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Abstract

We consider a problem of allocating multiple identical objects to a group of

agents and collecting payments. Each agent may receive several objects and has

quasi-linear preferences with a submodular valuation function. It is known that Wal-

rasian mechanisms are manipulable. We investigate the incentive property of Wal-

rasian mechanisms in economies with a large number of objects. Given a set of

agents and a preference profile, an agent i asymptotically dominates an agent j if

at sufficiently many objects, i’s incremental valuation is higher than j’s incremental

valuation. We show that for each economy, if there is no agent asymptotically dom-

inating the other agents, and if there are sufficiently many objects, any Walrasian

mechanism is non-manipulable at the economy.

We also consider replica economies, and show that for each economy, if it is

replicated sufficiently many times, the minimum price Walrasian mechanisms are

non-manipulable at the replica economy.
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1 Introduction

Auctions are often conducted to efficiently allocate objects such as spectrum licenses,

public houses, treasury bills, etc. The Walrasian mechanism is an auction often studied

in the literature.1 Under truthful reporting, the Walrasian mechanism selects an efficient

allocation.2 However, the Walrasian mechanism turns out to be manipulable: some agent

has an incentive to misreport his preferences. Such manipulability leads Walrasian mech-

anisms to select an inefficient allocation (Ausubel et al., 2014; Baisa, 2015).

In the auction theory literature, some authors focus on large economies where there

are many agents and possibly many objects, and investigate whether the incentive issues

and inefficiency of Walrasian mechanism are resolved. For example, Swinkels (2001),

Jackson and Kremer (2006), and Bodoh-Creed (2013) consider (Bayesian) Nash equi-

libria and show that under different assumptions on preferences, equilibria of Walrasian

mechanisms arbitrarily close to efficient as the number of agents and possibly that of ob-

jects go to infinity. Azevedo and Budish (2015) show that truth-telling is asymptotically

optimal against any full support distribution of the other agents’ preferences.

In reality, however, there are situations in which there are many objects while the

number of agents is relatively small. For example, in FCC’s AWS-3 auction, there are

nearly 1600 objects while there are only 70 bidders.3 To the best of our knowledge, few

papers in the literature on auction theory focus on such situations.

We investigate non-manipulability of Walrasian mechanisms for the cases in which

there are sufficiently many identical objects. In our paper, each agent is assumed to have

quasi-linear preferences with a submodular valuation function. First we show that even if

there are sufficiently many objects, a Walrasian mechanism is manipulable (Example 1).

A feature of Example 1 is that there is an agent such that at sufficiently many objects,

his incremental valuation is higher than any other agents’ incremental valuations. We say

that a preference profile satisfies no asymptotic domination if there is no such agent. We

show that if no asymptotic domination is satisfied and there are sufficiently many objects,

1In auction theory, this auction format is sometimes called a uniform price auction.
2The Walrasian mechanism also satisfies some other desirable properties under truthful reporting such

as no-envy (Foley, 1967) and individual rationality.
3See Auction 97 summary, FCC, available at http://wireless.fcc.gov/auctions/default.

htm?job=auction_summary&id=97.
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then each Walrasian mechanism is non-manipulable.

We also consider the case where both the number of agents and that of objects are

sufficiently large. In particular, we study replica economies. First, we show that some

Walrasian mechanism is manipulable at any replica of an economy (Example 2). The

minimum price Walrasian mechanism is a Walrasian mechanism that assigns a minimum

price Walrasian equilibrium allocation for each preference profile. Finally, we show that

for each economy, if it is replicated sufficiently many times, each minimum price Wal-

rasian mechanism is non-manipulable at the replica economy.

1.1 Related literature

Several papers in auction theory study large auctions. Most of them focus on some spe-

cific auction(s). For example, Swinkels (2001), Jackson and Kremer (2006), and Bodoh-

Creed (2013) consider Walrasian mechanisms, Swinkels (1999, 2001) and Jackson and

Kremer (2006) consider discriminatory auctions,4 and Cripps and Swinkels (2006) and

Fudenberg et al. (2007) consider double auctions. On the other hand, Azevedo and Bud-

ish (2015) consider a general large market model including a variety of models such as

auction model, matching model, etc.

The most related papers to ours are Swinkels (2001), Jackson and Kremer (2006),

Bodoh-Creed (2013), and Azevedo and Budish (2015). However, there are several dif-

ferences between our paper and these four papers. First, our paper and these four papers

focus on different types of large economies. As we have mentioned, these four papers

focus on cases in which there are sufficiently many agents. On the other hand, we focus

on cases in which there are sufficiently many objects.

Second, the allocation achieved as an equilibrium and agents’ incentives in large

economies in our paper are different from those in the four papers. Swinkels (2001),

Jackson and Kremer (2006), Bodoh-Creed (2013) achieve an approximately efficient al-

location as a (Bayesian) Nash equilibrium, while our result is interpreted as the result that

an (exactly) efficient allocation is achieved as a Nash equilibrium when the realized pref-

erence profile satisfies no asymptotic domination. Azevedo and Budish (2015) consider

4The discriminatory auction is an auction such that the object allocation is determined in order that the
sum of valuations is maximized, and each agent pays the valuation for the objects he obtains.
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a notion called strategy-proofness in the large, which requires that in large economies,

truth-telling should be approximately optimal against any full support distribution of the

other agents’ preferences. On the other hand, our result implies that in large economies,

truth-telling is (exactly) optimal against any distribution of the other agents’ preferences

such that preference profiles consisting of his true preference relation and the other agents’

preferences in the support of the distribution satisfy no asymptotic domination.

Third, these four papers make an assumption that each agent demands up to some fixed

unit of objects. In our model, this assumption implies that at some point, the incremental

valuation of each agent becomes zero. Thus, in our model with this assumption, if there

are sufficiently many objects, then the prices given by Walrasian mechanisms are zero,

and this implies that no agent can benefit from misreporting their preferences. Hence,

under the assumption, our result becomes trivial. Thus, we do not make the assumption.

There are also papers focusing on large markets in a variety of models such as clas-

sical exchange economy (Roberts and Postlewaite, 1976; Otani and Sicilian, 1982, 1990;

Jackson and Manelli, 1997), matching model (Immorica and Mahdian, 2005; Kojima and

Pathak, 2009; Che and Kojima, 2010; Che et al., 2015; Che and Tercieux, 2015; Lee,

2015), etc.

This article is organized as follows. In Section 2, we introduce the model and def-

initions. In Section 3, we define the Vickrey and the Walrasian mechanisms, and state

several facts on the mechanisms. We state the main result in Section 4. In Section 5, we

consider replica economies and state a result. All the proofs appear in Appendix.

2 Preliminary and Definitions

We consider economies with arbitrary finite number of agents and arbitrary finite number

of identical objects. Each “potential” agent is indexed by a natural number i ∈ N. Let N

be the class of finite subset of N with more than one element. Let X := N∪ {0}. A typical

(consumption) bundle of agent i ∈ N is a pair zi := (xi, ti) ∈ X × R, where xi denotes the

number of objects agent i receives and ti denotes his payment. Thus, the consumption set

is X × R.

Each agent i ∈ N has a complete and transitive preference relation over X × R. The
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strict and indifference relations associated with Ri are denoted by Pi and Ii, respectively.

We assume that each preference relation Ri satisfies the following conditions.

Quasi-linearity: There is a valuation function vi : X → R+ such that vi(0) = 0 and for

each pair (xi, ti), (x′i , t
′
i ) ∈ X × R, (xi, ti) Ri (x′i , t

′
i ) if and only if vi(xi) − ti ≥ vi(x′i) − t′i .

Monotonicity: For each pair xi, x′i ∈ X, if xi < x′i , vi(xi) ≤ vi(x′i).

Submodularity: For each pair xi, x′i ∈ X, if xi < x′i , vi(xi + 1) − vi(xi) ≥ vi(x′i + 1) − vi(x′i).

Integer values: For each xi ∈ X, vi(xi) ∈ N ∪ {0}.5

Let R be the class of preferences satisfying the four conditions just defined. An econ-

omy is a tuple e := (N,R, x) ∈ N × ∪n∈N Rn × X such that R ∈ R|N|. Let E denote the

class of economies. Given N ∈ N , R ∈ R|N|, and i ∈ N, we denote N−i := N \ {i} and

R−i := (R j) j,i.

Let e := (N,R, x) ∈ E. An object allocation for e is a tuple x := (xi)i∈N ∈ X |N| such that∑
i∈N xi ≤ x. We denote the set of object allocations for e by A(e). A (feasible) allocation

for e is a tuple z := (zi)i∈N := ((xi, ti))i∈N ∈ (X × R)|N| such that (xi)i∈N ∈ A(e). We denote

the set of allocations for e by Z(e). Given x := (xi)i∈N ∈ A(e) and t := (ti)i∈N ∈ Rn, we may

write (x, t) to mean the allocation ((xi, ti))i∈N .

A mechanism is a mapping f : E → ∪e∈E Z(e) such that for each e ∈ E, f (e) ∈ Z(e).

For each e := (N,R, x) ∈ E and each i ∈ N, fi(e) denotes the bundle assigned to agent i,

and we write fi(e) = (xi(e), ti(e)), where xi(e) is the number of objects that agent i receives

and ti(e) is his payment. For each e := (N,R, x) ∈ E, we also write x(e) := (xi(e))i∈N and

t(e) := (ti(e))i∈N .

We now introduce properties of mechanisms. The first property states that for each

economy, a mechanism selects an efficient allocation. Given e := (N,R, x) ∈ E, an allo-

cation (x, t) ∈ Z(e) is efficient for e if
∑

i∈N vi(xi) = maxx′∈A(e)
∑

i∈N vi(x′i).
6 Note that this

5Our results hold even if this assumption is weakened as follows: there is δ ∈ R such that for each
xi ∈ X, vi(xi) ∈ {r ∈ R : ∃m ∈ N s.t. r = m · δ}.

6In the literature, this notion is sometimes called decision efficiency.
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definition does not impose any condition on payment. Thus, given e ∈ E, we also say that

an object allocation x ∈ A(e) is efficient for e if
∑

i∈N vi(xi) = maxx′∈A(e)
∑

i∈N vi(x′i). Given

e ∈ E, let P(e) be the set of efficient object allocations for e.

Remark 1. Let e = (N,R, x) ∈ E. Suppose that there is i ∈ N such that for each xi ∈ X

with xi < x, vi(xi + 1) − vi(xi) > 0. Then, for each x ∈ P(e),
∑

j∈N x j = x.

Remark 2. Let e := (N,R, x) ∈ E and x ∈ P(e). Let i ∈ N, and j ∈ N \ {i} be such that

x j > 0. Then, vi(xi + 1) − vi(xi) ≤ v j(x j) − v j(x j − 1).

Efficiency: For each e ∈ E, f (e) is efficient for e.

Next we introduce notions of incentive compatibility. The following property states

that at an economy, there is an agent who benefits from reporting false preferences.

Manipulability at e := (N,R, x) ∈ E: There are i ∈ N and e′ := (N, (R′i ,R−i), x) ∈ E such

that fi(e′) Pi fi(e).

The following property states that at an economy, each agent does not benefit from

reporting false preferences.

Non-manipulability at e := (N,R, x) ∈ E: f is not manipulable at e.

The following property requires that the mechanism be non-manipulable at each econ-

omy.

Strategy-proofness: f is non-manipulable at each e ∈ E.
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3 Vickrey and Walrasian mechanisms

In this section we define the Vickrey and the Walrasian mechanisms, and states facts

related to the mechanisms.

Definition 1. A mechanism f = (x, t) is a Vickrey mechanism if for each e := (N,R, x) ∈

E,

x(e) ∈ arg max
y∈A(e)

∑
i∈N
vi(yi),

and for each i ∈ N,

ti(e) = max
y∈A(e)

∑
j∈N−i

v j(y j) −
∑
j∈N−i

v j(x j(e)).

It is known that Vickrey mechanisms are efficient and strategy-proof.

Next, we define the Walrasian mechanism. Let p ∈ R+ be a price, and let x ∈ X. The

budget set at p and x is defined as B(p, x) := {(xi, ti) ∈ X × R : xi ≤ x and ti = p · xi}.

Given Ri ∈ R, the demand set at p and x for Ri is defined as D(Ri, p, x) := {xi ∈ X : xi ≤

x and ∀z′i ∈ B(p, x), (xi, p · xi) Ri z′i}.

Definition 2. Given e := (N,R, x) ∈ E, a pair ((x, t), p) ∈ Z(e) × R+ is a Walrasian

equilibrium for e if

WE-i: for each i ∈ N, (xi, ti) ∈ B(p, x) and xi ∈ D(Ri, p, x), and

WE-ii: if p > 0, then
∑
i∈N

xi = x.

Condition WE-i states that each agent receives the amount of objects that he demands,

and the bundle is in the budget set. Condition WE-ii states that if the price is positive, then

all the objects are assigned. Given e ∈ E, let W(e) be the set of Walrasian equilibria for e,

and let

ZW(e) := {z ∈ Z(e) : for some p ∈ R+, (z, p) ∈ W(e)}, and

PW(e) := {p ∈ R+ : for some z ∈ Z(e), (z, p) ∈ W(e)}.
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That is, ZW(e) is the set of Walrasian equilibrium allocations for e, and PW(e) is the set of

Walrasian equilibrium prices for e.

In general, a Walrasian equilibrium may not exist.7 However, if preferences are quasi-

linear and submodular, a Walrasian equilibrium always exists.

Fact 1 (Kelso and Crawford, 1982). For each e ∈ E, a Walrasian equilibrium for e exists.8

Moreover, for quasi-linear and submodular preferences, there are minimum and max-

imum Walrasian equilibrium prices.

Fact 2 (Gul and Stacchetti, 1999). For each e ∈ E, there are p ∈ PW(e) and p′ ∈ PW(e)

such that for each p′′ ∈ PW(e), p ≤ p′′ ≤ p′.

Given e ∈ E, let ZW
min(e) and ZW

max(e) be the sets of minimum and maximum price

Walrasian equilibrium allocations for e, respectively, and let pmin(e) and pmax(e) denote

the minimum and maximum Walrasian prices for e, respectively.

Walrasian equilibrium allocations are efficient. Furthermore, efficient object alloca-

tion are supported by any Walrasian equilibrium prices.

Fact 3 (Gul and Stacchetti, 1999). Let e = (N,R, x) ∈ E, x ∈ A(e), and p ∈ PW(e). Then,

x ∈ P(e) if and only if ((xi, p · xi))i∈N ∈ ZW(e).

Definition 3. A mechanism f is a Walrasian mechanism if for each e ∈ E, f (e) ∈ ZW(e).

A mechanism f is a minimum (resp. maximum) price Walrasian mechanism if for each

e ∈ E, f (e) ∈ ZW
min(e) (resp. f (e) ∈ ZW

max(e)).

By Fact 3, Walrasian mechanisms satisfy efficiency. However, they are not strategy-

proof.9

7Gul and Stacchetti (1999) show that, allowing heterogeneity of objects, if a preference relation violates
the so-called “gross substitutes” condition, there is an economy where an agent has the preference relation,
the other agents have gross substitutes preferences, and a Walrasian equilibrium does not exists.

8Precisely, Kelso and Crawford (1982) consider the model where objects can be heterogeneous. They
show that if preferences satisfy the gross substitutes condition, a Walrasian equilibrium exists. Our model
is interpreted as a special case of their model where each agent has a submodular valuation function, and,
given a payment level, each agent finds sets of objects with the same cardinality indifferent. It is known that
such preferences satisfy the gross substitutes condition, and hence, Fact 1 holds. The same argument holds
for Facts 2, 3, and 4.

9See Example 1 in Section 4.
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The following proposition shows the characterizations of the minimum and maximum

Walrasian equilibrium prices.10

Proposition 1 (Gul and Stacchetti, 1999). Let e := (R,N, x) ∈ E, and x ∈ P(e). Then,

(i) pmin(e) = max{vi(xi + 1) − vi(xi) : i ∈ N and xi , x}, and

(ii) pmax(e) = min{vi(xi) − vi(xi − 1) : i ∈ N and xi , 0}.

Finally, the following states that if a Walrasian mechanism and a Vickrey mechanism

share the same object allocation function, the payment of an agent under the Walrasian

mechanism is no less than his payment under the Vickrey mechanism.

Fact 4 (Gul and Stacchetti, 1999). Let f = (x, t) be a Walrasian mechanism and g = (x, s)

a Vickrey mechanism. For each e := (N,R, x) ∈ E and each i ∈ N, ti(e) ≥ si(e).

4 Main results

We study incentive properties of Walrasian mechanisms when there are many objects.

The following proposition is a sufficient condition for a Walrasian mechanism to be non-

manipulable at an economy.

Proposition 2. Let f = (x, t) be a Walrasian mechanism and g = (x, s) a Vickrey mecha-

nism. For each e ∈ E, if f (e) = g(e), then f is non-manipulable at e.

The following example shows that some Walrasian mechanism is manipulable at

economies even if there are sufficiently many objects in the economies.

Example 1. Let f = (x, t) be a minimum price Walrasian mechanism. Let N ≡ {i, j} and

R ≡ (Ri,R j) be such that for each xi ∈ X \ {0},

vi(xi) = 10xi + 10, and v j(xi) = 5xi + 20

Then, for each e ≡ (N,R, x) ∈ E with x ≥ 2,

pmin(e) = 10, xi(e) = x − 1, and x j(e) = 1.

10Gul and Stacchetti (1999) characterize the minimum and maximum Walrasian equilibrium prices by
means of surplus function for more general setting where there can be heterogeneous objects. Although
Proposition 1 is derived from their result, some calculation is required. Thus, we directly prove Proposi-
tion 1 instead of deriving it from the result by Gul and Stacchetti (1999).
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Let R′i ∈ R be such that for each xi ∈ X \ {0},

v′i(xi) = 8xi + 12.

For each e′ ≡ (N, (R′i ,R j), x) ∈ E with x ≥ 2,

pmin(e′) = 8, xi(e′) = x − 1, and x j(e′) = 1.

Therefore, for each x ∈ X with x ≥ 2, denoting e ≡ (N,R, x) and e′ ≡ (N, (R′i ,R j), x),

vi(xi(e)) − ti(e) − (vi(xi(e′)) − ti(e′))

= vi(x − 1) − 10 · (x − 1) − (vi(x − 1) − 8 · (x − 1))

= 2(x − 1),

which implies fi(e′) Pi fi(e), and hence f is manipulable at e.

□

A feature of this example is that agent i has higher incremental valuations at suffi-

ciently large numbers of objects than agent j. That is, for each xi ∈ X with xi > 1, we

have vi(xi+1)−vi(xi) > v j(xi+1)−v j(xi). The following definition formalizes this feature.

Definition 4. Given N ∈ N , R ∈ R|N|, and a pair i, j ∈ N, agent i asymptotically dominates

agent j at (N,R) if there is x̂ ∈ X such that for each xi ∈ X with xi ≥ x̂, vi(xi + 1)− vi(xi) >

v j(xi + 1) − v j(xi).

As we have seen in Example 1, if there is an agent asymptotically dominating any

other agents, there is a Walrasian mechanism that is manipulable at economies with many

objects. We consider economies where there does not exist an agent asymptotically dom-

inating any other agents.

Definition 5. Given N ∈ N and R ∈ R|N|, (N,R) satisfies no asymptotic domination if

there is no agent i ∈ N who asymptotically dominates agent j at (N,R) for each j ∈ N \{i}.

The following result states that for each Walrasian mechanism, there is a Vickrey

mechanism that coincides with the Walrasian mechanism at economies where no asymp-

totically domination is satisfied and there are sufficiently many objects.
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Theorem 1. Let f = (x, t) be a Walrasian mechanism and g = (x, s) a Vickrey mechanism.

Let N ∈ N and R ∈ R|N|. Suppose (N,R) satisfies no asymptotic domination. There is

x̂ ∈ X such that for each e := (N,R, x) ∈ E with x ≥ x̂, f (e) = g(e).

By Proposition 2, we have the following corollary.

Corollary 1. Let f = (x, t) be a Walrasian mechanism. Let N ∈ N and R ∈ R|N|.

Suppose (N,R) satisfies no asymptotic domination. There is x̂ ∈ X such that for each

e := (N,R, x) ∈ E with x ≥ x̂, f is non-manipulable at e.

5 Replica economies

In the previous section, we focus only on cases where there are sufficiently many objects

and there may not be many agents. In this section, we focus on cases where there are suffi-

ciently many objects and agents. Precisely, we consider replica economies and investigate

the incentive properties of Walrasian mechanisms.

Given e := (N,R, x) ∈ E and R0 ∈ R, let N(R0; e) := {i ∈ N : Ri = R0}.

Definition 6. Given e := (N,R, x) ∈ E and K ∈ N, an economy e′ := (N′,R′, x′) ∈ E is

the K−replica of e if (i) |N(Ri; e′)| = K · |N(Ri; e)| for each i ∈ N′ and (ii) x′ = K · x.

Note that condition (i) implies |N′| = K · |N|.

The following theorem states that if an economy is replicated sufficiently many times,

then for each minimum price Walrasian mechanism, there is a Vickrey mechanism that

coincides with the minimum price Walrasian mechanism at the replica economy.

Theorem 2. Let f := (x, t) be a minimum price Walrasian mechanism and g := (x, s) a

Vickrey mechanism. Let e := (N,R, x) ∈ E and K ∈ N be such that K > maxi∈N xi(e). Let

e′ := (N′,R′, x′) ∈ E be the K-replica economy of e. Then, f (e′) = g(e′)

Remark 3. Gul and Stacchetti (1999) also show that in the model with possibly sev-

eral different types of objects, if an economy is replicated sufficiently many times, each

minimum price Walrasian mechanism coincides with a Vickrey mechanism at the replica

economy. However, they assume that each agent can receive at most one object for each

type. Since we do not make this assumption, the result by Gul and Stacchetti (1999) does
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not imply Theorem 2.

By Proposition 2, we have the following corollary.

Corollary 2. Let f be a minimum price Walrasian mechanism. Let e := (N,R, x) ∈ E and

K ∈ N be such that K > maxi∈N xi(e). Let e′ := (N′,R′, x′) ∈ E be the K-replica economy

of e. Then, f is non-manipulable at e′.

One may argue that Theorem 2 and Corollary 2 hold for any Walrasian mechanism.

The following example shows that there is a Walrasian mechanism such that at any replica

of an economy, the Walrasian mechanism is manipulable and does not coincide with any

Vickrey mechanism.

Example 2. Let f := (x, t) be a maximal price Walrasian mechanism, and g := (y, s) a

Vickrey mechanism. Let e := (N,R, x) ∈ E be such that N = {i, j}, x = 2, and for each

xi ∈ X,

vi(xi) =


xi if xi ≤ 2,

2 otherwise,
and v j(xi) =


2xi if xi ≤ 2,

4 otherwise.

Let K ∈ N and e′ := (N′,R′, x′) be the K-replica of e. For each k ∈ N′,

xk(e′) = yk(e′) =


0 if R′k = Ri,

2 otherwise.

By (ii) of Proposition 1, pmax(e′) = 2. Thus, for each k ∈ N′ with Rk = R j, tk(e′) = 4.

It is also easy to see that for each k ∈ N′ with Rk = R j, sk(e′) = 2. Hence, f (e′) , g(e′).

Moreover, f is manipulable at e′. To see this, let k ∈ N′ be such that R′k = R j and let

R′′k ∈ R be such that for each xk ∈ X,

v′′k (xk) =


1.5xk if xk ≤ 2,

3 otherwise.
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Denote e′′ = (N′, (R′′k ,R
′
−k), x

′). Then, for each ℓ ∈ N′,

xℓ(e′′) =


0 if R′ℓ = Ri,

2 otherwise.

Moreover, by (ii) of Proposition 1, pmax(e′′) = 1.5. Thus, fk(e′′) = (2, 3) P′k (2, 4) = fk(e′).

□

Appendix

A Proofs of Propositions

A.1 Proof of (i) of Proposition 1

Let p := max{vi(xi + 1) − vi(xi) : i ∈ N, xi , x}.

Claim 1: Let i ∈ N be such that xi > 0. Then, vi(xi) − vi(xi − 1) ≥ p.

Proof. Let j ∈ N be such that x j , x and v j(x j+1)−v j(x j) = p. If i = j, then submodularity

implies vi(xi)−vi(xi−1) = v j(x j)−v j(x j−1) ≥ v j(x j+1)−v j(x j) = p If i , j, then Remark 2

implies vi(xi) − vi(xi − 1) ≥ v j(x j + 1) − v j(x j) = p. □

Claim 2: p ∈ PW(e).

Proof. We show ((xi, p · xi))i∈N ∈ ZW(e). To show this, we show that for each i ∈ N,

xi ∈ D(Ri, p, x). Let i ∈ N and yi ∈ X be such that yi , xi.

Case 1: yi < xi. By Claim 1 and submodularity,

p · (xi − yi) ≤ (vi(xi) − vi(xi − 1)) · (xi − yi)

≤ (vi(xi) − vi(xi − 1)) + (vi(xi − 1) − vi(xi − 2)) + · · · + (vi(yi + 1) − vi(yi))

= vi(xi) − vi(yi).
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Thus,

vi(xi) − p · xi = vi(xi) − p · (xi − yi) − p · yi

≥ vi(xi) − (vi(xi) − vi(yi)) − p · yi

vi(yi) − p · yi.

Hence, (xi, p · xi) Ri (yi, p · yi).

Case 2: yi > xi. By the definition of p and submodularity,

p · (yi − xi) ≥ (vi(xi + 1) − vi(xi)) · (yi − xi)

≥ (xi(xi + 1) − vi(xi)) + (vi(xi + 2) − vi(xi − 1)) + · · · + (vi(yi) − vi(yi − 1))

= vi(yi) − vi(xi).

Thus,

vi(xi) − p · xi = vi(xi) + p · (yi − xi) − p · yi

≥ vi(xi) + vi(yi) − vi(xi) − p · yi

= vi(yi) − p · yi.

Hence, (xi, p · xi) Ri (yi, p · yi). □

Suppose by contradiction that there is p′ ∈ PW(e) such that p′ < p. By p′ ∈ PW(e), x ∈

P(e), and Fact 3, we have ((xi, p′ · xi))i∈N ∈ ZW(e). Thus, for each i ∈ N, xi ∈ D(Ri, p′, x).

Let i ∈ N be such that xi , x and vi(xi+1)− vi(xi) = p. Note that such an agent always

exists. Then,

vi(xi + 1) − p′ · (xi + 1) = vi(xi + 1) − p′ − p′ · xi

> vi(xi + 1) − p − p′ · xi

= vi(xi + 1) − (vi(xi + 1) − vi(xi)) − p′ · xi

= vi(xi) − p′ · xi.

This implies xi < D(Ri, p′, x), a contradiction. ■
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A.2 Proof of (ii) of Proposition 1

Let p := min{vi(xi) − vi(xi − 1) : i ∈ N, xi > 0}.

Claim 3: p ∈ PW(e).

Proof. We show ((xi, p · xi))i∈N ∈ ZW(e). To show this, we show that for each i ∈ N,

xi ∈ D(Ri, p, x). Let i ∈ N and yi ∈ X be such that yi , xi.

Case 1: yi < xi. By the definition of p and submodularity,

p · (xi − yi) ≤ (vi(xi) − vi(xi − 1)) · (xi − yi)

≤ (vi(xi) − vi(xi − 1)) + (vi(xi − 1) − vi(xi − 2)) + · · · + (vi(yi + 1) − vi(yi))

= vi(xi) − vi(yi).

Thus,

vi(xi) − p · xi = vi(xi) − p · (xi − yi) − p · yi

≥ vi(xi) − (vi(xi) − vi(yi)) − p · yi

= vi(yi) − p · yi.

Hence, (xi, p · xi) Ri (yi, p · yi).

Case 2: yi > xi. Let j ∈ N be such that x j > 0 and v j(x j) − v j(x j − 1) = p. By Remark 2,

vi(xi + 1) − vi(xi) ≤ v j(x j) − v j(x j − 1) = p. Thus, by submodularity,

p · (yi − xi) ≥ (vi(xi + 1) − vi(xi)) · (yi − xi)

≥ (vi(xi + 1) − vi(xi)) + (vi(xi + 2) − vi(xi + 1)) + · · · + (vi(yi) − vi(yi − 1))

= vi(yi) − vi(xi).
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Thus,

vi(xi) − p · xi = vi(xi) + p · (yi − xi) − p · yi

≥ vi(xi) + vi(yi) − vi(xi) − p · yi

= vi(yi) − p · yi.

Hence, (xi, p · xi) Ri (yi, p · yi). □

By contradiction, suppose that there is p′ ∈ PW(e) such that p′ > p. By p′ ∈ PW(e),

x ∈ P(e), and Fact 3, we have ((xi, p′ · xi))i∈N ∈ ZW(e). Thus, for each i ∈ N, xi ∈

D(Ri, p′, x).

Let i ∈ N be such that xi > 0 and vi(xi)− vi(xi−1) = p. Note that such an agent always

exists. Then,

vi(xi) − p · xi = vi(xi) − p′ − p′ · (xi − 1)

< vi(xi) − p − p′ · (xi − 1)

= vi(xi) − (vi(xi) − vi(xi − 1)) − p′ · (xi − 1)

= vi(xi − 1) − p′ · (xi − 1).

This implies xi < D(Ri, p′, x), a contradiction. ■

A.3 Proof of Proposition 2

Let e ≡ (N,R, x) ∈ E, i ∈ N and R′i ∈ R. Denote e′ ≡ (N, (R′i ,R−i), x). By fi(e) = gi(e),

strategy-proofness of g, and Fact 4, we have

fi(e) = gi(e) Ri gi(e′) Ri fi(e′).

■
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B Proof of Theorem 1

First we introduce several notations. For each i ∈ N, by submodularity, vi(x + 1) − vi(x) is

non-increasing in x, and by monotonicity, the sequence {vi(x + 1) − vi(x)}x∈N is bounded

below. Therefore, the sequence {vi(x+ 1)− vi(x)}xi∈N has the limit, which is denoted by v∗i .

Note that by submodularity, for each i ∈ N and xi ∈ X, vi(xi + 1) − vi(xi) ≥ v∗i . Moreover,

by the assumption of integer values, for each i ∈ N, there is x∗i ∈ X such that for each

xi ∈ X,

vi(xi + 1) − vi(xi)


> v∗i if xi < x∗i ,

= v∗i if xi ≥ x∗i .

Let N∗ be the set of agents who are not asymptotically dominated by any agent. De-

note v∗ := max j v
∗
j.

Step 1. N∗ = {i ∈ N : v∗i = v
∗} and |N∗| ≥ 2.

Proof. First we show the following claim.

Claim 4: Let i ∈ N and j ∈ N. Agent i asymptotically dominates agent j if and only if

v∗i > v
∗
j.

Proof. Let x∗ = max{x∗i , x∗j}. Then, for each x ∈ X with x ≥ x∗,

vi(x + 1) − vi(x) = v∗i , and v j(x + 1) − v j(x) = v∗j.

Thus, vi(x + 1) − vi(x) > v j(x + 1) − v j(x) for each x ∈ X with x ≥ x∗ if and only if v∗i > v
∗
j.

Hence, agent i asymptotically dominates agent j if and only if v∗i > v
∗
j. □

For each i ∈ N∗, agent i is not asymptotically dominated by agent other agent. Thus,

by Claim 3, for each i ∈ N∗ and each j ∈ N \ {i}, v∗i ≥ v∗j, and thus, v∗i = v
∗. Hence, we

have N∗ ⊆ {i ∈ N : v∗i = v
∗}.

On the other hand, let i ∈ N be such that v∗i = v
∗. By the definition of v∗, for each

j ∈ N \ {i}, v∗i ≥ v∗j. Thus, by Claim 3, agent i is not asymptotically dominated by any

other agent, which implies i ∈ N∗. Hence, we conclude that N∗ = {i ∈ N : v∗i = v
∗}.
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Since N is finite, there is i ∈ N such that v∗i = max j∈N v
∗
j. Thus, i ∈ N∗ and |N∗| ≥ 1.

If |N∗| = 1, then for each j ∈ N \ {i}, v∗i > v∗j, and by Claim 3, agent i asymptotically

dominates agent j. This contradicts no asymptotic domination. Hence, |N∗| ≥ 2. ■

Let x̂∗ ∈ X be such that x̂∗ >
∑

i∈N x∗i .

Step 2. Let e := (N,R, x) ∈ E be such that x ≥ x̂∗. Then, the followings are satisfied:

(i) For each i ∈ N \ N∗, xi(e) ≤ x∗i .

(ii) For each i ∈ N∗, xi(e) ≥ x∗i .

Proof. (i) By contradiction, suppose that there is i ∈ N \ N∗ such that xi(e) > x∗i .

By xi(e) > x∗i and i < N∗, vi(xi(e)) − vi(xi(e) − 1) = v∗i < v
∗. Take any j ∈ N∗. Then,

v j(x j(e) + 1) − v j(x j(e)) ≥ v∗. Thus,

vi(xi(e)) − vi(xi(e) − 1) < v∗ ≤ v j(x j(e) + 1) − v j(x j(e)).

This contradicts Remark 2.

(ii) By contradiction, suppose that there is i ∈ N∗ such that xi(e) < x∗i . By the definition

of x∗i , vi(xi(e) + 1) − vi(xi(e)) > v∗. We have two cases.

Case 1:
∑

j∈N x j(e) < x. Let y := (y j) j∈N be such that

yi = xi(e) + 1 and for each j ∈ N \ {i}, y j = x j(e).

Note that
∑

j∈N y j = 1+
∑

j∈N x j(e) ≤ x. Thus, y ∈ A(e). By vi(xi(e)+1)−vi(xi(e)) > v∗ ≥ 0,

vi(xi(e) + 1) > vi(xi(e)). Thus,

∑
j∈N
v j(y j) = vi(xi(e) + 1) +

∑
j∈N\{i}

v j(x j(e)) >
∑
j∈N
v j(x j(e)),

which contradicts x(e) ∈ P(e).

Case 2:
∑

j∈N x j(e) = x. By x ≥ x̂∗ >
∑

j∈N x∗j, there is j ∈ N such that x j(e) > x∗j. By

xi(e) < x∗i , we have j , i, and by (i) of Step 2, j ∈ N∗. By x j(e) > x∗j and j ∈ N∗,
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v j(x j(e)) − v j(x j(e) − 1) = v∗. Therefore,

v j(x j(e)) − v j(x j(e) − 1) = v∗ < vi(xi(e) + 1) − vi(xi(e)).

This contradicts Remark 2. ■

Step 3. Let e := (N,R, x) ∈ E be such that x ≥ x̂∗. Then, pmin(e) = pmax(e) = v∗.

Proof. We have two cases.

Case 1:
∑

i∈N xi(e) < x. By WE-ii, we have pmax(e) = pmin(e) = 0. By Remark 1, v∗ = 0.

Hence, pmax(e) = pmin(e) = v∗.

Case 2:
∑

i∈N xi(e) = x. By Step 1, |N∗| ≥ 2. Thus, {i ∈ N∗ : xi(e) < x} , ∅. Take any

i ∈ {i ∈ N∗ : xi(e) < x}. Then, by i ∈ N∗, vi(xi(e) + 1) − vi(xi(e)) ≥ v∗. Thus, by (i) of

Proposition 1

pmin(e) ≥ vi(xi(e) + 1) − vi(xi(e)) ≥ v∗.

By x >
∑

i∈N x∗i and
∑

j∈N x j(e) = x, there is j ∈ N∗ such that x j(e) > x∗j. By (i) of

Step 2, j ∈ N∗. Thus, by the definition of x∗j, v j(x j(e)) − v j(x j(e) − 1) = v∗. Therefore, by

(ii) of Proposition 1,

pmax(e) ≤ v j(x j(e)) − v j(x j(e) − 1) = v∗.

Hence, v∗ ≤ pmin(e) ≤ pmax(e) ≤ v∗, implying pmin(e) = pmax(e) = v∗. ■

Given e := (N,R, x) ∈ E and i ∈ N, let e−i := (N−i,R−i, x − xi(e)).

Step 4. Let e := (N,R, x) ∈ E and i ∈ N. There is y ∈ P(e−i) such that for each j ∈ N−i,

y j ≥ x j(e).

Proof. Suppose by contradiction that for each y ∈ P(e−i), y j < x j(e) for some j ∈ N−i. Let

P∗ := arg min
y∈P(e−i)

|{ j ∈ N−i : y j < x j(e)}|.

Let j ∈ N−i be such that y j < x j(e) for some y ∈ P∗, and let P∗( j) := {y ∈ P∗ : y j < x j(e)}.
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Let

y∗ ∈ arg max
y∈P∗( j)

y j.

Claim 5: There is k ∈ N \ {i, j} such that y∗k > xk(e).

Proof. Suppose by contradiction that for each k ∈ N\{i, j} y∗k ≤ xk(e). Then, by y j < x j(e),∑
k∈N−i
y∗k <

∑
k∈N−i

xk(e). Let y := (yk)k∈N−i be such that y j = y
∗
j+1 and for each k ∈ N−i\{ j},

y j = y
∗
k. Note that

∑
k∈N−i
yk = 1 +

∑
k∈N−i
y∗k ≤

∑
k∈N−i

xk(e) ≤ x − xi(e). Thus, y ∈ A(e−i).

Moreover, by v j(y j) = v j(y∗j + 1) ≥ v j(y∗j),
∑

k∈N−i
vk(yk) ≥

∑
k∈N−i
vk(y∗k). Thus, y∗ ∈ P(e−i)

implies y ∈ P(e−i).

If y j = x j(e), then

|{k ∈ N−i : yk < xk(e)}| < |{k ∈ N−i : y∗k < xk(e)}|,

which contradicts y∗ ∈ P∗. Thus, y j < x j(e). By y j > y
∗
j, however, this also contradicts

y∗ ∈ P∗( j). □

Claim 6: v j(y∗j + 1) − v j(y∗j) < vk(y
∗
k) − vk(y∗k − 1).

Proof. Suppose by contradiction that v j(y∗j+1)−v j(y∗j) ≥ vk(y∗k)−vk(y∗k−1). Let y ∈ A(e−i)

be such that y j = y
∗
j + 1, yk = y

∗
k − 1, and for each ℓ ∈ N \ {i, j, k}, yℓ = y∗ℓ . Then,

∑
ℓ∈N−i

vℓ(yℓ) = v j(y∗j + 1) + vk(y∗k − 1) +
∑

ℓ∈N\{i, j,k}
vℓ(y∗ℓ) ≥

∑
ℓ∈N−i

vℓ(y∗ℓ).

By y∗ ∈ P(e−i), we have y ∈ P(e−i).

If y j = x j(e), then

|{ℓ ∈ N−i : yℓ < xℓ(e)}| < |{ℓ ∈ N−i : y∗ℓ < xℓ(e)}|,

which contradicts y∗ ∈ P∗. Thus, y j < x j(e). By y j > y
∗
j, however, this also contradicts

y∗ ∈ P∗( j). □
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By y∗j < x j(e), submodularity, and Claim 6,

v j(x j(e)) − v j(x j(e) − 1) ≤ v j(y∗j + 1) − v j(y∗j)

< vk(y∗k) − vk(y∗k − 1)

≤ vk(xk(e) + 1) − vk(xk(e)).

This contradicts Remark 2. ■

Given e := (N,R, x) ∈ E and i ∈ N, let

P∗(e−i) := {y ∈ P(e−i) : for each j ∈ N−i, y j ≥ x j(e)}, and

P∗∗(e−i) := {y ∈ P∗(e−i) : for each j ∈ N−i \ N∗, y j = x j(e)}.

Step 5. Let e := (N,R, x) ∈ E be such that x ≥ x̂∗, and i ∈ N. Then, P∗∗(e−i) , ∅.

Proof. By contradiction, suppose that P∗∗(e−i) = ∅. Then, for each y ∈ P∗(e−i), there is

j ∈ N−i \ N∗ such that y j > x j(e). Let

P∗ := arg max
y∈P∗(e−i)

|{ j ∈ N−i \ N∗ : y j > x j(e)}|.

Let j ∈ N−i \ N∗ be such that y j > x j(e) for some y ∈ P∗, and let P∗( j) := {y ∈ P∗ : y j >

x j(e)}. Let

y∗ ∈ arg min
y∈P∗( j)

y j.

Claim 7: Let k ∈ N∗ \ {i}. Then, vk(y∗k + 1) − vk(y∗k) < v j(y∗j) − v j(y∗j − 1).

Proof. Suppose by contradiction that vk(y∗k+1)−vk(y∗k) ≥ v j(y∗j)−v j(y∗j−1). Let y ∈ A(e−i)

be such that y j = y
∗
j − 1, yk = y

∗
k + 1, and for each ℓ ∈ N \ {i, j, k}, yℓ = y∗ℓ . Then, we have

∑
ℓ∈N\{i}

vℓ(yℓ) = v j(y∗j − 1) + vk(y∗k + 1) +
∑

ℓ∈N\{i, j,k}
vℓ(y∗ℓ) ≥

∑
ℓ∈N\{i}

vℓ(y∗ℓ).

Thus, by y∗ ∈ P(e−i), we have y ∈ P(e−i).
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If y∗j = x j(e), then

|{ j ∈ N−i \ N∗ : y j > x j(e)}| < |{ j ∈ N−i \ N∗ : y∗j > x j(e)}|,

which contradicts y∗ ∈ P∗. Thus, y j > x j(e). By y j < y
∗
j, however, this also contradicts

y∗ ∈ P∗( j). □

Claim 8: v j(x j(e) + 1) − v j(x j(e)) ≤ v∗.

Proof. If
∑

k∈N xk(e) < x, then Remark 1 implies v∗ = 0 and thus N∗ = N. Hence, since

agent j is chosen from N−i \N∗, we may assume
∑

k∈N xk(e) = x without loss of generality.

By x ≥ x̂∗ >
∑

k∈N x∗k and
∑

k∈N xk(e) = x, there is k ∈ N such that xk(e) > x∗k. By

Step 2, k ∈ N∗. By the definition of x∗k, vk(xk(e)) − vk(xk(e) − 1) = v∗. Thus, by Remark 2,

v j(x j(e) + 1) − v j(x j(e)) ≤ vk(xk(e)) − vk(xk(e) − 1) = v∗.

□

By Step 1, N∗ \ {i} , ∅. Take any k ∈ N∗ \ {i}. Then, vk(y∗k + 1) − vk(y∗k) ≥ v∗. Thus, by

Claim 7, y∗j > x j(e), submodularity, and Claim 8,

v∗ ≤ vk(y∗k + 1) − vk(y∗k)

< v j(y∗j) − v j(y∗j − 1)

≤ v j(x j(e) + 1) − v j(x j(e))

≤ v∗.

This is a contradiction. ■

Step 6. Completing the proof.

Let e := (N,R, x) ∈ E be such that x ≥ x̂∗, and let i ∈ N. Since f is a Walrasian

mechanism, there is p ∈ PW(e) such that ti(e) = p · xi(e). By Step 3, v∗ = pmin(e) ≤ p ≤

pmax(e) = v∗. Hence, ti(e) = xi(e) · v∗.

By Step 5, P∗∗(e−i) , ∅. Let y ∈ P∗∗(e−i). By (ii) of Step 2, for each j ∈ N∗ \ {i},
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x j(e) ≥ x∗j. Thus, for each j ∈ N∗ \ {i} with y j > x j(e),

v j(y j) − v j(y j − 1) = v j(y j − 1) − vk(y j − 2) = · · · = v j(x j(e) + 1) − v j(x j(e)) = v∗.

By y ∈ P∗∗(e−i), for each j ∈ N∗ \ {i}, y j ≥ x j(e), and for each j ∈ N−i \ N∗, y j = x j(e).

Therefore,

si(e) =
∑
j∈N−i

v j(y j) −
∑
j∈N−i

v j(x j(e))

=
∑

j∈N∗\{i}
(v j(y j) − v j(x j(e)))

=
∑

j∈N∗\{i}
(v j(y j) − v j(y j − 1) + v j(y j − 1) − vk(y j − 2) + · · · + v j(x j(e) + 1) − v j(x j(e)))

=
∑

j∈N∗\{i}
(y j − x j(e)) · v∗

If v∗ = 0, then ti(e) = 0 = si(e). If v∗ > 0, then Remark 1 implies
∑

j∈N x j(e) =∑
j∈N−i
y j = x, and thus,

∑
j∈N∗\{i}

(y j − x j(e)) =
∑

j∈N∗\{i}
(y j − x j(e)) +

∑
j∈N−i\N∗

(y j − x j(e))

= x −
∑
j∈N−i

x j(e)

= xi(e).

Hence, for the case of v∗ > 0,

si(e) =
∑

j∈N∗\{i}
(y j − x j(e)) · v∗ = xi(e) · v∗ = ti(e).

■

C Proof of Theorem 2

First, consider the case in which there is x ∈ P(e′) such that
∑

i∈N xi < x′. By Fact 3,

((xi, pmin(e′) · xi))i∈N′ ∈ ZW(e′). Then, WE-ii implies pmin(e′) = 0, and thus, for each
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i ∈ N′, ti(e′) = 0. Note also that for each i ∈ N′, si(e′) ≥ 0 and By Fact 4, ti(e′) ≥ si(e′).

Therefore, for each i ∈ N′, ti(e′) = si(e′).

Hereafter we consider the case in which for each x ∈ P(e′),
∑

i∈N′ xi = x′. Since e′ is

the K-replica economy of e, there is (Ni)i∈N such that (i)
∪

i∈N Ni = N′, (ii) for each pair

i, j ∈ N, Ni∩N j = ∅, (iii) for each i ∈ N, |Ni| = K, and (iv) for each i ∈ N and each j ∈ Ni,

Ri = R′j. Let x ∈ A(e′) be such that for each i ∈ N and each j ∈ Ni, x j = xi(e).

Step 1. x ∈ P(e′).

Proof. Suppose by contradiction that x < P(e′). Let

y∗ ∈ arg min
y∈P(e′)

∑
i∈N′
|yi − xi|.

By x < P(e′) and y∗ ∈ P(e),
∑

i∈N′ v
′
i(y
∗
i ) >

∑
i∈N′ v

′
i(xi). Thus, there is i ∈ N′ such that

v′i(y
∗
i ) > v′i(xi). By monotonicity, y∗i > xi.

Claim 9:
∑

j∈N x j(e) = x.

Proof. By contradiction, suppose
∑

j∈N x j(e) < x. Then, by x(e) ∈ P(e) and Remark 1, for

each j ∈ N, v j(x j(e)+ 1)− v j(x j(e)) = 0. Since e′ is the K-replica of e, there is j ∈ N such

that R j = R′i and x j(e) = xi. Thus,

v′i(xi + 1) − v′i(xi) = v j(x j(e) + 1) − v j(x j(e)) = 0.

Therefore, monotonicity and submodularity imply v′i(xi) ≥ v′i(y∗i ), a contradiction. □

By Claim 9 and the definition of x,

∑
j∈N′

x j =
∑
j∈N

K · x j(e) = K · x = x′ ≥
∑
j∈N′
y∗j.

Thus, by y∗i > xi, there is j ∈ N′ \ {i} such that y∗j < x j.

Claim 10: v′i(y
∗
i ) − v′i(y∗i − 1) = v′j(y

∗
j + 1) − v′j(y∗j).

Proof. We have two cases.
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Case 1: R′i = R′j and xi = x j. We have y∗i > xi = x j > y
∗
j. Thus, by y∗ ∈ P(e′), Remark 2,

Ri = R j, and submodularity,

v′i(y
∗
i ) − v′i(y∗i − 1) ≥ v′j(y∗j + 1) − v′j(y∗j)

= v′i(y
∗
j + 1) − v′i(y∗j)

≥ v′i(y∗i ) − v′i(y∗i − 1).

Thus, v′i(y
∗
i ) − v′i(y∗i − 1) = v′j(y

∗
j + 1) − v′j(y∗j).

Case 2: R′i , R′j or xi , x j. Since e′ is the K-replica of e, there is k ∈ N such that Rk = R′i

and xk(e) = xi. For the same reason, there is ℓ ∈ N such that Rℓ = R′j and xℓ(e) = x j. By

x(e) ∈ P(e) and Remark 2, vk(xk(e) + 1) − vk(xk(e)) ≤ vℓ(xℓ(e)) − vℓ(xℓ(e) − 1). Thus,

v′i(xi + 1) − v′i(xi) = vk(xk(e) + 1) − vk(xk(e))

≤ vℓ(xℓ(e)) − vℓ(xℓ(e) − 1)

= v′j(x j) − v′j(x j − 1). (1)

By y∗ ∈ P(e′) and Remark 2, v′i(y
∗
i ) − v′i(y∗i − 1) ≥ v′j(y∗j + 1) − v′j(y∗j). Thus, by y∗i > xi,

y∗j < x j, (1) and submodularity,

v′i(y
∗
i ) − v′i(y∗i − 1) ≥ v′j(y∗j + 1) − v′j(y∗j)

≥ v′j(x j) − v′j(x j − 1)

≥ v′i(xi + 1) − v′i(xi)

≥ v′i(y∗i ) − v′i(y∗i − 1).

Therefore, v′i(y
∗
i ) − v′i(y∗i − 1) = v′j(y

∗
j + 1) − v′j(y∗j). □

Let y′ ∈ A(e′) be such that

y′i = y
∗
i − 1, y′j = y

∗
j + 1, and y′k = y

∗
k for each k ∈ N \ {i, j}.
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By Claim 10, v′i(y
∗
i − 1) + v′j(y

∗
j + 1) = v′i(y

∗
i ) + v′j(y

∗
j). Thus,

∑
k∈N′
v′k(y

′
k) = v

′
i(y
∗
i − 1) + v′j(y

∗
j + 1) +

∑
k∈N′\{i, j}

v′k(y
∗
k) =
∑
k∈N′
v′k(y

∗
k).

Thus, by y∗ ∈ P(e′), we have y′ ∈ P(e′). Moreover, by y∗i > xi and y∗j < x j,

∑
k∈N′
|y′k − xk| = |y∗i − 1 − xi| + |y∗j + 1 − x j| +

∑
k∈N′\{i, j}

|y∗k − xk|

= −2 +
∑
k∈N′
|y∗k − xk|

<
∑
k∈N′
|y∗k − xk|.

This contradicts the definition of y∗. ■

Let

N∗ := { j ∈ N′ : x j < x′, v′j(x j + 1) − v′j(x j) = pmin(e′)}.

Note that |N∗| ≥ K. Let i ∈ N′ and

N1 := { j ∈ N′ \ {i} : x j(e′) = x j},

N2 := { j ∈ N′ \ {i} : x j(e′) > x j}, and

N3 := { j ∈ N′ \ {i} : x j(e′) < x j}.

Let N∗j := N j ∩ N∗ for each j = 1, 2, 3.

Step 2. xi(e′) ≤ |N∗1 | +
∑

j∈N∗3 (x j − x j(e′) + 1) +
∑

j∈N3\N∗3 (x j − x j(e′)).

Proof. Note that N∗ \ {i} = N∗1 ∪ N∗2 ∪ N∗3 . Thus, by |N∗| ≥ K and K > max j∈N x j(e) ≥ xi,

|N∗1 | + |N∗2 | + |N∗3 | = |N∗ \ {i}| ≥ xi. (2)
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By N2 ⊇ N∗2 and the definition of N2,

|N∗2 | ≤ |N2| ≤
∑
j∈N2

(x j(e′) − x j).

By x(e′) ∈ P(e′), we have
∑

j∈N′ x j(e′) = x′. By Step 1,
∑

j∈N′ x j = x′. Thus,

xi(e′) +
∑
j∈N1

x j(e′) +
∑
j∈N2

x j(e′) +
∑
j∈N3

x j(e′) = x′ = xi +
∑
j∈N1

x j +
∑
j∈N2

x j +
∑
j∈N3

x j.

By
∑

j∈N1
x j(e′) =

∑
j∈N1

x j and |N∗2 | ≤
∑

j∈N2
(x j(e′) − x j),

xi(e′) − xi =
∑
j∈N3

(x j − x j(e′)) −
∑
j∈N2

(x j(e′) − x j) ≤
∑
j∈N3

(x j − x j(e′)) − |N∗2 |. (3)

Therefore, by (2) and (3),

xi(e′) = xi + (xi(e′) − xi)

≤ |N∗1 | + |N∗2 | + |N∗3 | +
∑
j∈N3

(x j − x j(e′)) − |N∗2 |

≤ |N∗1 | + |N∗3 | +
∑
j∈N3

(x j − x j(e′))

≤ |N∗1 | +
∑
j∈N∗3

(x j − x j(e′) + 1) +
∑

j∈N3\N∗3

(x j − x j(e′)).

■

By Step 2, there is (y∗j) j∈N∗1∪N3 ∈ X |N
∗
1∪N3 | such that

∑
j∈N∗1∪N3

y∗j = xi(e′) and for each

j ∈ N∗1 ∪ N3,

y∗j ≤


1 if j ∈ N∗1 ,

x j − x j(e′) + 1 if j ∈ N∗3 ,

x j − x j(e′) if j ∈ N3 \ N∗3 .
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Let y ∈ X |N
′ | be such that for each j ∈ N′,

y j =


0 if j = i,

x j(e′) + y∗j if j ∈ N∗1 ∪ N3,

x j(e′) otherwise.

Note that

∑
j∈N′
y j =

∑
j∈N∗1∪N3

y∗j +
∑
j∈N′−i

x j(e′) = xi(e′) +
∑
j∈N′−i

x j(e′) = x̄′.

Thus, y ∈ A(e′). Moreover, for each j ∈ N′−i, y j ≥ x j(e′).

Step 3. Let j ∈ N′−i be such that y j > x j(e′). Let x′j ∈ {x j(e′) + 1, . . . , y j}. Then

v j(x′j) − v j(x′j − 1) = pmin(e′).

Proof. By (i) of Proposition 1, x′j > x j(e′), and submodularity,

pmin(e′) = max{v′k(xk(e′) + 1) − v′k(xk(e′)) : k ∈ N, xk(e′) , x′}

≥ v′j(x j(e′) + 1) − v′j(x j(e′))

≥ v′j(x′j) − v′j(x′j − 1).

Next we show pmin(e′) ≤ v′j(x′j) − v′j(x′j − 1). Note that by the definition of y and

y j > x j(e′), we have j ∈ N∗1 ∪ N3.

Case 1: j ∈ N∗1 . By the definition of y and j ∈ N∗1 , we have y j = x j(e′) + y∗j ≤ x j(e′) + 1 =

x j + 1. By y j > x j(e′) = x j, we have y j = x j + 1 and thus, x′j = x j + 1. Thus, by j ∈ N∗,

pmin(e′) = v′j(x j + 1) − v′j(x j) = v′j(x′j) − v′j(x′j − 1).

Case 2: j ∈ N∗3 . By the definition of y and j ∈ N∗3 , we have x′j ≤ y j = x j(e′) + y∗j ≤ x j + 1.

Thus, by j ∈ N∗ and submodularity,

pmin(e′) = v′j(x j + 1) − v′j(x j) ≤ v′j(x′j) − v′j(x′j − 1).

Case 3: j ∈ N3 \ N∗3 . By N∗ , ∅ and j ∈ N3 \ N∗3 , there is k ∈ N∗ such that k , j. Then,
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by k ∈ N∗, x ∈ P(e′) and Remark 2,

pmin(e′) = v′k(xk + 1) − v′k(xk) ≤ v′j(x j) − v′j(x j − 1).

By the definition of y, x′j ≤ y j = x j(e′) + y∗j ≤ x j. Thus, by submodularity,

pmin(e′) ≤ v′j(x j) − v′j(x j − 1) ≤ v′j(x′j) − v′j(x′j − 1).

■

Step 4. Completing the proof.

By Step 3, for each j ∈ N′−i with y j > x j,

v′j(y j) − v′j(x j) = v′j(y j) − v′j(y j − 1) + (v′j(y j − 1) − v′j(y j − 2)) + · · · + (v′j(x j + 1) − v′j(x j))

= pmin(e′) · (y j − x j(e′)).

By the definition of y,

xi(e′) =
∑
j∈N′−i

(y j − x j(e′)).

Thus, we have

si(e′) = max
x′∈A(e′)

∑
j∈N′−i

v′j(x′j) −
∑
j∈N′−i

v′j(x j(e′))

≥
∑
j∈N′−i

v′j(y j) −
∑
j∈N′−i

v′j(x j(e′))

=
∑
j∈N′−i

(v′j(y j) − v′j(x j(e′)))

= pmin(e′) ·
∑
j∈N′−i

(y j − x j(e′))

= pmin(e′) · xi(e′)

= ti(e′).

On the other hand, by Fact 4, si(e′) ≤ ti(e). Hence, si(e′) = ti(e′). ■
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