Female -0.144 (0.090)
Risk Tolerance 0.330*** (0.109)
Belief 0.081** (0.039)
Constant 0.577*** (0.061)

Observations 140

Notes. Holt-Laury, Eckel-Grossman, SOEP and Task 5 risk are the standardized scores on the
respective elicitation method. Beliefs are the probability of winning elicited in Task 4 and Task 4b,
respectively. Treatment NoComp Choice is a dummy for the choice in treatment NoComp. po is
the objective probability of winning, based on Task 2 performance. T-PR is the difference between
performance in the tournament (Task 2) and piece rate (Task 1). In the final rows, risk tolerance
and belief are the latent variables for risk preferences and beliefs, respectively. In total, the results
are based on seven simultaneously estimated equations, the two structural models plus one equation
per proxy variable in the measurement models.
*** p<0.01, ** p<0.05, * p<0.1
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we could have estimated a number of different models which, for example, did not

directly incorporate a causal relationship between ability and beliefs, did not use

treatment NoComp as a proxy for risk preferences or overconfidence, etc. While the

results of these alternative models differ slightly, all give qualitatively similar results.

Specifically, the gender coefficient tends to vary very little, and always remains in the

-.15 to -.12 range, and is never significant.

A6.5 Final Remarks

These results have several implications. First, they point toward the existence

of substantial measurement error in the proxy variables we used in Table III, par-

ticularly risk preferences. Adjusting estimates for measurement error by using a

larger number of proxies, better measurement or statistical techniques all increased

the implied importance of risk preferences and, to some extent, overconfidence. As

shown by Gillen, Snowberg, and Yariv (2015), substantial measurement error implies

that previous studies – which did not adjust their estimates for measurement error –

underestimated the importance of risk preferences and overconfidence in their data.

Second, the greater the adjustment in the risk and belief coefficients, the smaller

the residual gender coefficient. In many of our specifications, the residual gender co-

efficient was no longer significant, in some it was even a precisely estimated zero. This

suggests that regressions that do not account for measurement error overestimate the

residual gender coefficient and hence the importance of competitiveness. By contrast,

the adjusted estimates of this section are more consistent with our experimental com-

parisons and suggest that competitiveness explains at most a small part of the gender

gap in tournament choices.

Third, our results illustrate that good measurement and statistical techniques can

serve as complements. The risk preference coefficient was largest in regressions that
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combined both statistical techniques (IV or SEM) and a specifically tailored measure

of risk attitudes (from Task 5). In contrast, we did not have enough measures of

beliefs to filter out the noise using statistical techniques. Indeed, we interpret the

relatively small coefficient estimates for beliefs in e.g., Table XI as evidence of an

inability to fully adjust our estimates for measurement error.

A7. Measurement Error: Evidence

In this section, we review and present evidence that is strongly suggestive of

measurement error in elicited measures of beliefs and risk attitudes. We also directly

estimate the signal-to-noise ratio using our data.

A7.1 Evidence

Why would we expect proxies for risk preferences and overconfidence to be noisy?

One reason is that participants make mistakes when responding to elicitation tasks.

They may not exactly know their risk preferences or beliefs. They may not understand

the incentive scheme, etc. A second reason is that the elicitation procedure may

not capture the latent variable that determines behavior in the experiment. For

example, the risks taken in the Holt and Laury (2002) task involve different payoffs

and probabilities than the risk taken in tournament choices. Risk preferences may

also be context-specific. Third, both risk preferences and beliefs (e.g., guessed rank)

are typically elicited using ordinal scales. Unless the latent variables actually follow

the same ordinal scale (which seems unlikely), these proxies will therefore be unable

to perfectly measure the latent variable.

These intuitive ideas are supported by studies that estimate the amount of mea-

surement error in the data. One approach relies on the idea that perfectly measured

A-32



proxies that reflect the same underlying construct should be perfectly correlated. In-

stead, the literature typically finds rather small correlations between different prox-

ies, or between repeated elicitations of the same proxy. Kimball, Sahm, and Shapiro

(2008); Beauchamp, Cesarini, and Johannesson (2015), and Gillen, Snowberg, and

Yariv (2015) suggest that these small correlations may be due in large part to mea-

surement error, and indeed find substantially larger correlations after adjusting for

measurement error using statistical techniques. Similarly, Gillen, Snowberg, and

Yariv (2015) and Ambuehl and Li (2016) find substantially larger correlations between

beliefs and actions after adjusting for measurement error using statistical techniques.

We can apply a similar logic to our data. For risk preferences, we can compare

correlations across three measures of risk preferences (the SOEP question, Eckel-

Grossman and Holt-Laury), and can use the number of risky choices in Task 5 as a

fourth proxy of risk preferences. Pairwise correlations range from .21 for the SOEP

question and Eckel-Grossman to .51 for Task 5 and Holt-Laury. All six correlations

are significantly smaller than 1 and imply substantial measurement error (see below).

For overconfidence, we can examine the correlation between the beliefs elicited

in Task 4 and Task 4b. This correlation is very high (.87). While this could reflect

highly precise measurement, a more likely explanation is that measurement error is

also correlated across the two measures. For example, a misunderstanding of the

incentives is likely to affect responses to the two elicitations in the same way.

Three other pieces of evidence point to the existence of measurement error. The

first is the large variation in the estimates of the regression approach across studies

(Table VI). Second, different proxies give different results even when applied to the

same data. Third, Table III showed that the more proxies that are included, the

lower the residual gender coefficient. Without measurement error, different proxies

are perfectly correlated, give identical results in the same data, and adding additional
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proxies could not improve the fit of the regression model.

A7.2 Size

The evidence summarized in the previous section suggests that measurement error

forms a substantial part of our proxies for risk preferences and overconfidence. In this

section, we estimate exactly how large the measurement error component is likely to

be in our data.

One approach is to assume that the results of the treatment comparisons reflect

the true data-generating process (DGP). If this is true, we can combine knowledge

of the true DGP with the results of the regression analysis to back out an estimate

for the amount of noise in the explanatory variables. In so doing, we impose the

strong assumption that the true DGP is a well-behaved linear equation with classical

measurement error in risk preferences and overconfidence.

This assumption allows us to investigate the effect of measurement error using

simulations, which are presented in greater detail in Figure VII below. As a first

step, we regress actual tournament choices on risk preferences, beliefs, and their

interaction in our data. These regressions are similar to Table III, except that we no

longer control for ability and include an interaction term. Depending on the proxies

we use, we obtain residual gender differences ranging from 58% to 80% of the raw

gender gap.

As a second step, we use simulated data from Figure VII to investigate the amount

of noise required to obtain similar results in the simulated data. Retaining a residual

gender coefficient of .58 to .8 in the simulated samples requires imposing a signal-

to-noise ratio between .5 and .83. This is consistent with anywhere between 55%

and 67% of the total variance in our explanatory variables being due to measurement

error.
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A different approach is to investigate correlations between multiple measures of

the same variable. Any deviation from a unit correlation between multiple measures

can be thought of as a reflection of measurement error. Under strong parametric

assumptions, we can use the empirical correlation coefficients to back out the mea-

surement error variance.

For risk preferences, we can estimate the signal-to-noise ratio by looking at cor-

relations between the four elicited measures. Assuming that each of these measures

reflects the same latent ‘true’ risk preference variable R∗, we get:

(5) R1 = R∗ + η1

(6) R2 = R∗ + η2

The correlation coefficient between the two risk measures rR1,R2 equals:

(7) rR1,R2 =
COV (R1, R2)√
V ar(R1)V ar(R2)

Let us now assume that measurement error is classical, which implies that measure-

ment error is not correlated with the latent variable COV (R∗, ηR1) = COV (R∗, ηR2) =

0. We also impose the additional strong assumptions that the two variables in ques-

tion have the same variance and that the error terms of the two proxies are not

correlated, such that ηR1, ηR2 ∼ N(0, σ2
η). Equation (7) then reduces to:

(8) rR1,R2 =
VAR(R∗)

VAR(R1)
=

VAR(R∗)

VAR(R∗ + η)
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Under these assumptions, the correlation coefficient therefore directly reflects the

ratio between the variance of the latent variable risk preferences and the observed

variable (which includes measurement error). Even the highest correlation obtained

in our data (.507 for Holt-Laury and the Task 5 risk measure) implies that half the

variance in the elicited proxy is due to measurement error. In other words, the signal-

to-noise ratio is approximately 1. The average correlation (.38) implies a signal-to-

noise ratio of .62, with the smallest correlation (.212) even implying a signal-to-noise

ratio as low as .27.16

While both approaches rely on strong assumptions, it is encouraging that they

yield estimates that are in the same ballpark. Both approaches suggest that at least

half, and probably more, of the variance of the control variables is due to measurement

error. Our results of the second method yield estimates that are similar to Kimball,

Sahm, and Shapiro (2008), Andersen et al. (2008), and Gillen, Snowberg, and Yariv

(2015).

A8. Measurement Error: an Example

This section illustrates the consequences of classical measurement error in beliefs

and risk preferences on regressions and treatment comparisons using a simulated

example based on our data. We use a well-behaved linear data-generating process

that assumes that the variables of interests are subject to classical measurement error.

Specifically, the data-generating process we use to generate tournament choices Y is

the following.

16. In principle, we could have done a similar analysis for overconfidence. However, this would
almost certainly violate the assumption that measurement error is not correlated across measures.
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(9) Y = α0 + β1R
∗ + β2B

∗ + β3C
∗ + β4B

∗R∗ + ε∗

(10) R∗ = α1 + γ1M + ν∗R

(11) B∗ = α2 + γ2M + ν∗B

(12) C∗ = α3 + γ3M + ν∗C

Here, M is equal to one if the participant is a man, and zero otherwise. We assume

that β1 = .25, β2 = .42, β3 = 0 and β4 = .33. These parameters correspond to the re-

sults of our treatment comparisons, except that we round the effect of competitiveness

to zero and adjust the other coefficients to sum to 1. We assume that beliefs (B∗),

risk preferences (R∗), and competitiveness (C∗) are partially determined by gender,

and we normalize the effect of gender to be equal to one, i.e., γ1 = γ2 = γ3 = 1. The

explanatory variables also reflect an idiosyncratic term ν∗R, ν
∗
B, ν

∗
C ∼ N(0, 1). Without

loss of generality, we further normalize all constants α to zero.

To investigate the effect of measurement error, we assume that both risk prefer-

ences and beliefs are measured with classical measurement error, i.e., R = R∗+ηR and

B = B∗+ ηB, where ηR, ηB ∼ N(0, σ2
η). In our simulations, we vary the measurement

error variance to examine its impact on the estimated effect of risk preferences, be-

liefs, and competitiveness. For the regression approach, we will estimate the following

equation.
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Figure VII: Simulations Illustrating Measurement Error in
Regressions

Notes. The figure plots the average coefficient estimates for gender, risk preferences, overconfidence
and the interaction of risk preferences and overconfidence. The coefficient estimates represent the
average coefficient over 1,000 simulated samples for 200 different values of the noise-to-signal ratio
ση.

(13) Y = α̂0 + β̂1R + β̂2B + β̂4BR + θ̂M + e

This equation is similar to Table III, except that it also includes an interaction

term in line with the results of the experiment. As in Table III, there is no variable

that measures competitiveness. Instead, competitiveness is proxied for using the

gender dummy. We generate 1,000 random samples for 200 different values of the

measurement error variance and estimate equation (13) on each of the simulated

samples. In line with our experiment, each sample consists of 70 men and 70 women.

The results are presented in Figure VII. When all variables are perfectly measured,
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the regression results are in line with the DGP. The gender coefficient (reflecting

competitiveness) is zero and all other coefficients correspond to the DGP. However,

as ση increases, the coefficient estimates for risk preferences, overconfidence, and the

interaction term are attenuated and converge to zero. By contrast, the coefficient for

gender – zero in the DGP – grows larger and converges to one.

These results are intuitive. When risk preferences and overconfidence are mea-

sured with high levels of noise, their coefficients will only be able to capture part of

the true underlying effect. After controlling for the noisy proxies of risk preferences

and overconfidence, the residual gender coefficient is therefore positive and significant.

Rather than reflecting competitiveness, however, it reflects whichever part of the ef-

fect of risk preferences and overconfidence the noisy proxies were unable to control

for.

Next, we investigate the effect of measurement error on the results of our treat-

ment comparisons. We focus on the comparison between the baseline and treatment

NoComp, which isolates the effect of competitiveness. We assume that behavior in

treatment NoComp is governed by the true DGP and true risk preferences R∗, but

by noisy beliefs (B). Hence, choices in treatment NoComp (Y 1) are constructed as

follows.

(14) Y 1 = α0 + β1R
∗ + β2B + β3BR

∗

The effect of competitiveness can be obtained by subtracting the size of the gender gap

in Y 1 from the size of the gender gap in tournament choices Y within each simulated

sample. We do this comparison using the same 200,000 random samples we used for

Figure VII.
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Figure VIII: Simulations Comparing the Effect of Measurement Error

Notes. The regression-based line displays the average estimated coefficient for gender in a regres-
sion of competitive choices on gender, risk preferences, overconfidence, and the interaction of risk
preferences and overconfidence (over 1,000 samples). The treatment-based approach is the average
gender gap in the DGP minus the gender gap in the alternative choice of equation (14) in the same
simulated samples.

A-40



Figure VIII gives the results of the comparison between the experimental and

regression approaches. While measurement error increases the implied importance

of competitiveness in the regression approach, there is no such effect for treatment

comparisons. Independent of the amount of measurement error, the treatment com-

parisons correctly attributes none of the gender gap to competitiveness. Increased

measurement error only affects the treatment-based estimator through an increase in

its variance.

All in all, these results illustrate that classical measurement error systematically

biases the results of the regression approach, but does not affect the average estimate

of the treatment-based approach.

Appendix B: Experimental Instructions – For

Online Publication

This is the English version of the instructions used for the experiment. The

original German version is available upon request. The welcome section is required

for all experiments in the lab at the Technical University of Berlin. The instructions

for Task 1 to Task 3 closely followed Niederle and Vesterlund (2007). The instructions

for the belief elicitation task were based on Mobius et al. (2014). In the experiment,

we referred to Task 4b and Task 5 as Task 5 and Task 6, respectively.

Welcome

Welcome to our experiment. During the experiment, it is not allowed to use
electronic devices or to communicate with other participants. On your computer,
please only use the experimental software. Please do not communicate with other
participants. If you have a question, please raise your hand, and we will come and
answer your question in private. Please do not ask the question in a way that everyone
can hear it. If the question is relevant for all participants, we will repeat and answer it
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for everyone. If you break one of these rules, you will be excluded from the remainder
of the experiment and will not receive any earnings.

Instructions

In the experiment today you will be asked to complete six different tasks. None of
these will take more than 5 minutes. At the end of the experiment you will receive e3
for having completed the six tasks, in addition we will randomly select one of the six
tasks and pay you based on your performance in that particular task. Once you have
completed the six tasks we will determine which task counts for payment by asking
one of you to roll a six-sided die. The method we use to determine your earnings
varies across tasks. Before each task we will describe in detail how your payment is
determined.

Your total earnings from the experiment are the sum of your payment for the
randomly selected task, your e3 payment for completing the tasks, and a e5 show
up fee. At the end of the experiment you will be asked to come to the side room
where you will be paid in private.

Task 1: Piece Rate

For Task 1 you will be asked to calculate the sum of five randomly chosen two-
digit numbers. You will be given 5 minutes to calculate the correct sum of a series of
these problems. You cannot use a calculator to determine this sum, however, you are
welcome to write the numbers down and make use of the provided scratch paper. You
submit an answer by clicking the submit button with your mouse. When you enter
an answer the computer will immediately tell you whether your answer is correct or
not. Your answers to the problems are anonymous.

If Task 1 is the one randomly selected for payment, then you will get 50 cents per
problem you solve correctly in the 5 minutes. Your payment does not decrease if you
provide an incorrect answer to a problem. We refer to this payment as the piece rate
payment.

Please do not talk to one another for the duration of the experiment. If you have
any questions, please raise your hand.

[Participants were brought to a wait screen, and waited until everyone had finished
reading these instructions. On the wait screen, they could re-read the instructions
printed above. After everyone had finished reading the instructions, they then had
five minutes to solve addition problems. At the end of the task, they received feedback
on the number of exercises they had solved and were notified that the next task would
start in 20 seconds.]
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Task 2: Tournament

As in Task 1 you will be given 5 minutes to calculate the correct sum of a series
of five two-digit numbers. However for this task your payment depends on your
performance relative to that of a group of other participants. Each group consists of
four people. If Task 2 is the one randomly selected for payment then your earnings
depend on the number of problems you solve compared to the three other people
in your group. The individual who correctly solves the largest number of problems
will receive e2 per correct problem, while the other participants will not receive any
payment. We refer to this as the tournament payment. You will not be informed of
how you did in the tournament until all six tasks have been completed. If there are
ties, the winner will be randomly determined.

Please do not talk to one another. If you have any questions, please raise your
hand.

[The wait screen, task, and feedback were identical to Task 1. Notably, participants
only received feedback on their absolute performance, not on their relative.]

Task 3: Choice

As in the previous two tasks you will be given 5 minutes to calculate the correct
sum of a series of five two-digit numbers. However, you will now get to choose which
of the two previous payment schemes you would prefer to apply to your performance
in the third task.

If Task 3 is the one randomly selected for payment, then your earnings for this
task are determined as follows. If you choose the piece rate you will receive 50 cents
per problem you solve correctly. If you choose the tournament your performance will
be evaluated relative to the performance of the other three participants of your group
in the Task 2-tournament. The Task 2-tournament is the one you just completed. If
you correctly solve more problems than they did in Task 2, then you will receive four
times the payment from the piece rate, which is e2 per correct problem. You will
receive no earnings for this task if you choose the tournament and do not solve more
problems correctly now, than the others in your group did in the Task-2 tournament.
You will not be informed of how you did in the tournament until all four tasks have
been completed. If there are ties the winner will be randomly determined.

The next computer screen will ask you to choose whether you want the piece rate
or the tournament applied to your performance. You will then be given 5 minutes to
calculate the correct sum of a series of five randomly chosen two-digit numbers.

Please do not talk to one another. If you have any questions, please raise your
hand.

[Wait screen with Task 3 instructions; subsequent feedback and task identical to
Task 1 and Task 2.]
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Task 4: Choice 2

As in the three previous tasks you will be given 5 minutes to calculate the correct
sum of a series of five two-digit numbers. As in the previous task, you can choose
which payment scheme you would prefer to apply to your performance. There will
also be an additional part of the task that will be explained on the next page.

If Task 4 is the one randomly selected for payment then your earnings for this task
are determined the same way as in Task 3. In particular, you can choose between:

• Piece Rate: 50 cents per problem you solve correctly.

• Tournament: e2 per correct answer if you correctly solve more problems than
your group members did in Task 2, e0 otherwise.

You will not be informed of how you did in the tournament until all six tasks have
been completed. If there are ties, the winner will be randomly determined.

Task 4: Robots

Imagine that you live in a world full not only of TU students, but also full of
robots. This is Bob the Robot. Bob is going to solve exercises too, along with all his
clones – 100 robots in all. On average the robots are about as good at the exercises
as TU students, but some are much better than others. In fact, they have been
programmed so that

• Bob 1 has a 1% chance of scoring better than your three group members in
Task 2.

• Bob 2 has a 2% chance of scoring better than your three group members in
Task 2.

• ...etc...

• Bob 100 has a 100% chance of scoring better than your three group members
in Task 2.

One of these robots will be assigned to be your robot. But we aren’t going to tell
you which robot it is until the end of the experiment – it could be any of the 100
models.17

For this part of Task 4 (the Robot part) you can earn e2 (in addition to the
payment discussed on the previous page). For this, you can use either your perfor-
mance on this task or the performance of your Bob. Whichever you use, you will earn
e2 if that performance is larger than the number of exercises solved by your group
members in Task 2.

17. These instructions, and the picture of the robot, were adapted or taken from (Mobius et al.,
2014)
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Figure IX: Bob the Robot (Mobius et al., 2014)
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Task 4: Robots (2)

You will thus have to help us decide whether to use your score or the robot’s score
to determine your payment. We are going to ask you which robot you think you are
most like. That means, which of the 100 Bob clones is as likely as you are to score
better than your group members in Task 2. Based on the decision you have made,
we will pick either your score or the robot’s, depending on who is most likely to have
a better score than your group members in Task 2.

For example, suppose that you say you are as good as Bob 60. If your actual robot
is Bob 34, we would base your payoff on your score, since you are then more likely to
solve more exercises. But if your actual robot is Bob 97 we will use the robot’s score,
since the robot is then more likely to solve more exercises.

Note also that since Bob X has an X% chance of having a higher score than your
group members in Task 2, you are in effect estimating the probability that you will
have a higher score than your group members in Task 2. The bottom line is that you
are most likely to win e2 if you are as accurate as possible when you estimate your
probability of solving more exercises than your group members did in Task 2.

Check-up Question

Suppose you think that you have a 44% chance of getting a higher score than your
group members in Task 2. Given that you estimate your chance of winning at 44%,
which Bob should you select to have the highest chance of winning the prize of e2?

Task 4: Robots (3)

The next computer screen will ask you to choose a robot. After that, you will be
asked to choose between the piece rate and the tournament. You will then be given
5 minutes to calculate the correct sum of a series of five randomly chosen two-digit
numbers.

Please do not talk to one another. If you have any further questions, please raise
your hand.

[Participants went to a wait screen until all participants had finished reading these
instructions. While on the wait screen, participants were able to reread the instruc-
tions for this task if they so wished. Once all participants finished the instructions,
each participant then decided on his robot:]

Please state which Bob you think you are most like. Remember, Bob X has an
X% chance of having a higher score than your group members in Task 2, so you are
in effect estimating the probability that you will have a higher score than your group
members in Task 2. You are most likely to win the 2 if you are as accurate as possible.

I am as likely to have a higher score than my group members in Task 2 as Bob...
[They then worked on addition problems for five minutes, after which they re-

ceived feedback on their absolute performance. They did not receive any feedback on
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their relative performance, nor on whether the computer used a robot or their own
performance to determine their earnings for the Robot task.]

Task 5: Choice 3 and Robot 2

As in the previous tasks you will be given 5 minutes to calculate the correct sum
of a series of five two-digit numbers. As in the previous task, you can choose which
payment scheme you would prefer to apply to your performance. As in the previous
exercise, you will be asked which Robot you are most similar to.

If Task 5 is the one randomly selected for payment, then your earnings for this
task are determined the same way as in Task 4. You can choose between:

• Piece Rate: 50 cents per problem you solve correctly.

• Tournament: e2 per correct answer if you correctly solve more problems than
your group members did in Task 2, e0 otherwise.

In addition, you may earn e2 for the Robot part. For this part, we will ask you
which Robot is most similar to you in your opinion. In other words, which of the 100
Bob clones has the same probability as you to solve more exercises than your group
members in Task 2.

The only new part about Task 5 is that you will find out whether your score was
higher than the score of your team members in Task 2, even if you choose the piece
rate.

You will not be informed of how you did in the tournament until all six tasks have
been completed. If there are ties the winner will be randomly determined.

Please do not talk to one another. If you have any questions, please raise your
hand.

[Wait screen with Task 5 instructions; subsequent feedback and task identical to
Task 4.]

Task 6: Table

In Task 6 you will make 20 decisions. For each of these decisions, you will be
choosing between a certain payment (option A) and a lottery (option B). Option A is
identical for every decision problem: you will receive X Euro for certain. For option
B you will receive either 4X Euro or 0 Euro. The probability with which you will
receive 4X Euro will differ for every decision problem.18

If Task 6 is the one randomly selected for payment, then your earnings for this
task are determined in the following way:

18. X equals 50 cents times the performance of the participant in Task 2.

A-47



• First, one of your 20 decisions will be chosen at random. For this purpose,
one participant in the experiment will be asked to roll a 20-sided die. If, for
example, the number is 14, your 14th decision will be chosen for payment.

• In case you chose the certain payment (option A) on the selected decision prob-
lem, you will receive X Euro. In case you chose the lottery (option B), the
computer will draw a random number from 0 to 100. If the randomly chosen
number is smaller or equal to the probability of receiving 4X Euro in the selected
decision problem, you will receive the 4X Euro. Otherwise, you will receive 0
Euro. Please have a look at the two examples below.

Example 1:

Decision problem 17 was selected for payment. You chose the lottery (option B).

Option A Option B
X Euro 20% chance of obtaining 4X Euro

80% chance of obtaining 0 Euro

In this example, a random number between 1 and 20 would yield a payment of 4X
Euro, a higher number would give you a payment of 0 Euro.

Example 2:

Decision problem 12 was selected for payment. You chose the lottery (option B).

Option A Option B
X Euro 40% chance of obtaining 4X Euro

60% chance of obtaining 0 Euro

In this example, a random number between 1 and 40 would yield a payment of 4X
Euro, a higher number would give you a payment of 0 Euro.

Please do not talk to one another. If you have any questions, please raise your
hand.
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Figure X: Screen Shot of Task 6: Choice Table (German)

Overview of Payment

Task 4 was randomly chosen for payment.During this Task, you solved 10 exercises
and chose the tournament, and won it. You therefore receive 20e.

In addition, in Task 4 you chose Bob 52. Your randomly chosen Bob was 34. We
therefore used your performance to determine your earnings.

You therefore earned 2e for the robot part of Task 4.
In addition to the show-up fee of 5e and the 3e participation fee, you therefore

earned a total of 30e.19

Questionnaire

Please answer the following questions:

• What is your gender?

• What is your age?

• What is your major?

19. The choices, payment amounts and selected task presented here are an example.
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• Which finger on your right hand is longer, the index-finger or ring-finger?

• Which finger on your left hand is longer, the index-finger or ring-finger?

[Page 2 ]

Please answer the following questions:

• How do you see yourself: are you in general a person who is fully prepared to
take risks or do you try to avoid taking risks?

• How do you see yourself: are you in driving a person who is fully prepared to
take risks or do you try to avoid taking risks?

• How do you see yourself: are you in financial matters a person who is fully
prepared to take risks or do you try to avoid taking risks?

• How do you see yourself: are you in your free time and in sports a person who
is fully prepared to take risks or do you try to avoid taking risks?

• How do you see yourself: are you in your professional career a person who is
fully prepared to take risks or do you try to avoid taking risks?

• How do you see yourself: are you in terms of your personal health a person who
is fully prepared to take risks or do you try to avoid taking risks?

[Page 3 ]

For each of the following items, please choose either A or B. One of the items will
be randomly selected for payment at the end of the experiment.
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Item Option A Option B
1 1/10 Chance of obtaining 1.00e 1/10 Chance of obtaining 1.90e

9/10 Chance of obtaining 0.80e 9/10 Chance of obtaining 0.10e

2 2/10 Chance of obtaining 1.00e 2/10 Chance of obtaining 1.90e
8/10 Chance of obtaining 0.80e 8/10 Chance of obtaining 0.10e

3 3/10 Chance of obtaining 1.00e 3/10 Chance of obtaining 1.90e
7/10 Chance of obtaining 0.80e 7/10 Chance of obtaining 0.10e

4 4/10 Chance of obtaining 1.00e 4/10 Chance of obtaining 1.90e
6/10 Chance of obtaining 0.80e 6/10 Chance of obtaining 0.10e

5 5/10 Chance of obtaining 1.00e 5/10 Chance of obtaining 1.90e
5/10 Chance of obtaining 0.80e 5/10 Chance of obtaining 0.10e

6 6/10 Chance of obtaining 1.00e 6/10 Chance of obtaining 1.90e
4/10 Chance of obtaining 0.80e 4/10 Chance of obtaining 0.10e

7 7/10 Chance of obtaining 1.00e 7/10 Chance of obtaining 1.90e
3/10 Chance of obtaining 0.80e 3/10 Chance of obtaining 0.10e

8 8/10 Chance of obtaining 1.00e 8/10 Chance of obtaining 1.90e
2/10 Chance of obtaining 0.80e 2/10 Chance of obtaining 0.10e

9 9/10 Chance of obtaining 1.00e 9/10 Chance of obtaining 1.90e
1/10 Chance of obtaining 0.80e 1/10 Chance of obtaining 0.10e

10 10/10 Chance of obtaining 1.00e 10/10 Chance of obtaining 1.90e
0/10 Chance of obtaining 0.80e 1/10 Chance of obtaining 0.10e

[Page 4 ]

Please choose one of the following lotteries. Your chosen lottery will be paid out
to you at the end of the experiment.
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Item Option
1 50% Chance of obtaining 1.40e

50% Chance of obtaining 1.40e

2 50% Chance of obtaining 1.20e
50% Chance of obtaining 1.80e

3 50% Chance of obtaining 1.00e
50% Chance of obtaining 2.20e

4 50% Chance of obtaining 0.80e
50% Chance of obtaining 2.60e

5 50% Chance of obtaining 0.60e
50% Chance of obtaining 3.00e

6 50% Chance of obtaining 0.10e
50% Chance of obtaining 3.50e

Overview

In the experiment you already earned 22e. In the questionnaire, you earned an
additional 1.80e.

Including the show-up fee of 5e and the participation fee of 3e, you have therefore
earned a total of 31.80e

Thanks for taking part in this experiment. Please enter your total payment on
the receipt on your desk, and raise your hand when ready. The experimenter will
then come to your desk to check the total amount, after which payment will be done
in the office next door.
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