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Competitive Equilibrium and Trading Networks: A Network Flow
Approach

Ozan Candogan, University of Chicago
Markos Epitropou, University of Pennsylvania
Rakesh V. Vohra, University of Pennsylvania

Under full substitutability of preferences, it has been shown that a competitive equilibrium exists in trading
networks, and is equivalent (after a restriction to equilibrium trades) to (chain) stable outcomes. In this
paper, we formulate the problem of finding an efficient outcome as a generalized submodular flow problem
on a suitable network. Equivalence with seemingly weaker notions of stability follows directly from the
optimality conditions, in particular the absence of improvement cycles in the flow problem. Our formulation
yields strongly polynomial algorithms for finding competitive equilibria in trading networks, and testing
(chain) stability.

CCS Concepts: *Applied computing— Economics; *Theory of computation— Market equilibria;
*Mathematics of computing— Discrete mathematics;

Additional Key Words and Phrases: Trading Networks, Competitive Equilibrium, Stability, Submodular
Flow Problems, Discrete Convexity.

1. INTRODUCTION

In many economic settings, trades are based on bilateral contracts which can be rep-
resented by a trading network ([Hatfield et al. 2013]). Nodes of the network corre-
spond to agents. Edges represent the non-price elements of a bilateral trade and their
orientation identifies which agent is the “buyer” and which the “seller”. Agents have
quasi-linear preferences over the set of trades and associated prices. The model is rich
enough to allow an agent to be a buyer in some trades and a seller in others. In partic-
ular, it subsumes the classic assignment model [Shapley and Shubik 1971], as well as
the model of supply chain networks, [Ostrovsky 2008], where the underlying directed
graph is acyclic.

In trading networks where agents exchange indivisible goods (or indivisible con-
tracts), [Hatfield et al. 2013, 2015b] has established that under a full substitutabil-
ity condition on agents’ preferences, a competitive equilibrium exists. The full substi-
tutability condition generalizes the well-known gross substitutability condition, which
is used to establish existence of a competitive equilibrium in two-sided markets [Gul
and Stacchetti 1999; Kelso and Crawford 1982; Sun and Yang 2006]. Thus, the trading
networks model extends the competitive equilibrium existence results to multi-sided
settings. Competitive equilibria of trading networks are also stable outcomes in that
they cannot be blocked by any coalition of agents and trades. A blocking set is a set of
(feasible) trades and corresponding prices such that all agents who can participate in
these trades (strictly) prefer them (while possibly declining some of their equilibrium
contracts) [Hatfield et al. 2013]. Conversely, in any stable outcome it is possible to set
prices for trades not involved in this outcome, to support the outcome as a competi-
tive equilibrium. In fact, the stability condition is equivalent to the seemingly weaker
chain stability condition [Hatfield et al. 2015a]. The latter condition restricts blocking
sets to be paths/cycle of trades in the underlying trading network.

This paper’s contribution is to show that under the full substitutability assumption,
all these results can be obtained simply and directly from the optimality conditions of
a generalized submodular flow problem in a suitable network. The optimal solutions
to this flow problem (and its dual) yield a competitive equilibrium outcome and sup-
porting prices. Moreover, in generalized submodular flow problems, a feasible flow is
optimal if and only if there does not exist an improvement cycle. This optimality con-



dition yields the equivalence between a competitive equilibrium outcome and (chain)
stability. A consequence of this is a strongly polynomial algorithm to find a competitive
equilibrium as well as to identify a blocking chain when an outcome is not stable.

Our starting point is to express the problem of identifying the set of trades that
maximize welfare, as a network flow problem on an appropriately defined flow network.
The flow network is related to, but distinct from the underlying trading network. In
the flow network each node corresponds to an agent-trade pair of the trading network.
Since exactly two agents are involved in each trade, the flow network has two nodes for
each feasible trade (one associated with the buyer the other associated with the seller
in this trade). These nodes are connected by an edge in the flow network. However,
this network is not connected in general.

Full substitutability of agents’ preferences corresponds to M?-concavity of the value
functions [Hatfield et al. 2015b]. This observation allows us to represent the problem
of finding the set of welfare-maximizing trades as a generalized submodular flow prob-
lem on the flow network. In this problem, we do not impose flow conservation at all
nodes. Instead, we associate an M-convex penalty term with the net flow at nodes as-
sociated with the same agent in the flow network. Intuitively, the net flow encodes the
trades where an agent participates as a buyer/seller, and the penalty term captures
the total value the agent enjoys for these trades. Minimum cost flows in this network
correspond to trades in the original network that maximize total welfare. The optimal
dual solution to this problem are competitive equilibrium prices that support this set
of trades. Thus, our approach generates the equilibrium trades and prices through the
solution of an optimization problem. In contrast, [Hatfield et al. 2013], construct an
auxiliary two-sided market and invoke the competitive equilibrium existence results
(based on fixed point arguments due to [Kelso and Crawford 1982]) for that market.

We establish the equivalence between stability, chain stability, and competitive equi-
librium outcomes directly from the fact that a given flow is optimal if and only if it
admits no improvement cycles. Our proof technique also provides an algorithm that
(i) checks whether an outcome is (chain) stable, and (ii) identifies a blocking chain if
it is not. In particular, given a set of trades and associated prices, we first consider a
(reduced) trading network that consists of the remaining trades (after an appropriate
modification of the payoff functions), and the corresponding flow network. The algo-
rithm starts with the (trivial) flow which does not use any edge of the flow network
that is associated with the trades in the (reduced) trading network. Then, the algo-
rithm searches for an improvement cycle. If such a cycle is not found, we conclude that
the initial set of trades/prices constitute a (chain) stable outcome. Otherwise, the short-
est such cycle reveals a blocking chain. The computational complexity of this approach
is equivalent to that of constructing the flow network, and identifying the smallest
negative cycle in this network. The overall complexity is polynomial in the number of
nodes/edges of the underlying trading network. Thus, the network flow approach pre-
sented in this paper not only gives simpler existence proofs of the properties of trading
networks (e.g., existence of competitive equilibrium, and its equivalence to stability),
but also provides a tractable algorithm for determining competitive equilibria, testing
(chain) stability, and identifying blocking sets of trades whenever they exist.

[Hatfield et al. 2015a] observed an equivalence between stability and chain stability
which resembles an analogous equivalence result in classical network flows. Those
authors argued that there are important differences between the two settings:

“...in the ‘network flows’ environment, there is a single type of good ‘flowing’
through the network, and the objective function is the maximization or min-
imization of the aggregate flow, whereas in our setting many different types



of goods may be present, and the preferences of agents in the market may
be more complex.”

Our paper shows that these differences are superficial. An outcome is not stable if the
corresponding flow is suboptimal. In the generalized submodular flow problems, sub-
optimality implies the existence of an improvement cycle. This indicates that whenever
the initial outcome is not stable, it can be blocked by relying on a “simple” set of trades,
which correspond to a chain in the underlying trading network.

The related literature is discussed below. Section 2 introduces notation and the
model. Section 3 describes the submodular flow problem and its optimality properties.
Section 4 describes the transformation of the problem of finding an efficient outcome
into an instance of the submodular flow problem. Section 5 discusses the equivalence
of various stability notions.

Related literature:. Gross substitutes of preferences is a sufficient condition for the
existence of competitive equilibrium with indivisible goods ( [Gul and Stacchetti 1999;
Kelso and Crawford 1982]). It is also equivalent to M f-concavity of the valuations
[Fujishige and Yang 2003; Murota and Tamura 2003b; Paes Leme 2014; Shioura and
Tamura 2015]. M®-concavity has found applications in mathematical economics; such
as direct proofs of the competitive equilibrium existence results, and algorithms for
computing the competitive equilibrium outcome [Danilov et al. 2001, 2003; Murota
and Tamura 2003a,b].

[Gul and Stacchetti 1999; Kelso and Crawford 1982] were concerned with a two-
sided market of buyers and sellers. The trading networks literature ([Hatfield et al.
2013, 2015a,b; Ostrovsky 2008]) generalized the gross substitutes property to full sub-
stitutability. This extended the existence of competitive equilibrium result beyond the
two-sided setting. These papers established that full substitutability corresponds to
M"-concavity of preferences. It suggests that the desirable properties of trading net-
works (under the full substitutability assumption) could be directly obtained by lever-
aging the rich literature on discrete convexity. This paper does just this. It shows that
the results obtained in the recent literature on trading networks can be deduced from
optimality conditions in (generalized submodular) network flow problems, where the
cost functions (which are obtained by a transformation of valuation functions) are M-
convex.

In [Murota 2003; Murota and Tamura 2003a] it was shown that the efficient al-
location problem for a two-sided economy with multiple buyers and sellers, could be
formulated as a generalized submodular flow problem on a bipartite network. We fol-
low a similar approach in the more general setting of trading networks. The presence
of agents who participate as buyers for some trades and sellers for others renders the
reduction in [Murota 2003; Murota and Tamura 2003a] inapplicable. We provide an
alternative network flow formulation for identifying the set of efficient trades in this
more general setup. Additionally, it shows the equivalence of competitive equilibrium
to (chain) stable outcomes can be characterized using a generalized submodular flow
formulation. Thus, together with the results of [Murota 2003; Murota and Tamura
2003a], our paper indicates that a generalized submodular flow formulation provides
a unifying framework for the study of various competitive equilibrium results in the
literature.

2. THE MODEL

A trading network is represented by a directed multigraph G = (N, E) where N is the
set of vertices and E the set of arcs. Each vertex corresponds to an agent and each
arc corresponds to a trade that can take place between the incident pair of vertices.
For each e € E, the source vertex et corresponds to the seller and the sink vertex e~



corresponds to the buyer in the trade. Let 6 (i) and ¢_ () be the outgoing and incoming
arcs incident to vertex i € N, and 6(¢) = 04 (¢) Ud_ (7). An outcome of the market is a set
of trades i.e. X C E. We define a price vector p € R¥, where p, is the price associated
with the trade that corresponds to the arc e. Denote by p* the price vector restricted
to the arcs in X.

Denote agent 7’s value function for any set of trades involving agent i by w; : 2°() —
R. Agent i’s utility function is u; : 2°() x R — R. For each S C §(i) and p € R?

ul(S7p):wz(S)+ Z Pe — Z DPe-

e€SNé, (i) e€SN6_ (4)

The demand correspondence for agent i € N, given a price vector p € R%(), is
Di(p) = argmax{u;(Y,p) : Y C 0(i)}

Definition 2.1. An outcome X C F along with a price vector p € R” is a competitive
equilibrium (X, p) if, for alli € N,

Definition 2.2. An outcome X C F is efficient if

X e arg max ;Vwi(Sﬂd(z)).

3. THE M-CONVEX SUBMODULAR FLOW PROBLEM

Here we introduce the M-convex submodular flow problem which generalizes the stan-
dard network flow problems (see Chapter 9 of [Murota 2003]). We are given a directed
graph (V, A), where V is the set of vertices and A is the set of arcs. For each v € V
denote by . (v) and 6_(v) respectively the set of outgoing and incoming arcs incident
to vertex v.

As in the standard network flow problem each arc a € A has a cost ¢, per unit of
flow, and lower and upper capacities k,, k.. Denote by z, the amount flowing through
a € A. Given flows in the arcs, denote by y, the net outflow (that can be positive or
negative) from vertex v, and let y denote the vector of {y, } ,cv. The added feature of the
M-convex submodular flow problem (MSFP) is a term, f(y), in the objective function
which is M-convex (defined below). the MSFP can be formulated as follows:

min » * cata + f(y)

oY acA

s.t. Z Ty — Z T =Y, VOEV
a€di(v) a€d_(v)

k, <z, <k, Vac A.

In the standard network flow problem, f’s domain is just a single point (y = 0). In
our case f is M-convex. To define M-convexity let y/ € Z" denote the 0-1 vector with
exactly one non-zero entry in component ;. A function f : Z" — RU {co} on the integer
lattice is M-convex if it satisfies the following exchange axiom:

(M-EXCIZ]): For all z,y € Z™ and for all u € supp™ (z — y),
f(@)+ f(y) =  min )f(fﬂ X" X)) F Xt —xY)

vEsupp~ (z—y

where supp™ (x—y) (supp™ (r—y)) is the set of all indices in {1, ...,n} such that z;—y; > 0
(z; —y; < 0). A function g is called M-concave if —g is M-convex. An M-convex function



f’s effective domain (i.e., domf £ {x € Z"| — 0o < f(x) < oo}) as well as its maximizers
form the basis family of a matroid.

The domain of an M-convex function f(-) can be extended to R™ by computing the
convex closure of f(+), i.e., by finding

pER™ , a€R

3

f(r) = sup {Zpixi—l—a‘zl)iyi—i—agf(y)wEZ"} for all x € R™.

We assume that the flow cost associated with the MSFP is the closure of an M-convex
function f(-) defined on the integer lattice.! Theorem 9.15 in [Murota 2003], guaran-
tees the existence of an optimal integer flow when the capacities are integer valued —a
result analogous to integrality of optimal solution in classical network flow problems.
Thus, in our exposition we focus on f(-) defined on the integer lattice but implicitly con-
sidering its convex closure when we formulate MSFP. Note that for optimal solutions
only the values of f(-) on the integer lattice matter. Our theoretical and algorithmic
results do not require explicitly constructing this convex closure.

One can generalize the optimality conditions of the standard flow problem with a lin-
ear objective function to the MSFP (see [Murota 2003]). In particular, the optimality of
a flow is characterized by the nonexistence of a negative cycle in an auxiliary network
as well as in terms of a set of potentials associated with the nodes of the network.

First, define an auxiliary network G*“* which is an extension of the idea of a residual
network used in the standard network flow problem to account for the non-linearities
in f. Let x be a feasible flow in G and y be the associated vector of net flows at each
vertex. Let G*"*(z,y) = (V, A%“*(z,y) U B**(z,y) U C***(z,y)) where

(1) A% (2, y) = {ala € A,24 < Fu},
(2) B**(x,y) = {—ala € A,z, > k,}(—a denotes arc a with its orientation reversed),
3) and C***(x,y) = {(u, v)|u,v € V. f(y — X" + x") < +o0}.

The auxiliary network has no arc capacities. The cost for each arc in G*“*(z, y) is given
by

o if 0 € A (z,y)
g (x,y) = { —Ca if a € B (2, y)
fly—x"+x")— f(y) otherwise.

The sum of the edge costs associated with a directed cycle of the auxiliary network
can be interpreted as the “length” of this cycle. A directed cycle of negative length
is referred to as a negative cycle. The optimality criteria are listed in the following
theorem.

THEOREM 3.1. (Theorems 3.1, 3.2 in [Murota 1999]) The following three conditions
are equivalent:

(1) (z,y) is an optimal solution to MSFP.
(2) There does not exist a negative cycle in G**(z,y).
(3) There exists a potential p : V — R such that
(a) foreach (u,v) € A,
(V) cluw) +p(u) —p(v) > 0= 2(y0) = E(uv)
(i1) C(u,v) +p(u) - p(’U) <0= L(u,w) = k(u,v)
@) fly)=p-y<fy)—p-yforaly eZV.

1Such functions are also referred to as integral polyhedral M-convex functions. See [Murota 2003], Section
6.11.



If the {k,, kq}aca are all integral, there is an optimal solution (z,y) to MFSP that is
integral. Unlike the standard network flow problem, a negative cycle is only a certifi-
cate of non-optimality. It is not the case that augmenting flow along any negative cycle
can improve the objective function. However, there exists a particular negative cycle
that does correspond to an improving direction. This cycle and how it is to be found is
described in greater detail later.

3.1. M‘-Concave Valuation Functions

An M?"-convex function f : Z" — R is a function satisfying the following exchange
axiom

(M*®-EXCIZD): For all =,y € Z™ and for all u € supp™ (z — y),
f@) + f(y) 2 minlf( —x") + fly+x"), | omin - fl@ = X"+ X0) @+ X=X
An M?"-convex function is supermodular. A function f is M!-concave if — f is M%-convex.

Any M*-convex function f : Z" — RUocc can be represented as an M -convex function
f':Z" — R U oo where

o) = 4 1@ ifro= =

+o0o otherwise.

3.2. Full Substitutability

Earlier, we defined each w; as a function over subsets of §(i). If we represent sets
by their characteristic vectors, we can treat each w; as a function over {0, —1}°-® x
{0,1}9+(), We extend the domain of w; to Z°(*) by following the convention that w;(z) =
—oo for z € Z°®) such that 2 ¢ {0, —1}°- () x{0,1}%+(). An analogous convention applies
to the utility functions u;. Next, assume that each w; for each i € N is M®-concave. This
is equivalent to the property that an agent’s demand correspondence satisfies the full
substitutes property (see [Hatfield et al. 2013, 2015b], and Theorem 7 of [Murota and
Tamura 2003b]).

Definition 3.2. Agent i’s preferences are fully substitutable if:

(1) For all p,p € R*® such that p, = . for all e € 6, (i) and p, > p. for all e € §_(i),
for every Y' € D;(p) there exists Y € D;(p) such that (Y? N {e|p. = p}) Nd_(i) C
Yiné_(i)and YN o, (i) C YN, (3).

(2) For all p,p € R*® such that p. = . for all e € 6_(i) and p. < p. for all e € 5, (i),
for every Y* € D;(p) there exists Y* € D;(p) such that (Y? N {e|p. = p}) N, (i) C
Yiné,(i)and YPNS_(i) C YiNG_(3).

4. TRANSFORMATION TO MSFP

We use the optimality conditions of the MSFP to show that a competitive equilibrium
exists. To do this we transform the problem of finding an efficient outcome into an
instance of the MSFP.

We introduce a flow network G’ = (V, A), associated with the trading network G.
Recall, there is an M’-concave function w; : Z°® — R associated with each vertex
i € N. We represent the set of trades agent i is involved in by a characteristic vector
y', where for each trade e € §(i) which occurs, we set y’ = 1ife € 6, (i) and y = —1 if
e € 6_(i). With this representation we can replace each w; by an M-concave function



w) 2 7 x 79 — R, such that

n
wi(z) ifzo=— > 2,
r=1

—oo otherwise

(1

w;(20,2) =

For y = {y'}icn, the social welfare of the trading network is given by —f(y) =
>ien wi(y'). M-concavity of {w}} implies implies that f(-) is M-convex as the argu-
ments of the M-convex functions in the summand are disjoint.?

Now, each w; is a function of the characteristic vector of arcs incident to ¢ that carry
a positive amount of flow. To account for this we represent each i € N by a set V*
of vertices associated with the arguments of each M*-concave function w/, i.e. |[V?| =
[6(¢)| + 1. Formally,

V=[]V ={vlli€ Nee{0}Us(i)}.
iEN
We refer to vertices of the form v} as special vertices. We add a set of (directed) arcs
Ao between every pair of special vertices. Additionally, for each e € F with e = (i, k)
we introduce an arc a = (v¢,v¥). Intuitively, one unit of flow on this arc represents that
both agent i and agent k participate in trade e (and since 4’ = —y* the corresponding
flow cost reflects values of both agents for this trade). These arcs form set A;.
Formally,

A=AgUA; = {(vh,v8) ik € NYU{(vi,v") e = (i,k) € E}.

Figure 1 displays an example.

Fig. 1. (a) A trading network G = (N, E) (b) Corresponding flow network G’ = (V, A)

We define the following instance of MSFP on (V, A):

min  f(y)

z,y

s.t. Z Ty — Z To =Yy YVEV
a€dy(v) a€d_(v)

@agxagEa Va € A

2In general, the sum of M-convex functions is not M-convex. However, this property trivially holds when
M -convex functions with disjoint arguments are considered.



Notice here that all arc costs are zero, i.e. ¢, = 0, and lower and upper capacities are
set as follows :

k, = —00,k, = +oc.

Additionally, by construction —f(y) is M-convex. We can associate an auxiliary net-
work with a given feasible solution (z,y) of this problem, as demonstrated in Figure 2.

Fig. 2. (a) Feasible Solution (b) Auxiliary Graph (blue: A%“* U B%%* green: C*%¥)

Consider a set of trades S C F in the trading network G = (N, E). A corresponding
flow in G’ = (V, A) can be obtained by sending one unit of flow on each arc in A; asso-
ciated with these trades, and choosing the flow through arcs between special vertices
to keep the total net flow into vertices in V? equal to zero (for all 7). Observe that the
absolute value of the associated flow cost is equal to the welfare corresponding to S.
Conversely, by construction of f(-), it can be seen that any flow with bounded cost is
such that the net flow into vertices in V? is equal to zero for all i (see (1)), and each arc
in A; carries at most one unit of flow. Moreover, the absolute value of cost of any such
flow is equivalent to the total welfare associated with the trades that correspond to
arcs in A; with nonzero flow. Hence, integer flows with bounded cost in G’ correspond
to feasible sets of trades in G. The MSFP on G’ = (V, A) is guaranteed to have an in-
teger optimal solution. Thus, this solution corresponds to an efficient outcome for the
trading network G = (N, E).

Consider an optimal solution (z,y) to the MSFP on G'. According to Theorem 3.1, the
corresponding auxiliary graph does not have negative cycles. Thus, as in the classical
network flow problem, one can associate a potential function with the auxiliary graph,
satisfying the following constraints (where the right hand sides correspond to edge
costs in the auxiliary graph):

p(v) —p(u) <0 V(u,v) € A" (z,y) U B**(z,y), 2)

p(v) —pu) < fly—x"+x") = fly)  Y(w,v) € C"(x,y). 3)

We refer to (2,3) as the potential function conditions. They are identical to the potential
function characterization in Theorem 3.1. In particular, inequality (2) is equivalent to
p(v) — p(u) = 0 for all (u,v) € A, since for each (u,v) € A, we have (u,v) € A*"*(z,y)
and (v,u) € B*¥(z,y). The latter equality is also equivalent to Theorem 3.1 (3a),
since the arc capacities are infinite. The inequalities in (3) are equivalent to those in
Theorem 3.1 (3b) by Theorem 6.26 in [Murota 2003] (and M-convexity of f(y) —p-y; see



Theorems 6.13(3), and 6.15 in [Murota 2003]). We conclude that the set of potentials
satisfying (2,3) is equivalent to the potentials implied by Theorem 3.1.

From the discussion above we get that p(u) = p(v) for all (u,v) € A, which is our
candidate price for the trade (u,v). Furthermore, given a potential functionp : V' — R
satisfying the conditions of Theorem 3.1 (3a — 3b), p’(u) = p(u) 4 ¢ for all u € V gives
another potential satisfying these conditions. Recall, all special vertices are adjacent
to each other. This means they all have a potential equal to py. By setting ¢ = —py we
ensure that a potential function always takes value zero on the special vertices.

Potentials are defined on vertices. However, in our construction of flow networks
each vertex corresponds to a particular trade-agent pair and the potentials of two ad-
jacent vertices (associated with the same trade) are equal. Theorem 3.1 (3b) implies
that if these potentials can be interpreted as prices, and the set of trades 3 chosen
for some agent i are modified (through a choice of different in/outflow §° for V? nodes),
then the surplus of agent ¢ cannot be improved. Thus, it follows that an optimal solu-
tion (x,y) of the MSFP and the prices that correspond to a potential function satisfying
Theorem 3.1 (3b) constitute a competitive equilibrium.

Conversely, given a competitive equilibrium, the prices for trades defines a potential
function on all vertices where the potential of a vertex is the price of the corresponding
trade and the special vertices get a potential value of zero. The equilibrium conditions
imply that the equilibrium prices and outcome satisfy Theorem 3.1 (3a — 3b). Hence,
the flow associated with this outcome solves the MSFP. Thus, the equivalence of opti-
mal solutions of the MSFP and efficient outcomes, as well as potential functions and
competitive prices follows.

4.1. Immediate Consequences

THEOREM 4.1. (Theorem 1 in [Hatfield et al. 2013]) There exists a competitive equi-
librium.

PROOF. Given a trading network G = (N, E'), we map it to the associated flow prob-
lem on the flow network (V, A). The MSFP on (V| A) has an optimal solution (z*,y*),
since it is a discrete problem and “no flow” is a feasible solution. Theorem 3.1 implies
that there exists a potential p*. The feasible solution (z*,y*), along with its potential
function p* is a competitive equilibrium. This completes the proof. O

The outcome associated with a competitive equilibrium is efficient.

THEOREM 4.2. (First Welfare Theorem, Theorem 2 in [Hatfield et al. 2013]) Suppose
that (X, p) is a competitive equilibrium. Then, X is an efficient outcome.

PROOF. Let (z,y) be a feasible flow associated with the outcome X. The competitive
prices imply a potential function for the flow (x,y). By Theorem 3.1, (x,y) is optimal,
therefore, the outcome X is efficient. O

Next, we show that competitive prices support all efficient outcomes, i.e., these prices
with any efficient outcome constitute a competitive equilibrium.

THEOREM 4.3. (Second Welfare Theorem (strong version), Theorem 3 in [Hatfield
et al. 2013]) For any competitive equilibrium (X, p) and efficient outcome X', (X' p) is
also a competitive equilibrium.

PROOF. The outcomes X, X’ correspond to optimal flows (z,y) and (z/,y’) respec-
tively. The prices imply a potential function associated with the optimal flow (z,y).
The second part of Theorem 3.1 in [Murota 1999] states that the potential function
satisfies the conditions of the potential criterion for the flow (z/,y’). We conclude that
(X’,p) is a competitive equilibrium. 0O



The set of competitive prices enjoys a nice structure.

THEOREM 4.4. (Theorem 4 in [Hatfield et al. 2013]) The set of competitive price vec-
tors is a lattice.

PROOF. Immediate from the fact that the feasible region of a system of difference
constraints (2, 3) is a lattice. 3 O

In this model one can interpret a trade as the sale of goods from a seller to a buyer.
The trade specifies the identity of the good (edge) as well as its quantity (flow). The
buyer pays the price for given quantity of the product. [Hatfield et al. 2013] gives
a sufficient condition for the existence of a competitive equilibrium, where uniform
pricing over “identical” trades is realized. The connection to the MSFP allows us to
extend this sufficient condition. We define what it means for two trades to be perfect
substitutes for each other.

Definition 4.5. Agent i sees trades e,¢’ € §(i) as perfect substitutes for each if
wi(X U{e}) =w;(XU{e'}) forall X C 6(i) \ {e, e'}.

This definition immediately implies that the valuation function of agent ¢ depends
only on the number of trades chosen in an equivalence class of perfectly substitutable
trades Y associated with him, i.e. w;(X U S) = w;(X U S’) for all S,5" C Y such that
|S] =S| and for all X C §(:) \ Y.

In [Hatfield et al. 2013] it was established that there exists competitive equilibrium
where trades that are perfect substitutes receive the same price, provided that these
trades are also mutually incompatible, i.e., accepting more than two such trades leads
to a payoff of —co. Our next result (see appendix for a proof) shows that such an equilib-
rium still exists, when the mutual incompatibility assumption is relaxed. Importantly,
this relaxation allows the seller to produce and sell multiple identical goods.

THEOREM 4.6. Suppose that for agent i, any pair of trades in Y C (i) are perfect
substitutes for each other. Then, there exists a competitive equilibrium, such that p. =
per foralle,e’ €Y.

5. STABLE OUTCOMES

In this section we list various notions of stability for trading networks that have been
proposed in [Hatfield et al. 2013]. Informally, a stable outcome has the property that no
subset of agents has incentive to deviate from it. Given a set of trades X, with a slight
abuse of notation, we denote the prices of the corresponding trades by p~, and the set
of trades agent i demands once she is restricted to the trades in X by D;(p™*) C XN§(4).
Call an outcome X, along with its prices p* individually rational if

XNd(i) € argmax w;(Y) + Z Py - Z pX Vi€ N.
YCXxXns(i) e€YNé4 (i) e€YNs_(4)

Definition 5.1. An outcome X, along with its prices p¥, is stable if it is individually
rational and is unblocked:
There is no feasible nonempty blocking set Z C E, along with its prices p? such
that
1) ZNnX =0, and
3Theorem 9.15 in [Murota 2003] presents a more sophisticated version of the result, i.e. the set of optimal

potentials is an L-convex polyhedron. This means that the set of competitive prices, which is a restriction of
the potentials to the coordinate plane, is an Lt-convex polyhedron.



(2) for all agents i involved in Z, for all Y € D;(p?“X), we have ZNd(i) C Y.
The closely related notion of strongly stable outcome is defined next.

Definition 5.2. An outcome X, along with its prices p¥, is strongly stable if it is
individually rational and is strongly unblocked:

There is no feasible nonempty strongly blocking set Z C FE, along with its prices
pZ such that

(1) ZNnX =0, and . ,
(2) for all agents i involved in Z, there exists aY* C {ZUX }N§(i) such that ZNj(i) C Y*
and

wi(Y)+ Y plN— Y pZN s wi(xns@)+ Y pX = > bl

e€Y'ins (i) e€YiNd_(4) e€XNdy (i) e€XNo_ (i)

Clearly, a strongly stable outcome is stable.

The next notion of stability is analogous to pairwise stability in bipartite matching.
Call a set of consecutive arcs in a graph G, i.e., a set of m arcs S = {ey,...,en}, such
thate; =e¢/,, foralli=1,...,m — 1, a chain.

Definition 5.3. An outcome X, along with its prices p~, is chain stable if it is
individually rational and is unblocked by a chain:

There is no feasible nonempty blocking chain Z C E, along with its prices p?
such that

(1) ZNnX =0, and ' _
(2) for all agents i involved in Z, for all Y € D;(p?"“X), we have ZNd(i) C Y.

The related notion of strong chain stability is defined below.

Definition 5.4. An outcome X, along with its prices p¥, is strongly chain stable if
it is individually rational and is strongly unblocked by a chain:

There is no feasible nonempty strongly blocking chain Z C F, along with its
prices p“ such that

(1) ZNnX =0, and , .
(2) for all agents i involvedin Z, there exists aY* C {ZUX }N§(¢) such that ZNj(i) C Y*
and

wi(Y )+ Y plN = > pZN s wiXne)+ Y pX- > pk

e€YiNd, (i) e€cYing_ (i) e€XNd4 (i) e€ XN ()

Clearly, a strongly chain stable outcome is chain stable. Definitions 5.1-5.4 also im-
ply that a (strongly) stable outcome is (strongly) chain stable, since if there exists no
(strongly) blocking set, there exists no such set with a chain structure.

Before we show the equivalence of these stability concepts, we focus on the case
when the ‘no trade’ outcome is inefficient. In this case we show it is always possible to
find a chain that improves welfare. Intuitively, this preliminary result implies that it
may be possible to restrict attention to chains when searching for a blocking set. We
subsequently formalize this intuition in Corollary 5.6 for outcomes where no trade is
executed.

LEMMA 5.5. Consider a trading network G = (N, E). Assume that the no trade
outcome is inefficient. Then, there exists a chain of trades that improve welfare.



PROOF. Consider the MSFP formulation of the welfare maximization problem in
G, and let (z,y) denote a feasible solution of the MSFP associated with flow network
G' = (V, A) that corresponds to the no trade outcome, i.e., that associates zero flow
with all arcs in A;, and hence guarantees y = 0. Since outcome () is not optimal in G,
according to Theorem 3.1 there exists a negative cycle in the auxiliary graph G***(z, y).
Pick a negative cycle K with the fewest number of arcs.

We claim that there exists such a cycle K which satisfies the following conditions:

@ 0> 3 g™ (z,y) = 2 [fly=x"+x") = f W),
acK (u,v)eKNC*vz (z,y)

(2) It contains at most one special vertex OR two incident special vertices,
(3) KNnB*™*(z,y) =0, and ife € KNC**(x,y), then there exists hy, hy € KNAY*(x,y)
such th