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Abstract 

We measure systemic risk in the network of financial market infrastructures (FMIs) as 

the probability that two or more FMIs have a large credit risk exposure to the same FMI 

participant. We construct indicators of credit risk exposures in three main Canadian 

FMIs during the period 2007–11 and use extreme value methods to estimate this 

probability. We find large differences in the contribution to systemic risk across 

participants. We also find that when participants are in financial distress, they tend to 

create large credit exposures in two or more FMIs. Our results suggest that an 

appropriate oversight of FMIs may benefit from an in-depth system-wide analysis, which 

may have useful implications for the macroprudential regulation of the financial system. 

JEL classification: G21, G23, C58 

Bank classification: Payment clearing and settlement systems; Financial stability; 

Econometric and statistical methods 

Résumé 

Nous mesurons le risque systémique dans le réseau des infrastructures de marchés 

financiers (IMF) en fonction de la probabilité que deux IMF ou plus aient une forte 

exposition au risque de crédit à l’égard d’un même participant. Pour ce faire, nous 

construisons des indicateurs des expositions au risque de crédit présentes dans trois 

grandes IMF canadiennes pour la période de 2007 à 2011, et avons recours à des 

méthodes fondées sur la théorie des valeurs extrêmes pour estimer cette probabilité. 

Les participants ne sont pas une source de risque systémique au même degré : de ce 

point de vue, nous observons d’importantes différences entre eux. Nous constatons 

également que lorsqu’ils connaissent des difficultés financières, les participants ont 

tendance à accroître l’exposition au risque de crédit dans deux IMF ou plus. Nos 

résultats indiquent qu’il serait bon, pour une surveillance appropriée des IMF, 

d’effectuer une analyse approfondie de l’ensemble du réseau, analyse qui pourrait avoir 

son utilité pour la réglementation macroprudentielle du système financier.              

Classification JEL : G21, G23, C58 

Classification de la Banque : Systèmes de compensation et de règlement des paiements; 

Stabilité financière; Méthodes économétriques et statistiques 

 



Non-Technical Summary 
 

 
     Financial market infrastructures (FMIs) are at the heart of every country’s financial system. 
They facilitate the clearing, settling or recording of payments, securities, derivatives or other 
financial transactions among participating entities. They allow consumers and firms to safely 
and efficiently purchase goods and services, make financial investments and transfer funds. 
Because of their systemic importance, FMIs are regulated and overseen by central banks and 
other authorities. However, relatively little is known about the risks that participants can create 
in the network of FMIs. Our article is one of the first attempts to measure these risks. 
     We measure systemic risk in the network of FMIs, defining it as the probability that two or 
more FMIs have a large credit risk exposure to the same participant. We first construct 
indicators of credit risk exposures from the point of view of the following three main Canadian 
FMIs: the Large Value Transfer System (LVTS), the Canadian Derivatives Clearing Service 
(CDCS) and CDSX (owned and operated by Clearing and Depository Services Inc.). These 
FMIs have a leading role in the clearing and settlement of cash payments, derivatives and other 
securities. 
     We define credit risk exposure as the payment obligation that a participant has with the 
FMI at the end of the day. We consider both gross payment obligations and net payment 
obligations (net of any collateral pledged by the participant). We calculate these indicators 
using a database with detailed daily data on prices, positions margins and other types of 
collateral for every FMI’s participant for the period 2007-11. 
     Based on these credit risk indicators, we use extreme value methods to estimate the 
probability of the tail event that two or more FMIs have a large credit risk exposure to the 
same participant. We also estimate the conditional probability that one or more FMI has a large 
credit risk exposure to a participant, conditional on another FMI having a large exposure to the 
same participant. These conditional probabilities provide useful information about the systemic 
risk contribution of one or more FMIs to another FMI by a participant. To the best of our 
knowledge, our article is the first to propose a measure of systemic risk in the network of FMIs 
that is based on the existence of participant-based interdependencies between FMIs. 
     We find a rich set of results with interesting implications. We find large differences in 
systemic risk measures across participants. We then re-estimate these probabilities by 
conditioning on the participant being close to financial distress. We use stock returns as a 
measure of financial distress. On average, we find that participants that are more likely to be in 
financial distress contribute more to systemic risk in the network of FMIs. 
    Our research contributes to the literature on systemic risk by measuring participant-based 
interdependencies between FMIs, which arise from the activities of one participant in two or 
more FMIs. Previous analysis has mainly considered dependencies between FMIs due to services 
that are provided by one FMI and used by other FMIs. 
    Our methodology has direct implications for better understanding financial stress across 
FMIs. FMIs are typically required to have sufficient pre-pledged collateral/funding available to 
cover a default situation in every FMI and thus mitigate the potential for systemic risk across 
FMIs. However, the default of a participant with a large exposure in two or more FMIs is a very 
stressful event, and current stress tests used in FMIs typically do not consider this scenario. Our 
paper provides a methodology for better understanding risks in the network of FMIs. 
     These results may be useful for regulators and policy-makers. Currently, there is a set of 
initiatives promoted and being implemented by central banks and other international 
organizations that are designed to improve the safety and soundness of FMIs as key elements in 
controlling systemic risk in the financial system. Our work could have important implications 
for the appropriate macroprudential regulation of the financial system. 



1 Introduction

Financial market infrastructures (FMIs) are at the heart of every country’s financial system. They

facilitate the clearing, settling or recording of payments, securities, derivatives or other financial

transactions among participating entities. They allow consumers and firms to safely and effi ciently

purchase goods and services, make financial investments and transfer funds. Because of their

systemic importance, FMIs are regulated and overseen by central banks and other authorities.

However, relatively little is known about the risks that participants can create in the network of

FMIs. Our article is one of the first attempts to measure these risks.

We measure systemic risk in the network of FMIs, defining it as the probability that two or more

FMIs have a large credit risk exposure to the same participant. We first construct indicators of

credit risk exposures from the point of view of the following three main Canadian FMIs: the Large

Value Transfer System (LVTS), the Canadian Derivatives Clearing Service (CDCS) and CDSX

(owned and operated by Clearing and Depository Services Inc.). These FMIs have a leading role

in the clearing and settlement of cash payments, derivatives and other securities.1 We define credit

risk exposure as the payment obligation that a participant has with an FMI at the end of the day.

We consider both gross payment obligations and net payment obligations (net of any collateral

pledged by the participant). We calculate these indicators using a database with detailed daily

data on prices, positions, margins and other types of collateral for every FMI’s participant for the

period 2007-11.

Based on these credit risk indicators, we use extreme value methods to estimate the probability

of the tail event that two or more FMIs have a large credit risk exposure to the same participant.

We also estimate the conditional probability that one or more FMI has a large credit risk exposure

to a participant, conditional on another FMI having a large exposure to the same participant.

These conditional probabilities provide useful information about the systemic risk contribution of

one or more FMIs to another FMI by a participant. Authors such as Lehar (2005), Segoviano

et al. (2009), Gravelle and Li (2013), and Adrian and Brunnermeier (2015), among others, have

proposed measures of the systemic importance of a financial institution or group of financial insti-

1The three FMIs have been designated as "systemically important" by the Payment Clearing and Settlement Act
because they have the potential to pose systemic risk to Canada’s financial system.
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tutions in the financial system. To the best of our knowledge, our paper is the first to propose a

measure of systemic risk in the network of FMIs that is based on the existence of participant-based

interdependencies between FMIs.

The detailed database we compiled allows us to find a rich set of results with interesting impli-

cations. First, when considering a set of seven large participants of all three FMIs, we find large

differences in systemic risk measures across participants, and we find that three participants have,

on average, a larger contribution to systemic risk than the other participants. We then re-estimate

these probabilities by conditioning on the participant being close to financial distress (crash, failure

or collapse). We use stock returns as a measure of financial distress. On average, we find that

participants that are more likely to be in financial distress contribute more to systemic risk in the

network of FMIs.

Our research contributes to the literature on systemic risk by measuring participant-based

interdependencies between FMIs, which arise from the activities of one participant in two or more

FMIs (BIS, 2008). Previous analysis has mainly considered dependencies between FMIs due to

services that are provided by one FMI and used by other FMIs. These dependencies can be

important. For instance, collateral for the LVTS is pledged through CDSX, whereas CDSX funds

are settled at the end of the day in the LVTS. CDCS relies operationally on CDSX and the LVTS

for margin requirements and cash-settlement, respectively.

Our methodology has direct implications for better understanding financial stress across FMIs.

FMIs are typically required to have suffi cient pre-pledged collateral/funding available to cover

a default situation in every FMI and thus mitigate the potential for systemic risk across FMIs.

However, the default of a participant with a large exposure in two or more FMIs is a very stressful

event for the network of FMIs, and current stress tests used in FMIs typically do not consider

this scenario.2 Under some circumstances, liquidity and market risks in such a situation could be

substantial, and there would be significant stress and uncertainty in the market that could affect

participants across systems. Non-defaulting participants may have to use their own resources to

cover this obligation in every FMI. This could create additional stress in all participants and FMIs,

2See, for instance, OFR (2015), page 30: "A Global Systemically Important Bank (G-SIB’s) default could cause
a CCP default and possible strain [for] multiple CCPs at once, a scenario that current CCP stress tests may fail to
capture."
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and it could potentially create defaults of participants or possibly FMIs, making this initial default

a systemic event. Regardless of the probability of this chain of events occurring in a future financial

crisis, our paper provides a methodology for better understanding risks in the network of FMIs.

These results may be useful for regulators and policy-makers. Currently, there is a set of initia-

tives promoted and being implemented by central banks and other international organizations that

are designed to improve the safety and soundness of FMIs as key elements in controlling systemic

risk in the financial system.3 Our work could have important implications for the appropriate

macroprudential regulation of the financial system.4

The safety and soundness of FMIs has been at the center of the policy interest in most central

banks for several decades. Much of the literature focuses on the study of large-value payment

systems, considering topics such as network topology (Embree and Roberts, 2009; Bech et al.,

2010; Chapman et al., 2011) or effi ciency effects (Allen et al., 2015). The empirical work on other

FMIs is more recent, mainly due to limitations on data availability.5 Some recent studies use

proprietary data from central counterparties (CCPs) to study issues such as systemic risk within

a CCP (Cruz Lopez et al., 2013; Jones and Pérignon, 2013) or the effects of central clearing on

collateral demand and prices (Duffi e et al., 2015; Menkveld et al., 2015).

One of the first articles to study the interactions between FMIs is Renault et al. (2007). There

is also some recent work that studies the links between different types of FMIs from a network

perspective (León and Pérez, 2014; León et al., 2014). Anderson et al. (2013) and Mägerle and

Nellen (2015) use credit risk exposures to study the degree of effi ciency of different linked CCP

structures. As well, Embree and Millar (2008) study the risks associated with interactions between

a payment system and a securities settlement system.

With the recent financial crisis, there has been a greater interest in applying extreme value

3One clear example is the Principles for Financial Market Infrastructures (PFMIs) from the CPMI-IOSCO (BIS,
2012) that serve as important risk management principles for systemically important FMIs. Among other issues, the
PFMIs discuss the importance of measuring, monitoring and managing credit risk exposures, as well as risks related
to links between FMIs (see also BIS, 2008).

4For instance, a participant could be classified as individually systemic because of its large contribution to systemic
risk in the network of FMIs, and therefore it could receive special attention from regulators, since a default by the
participant could potentially create significant stress in the network of FMIs.

5Because payment systems are highly connected to the daily operations of central banks and the implementation
of monetary policy, there is usually more data available and research conducted related to these systems.
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theory methods, pioneered by Fisher and Tippett (1928) to measure the systemic importance of

financial institutions. See Poon et al. (2004), Hartmann et al. (2005), Acharya et al. (2010) or

Gravelle and Li (2013), to cite a few. These methods have been proven to be useful for measuring

tail events in the financial industry. To the best of our knowledge, ours is the first application of

extreme value methods to measure systemic risk in the network of FMIs.

The paper proceeds as follows. In the next section we describe the methodology used to estimate

systemic risk across FMIs. Section 3 describes the industry and proposes a set of indicators to

estimate credit risk across FMIs. Section 4 presents the empirical results. Section 5 concludes.

2 Estimating systemic risk across FMIs

2.1 Systemic risk across FMIs

Following work by the Bank for International Settlements (BIS, 2008), there exist three major

types of dependencies between FMIs: (i) system-based dependencies, which arise from direct

links between FMIs (FMI-based interdependencies); (ii) environmental dependencies, which re-

fer to the dependence of FMIs on common third-party services or infrastructure providers; and

(iii) participant-based dependencies, which refer to the links between two or more FMIs through a

common participant. In our paper, we focus on number (iii), but we concur with the importance

of the other two. The type of link that we consider is particularly relevant for Canada because

the financial industry is concentrated in a small number of large financial institutions. The default

of a large participant could create significant stress in the FMIs, and it could potentially create

additional stress on the surviving participants.

We classify exposures from the point of view of their type. BIS (2012) provides definitions of

credit risk, liquidity risk, operational risk and other types of risk. In our paper, we focus on credit

risk, which is defined as "the risk that a counterparty will be unable to meet fully its financial

obligations when due or at any time in the future" (see Principles for Financial Market Infrastruc-

tures, page 19).6 We measure credit risk as the end-of-day payment obligation that a participant

6Liquidity risk is adequately managed by FMIs having suffi cient liquid resources to effect the settlement of payment
obligations with a high degree of confidence. Operational risk is managed by FMIs setting high rates of availability
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has to the FMI. We consider both gross payment obligations and net payment obligations (net of

any collateral pledged by the participant with the FMI).

Credit risk exposures can be classified from the point of view of the entity that is exposed.

There is a two-sided relationship between every FMI and every participant, and the risks faced by

the FMI or the participant are two sides of the same coin. For instance, a participant is exposed

to the default/distress of the FMI or the FMI participants, because in case of a default of one

participant, the obligations with the surviving participants may not be fulfilled by the FMI. In our

paper, we focus on the exposure of an FMI to the participant: The FMI/surviving participants will

face distress as a result of a participant in default/distress. For instance, in Figure 1 we show a

simple case where two participants are members of all three FMIs. A default of participant 1 could

be a very stressful event for participant 2 if it needs to use its own resources to cover this default

in every FMI.

We denote by Ebj the credit risk exposure associated with participant b in FMI j. This credit

risk exposure is measured as the end-of-day payment obligation in the FMI, and we assume the

following sign convention:

Ebj ≥ 0 : if FMI j "owes" Ebj to participant b, and (1)

Ebj < 0 : if participant b "owes" Ebj to FMI j. (2)

We are interested in situations where FMI j is exposed to participant b, i.e., Ebj < 0. A situation

where Ebj ≥ 0 but relatively close to 0 is also interesting because small deviations of asset prices

could easily reverse the sign of Ebj for large participants.
7 Therefore, we are interested in the case

where Ebj ≤ Kb
j , where K

b
j is a relatively low threshold. In practice, the threshold K

b
j is defined

as a quantile (such as the 5%-quantile, i.e., Pr[Ebj ≤ Qbj ] = 0.05) in order to measure exposures in

relative terms. Figure (2) schematically shows the distributions of gross and net exposures with

(such as 99.99%) and a low number of incidents/outages in their systems. For an example, see the annual reports of
the Canadian Payments Association.

7Because some participants are much larger than others, the order of magnitude of the exposures varies across
participants. Therefore, it is important to consider relative levels of exposures rather than absolute levels. For
instance, if we consider a threshold of $500 million, this threshold can be too high for a small provincial participant,
but too low a threshold for a large global participant because small deviations of asset prices could significantly
change these exposures for the large participant.
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the sign convention considered. It also shows the threshold Kb
j and the relationship between gross

exposures and net exposures. Net exposures are calculated by adding the collateral pledged to the

gross exposures. Hence, the distribution of net exposures is shifted to the right by an amount equal

to the collateral pledged.

For given Ebj and a quantile threshold Q
b
j for each of the three systems considered, we measure

systemic risk in the network of FMIs, defined as the probability that two or more FMIs have a

large credit risk exposure to the same FMI participant. We study four cases. First, we consider

the joint probability that three FMIs simultaneously have a large credit risk exposure:

Pr[Eb1 ≤ Qb1, Eb2 ≤ Qb2, Eb3 ≤ Qb3]. (3)

Then, we consider three cases for the joint probability that two FMIs simultaneously have a

large credit risk exposure (CDCS and CDSX, CDCS and LVTS, CDSX and LVTS),

Pr[Ebj ≤ Qbj , Ebk ≤ Qbk], for j, k ∈ {1, 2, 3}, j 6= k. (4)

We are also interested in studying conditional probabilities for combinations of FMIs such as

Pr[Ebj ≤ Qbj |Ebk ≤ Qbk, Ebl ≤ Qbl ], or Pr[Ebj ≤ Qbj |Ebk ≤ Qbk], for j, k, l ∈ {1, 2, 3}, j 6= k 6= l. (5)

These conditional probabilities provide useful information on the systemic risk contribution of

one or more FMIs to another FMI by a participant. This systemic risk measure differs from an

individual FMI’s own risk measure related to participant b (value-at-risk) as it gives information

about the part of systemic risk that can be attributed to another system.

Extreme value methods have proved to be an effective way to calculate probabilities of tail

events in the financial system (Gravelle and Li, 2013). To the best of our knowledge, these methods

have not been used to estimate systemic risk in the network of FMIs. In Appendix A we show how

we use these methods to calculate the joint and conditional probability in Eqs. (3), (4) and (5).
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2.2 Systemic risk across FMIs and participants in financial distress

The probabilities in Eqs. (3), (4) and (5) do not take into account the financial distress of a

participant. Participants in these systems are typically large financial institutions with significant

activity in other markets such as retail and wholesale banking or money markets, and usually have

global operations. The financial distress of a participant can be considered as an exogenous event

triggered by conditions not necessarily related to its operations in the FMIs. Lehman Brothers, for

instance, filed for bankruptcy on September 15, 2008 due to its large exposures in the subprime

mortgage market, and this default created significant financial stress in the CCPs where Lehman was

a participant (LCH.Clearnet in the U.K. and DTCC in the U.S.).8 We are interested in estimating

systemic risk in the network of FMIs conditional on the financial distress of a participant. If a

participant in financial distress creates large systemic risk in the network of FMIs, then regulators

should be particularly concerned about it.

A participant b is defined to be in financial distress (crash, failure or collapse) if its stock

return, Sb, falls below a given crisis level (QbS) at a given tail probability p, i.e., P [Sb ≤ QbS ] = p.9

Ideally, detailed balance sheet data on assets and liabilities should be used to construct measures of

financial distress for participants, but balance sheet data usually have a low frequency and cannot be

combined with the daily FMI exposure data. The stock returns have two major advantages. First,

they can be updated in a more timely fashion. Second, they are usually forward-looking, because

price movements reflect changes in market anticipation of the future performance of participants.

We denote by Sb the first difference of log daily prices in participant b stock, P b(t):

Sb = log(P b(t))− log(P b(t− 1)). (6)

Table 1 shows statistics for the distribution of log daily stock returns (common equity) for all FMI

participants with publicly traded stock for the years 2004-11. There is substantial variation in stock

8See Monnet et al. (2010).
9There are other candidates that could be used to measure financial distress, such as credit default swaps (CDS).

However, CDS for Canadian financial institutions are typically traded over-the-counter, and therefore it is an opaque
and not very liquid market (Reid, 2005). The choice of bank equity prices for measuring the credit risk of banks may
be motivated by the option-theoretic framework toward default of Merton (1974). Merton’s approach has become
the cornerstone of a large body of approaches for quantifying credit risk and modeling credit rating.
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returns, with a maximum daily value of 0.32 and a minimum of -0.89. 5%-quantiles are negative

in all years with an average value of -0.059. Returns for the years 2007, 2008 and 2011 are, on

average, the lowest for the sample.

Table 1 here

We calculate probabilities in Eqs. (3), (4) and (5) by conditioning on the event that the participant

is in financial distress, which occurs if the stock price falls below the threshold QbS , which happens

with probability p.

We estimate the joint probability that three FMIs simultaneously have a large credit risk expo-

sure conditional on the event that the participant is in financial distress,

P [Eb1 ≤ Qb1, Eb2 ≤ Qb2, Eb3 ≤ Qb3|Sb ≤ QbS ]. (7)

In order to measure the increase in the contribution to systemic risk conditional on the participant

being in financial distress, we use the difference between conditional and unconditional probabilities:

∆b(E
b
1, E

b
2, E

b
3) = P [Eb1 ≤ Qb1, Eb2 ≤ Qb2, Eb3 ≤ Qb3|Sb ≤ QbS ]− P [Eb1 ≤ Qb1, Eb2 ≤ Qb2, Eb3 ≤ Qb3]. (8)

If ∆b < 0, participants that are in financial distress contribute less to systemic risk in the network

of FMIs. On the other hand, if ∆b > 0, participants that are in financial distress contribute more to

systemic risk in the network of FMIs. This difference is calculated in a similar way using conditional

probabilities, as in Eq. (5).

3 Credit risk exposures across FMIs

3.1 Credit risk exposures in CDCS

CDCS is the clearing system operated by the Canadian Derivatives Clearing Corporation (CDCC), a

subsidiary of TMXGroup. CDCS provides a CCP service for all equity derivatives, index derivatives

9



and interest rate derivatives traded on the Montréal Exchange (MX).10 Additionally, CDCS provides

a clearing service for over-the-counter (OTC) equity options. The great majority of the trading of

derivatives cleared in CDCS are originated on the MX.

The exposure of CDCS to a clearing member is equal to the payment obligation of the member

due to the realized profits and losses (P&L) of its portfolio of derivatives cleared by CDCS. A

clearing member b has a long (Lbs,t) or short (S
b
s,t) position on a given security s in day t. Depending

on having a long or short position and the changes in the price P bs,t of the security, the end-of-day

realized losses (variation margin) for participant b is equal to

V b
s,t = Lbs,t(P

b
s,t − P bs,t−1) or (9)

V b
s,t = −Sbs,t(P bj,t − P bs,t−1), (10)

where we use the following sign convention: V b
s,t > 0 if participant b has a profit with security s,

and V b
s,t < 0 if it has a loss. Figure 3 shows an example of price variation of a 10-year Government

of Canada Bond Future on November 18, 2008.

Using the total portfolio of derivatives, we can calculate the aggregate losses of the participant

b in period t:

V b
t =

∑
s

V b
s,t. (11)

We can define the gross exposure of participant b in period t as the sum of all P&L in the portfolio,

Eb,tCDCS,Gross ≡ V
b
t . (12)

A measure of net exposure can be generated using the total collateral pledged by the clearing

member. Clearing members pledge initial margins,11 and if there is a default in period t, the CCP

10To control credit risk, CCPs use a legal instrument called novation. When the CCP novates the financial contract
between two parties, it becomes the buyer to every seller and the seller to every buyer in the contract. CCPs also
set risk controls (initial margins, default fund, etc.) to ensure that if a participant defaults, obligations between
participants will be met under extreme but plausible stress scenarios.
11Typically, initial margins Bb,t−1 are set using some (value-at-risk) VaR methodology,

Pr(Vb,t ≤ −Bb,t−1) = α,

where α = 0.01 or lower.
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can use the initial margin pledged at the end of the previous day to cover the losses. There is a well-

established loss-allocation method to cover these losses; this is typically named "the waterfall."12

We assume that net losses are obtained after considering the initial margin and the default fund

of the participant; we do not consider other mechanisms that mutualize losses in the waterfall

(additional contributions of capital of the survivors, etc.). Net losses are typically absorbed by the

surviving participants or by the CCP. Therefore, we can calculate the net exposure as:

Eb,tCDCS,Net ≡ Vb,t +Bb,t−1 +DFb,t−1, (13)

where Bb,t−1 is the total initial margin pledged in the previous period, and DFb,t−1 is the total

default fund.

3.2 Credit risk exposures in CDSX

CDSX is owned and operated by the Canadian Depository for Securities Limited (CDS), which in

2012 became a subsidiary of TMX Group. CDSX consists of a securities settlement system, a central

securities depository and central counterparty services for eligible Canadian exchange-traded and

over-the-counter equity trades (see McVanel, 2003).

Every participant b has an end-of-day payment obligation, POb,t, which is the total amount

of cash that the participant has to transfer to the FMI due to the net acquisition of securities (if

POb,t ≥ 0), or has to receive from the FMI due to the net sale (if POb,t < 0). Therefore, we can

define the gross exposure of participant b as

Eb,tCDSX,Gross ≡ POb,t. (14)

CDSX has a loss-allocation procedure in the event that a participant is unable to meet its

end-of-day payment obligation, backed in part by a pool of collateral that all extenders of credit

maintain in accordance with the requirements set out in the CDSX rules. During the historical

period considered in our sample, CDSX used a combination of defaulter-pays and survivor-pays risk

12See the International Swaps and Derivatives Association (2013) for more details.
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tools. The sum of all contributions to the pool by each participant was called the initial Aggregate

Collateral Value (ACV). The value of the collateral in the initial ACV was set such that there

was enough to cover the largest default among participants. Additional payment obligations not

covered by the ACV must be covered with additional collateral contributions that increase the

System Operating Cap (SOC). In any case, the payment obligation of an extender of credit with

CDSX cannot be larger than the ACV or its SOC, whichever is less.13

The collateral pool provides suffi cient collateral to cover the payment obligation of the default

of the largest extender of credit (at a 99% confidence interval). We consider this collateral, and

also additional collateral pledged by participants, to calculate the net exposure of a participant b

in a day t, which is equal to

Eb,tCDSX,Net ≡ POb,t + Colb,t. (15)

3.3 Credit risk exposures in the LVTS

The Large Value Transfer System (LVTS)14 is the Canadian electronic funds-transfer system that

settles large-value and time-critical Canadian-dollar payments.15 The LVTS provides two types of

payment streams: Tranche 1 (T1) and Tranche 2 (T2). A participant can send a T1 payment as

long as its net owing position is no greater than the collateral it has pledged in T1. If there is a

default of a participant, its collateral is used to cover any net negative (debit) position in T1. For

this reason, T1 payments are known as "defaulter-pays."

In T2, each participant voluntarily grants a bilateral credit limit (BCL) to every other partic-

ipant. This line of credit is defined as the largest net amount that a participant can receive.16 In

13Starting in January 2015, the collateral pool was eliminated; therefore, in recent years defaulter-pays risk tools
have been more predominant in CDSX.
14Other FMIs are overseen by the Bank of Canada, but we do not consider them in our analysis for a number

of reasons. ACSS is the Canadian clearing system for small-value payments, and it is not considered to be of
systemic importance. CLS Bank, located in New York (U.S.A.), is the global payment system for the settlement of
foreign exchange transactions. The payment-versus-payment arrangement used in this system virtually eliminates
all the credit risk, so we do not consider this FMI (see Kahn and Roberds, 2000; Miller and Northcott, 2002).
LCH.Clearnet’s SwapClear (in London, U.K.) is a global system for the central clearing of interest rate swaps and
other over-the-counter interest rate derivatives denominated in multiple currencies, including the Canadian dollar.
15See Arjani and Mcvanel (2006) for a complete description of the system.
16Credit risk may not be a concern if FMI participants in financial distress are prevented from participating in

these systems. In practice, opacity of financial markets and other frictions may prevent this. For instance, BCLs
were approximately constant during the recent financial crisis, suggesting that many LVTS participants were not
perceiving clearly the risk of their counterparties (Allen et al., 2011).
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addition, each participant has a multilateral net debit cap used for sending payments. Each LVTS

participant pledges to the Bank of Canada an amount of collateral that depends on the largest BCL.

If a participant fails to settle its final payment obligation, all losses not covered by the defaulting

participant’s collateral are allocated pro rata among the survivors based on their BCL with the

defaulting participant. For this reason, T2 has been described as a "survivor-pays" system.17

We calculate each participant’s net position for the two tranches by adding together its T1 and

T2 multilateral positions. At the end of the day, some participants may hold a net credit (positive)

position, which means that they have received a net amount from the LVTS. Others hold a net

debit (negative) position, which means that they have sent a net amount from the LVTS. For a

given day t, we can calculate the gross exposure of participant b by simply adding all payments

received and sent to the system from the beginning of the day until the end of the day:

Eb,tLV TS,Gross ≡
∑
T1,T2

∑
t̃≤End

(
received_paymentb,t̃,t − sent_paymentb,t̃,t

)
. (16)

Figure 4 shows an example of the gross exposure of an LVTS participant on a representative

day. Collateral is used to mitigate the impact of a participant’s default. We assume that if there

is a default, collateral pledged by each participant in T1 and T2 is used by the LVTS to cover the

losses. Therefore, we define the net exposure of the LVTS to the default of participant b in day t

as

Eb,tLV TS,Net ≡ E
b,t
LV TS,Gross + Col(T1b,t) + Col(T2b,t). (17)

4 Empirical results

4.1 Data sources

We combine data from a variety of sources to calculate exposures across systems of different clearing

participants. We have detailed data on the LVTS provided by the Canadian Payments Association

17Total collateral pledged is designed to cover a default of the largest participant in the LVTS. In the exceptionally
remote event of multiple participant defaults, and where total collateral pledged is still not suffi cient to cover the
value of the final net debit positions of the defaulting participants, the Bank of Canada will provide a guarantee of
settlement.
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(CPA). These data consist of all the daily payments sent and received by each LVTS participant,

with the exact time of day, for each tranche. With this information, we can calculate the total

debit/credit position at the end of the day. We also have the total collateral pledged by each

participant each day to determine net exposures.

With regard to CDCS, we have long and short positions (i.e., the daily trading positions at

market close) for the three-month Canadian bankers’acceptance futures (BAX), the 10-year Gov-

ernment of Canada Bond Futures (CGB) and the S&P/TSX 60 Index Standard Futures (SXF) for

all the clearing members active in the CDCS between 2 January 2003 and 31 March 2011. These

are usually the most common instruments cleared in CDCS.18 Other instruments, such as options

and OTC derivatives, are not available, but they represent a small fraction of all trading cleared.

Clearing fund amounts (which do not often change between days) are available from January 2002

until March 2011. Initial margin amounts are available from January 2002 until end-2009. For

additional information about this database, see Cruz Lopez et al. (2013). From CDSX, we have

end-of-day settlement obligations and collateral pledged for each participant from March 2007 to

end-2013.

We have several limitations in our data. Since the availability of data changes significantly across

systems and years, we can only build gross exposures for the period 2007-11, and net exposures, only

for the period 2007-09. Additionally, initial margins and the default fund obtained in CDCS are

total margins pledged by each participant, and we assume that a fraction of them (50%) correspond

to the instruments we have.19

In order to jointly consider the different systems, we need to manually match the names of the

different FMI participants across systems so that we have a single name that corresponds to the

same participant across FMIs. Since the number of participants in Canadian FMIs is relatively

low, this is a feasible task.

18We also have other futures instruments that are much less common. For example, MCX (Futures Contracts on
Canada Carbon Dioxide Equivalents), or SCF (S&P/TSX Composite Index Mini Futures).
19We have determined this number based on observed aggregated margins per security. A more careful analysis is

left for future research and is conditional on data availability.
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4.2 Exposures across systems and participants

Table 2 shows statistics for different types of exposures across systems and participants. We use

a sample of seven large participants (P1-P7) in all three systems, which accounts for a significant

fraction of the Canadian financial industry. To provide a complete overview of the distribution of

the exposures in all three FMIs, we use the sign convention as previously explained: A positive

exposure means that the FMI owes money to the participant, and a negative exposure means that

the participant owes money to the FMI. Net exposures are calculated by adding the collateral

pledged to the gross exposures. Therefore, Table 2 provides information on the distribution of

exposures, as shown schematically in Figure 2.

The first interesting finding is the differences in exposures across FMIs. We find that CDCS has

lower exposures in absolute value compared with the other FMIs. Average gross and net exposures

are of the order of tens of millions of dollars for CDCS. However, exposures in CDSX and the

LVTS are in the order of billions of dollars. The portfolio of derivatives cleared in CDCS is small

relative to other international CCPs. In addition, there was significant OTC trading not centrally

cleared in the sample period considered.20 This should not be used as an indication of the relative

importance of every FMI. The three FMIs have been designated as "systemically important" by

the Payment Clearing and Settlement Act because they have the potential to pose systemic risk

to Canada’s financial system. Since the three FMIs are comparable in terms of their perceived

systemic importance, we treat them equally when we calculate the systemic risk probabilities in

the next section.

In addition, we find that net exposures in CDSX show large positive numbers; meanwhile, gross

exposures show large negative numbers. This is because the collateral scheme used in CDSX causes

the collateral contributions (ACV and SOC) to be much larger than the gross exposures.

Table 2 here

The second interesting finding is the large difference between gross and net exposures in every

20The importance of CDCS has increased over the past years due to the introduction of new CCP business lines
and the recent regulatory efforts to clear all standardized derivatives in a CCP.
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system. Gross exposures for CDCS and CDSX show approximately a symmetric distribution around

their median values. Gross exposures in the LVTS tend to be positive and small, since LVTS

participants have incentives to decrease their positions at the end of the day.21 Risk controls

used in these FMIs are effective, and net exposures are rarely negative. In CDCS, sharp and

unpredicted changes in the prices of derivatives cleared may have created some stress such that we

observe negative net exposures in some cases.

The third interesting finding is the relative differences in exposures across participants. A

participant that has the largest median value in one FMI is not necessarily the one with the largest

median value in the other two FMIs. For instance, FI7 has the largest median value of gross

exposures in CDSX, but it has the lowest median value in CDCS. These findings show that there

is a relatively large heterogeneity in exposures across participants and FMIs.

Figure 5 shows the evolution of exposures across systems and years. They provide interesting

information about the period when there was a larger variation in exposures. A first interesting

result is that CDCS had the largest volatility at the height of the recent financial crisis, in the

autumn of 2008. Perhaps a bit surprisingly, CDSX exhibited relatively homogeneous behavior in

recent years, even during the crisis period.

In the LVTS, we observe a substantial variation in exposures across the years. End-of-day

exposures during the years 2009-10 were substantially different from other years. Interestingly, net

exposures show a significant increase in the winter of 2010, which was not observed for the case of

gross exposures. A potential explanation for this result is the changes in collateral policies adopted

during the recent crisis to alleviate the financial stress of LVTS participants.22

4.3 Systemic risk measures

Table 3 shows the estimated joint and conditional probabilities (expressed in percentages) for

the same seven large participants (P1-P7) shown in Table 2. We use the extreme value theory

21At the end of the day, any short or long positions in the LVTS must be settled, either through interbank trades
or with the central bank at a penalty rate (Allen et al., 2015).
22For instance, starting in late 2008, non-mortgage loan portfolios were temporarily eligible for collateral in the

LVTS. The temporary measure was adopted to provide LVTS participants with greater flexibility in managing their
collateral. As conditions in funding markets improved, the proportion of non-mortgage loan portfolios to total
collateral pledged allowed was gradually reduced from 100 per cent to 20 per cent, effective April 2010.
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methodology to calculate these probabilities. The detailed explanation of the extreme value method

is reported in Appendix A.

The results in these tables are calculated by considering the thresholds Q5 equal to 5%-quantiles

of the corresponding exposures (i.e., Pr(Ebj ≤ Q5) = 5% for any b and j) obtained for each FMI

and participant.

Table 3 here

Panel A in Table 3 reports the joint probabilities corresponding to gross exposures for two and

three FMIs. These joint probabilities are small, indicating that the systemic risk is low. In general,

P [ECDSX ≤ Q5, ELV TS ≤ Q5] is the largest across participants, suggesting that CDSX and the

LVTS have a stronger dependence on gross exposures than the other two systems. On average, the

interdependence between CDSX and the LVTS is 75% higher than for CDCS and CDSX, and 55%

larger than for CDCS and the LVTS. On the other hand, P1 is, on average, the largest contributor

to systemic risk (0.183%), followed by P3 (0.18%) and P6 (0.16%).

Panel B reports the contributions to systemic risk of one FMI to two FMIs by a participant.

On average, P [ECDCS ≤ Q5, ECDSX ≤ Q5|ELV TS ≤ Q5] is larger (0.216%) than P [ECDCS ≤

Q5, ECDSX ≤ Q5] from Panel A (0.16%), suggesting that the LVTS has a relatively large contribu-

tion to systemic risk in the other two FMIs. We also find that CDSX contributes to systemic risk

in CDCS and the LVTS. On the other hand, we find that P [ECDSX ≤ Q5, ELV TS ≤ Q5|ECDCS ≤

Q5] < P [ECDSX ≤ Q5, ELV TS ≤ Q5], suggesting that CDCS does not significantly contribute to

systemic risk in the other two systems.

By comparing the remainder of the conditional probabilities in Panel B, we can find interesting

results. On average, the contributions of two FMIs to to the systemic risk of a third one are larger

than the contributions of one FMI to another one. This result suggests that it is more likely that

one FMI is in stress if the other two are also in stress. We also observe that CDCS and CDSX

jointly provide the largest systemic risk contribution to LVTS, with 6.65%.

Panels C and D provide information for the case of net exposures. Overall, contributions to

systemic risk in terms of joint or conditional probabilities are larger for net exposures than for

gross exposures. Since net exposures are equal to gross exposures plus collateral, this suggests
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that there could be some positive correlation between collateral levels across FMIs. Also, when

comparing participants, P7 is the largest contributor to systemic risk in terms of joint net exposures,

with 0.516%, followed by P6 with 0.386%.

In summary, we find that, on average, P1, P3, P6 and P7 have larger systemic risk contributions

than the remainder of the participants.

4.4 Systemic risk across FMIs and participants in financial distress

In Table 4 we show key statistics for the value of the difference ∆b in Eq. (8) where we use 5%-

quantiles in all cases. We consider all participants with publicly traded stock (see Table 1 for

some statistics of stock returns used in our sample). The statistics of ∆b are calculated across all

participants for unconditional and conditional probabilities, gross and net exposures. We observe

large statistical dispersion in all cases, but when considering average values, the majority of the

cases considered give a value ∆b > 0. Cases where ∆b > 0 are about twice as frequent as cases

where ∆b < 0. This suggests that, on average, participants in financial distress are more likely to

contribute to systemic risk in the network of FMIs.

In addition, dispersion of the values of ∆b suggest that there is significant heterogeneity across

participants. Therefore, there are participants that can be considered as more systemically impor-

tant than others because they contribute more to systemic risk in the network of FMIs in case of

financial stress.

Table 4 here

5 Conclusion

We propose a measure of systemic risk in the network of FMIs by considering participant-based

interdependencies that arise from the activities of one participant in two or more FMIs. Our paper

provides a new framework and a methodology to measure systemic risk in the network of FMIs

that has not been previously considered in the literature.

We find a rich set of results. Some participants have a larger contribution to systemic risk than
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other participants. When conditioning on the financial distress of participants, we find that, on

average, participants that are more likely to be in financial distress are also more likely to contribute

to systemic risk in the network of FMIs. All these results suggest that our work could be useful in

better understanding the systemic risk contributions of participants in the network of FMIs, which

could have relevant implications for the appropriate macroprudential regulation of the financial

system.

Although our approach has limitations, we see it as the first stage of a long-term research agenda

that could help us to better understand the most effective ways of implementing the regulation and

oversight of systemically important FMIs, which may require a more detailed system-wide analysis.

This could have important implications for more effective macroprudential regulation of the financial

system.
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Appendices

Appendix A Extreme value approach

For analytical convenience, Eqs. (3), (4) and (5) can in practice be estimated using left quantiles

using trivial transformations. For a given significance level pj , corresponding to the three systems,

there exist three left tail quantiles Qj(pj), j = 1, 2, and 3, such that

P [Eb1 > Q1(p1)] = p1, P [Eb2 > Q2(p2)] = p2, P [Eb3 > Q3(p3)] = p3. (18)

Note that we can choose pj such that Qj(pj) = Kb
j so we can estimate Eq. (3). From elementary

probability theory we can now easily write a probability measure by using the notation introduced

above,

τ = P [Eb1 > Q1(p1), E
b
2 > Q2(p2)|Eb3 > Q3(p3)]

=
P [Eb1 > Q1(p1), E

b
2 > Q2(p2), E

b
3 > Q3(p3)]

P [Eb3 > Q3(p3)]

=
P [Eb1 > Q1(p1), E

b
2 > Q2(p2), E

b
3 > Q3(p3)]

p3
. (19)

Given this specification, a proper estimation of τ is of key importance. If we know a parametric

specification of the joint distribution function, τ can be easily calculated, because we can estimate

the distributional parameters using parametric methods. However, since there is no evidence that

these exposures follow the same distribution, a serious problem with the parametric specification is

the misspecification of the model, which could lead to misleading results in inference and hypothesis

testing. To avoid specific parametric assumptions of the distribution, we use the semiparametric

extreme value theory approach proposed by Ledford and Tawn (1996) and Poon et al. (2004) to

estimate τ . This theory is used to study the limiting distribution of the extreme values of a random

variable instead of the distribution of this random variable. According to this theory, even though

fat-tailed random variables may follow different distributions, such as a stable Paretian or mixtures

of normals, at the limit they all converge to the same underlying distribution.
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The estimation of τ can be determined by the dependence among exposures and their marginal

distributions. We transform the original series Ebj to a series with a common marginal distribution.

By using that transformation, differences in joint tail probabilities can be purely due to differences

in the tail dependence of the extreme exposures.

To be precise, we transform these participants’exposures to unit Pareto marginals,

Ẽbj =
1

1− FEbj (E
b
j )
, (20)

where FEbj (·) represents the marginal cumulative distribution function (cdf) for E
b
j . If we replace

the unknown marginal distributions with their empirical distribution functions, we obtain,

Ẽbj =
n+ 1

n+ 1−REbj
, (21)

where n is the number of observations of Ebj and REbj is the rank order statistic of E
b
j .

By transforming these variables, we can rewrite the joint tail probability τ as follows,

P [Eb1 > Q1(p1), E
b
2 > Q2(p2), E

b
3 > Q3(p3)]

= P [Ẽb1 > q1, Ẽ
b
2 > q2, Ẽ

b
3 > q3]

= P [Ẽb1 > q1, Ẽ
b
2 ·
q1
q2
> q1, Ẽ

b
3 ·
q1
q3
> q1]

= P [Êb1 > q1, Ê
b
2 > q1, Ê

b
3 > q1], (22)

where we have used the additional transformation Êbj = Ẽbj
q1
qj
. Additionally, we can transform Eq.

(22) as follows:

P [Êb1 > q1, Ê
b
2 > q1, Ê

b
3 > q1] (23)

= P [min(Êb1, Ê
b
2) > q, Êb3 > q]

= P [min{min(Êb1, Ê
b
2), Ê

b
3} > q]

= P [Z1 > q1, Z2 > q1] = P [Z > q], (24)
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where q ≡ q1 = 1/p1, Z1 = min
(
Êb1, Ê

b
2

)
, Z2 = Êb3. And Z = min{Z1, Z2}. Hence, the

transformation to unit Pareto marginals reduces the estimation of the multivariate probability to

a simple univariate probability. The only assumption that has to be made is that the distribution

of the minimum series Z = min(Z1, Z2) displays fat tails. Popular distribution models like the

Student-t exhibit such behavior.

The univariate tail probability for a fat-tailed random variable can be estimated by using the

semiparametric probability estimator from De Haan et al. (1994),

P̂ [Z > q] =
k

n
(
Cn−k,n
q

)α, (25)

where α > 0 is an unknown parameter and the tail cut-off point Cn−k,n is the (n−k)−th ascending

order statistic from the cross-sectional minimum series such that limn→∞[1/k(n)] = 0 and k = o(n).

This tail probability estimator in Eq. (25) depends on the tail index α and the threshold

parameter k.23 This tail index α captures the tail probability’s rate of decay in the probability.

Clearly, the lower α is, the slower the probability decay and the higher the probability mass in the

tail of Z.

To estimate α, we use the popular Hill et al. (1975) estimator for the index of regular variation

η,

η̂ =
1

m

m−1∑
j=0

ln(
Cn−j,n
Cn−m,n

) =
1

α̂
, (26)

where η̂ is the estimate of the parameter of tail dependence. A relatively high η̂ corresponds with

a relatively high dependence of the components (Ẽ1, ..., Ẽm)k. Further details on the Hill estimator

can be found in Jansen and De Vries (1991).24

The choice of the threshold parameter k is a point of concern in the extreme value theory

literature. If k is set too low, too few observations are considered in the estimation. If one considers

23This estimator basically extends the empirical distribution of Z outside the domain of the sample by means of
its asymptotic Pareto tail from P [Z > q] ≈ l(q)q−α, α ≥ 1 with q large and where l(q) is a slowly varying function
(i.e., limq→∞l(xq)/l(q) = 1 for all fixed x > 0).An intuitive derivation of the estimator is provided in Danielsson and
De Vries (2000).
24Quintos et al. (2001) develop a number of tests for identifying single unknown breaks in the estimator of the tail

index α ( η ). Their tests are used to assess whether breakpoints in asset return distributions exist for Asian stock
markets. In addition, Hartmann et al. (2005) use these tests to assess various hypotheses regarding the evolution and
structure of systemic risk in the banking system.
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a large k, non-tail events may enter the estimation. Hence, if one includes too many observations,

the variance of the estimate is reduced at the expense of a bias in the tail estimation. With too

few observations, the bias declines but the variance of the estimate becomes too large. A number

of methods have been proposed to select k in finite samples. Goldie and Smith (1987) suggest

selecting the parameter k so as to minimize the asymptotic mean-squared error. In our paper, we

use the widely used heuristic procedure by plotting the tail estimator as a function of k and select

k in a region where η̂ is stable.
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Appendix B Empirical results

Table 1: Statistics of log daily stock returns

This table shows key statistics of the distribution of log daily stock returns for the years 2004-11 for all FMI
participants with publicly traded stock (common equity). Log daily stock returns are defined as the first difference of
log daily stock prices. pX is the X%-quantile of the sample. A log daily stock return is defined as the first difference
of the price changes in stock, log(P b(t))− log(P b(t− 1)).

Mean Min p1 p5 p25 p50 p75 p95 p99 Max

All years 0.0002 -0.8925 -0.0590 -0.0298 -0.0080 0.0003 0.0085 0.0292 0.0595 0.3239
2004 0.0003 -0.0966 -0.0278 -0.0170 -0.0059 0.0004 0.0066 0.0176 0.0276 0.0566
2005 0.0006 -0.0785 -0.0227 -0.0142 -0.0048 0.0004 0.0057 0.0163 0.0263 0.0871
2006 0.0007 -0.0860 -0.0263 -0.0173 -0.0054 0.0008 0.0067 0.0184 0.0314 0.0699
2007 -0.0004 -0.0822 -0.0435 -0.0266 -0.0078 -0.0001 0.0072 0.0240 0.0431 0.0852
2008 -0.0024 -0.3185 -0.1322 -0.0615 -0.0204 -0.0024 0.0154 0.0617 0.1228 0.3239
2009 0.0017 -0.8925 -0.0898 -0.0480 -0.0141 0.0015 0.0172 0.0534 0.1146 0.2727
2010 0.0001 -0.1369 -0.0471 -0.0262 -0.0083 0.0004 0.0086 0.0260 0.0415 0.1898
2011 -0.0007 -0.1399 -0.0632 -0.0330 -0.0094 -0.0006 0.0085 0.0294 0.0603 0.1564
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Table 3: Joint and conditional probabilities (in percentages) for a selected group of
participants

This table shows joint and conditional probabilities (expressed in percentages) that gross and net exposures are
below thresholds Q5 for every FMI and participant P1-P7. We use 5%-quantiles to calculate these thresholds.We
only report P [ECDCS ≤ Q5, ECDSX ≤ Q5|ELV TS ≤ Q5] because by Bayes-Rule and the use of identical quantiles for
all FMIs, this probability is identical to the case where we condition on a different FMI.

Type of exposure P1 P2 P3 P4 P5 P6 P7 Average

Panel A: Joint Gross Exposures:
P [ECDCS ≤ Q5, ECDSX ≤ Q5, ELV TS ≤ Q5] 6.0e-03 7.6e-03 2.9e-02 9.0e-03 2.9e-03 2.0e-02 1.2e-03 1.1e-02
P [ECDCS ≤ Q5, ECDSX ≤ Q5] 1.5e-01 2.5e-01 2.4e-01 2.1e-01 6.2e-02 1.1e-01 8.6e-02 1.6e-01
P [ECDCS ≤ Q5, ELV TS ≤ Q5] 2.8e-01 1.0e-01 2.2e-01 1.0e-01 3.1e-01 8.9e-02 1.8e-01 1.8e-01
P [ECDSX ≤ Q5, ELV TS ≤ Q5] 3.0e-01 2.5e-01 2.3e-01 2.2e-01 1.9e-01 4.2e-01 3.7e-01 2.8e-01
Average 0.183 0.150 0.180 0.137 0.141 0.160 0.158 0.158

Panel B: Conditional Gross Exposures:
P [ECDCS ≤ Q5, ECDSX ≤ Q5|ELV TS ≤ Q5] 0.120 0.153 0.585 0.180 0.058 0.391 0.025 0.216
P [ECDCS ≤ Q5|ECDSX ≤ Q5, ELV TS ≤ Q5] 2.538 3.161 16.485 4.067 2.093 4.509 1.234 4.870
P [ECDSX ≤ Q5|ECDCS ≤ Q5, ELV TS ≤ Q5] 2.816 8.909 9.158 10.653 0.999 6.792 1.418 5.821
P [ELV TS ≤ Q5|ECDCS ≤ Q5, ECDSX ≤ Q5] 4.133 3.089 12.012 4.191 4.622 17.089 1.439 6.654
P [ECDCS ≤ Q5|ECDSX ≤ Q5] 2.920 4.939 4.835 4.292 1.248 2.299 1.717 3.179
P [ECDCS ≤ Q5|, ELV TS ≤ Q5] 5.522 2.006 4.433 2.017 6.173 1.771 3.526 3.635
P [ECDSX ≤ Q5|ELV TS ≤ Q5] 6.096 4.939 4.557 4.462 3.788 8.358 7.350 5.650
Average 3.449 3.885 7.438 4.266 2.712 5.887 2.387 4.289

Panel C: Joint Net Exposures:
P [ECDCS ≤ Q5, ECDSX ≤ Q5, ELV TS ≤ Q5] 5.1e-02 2.0e-04 1.7e-04 1.8e-03 2.9e-05 2.3e-02 7.5e-02 2.2e-02
P [ECDCS ≤ Q5, ECDSX ≤ Q5] 2.1e-01 3.7e-02 2.6e-01 1.4e-01 1.1e-01 2.7e-01 4.1e-01 2.0e-01
P [ECDCS ≤ Q5, ELV TS ≤ Q5] 1.2e+00 1.4e-01 1.5e-02 4.4e-03 8.2e-01 5.7e-01 1.1e-01 4.0e-01
P [ECDSX ≤ Q5, ELV TS ≤ Q5] 8.1e-02 4.1e-06 7.8e-02 3.2e-04 2.8e-02 6.8e-01 1.5e+00 3.3e-01
Average 0.374 0.045 0.089 0.037 0.239 0.386 0.516 0.241

Panel D: Conditional Net Exposures:
P [ECDCS ≤ Q5, ECDSX ≤ Q5|ELV TS ≤ Q5] 1.023 0.004 0.003 0.036 0.001 0.469 1.498 0.434
P [ECDCS ≤ Q5|ECDSX ≤ Q5, ELV TS ≤ Q5] 15.638 1.722 0.275 2.858 0.136 8.341 21.118 7.155
P [ECDSX ≤ Q5|ECDCS ≤ Q5, ELV TS ≤ Q5] 4.877 4.572 35.608 3.439 2.100 3.925 15.515 10.005
P [ELV TS ≤ Q5|ECDCS ≤ Q5, ECDSX ≤ Q5] 20.691 0.569 0.065 1.302 0.027 8.874 18.347 7.125
P [ECDCS ≤ Q5|ECDSX ≤ Q5] 4.168 0.742 5.254 2.798 2.157 5.316 8.144 3.633
P [ECDCS ≤ Q5|, ELV TS ≤ Q5] 23.113 2.848 0.309 0.088 16.438 11.443 2.252 4.155
P [ECDSX ≤ Q5|ELV TS ≤ Q5] 1.616 0.000 1.558 0.006 0.556 13.628 29.396 6.457
Average 10.161 1.494 6.153 1.504 3.059 7.428 13.753 5.566
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Table 4: Systemic risk across FMIs and participants in financial distress

This table shows mean and standard deviation for ∆b in Eq. (4) across participants, and expressed as a percent.
Statistics are calculated across all participants using the entire sample. If ∆b<0, participants in financial distress
contribute less to systemic risk in the network of FMIs. On the other hand, if ∆b>0, participants in financial distress
contribute more to systemic risk in the network of FMIs. We use 5%-quantiles to calculate the thresholds for FMI
indicators and stock returns.

Probability mean sd

Gross exposures:
Joint probabilities:

∆b(ECDCS , ECDSX , ELV TS) 0.03 0.07
∆b(ECDCS , ECDSX ) 0.54 0.77
∆b(ECDCS , ELV TS) 0.44 0.85
∆b(ECDSX , ELV TS) -0.07 0.22

Conditional probabilities:
∆b(ECDCS , ECDSX |ELV TS) 0.64 1.58
∆b(ECDCS , ELV TS |ECDSX ) 0.48 0.90
∆b(ECDCS , ELV TS |ECDSX ) 0.01 0.35
∆b(ECDCS |ECDSX , ELV TS) 4.72 9.47
∆b(ECDSX , ECDCS |ELV TS) 0.73 7.21
∆b(ELV TS , ECDCS |ECDSX ) -2.63 7.77
∆b(ECDCS |ECDSX ) 9.62 12.39
∆b(ECDCS |ELV TS) 7.72 10.91
∆b(ECDSX |ELV TS) -1.61 2.60

Net exposures:
Joint probabilities:

∆b(ECDCS , ECDSX , ELV TS) -0.01 0.02
∆b(ECDCS , ECDSX ) 0.13 0.34
∆b(ECDCS , ELV TS) -0.30 0.27
∆b(ECDSX , ELV TS) 0.11 0.20

Conditional probabilities:
∆b(ECDCS , ECDSX |ELV TS) -0.25 0.37
∆b(ECDCS , ELV TS |ECDSX ) -0.21 0.35
∆b(ECDCS , ELV TS |ECDSX ) 2.83 6.69
∆b(ECDCS |ECDSX , ELV TS) 7.08 10.49
∆b(ECDSX , ECDCS |ELV TS) 4.28 6.87
∆b(ELV TS , ECDCS |ECDSX ) 4.89 19.74
∆b(ECDCS |ECDSX ) 6.13 11.67
∆b(ECDCS |ELV TS) -0.33 4.92
∆b(ECDSX |ELV TS) -0.57 4.44
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Appendix C Figures

Figure 1: Exposures across Canadian FMIs

In this figure we show a simple case of two participants that are members of the three FMIs. A default of
participant 1 could be a very stressful event for participant 2 if it needs to use its own resources to cover
this default in every FMI.
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Figure 2: Gross and net credit exposures

In this diagram we represent the distribution of gross and net exposures. We have the following sign
convention: A positive exposure means that the FMI owes to the participant; a negative exposure means
that the participant owes to the FMI. Net exposures are calculated by adding the collateral pledged to the
gross exposures.
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Figure 3: Daily price variation of a 10-year Government of Canada Bond Future
("CNZ08") in November 18th, 2008

We show an example of daily intraday price variations of a future contract traded on the Montréal Exchange
and cleared in CDCS.
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Figure 4: Example of the gross position of an LVTS participant on a representative
day

We show the net aggregate position for T1 and T2 for a financial institution in the LVTS for a representative
day. A positive (credit) position means that the system owes money to the financial institution (the total
amount of payments received is greater than the total amount of payments sent), whereas a negative (debit)
position means that the financial institution owes a net amount to the system.
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Figure 5: Gross and net exposures of different systems across years (in billions)

We show end-of-day exposures for the three systems considered, measured in billions of dollars. Gross
exposures (before collateral) are in the left column, net exposures (after collateral) in the right column.
We have the following sign convention: A positive exposure means that the FMI owes to the participant, a
negative exposure means that the participant owes to the FMI. Net exposures are calculated by adding the
collateral pledged to the gross exposures.
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