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Abstract 

We analyze the interaction between committed monetary policy and discretionary fiscal 

policy in a model with public debt, endogenous government expenditures, distortive 

taxation and nominal rigidities. Fiscal decisions lack commitment but are Markov-

perfect. Monetary commitment to an interest rate path leads to a unique level of debt. 

This level of debt is positive if the central bank adopts closed-loop strategies that raise 

the real interest rate when inflation is above target owing to fiscal deviations. More 

aggressive defence of the inflation target implies lower debt and higher welfare. Simple 

Taylor-type interest rate rules achieve welfare levels similar to those generated by 

sophisticated closed-loop strategies. 

JEL classification: E24, E32, E52 

Bank classification: Credibility; Fiscal policy; Inflation targets; Monetary policy 

framework 

Résumé 

Nous analysons les interactions entre une politique monétaire à laquelle l’autorité 

responsable n’entend pas déroger et une politique budgétaire discrétionnaire, à l’aide 

d’un modèle caractérisé par l’existence d’une dette publique, des dépenses publiques 

endogènes, des distorsions fiscales et des rigidités nominales. Les décisions d’ordre 

budgétaire sont susceptibles d’être infléchies, mais elles sont parfaites au sens de 

Markov. L’engagement des autorités monétaires à s’en tenir à une trajectoire des taux 

d’intérêt donne lieu à un niveau de dette unique. Ce niveau de dette est positif si la 

banque centrale adopte des stratégies en boucle fermée qui lui font relever le taux 

d’intérêt réel lorsque, en raison de la décision de l’autorité budgétaire de s’éloigner de la 

politique budgétaire annoncée, l’inflation observée dépasse le taux cible. Une adhésion 

plus stricte au régime de ciblage de l’inflation se traduit par une baisse de la dette et un 

accroissement du bien-être. Un taux d’intérêt calculé selon de simples règles de Taylor 

permet d’atteindre des niveaux de bien-être comparables à ceux obtenus par l’application 

de stratégies complexes en boucle fermée. 

Classification JEL : E24, E32, E52 

Classification de la Banque : Crédibilité; Politique budgétaire; Cibles en matière 

d’inflation; Cadre de la politique monétaire 

 



Non-Technical Summary

Monetary and fiscal authorities interact in several ways. For example, the policy rate
affects the real value and financing cost of public debt, while government expenditures
and taxes affect aggregate demand and supply and, ultimately, inflation. Also, most
central banks commit to achieve mandated objectives that change only infrequently. In
contrast, fiscal authorities revise their policies more often because of political turnover,
which hampers any commitment to long-term fiscal plans. In this paper, we investigate
the implications of monetary policy commitment for the optimal level of public debt.

We analyze the interaction between a monetary and a fiscal authority that are in-
dependent of each other and maximize social welfare in a model with monopolistic
competition and nominal rigidities. The treasury finances government expenditures
by levying distortionary income taxes and issuing public debt. The fiscal authority is
allowed to change its plans at any time, while the central bank is assumed to commit
once and for all to an interest rate rule that responds to deviations of inflation from its
target. Both policy-makers face a trade-off between inflation and output. According to
a conventional expectations-augmented Phillips curve, the promise to lower inflation
in the future might be desirable for its expansionary effects. However, the promise is
credible only if the fiscal authority has no incentive to revise its plan by generating
surprise inflation.

We find that the optimal level of debt eliminates net gains from surprise inflation and
is positive if the policy rate responds to inflation strongly enough to increase the real
interest rate. The intuition is that, for a positive level of debt, inflation tightens the
government’s budget constraint through the monetary response: the higher refinancing
cost of debt more than compensates for the lower real value of outstanding liabilities. A
more aggressive defence of the inflation target increases the budgetary cost of surprise
inflation and reduces the optimal level of public debt.

In light of their fiscal implications, our results give further support to inflation-targeting
regimes. Such regimes contribute positively to the sustainability of fiscal plans and
restrain the accumulation of public debt, thereby improving welfare by reducing the
need to rely on distortionary taxes to finance interest rate payments.
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1. Introduction

Most central banks are independent from the treasury and, in some countries, they
are explicitly forbidden to purchase government bonds on the primary market. Nev-
ertheless, monetary and fiscal authorities interact in several ways. As emphasized by
Woodford (2001), monetary policy affects the real value and financing cost of outstand-
ing public debt, while government spending and distortionary taxation affect inflation
through their impact on aggregate demand and aggregate supply. Also, monetary and
fiscal authorities differ in their ability to commit. Most central banks are accountable
for achieving mandated objectives that change only infrequently. In contrast, fiscal au-
thorities revise their policies more often because of political turnover, which hampers
any commitment to long-term fiscal plans. In this paper, we study whether monetary
policy commitment can reduce the costs of time inconsistency stemming from fiscal
discretion and its implications for the optimal level of public debt.

We analyze monetary and fiscal policy interaction between two benevolent and
independent authorities that maximize social welfare in a model with monopolistic
competition and nominal rigidities. The treasury decides on government expenditures
and distortionary income taxes, and can issue risk-free nominal bonds. While the fiscal
authority is allowed to change its plans at any time, the central bank commits once
and for all to an interest rate rule. Our most important result is that monetary policy
affects the steady-state level of public debt and, via this mechanism, has first-order
welfare effects.

We consider two types of monetary policy strategies. In the case of open-loop strate-
gies, the central bank anticipates fiscal behaviour and optimally commits to an interest
rate path that depends on exogenous shocks. Should the fiscal policy-maker deviate
from its equilibrium strategy, the central bank sticks to its plan and tolerates the in-
flation fluctuations generated by fiscal deviations. In the case of closed-loop strategies,
the central bank announces targets for the nominal interest rate and inflation.1 The
nominal interest rate is set equal to its target only if fiscal policy is consistent with
the inflation target. Otherwise, the central bank stands ready to adjust the nominal
interest rate enough to vary the real rate in response to inflation deviations from its
target. We take the size of the interest rate response as given by the institutional
environment and as representative of the central bank’s aggressiveness in defending its
inflation target.

We find that the steady-state level of public debt is negative under open-loop strate-
gies and positive under closed-loop strategies. In the latter case, the more aggressive
the central bank is in defending its inflation target, the lower the level of debt and, since
taxes are distortionary, welfare will be higher. In our model, output is inefficiently low
because of monopolistic competition and tax distortions so that both policy-makers face

1In practice, central banks might accept temporary deviations of inflation from their constant
target because of shocks that generate a policy trade-off. We capture this flexibility by allowing our
targets to vary over time.
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a trade-off between inflation and output. According to a conventional expectations-
augmented Phillips curve, the promise to lower inflation in the future might be desirable
for its expansionary effects. However, the promise is credible if the fiscal authority has
no incentive to revise its plan by generating surprise inflation, much along the lines of
Kydland and Prescott (1977) and Barro and Gordon (1983). Accordingly, the fiscal
authority rationally anticipates its future behaviour, taking into account how its future
incentives are affected by current policies. The resulting optimal level of public debt
is such that gains from surprise inflation are offset by its costs. Costs in turn relate to
the budgetary effects of inflation, which crucially depend on monetary policy – namely,
on the response of the real interest rate to deviations of inflation from its target. In
the case of open-loop strategies the nominal interest rate does not respond to fiscal
deviations, and inflation is costly because it reduces the real value of outstanding net
public assets. Hence, it is optimal to accumulate assets up to the point that net gains
from surprise inflation vanish. In contrast, in the case of closed-loop strategies, accu-
mulating some debt is optimal. In fact, after a fiscal deviation the real interest rate
increases and the higher cost of issuing new debt more than compensates for the fall in
the real value of outstanding liabilities. The budgetary cost of inflation is higher the
larger the interest rate response. As a result, a more aggressive defence of the inflation
target reduces the optimal level of public debt.

Inspired by concrete practices, we also consider simple Taylor-type rules that specify
a constant inflation target. This class of rules approximates closed-loop strategies
relatively well in terms of welfare. This is because they also imply off-equilibrium
threats that discourage fiscal deviations and thus favour low levels of steady-state
debt. However, the implied responses to shocks are strongly suboptimal. Hence, the
relatively good performance of these rules stems from their first-order effect on public
debt rather than from their poor stabilization properties.

Our results do not question the separation of monetary and fiscal policy. Rather,
they emphasize the important consequences of monetary-fiscal interactions. Fiscal
discretion leads to suboptimal stabilization and excessive inflation volatility relative to
fiscal commitment. However, a commitment to defend the inflation target promotes an
environment with lower debt and higher welfare by mitigating the time-inconsistency
problems of discretionary fiscal policy-making. Our results also speak to the importance
of implementing flexible inflation targets, which improve the stabilization properties
of policies. In addition to their well-known advantages relative to simple rules, they
reduce the level of debt required to eliminate the government’s incentives to rely on
surprise inflation.

The rest of the paper is organized as follows. Section 2 reviews the relevant liter-
ature. Section 3 presents the model and Section 4 solves for the benchmark cases of
efficiency and perfect coordination. We describe the policy strategies for the non-co-
operative case in Section 5, and Section 6 presents our results. Section 7 compares the
monetary regimes from the welfare point of view and Section 8 concludes.
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2. Relevant Literature

A large strand of the literature investigates optimal monetary and fiscal policy under
the assumption that a single authority chooses all policy instruments. In a real economy
with exogenous government spending, flexible prices, state-contingent bonds and fiscal
policy commitment, Lucas and Stokey (1983) show that the income tax and public
debt inherit the dynamic properties of the exogenous stochastic disturbances. Chari
et al. (1991) extend the Lucas and Stokey (1983) model to a monetary economy where
the government issues nominal non-state-contingent debt. Optimal fiscal policy implies
that the tax rate on labour remains essentially constant. On the other hand, inflation
is volatile enough to make nominal debt state-contingent in real terms. Schmitt-Grohé
and Uribe (2004a) build on Chari et al. (1991) by adding imperfectly competitive
goods markets and sticky product prices. They find that a very small degree of nominal
rigidity implies that the optimal volatility of inflation is low, while real variables display
near-unit-root behaviour. Lack of stationarity arises because it is optimal to stabilize
inflation, which makes it impossible to render debt state-contingent in real terms. This
result parallels the contribution by Aiyagari et al. (2002), who find that the stationarity
of real variables impinges on the ability of the government to issue state-contingent real
debt. In particular, the key feature in determining the dynamic behaviour of tax rates
and debt is whether markets are complete or can be completed by changing prices. All
these contributions share the feature of considering a unique authority acting under
commitment.

Recent work has shifted the focus to discretionary policy-making, retaining the
assumption of a single policy authority. Diaz-Gimenez et al. (2008) assume that both
monetary and fiscal policy are discretionary and find that public debt is positive at
the steady state if the intertemporal elasticity of substitution of consumption is higher
than one and negative otherwise. Debortoli and Nunes (2012) show that the lack
of fiscal commitment is consistent with zero public debt in a real economy. In our
monetary economy, we assume unitary elasticity of the intertemporal substitution of
consumption, and we nest the result by Debortoli and Nunes (2012) when prices are
flexible and/or when all markets are perfectly competitive. Campbell and Wren-Lewis
(2013) consider an economy like ours to evaluate the welfare consequences of shocks at
the efficient steady state and find substantially larger welfare costs of discretion relative
to commitment. In contrast to their approach, we do not allow for lump-sum subsidies
as an instrument to remove the monopolistic distortion at the steady state.

The literature on monetary and fiscal policy interaction is rather scant and has
typically assumed a rich game-theoretic environment in simple macroeconomic models.
Dixit and Lambertini (2003) explicitly model monetary and fiscal policies as a non-co-
operative game between two independent authorities. The central bank can commit,
while the fiscal authority acts under discretion. Their central bank is not benevolent
but conservative as in Rogoff (1985), and the model is static. Niemann (2011) takes
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the discretion literature one step further2 and shows that the steady-state level of debt
can be positive in a monetary economy where all policy-makers act under discretion
and are non-benevolent. In our paper, we blend all these strands of the literature,
but we always retain monetary policy commitment and focus our discussion on the
implications of different monetary strategies for public debt.

3. The Model

We follow Schmitt-Grohé and Uribe (2004a) and consider a New-Keynesian model
with imperfectly competitive goods markets and sticky prices. A closed production
economy is populated by a continuum of monopolistically competitive producers and
an infinitely lived representative household deriving utility from consumption goods,
government expenditures and leisure. Each firm produces a differentiated good by
using as an input the labour services supplied by the household in a perfectly compet-
itive labour market. The prices of consumption goods are assumed to be sticky à la
Rotemberg (1982).3 For notational simplicity, we do not include a market for private
claims, since they would not be traded in equilibrium. However, as in Chari et al.
(1991), we can always interpret the model as having a complete set of state-contingent
private securities. In addition, the household can save by buying non-state-contingent
government bonds.

There are two policy-makers. We assume that the monetary authority decides
on the nominal interest rate as in the cashless limit economy described by Woodford
(2003) and Gaĺı (2008). The fiscal authority is responsible for choosing the level of
government expenditures, levying distortive taxes on labour income and issuing one-
period nominal non-state-contingent government debt. By no arbitrage, the interest
rate on bonds has to equalize the monetary policy rate in equilibrium.4 Finally, we
assume that the central bank and the fiscal authority are fully independent, i.e., they
do not act co-operatively and they do not share a budget constraint.

This section briefly describes our economy and defines competitive equilibria.

2Adam and Billi (2010) consider independent monetary and fiscal authorities acting under discre-
tion to analyze the desirability of making the central bank conservative to eliminate the steady-state
inflation bias, but they abstract from government debt.

3In order to keep the state-space dimension tractable, we depart from Calvo (1983) pricing, which
introduces price dispersion as an additional state variable. Since Schmitt-Grohé and Uribe (2004a),
this is a widespread modelling choice in the literature when solving for optimal policy problems without
resorting to the linear-quadratic approach.

4We abstract indeed from default on the part of both the fiscal authority and private agents, so
that the only bond traded at equilibrium is risk-free. We focus on monetary strategies that ensure
the determination of the price level independently of fiscal policy, unlike Leeper (1991) and Woodford
(2001).
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3.1. Households

The representative household has preferences defined over private consumption,
Ct, public expenditure, Gt, and labour services, Nt, according to the following utility
function:

U0 = E0

∞∑
t=0

βt
[
(1− χ) lnCt + χ lnGt −

N1+ϕ
t

1 + ϕ

]
, (1)

where β ∈ (0, 1) is the subjective discount factor, E0 denotes expectations conditional
on the information available at time 0, ϕ is the inverse elasticity of labour supply
and χ measures the weight of public spending relative to private consumption. Also,
as we show below, χ determines government spending as a share of GDP, computed
at the non-stochastic steady state of the Pareto-efficient equilibrium. Ct is a CES
aggregator of the quantity consumed, Ct(j), of any of the infinitely many varieties of
goods, j ∈ [0, 1], and it is defined as

Ct =

[∫ 1

0

Ct(j)
η−1
η dj

] η
η−1

, (2)

where η > 1 is the elasticity of substitution between varieties. In each period t ≥ 0
and under all contingencies, the household faces the following budget constraint:∫ 1

0

Pt(j)Ct(j) dj +
Bt

1 + it
= WtNt(1− τt) +Bt−1 + Tt, (3)

where Pt(j) stands for the price of variety j, WtNt(1− τt) is after-tax nominal labour
income and Tt represents nominal profits rebated to the household by firms. The
household can purchase nominal government debt Bt at the price 1/(1 + it), where it
is the nominal interest rate. The nominal debt Bt pays one unit in nominal terms in
period t+ 1. To prevent Ponzi games, the following condition is assumed to hold at all
dates and under all contingencies:

lim
T→∞

Et

{
T∏
k=0

(1 + it+k)
−1Bt+T

}
≥ 0. (4)

Given prices, policies and transfers, {Pt(j),Wt, it, Gt, τt, Tt}t≥0, and the initial condition
B−1, the household chooses the set of processes {Ct(j), Ct, Nt, Bt}t≥0, so as to maximize
(1) subject to (2)-(4). After defining the aggregate price level5 as

Pt =

[∫ 1

0

Pt(j)
1−ηdj

] 1
1−η

, (5)

5The price index has the property that the minimum cost of a consumption bundle Ct is PtCt.
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as well as real debt, bt ≡ Bt/Pt, the real wage, wt ≡ Wt/Pt, and the gross inflation
rate, πt ≡ Pt/Pt−1, optimality is characterized by the standard first-order conditions:

Ct(j) =

(
Pt(j)

Pt

)−η
Ct, (6)

βEt

{
Ct(1 + it)

Ct+1πt+1

}
= 1, (7)

Nϕ
t Ct

1− χ
= wt(1− τt), (8)

together with transversality:

lim
T→∞

Et

{
βT+1 bt+T

Ct+T+1πt+T+1

}
= 0. (9)

Equation (8) shows that the labour income tax drives a wedge between the marginal
rate of substitution between leisure and consumption and the real wage.

3.2. Firms

There are infinitely many firms indexed by j on the unit interval [0, 1], and each
of them produces a differentiated variety of goods with a constant return to scale
technology:

Yt(j) = ztNt(j), (10)

where productivity zt is identical across firms and Nt(j) denotes the quantity of labour
hired by firm j in period t. Following Rotemberg (1982), we assume that firms face
quadratic price-adjustment costs:

γ

2

(
Pt(j)

Pt−1(j)
− 1

)2

, (11)

expressed in the units of the consumption good defined in (2) and γ ≥ 0. The bench-
mark of flexible prices can easily be recovered by setting the parameter γ = 0. The
present value of current and future profits reads as

Et

{
∞∑
s=0

Qt,t+s

[
Pt+s(j)Yt+s(j)−Wt+sNt+s(j)− Pt+s

γ

2

(
Pt+s(j)

Pt+s−1(j)
− 1

)2
]}

, (12)

where Qt,t+s is the discount factor in period t for nominal profits s periods ahead.
Assuming that firms discount at the same rate as households implies that

Qt,t+s = βs
Ct

Ct+sπt+s
. (13)
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Each firm faces the following demand function:

Yt(j) =

(
Pt(j)

Pt

)−η
Y d
t , (14)

where Y d
t is aggregate demand and it is taken as given by any firm j. Firms choose

processes {Pt(j), Nt(j), Yt(j)}t≥0 so as to maximize (12) subject to (10) and (14), taking

as given aggregate prices and quantities
{
Pt,Wt, Y

d
t

}
t≥0

. Let the real marginal cost

be denoted by mct ≡ wt/zt. Then, at a symmetric equilibrium, where Pt(j) = Pt and
Nt(j) = Nt for all j ∈ [0, 1], profit maximization and the definition of the discount
factor imply that

πt(πt − 1) = βEt

[
Ct
Ct+1

πt+1(πt+1 − 1)

]
+
ηztNt

γ

(
mct −

η − 1

η

)
. (15)

Equation (15) is the standard Phillips curve, according to which current inflation de-
pends positively on future inflation and current marginal cost.

3.3. Policy-makers

There are two benevolent policy-makers in the economy. The monetary authority
is responsible for setting the nominal interest rate it. The fiscal authority provides
the public good, Gt, that is obtained by buying quantities Gt(j) for any j ∈ [0, 1] and
aggregating them according to

Gt =

[∫ 1

0

Gt(j)
η−1
η dj

] η
η−1

, (16)

so that total government expenditures in nominal terms is PtGt, and the public demand
for any variety is

Gt(j) =

(
Pt(j)

Pt

)−η
Gt. (17)

Expenditures are financed by levying a distortive labour income tax τt or by issuing one-
period, risk-free, non-state-contingent nominal bonds Bt. Hence, the budget constraint
of the government is

Bt

1 + it
+ τtWtNt = Bt−1 +GtPt. (18)

The central bank and the fiscal authority determine the sequence {it, Gt, τt}t≥0 that,
at equilibrium prices, uniquely determines the sequence {Bt}t≥0 via (18). For what
follows, the government budget constraint can be rewritten in real terms,

bt
1 + it

+ τtmctztNt =
bt−1

πt
+Gt, (19)

after substituting for wt from the expression for the real marginal cost.
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Table 1: Benchmark calibration

Description Parameter Value

Weight of G in utility χ 0.15
Weight of C in utility 1− χ 0.85
Elast. subst. goods η 11

Price stickiness γ 20
Serial corr. tech. ρz 0
Discount factor β 0.99
Frisch elasticity ϕ−1 1

3.4. Competitive equilibrium

At a symmetric equilibrium where Pt(j) = Pt for all j ∈ [0, 1], Yt(j) = Y d
t , the

feasibility constraint is

ztNt = Ct +Gt +
γ

2
(πt − 1)2 , (20)

and the aggregate production function is Yt = ztNt. Productivity is stochastic and
evolves according to the following process:

ln zt = ρz ln zt−1 + εzt , (21)

where εz is an i.i.d. shock and ρz is the autoregressive coefficient.
We define the notion of competitive equilibrium as in Barro (1979) and Lucas

and Stokey (1983), where decisions of the private sector and policies are described by
collections of rules mapping the history of exogenous events into outcomes, given the
initial state. To simplify notation, we stack private decisions and policies into vectors
xt = (Ct, Nt, bt,mct, πt) and pt = (it, Gt, τt), respectively. Let st = (z0, ..., zt) be the
history of exogenous events. Given a particular history, st, and the endogenous state,
bt−1, xr(s

r|st, bt−1) and pr(s
r|st, bt−1) denote the rules describing current and future

decisions for any possible history sr, r ≥ t, t ≥ 0. Finally, we can define a continuation
competitive equilibrium as a set of sequences6 At = {xr, pr}r≥t satisfying equations (7)-
(9), (15) and (19)-(20) for any sr. A competitive equilibrium A is simply a continuation
competitive equilibrium starting at s0, given b−1.

3.5. Parameterization

The deep parameters of the model are set according to Table 1. The weight χ in
the utility function has been chosen to roughly match the U.S. post-war government

6To simplify notation, we suppress functional arguments.
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spending-to-GDP ratio. We set the serial correlation of the technological shock equal
to zero to help us understand the mechanisms at play. After substituting the aggregate
production function Yt = ztNt, the log-linearized Phillips curve (15) reads as follows:

π̂t =
π − 1

2π − 1
β(Ĉt − EtĈt+1) + βEtπ̂t+1+

+
ηY mc

γπ(2π − 1)
m̂ct +

ηY

γπ(2π − 1)

[
mc− η − 1

η

]
Ŷt,

(22)

where a circumflex denotes log deviations from the steady state, and variables without
a time subscript denote steady-state values. The effect of variations in the marginal
cost on current inflation depends on the parameters γ and η but also on steady-state
output and inflation, where the former depends on the initial level of government debt.
Around a zero net inflation steady state, equation (22) boils down to

π̂t = βEtπ̂t+1 +
(η − 1)Y

γ
m̂ct, (23)

taking the same form as in the Calvo model. Hence, we can establish a mapping
between our parameterization and average price duration. We set parameter γ equal
to 20 for our benchmark calibration, which implies a price duration of roughly two
quarters.

4. Pareto Efficiency and Policy Coordination

We take as benchmarks Pareto efficiency and the case of perfect coordination, where
a single authority chooses monetary and fiscal policy instruments under commitment.
We refer to these benchmarks in Section 6 to discuss the effects of fiscal discretion under
a variety of monetary regimes. The Pareto-efficient allocation solves the problem of
maximizing utility (1) subject to equations (2), (10), (16) and the resource constraint
Yt(j) = Ct(j) + Gt(j) for any j. It can be shown that Pareto efficiency requires
Ct(j) = Ct, Yt(j) = Yt, Gt(j) = Gt and Nt(j) = Nt. Moreover, the marginal rate of
substitution between leisure and private consumption and between leisure and public
consumption must be equal to the corresponding marginal rate of transformation. This
implies that

zt = Nϕ
t

Ct
1− χ

= Nϕ
t

Gt

χ
. (24)

The optimality conditions yield the efficient allocation:

N t = 1; Y t = zt; Ct = (1− χ)zt; Gt = χzt. (25)

Under Pareto efficiency, hours worked are constant, while consumption, government
expenditures and output move proportionally to productivity. At the non-stochastic
steady state, where zt = 1 for all t, hours worked and output are equal to 1, while
private and public consumption are equal to 0.75 and 0.15, respectively.
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For the case of policy coordination, we follow the classic Ramsey (1927) approach
and we define the optimal policy as a state-contingent plan. We refer to this case
as Full Ramsey (FR). We define an FR equilibrium as a competitive equilibrium A0

that maximizes U0, given the initial condition b−1. The Lagrangian and the first-order
conditions associated with the FR problem are reported in Appendix A.

Our benchmark economy features two distortions: (i) imperfect competition in the
goods market; and (ii) price-adjustment costs. After setting zt = 1 for all t, we analyze
the non-stochastic steady state of the Ramsey equilibrium and consider three steady-
state levels of government debt.7 The first steady state is the efficient equilibrium of
our model. This is the allocation where a labour subsidy completely eliminates the
monopolistic distortion stemming from imperfect competition in the goods market.
Since lump-sum taxes do not exist in our model, the labour subsidy, as well as the
provision of the public good, must be financed with interest receipts on government
assets. This implies that, at the efficient steady state,

beff =
1/η − χ
1− β

, τ eff = − 1

η − 1
.

The Lagrangian multipliers on the government budget constraint λs, on the Euler
equation λb and on the Phillips curve λp are equal to zero at the efficient steady
state. The values of the macroeconomic variables of interest are reported in the third
column of Table 2. Public assets must be 24 times GDP for the interest income to
be sufficiently high to finance subsidies and government spending. Since public assets
are private liabilities in our model, the assumption of a commitment to repay on the
part of private agents may appear unrealistic with such a high level of indebtedness.
But we consider the efficient steady state as a theoretical benchmark and maintain
the assumption that all debts are repaid – private or public. The second steady state
features a positive level of government debt that, without loss of generality, we set
equal to GDP. In the third steady state the government is a creditor and public assets
are equal to GDP. These two steady states are summarized in the fourth and fifth
column of Table 2. In the economy with positive public debt, the tax rate is 17.35% at
the steady state. The economy with public credit (negative public debt) has a steady-
state tax rate of 15.18%, which implies more hours and increased output, relative to the
economy with positive public debt. However, in both cases, hours worked, consumption
and output are well below their efficient levels. Even under perfect coordination of
monetary and fiscal policy, the economy fluctuates around a distorted steady state,
unless the government accumulates a large stock of public assets that may be regarded
as implausibly high.

In Section 6, we examine the dynamics of macroeconomic variables conditional on

7More precisely, we choose the steady-state level of debt knowing that there exists an initial condi-
tion b−1 that supports it. We abstract from the transition from such an initial condition to the chosen
steady state.
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Table 2: Steady state

Variable Symbol Value
Efficient b/Y = 1 b/Y = −1

Consumption C 0.85 0.74 0.75
Government expenditure G 0.15 0.13 0.13

Hours worked N 1 0.87 0.88
Real debt b -24.0909 0.87 -0.88

Income tax τ -0.1 0.1735 0.1518
Gross inflation π 1 1 1

Note: b/Y is the quarterly debt-to-GDP ratio.

technological shocks at the FR equilibrium and compare them with the dynamics under
fiscal discretion.

5. The Interaction of Monetary Commitment and Fiscal Discretion

In this section, we model policy-making as a non-co-operative game where mon-
etary and fiscal policies are conducted by two separate and independent authorities.
We assume that both policy-makers are benevolent and maximize social welfare, but
only the monetary authority can credibly commit to future policies. In contrast, the
fiscal authority cannot do so and therefore acts under discretion. We are interested
in analyzing time-consistent fiscal policy under a variety of monetary arrangements,
within the class of monetary commitment. Hence, we first describe the game in a
general form, defining timing and strategy space. We do so by following the same
formalism as in Chari and Kehoe (1990) and Atkeson et al. (2010). Then, we consider
alternative policy regimes by varying the restrictions we impose on monetary strategies
and computing the resulting equilibrium.

5.1. The policy game

A formal description of the game allows us to be transparent about the assumptions
we make about the strategies available to the monetary and fiscal authorities. We focus
on the strategic interaction between policy-makers and regard households and firms as
non-strategic. Hence, there are only two players: the central bank and the fiscal
authority.

Timing – The events of the game unfold according to the following timeline. In period
t = 0, at a stage that one may consider as constitutional, the central bank commits
once and for all to a rule, say σm. Then, in every period t ≥ 0, (i) shocks occur and
are perfectly observed by all agents and authorities; (ii) the fiscal authority chooses its
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fiscal tools; and (iii) the monetary authority implements the plan it committed to at the
constitutional stage and economic variables realize. The vector qt ≡ (zt, Gt, τt, it, xt)
represents chronologically the events that occur in each period. Accordingly, the history
of the game can be defined as ht ≡ (qt, ht−1) for t > 0 and h0 ≡ (q0, b−1) for t = 0. Our
timing assumption implies that the central bank leads both the fiscal policy-maker and
private agents, since it chooses its policy at the constitutional stage. The fiscal policy-
maker only leads private agents within each period. However, as will become evident
below, it is convenient to think of the fiscal policy-maker as a sequence of authorities
with identical preferences, each one leading their successors.8

Histories, strategies and competitive equilibrium – The fiscal authority faces history
ht,f ≡ (ht−1, zt), i.e., it chooses government spending and taxes after observing ht−1

and the shock, so that its strategy is σf = {Gt(ht,f ), τt(ht,f )}t≥0. Similarly, the mon-
etary authority faces history ht,m ≡ (ht−1, zt, Gt, τt) and chooses its instrument ac-
cording to strategy σm = {it(ht,m)}t≥0. For any strategy, it is convenient to define
its continuation from a given history. For instance, consider fiscal strategy σf . We
denote its continuation as σtf = {Gr(hr,f ), τr(hr,f )}r≥t. Starting from any history ht−1,
and given a sequence of exogenous events from period t onward, fiscal and monetary
strategies generate policies denoted by {pr}r≥t, as in Section 3.4. Given these policies,
private agents face information ht,x ≡ (ht−1, zt, Gt, τt, it) and take decisions according
to σx = {xr}r≥t, where xr are the decision rules defined in Section 3.4. Hence, once
monetary and fiscal policy strategies are set, they generate a continuation competitive
equilibrium At = {xr, pr}r≥t from any history ht−1.

Strategy restrictions – We restrict to fiscal Markov strategies where fiscal instruments
respond only to the inherited level of debt, bt−1, and the history of exogenous events,
st:9

Gt = Gt(s
t, bt−1); τt = τt(s

t, bt−1). (26)

We consider monetary strategies of the following form:

it
(
st, b−1, τt, Gt

)
= (1 + iTt

(
st, b−1

)
)

[
πt

πTt (st, b−1, τt, Gt)

]φπ
− 1, (27)

where iTt and πTt denote the central bank’s targets for the nominal interest rate and
inflation, respectively.10 The targets and the elasticity of the interest rate response

8If one restricts to the case of monetary commitment, inverting the order of moves within each
period would not change our results. In fact, the central bank could still condition the nominal interest
rate on the history of fiscal instruments.

9When modelling discretion, it is standard to assume that the policy authority does not respond
to past policies in order to exclude a multiplicity of reputational equilibria. Chari and Kehoe (1990),
King et al. (2008) and Lu (2013) discuss the cases of trigger strategies and reputation mechanisms.
We follow the literature and require differentiability of the fiscal strategies as in Klein et al. (2008),
Debortoli and Nunes (2012) and Ellison and Rankin (2007).

10We omit functional arguments unless they are required to avoid ambiguities.
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to inflation, φπ, are predetermined at the constitutional stage; φπ is a constant and
we restrict it to guarantee that the system of equations (7)-(9), (15), (19)-(20) and
(26)-(27) has a locally unique solution. In particular, we assume that φπ > 1/β so
that the Taylor principle holds. We regard φπ as an institutional parameter and take
it as given, in the same way as we assume that institutions are designed to enforce
monetary commitment. Section 7 discusses the optimal choice of φπ from the welfare
perspective.

This particular class of monetary strategies is appealing for various reasons. First,
any competitive equilibrium can be implemented by choosing σf and σm within the
class defined by (26) and (27). For example, consider a competitive equilibrium Ā and
its continuations Āt. Take (̄it, π̄t) ∈ Ā,

(
Ḡt, τ̄t

)
∈ Āt and specify monetary and fiscal

strategies as follows: Gt = Ḡt, τt = τ̄t, i
T
t = īt and πTt = π̄t. Then, Ā is the locally

unique solution to equations (7)-(9), (15), (19)-(20) and (26)-(27).11 In other words,
for any competitive equilibrium, we can find a pair of rules, (26) and (27), that can
support it: our assumption on strategies is not particularly restrictive and simplifies the
solution of the game. Second, the monetary rule is flexible enough to accommodate all
the monetary policy regimes that we describe in the following sections. Specifically, we
consider the case of open-loop strategies in Section 5.2, where monetary policy does not
respond to the actions of the fiscal authority. We then consider the case of closed-loop
strategies in Sections 5.3 and 5.4, where the central bank conditions the interest rate
to fiscal policy. In particular, the central bank threatens to vary the nominal interest
rate if fiscal policy compromises the achievement of the inflation target, i.e., πt 6= πTt .
In accordance with the mandates of most inflation-targeting central banks, we assume
that the interest rate rule does not directly target fiscal variables.

Markov-perfect fiscal policy – We always maintain the assumption that fiscal decisions
are Markov-perfect. Intuitively, the current fiscal authority chooses its instruments Gt

and τt, taking into account that future fiscal policies will also be chosen optimally.
Formally, a fiscal strategy σ∗f is Markov-perfect if it maximizes Ut for any ht,f and for

any monetary strategy σm, given continuation σ∗,t+1
f . We adopt a primal approach and

solve for the policy problem by deciding on both policy variables and private decisions,
subject to the constraint that they must be a continuation competitive equilibrium.
Hence, we look for a competitive equilibrium that solves the following problem:

W f
t = max

Ct,Nt,bt,mct,πt,Gt,it

{
(1− χ) lnCt + χ lnGt −

N1+ϕ
t

1 + ϕ
+ βEtW

f
t+1

}
(28)

subject to12

ztNt − Ct −Gt −
γ

2
(πt − 1)2 = 0, (29)

11The proof is reported in Appendix B.4.
12We have substituted for τt into (19) from the household’s optimality condition (8).
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1− χ
Ct(1 + it)

− βEt
1− χ

Ct+1(st+1, bt)Πt+1(st+1, bt)
= 0, (30)

bt
1 + it

+

(
mctzt −

Nϕ
t Ct

1− χ

)
Nt −

bt−1

πt
−Gt = 0, (31)

βEt
CtΠt+1(st+1, bt)(Πt+1(st+1, bt)− 1)

Ct+1(st+1, bt)
+

η

γ
ztNt

(
mct −

η − 1

η

)
− πt(πt − 1) = 0, (32)

and equation (27), taking bt−1 and iTt as given and function πTt into account. Say
that the competitive equilibrium Ā solves problem (28) for any t. Ct+1(st+1, bt) and
Πt+1(st+1, bt) are functions that belong to the continuation Āt+1, i.e., they describe
equilibrium private consumption and inflation at time t+ 1.13 They are taken as given
by the fiscal authority because it cannot commit to future outcomes. However, the
current level of debt, bt, affects future inflation and consumption, which in turn enter
the fiscal decision problem via equations (30) and (32). We assume that the fiscal
policy-maker internalizes this effect to guarantee Markov-perfection. Rules Gt(s

t, bt−1)
and τt(s

t, bt−1) are an equilibrium fiscal strategy if they belong to continuations Āt for
any t.

5.2. Open-loop monetary policy strategies

We start by considering the case where monetary policy is optimal according to the
classic Ramsey (1927) approach, which prescribes an interest rate path that depends
only on the history of exogenous events and the initial level of debt. More precisely,
we say that rule (27) is open-loop if the following property holds: πt = πTt for any τt
and Gt. Function πTt and parameter φπ are irrelevant for the fiscal authority, because
(πt/π

T
t )φπ = 1 and the nominal interest rate, it = iTt (st, b−1), is not affected by fiscal

variables. Therefore, under open-loop strategies, internalizing the monetary rule is
equivalent to taking the nominal interest rate as given in problem (28). We define an
equilibrium in open-loop strategies as follows: (i) fiscal policy σ∗f is Markov-perfect;
and (ii) given σ∗f , the optimal monetary strategy, σ∗m, maximizes U0 in the class of
open-loop strategies of the form (27).

We solve for the equilibrium of the game by backward induction. First, we look
for a competitive equilibrium that satisfies (i) and thus solves problem (28). Second,

13We omit functional arguments unless they are required to avoid ambiguities. Since Ct+1 and Πt+1

describe equilibrium consumption and inflation, they are unknown at the time of solving problem (28).
However, solving (28) requires that we know the derivative of functions Ct+1 and Πt+1 with respect to
bt. This is a conventional fixed-point problem that arises with Markov-perfect equilibria and has been
tackled by Klein et al. (2008). We solve the problem with a second-order perturbation method, which
has proven to be accurate in similar cases (Azzimonti et al. (2009)). We provide further technical
details in Appendix C.
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a competitive equilibrium A∗ satisfies (ii) and is optimal for the monetary authority if
it maximizes U0 subject to constraints (9), (29)-(32) and the first-order conditions of
problem (28). Equilibrium fiscal strategies are chosen from A∗t . Finally, we construct
the monetary strategy. After setting iTt = i∗t ∈ A∗, if the fiscal authority always plays
the equilibrium strategy, we also choose πTt = π∗t from A∗. Suppose instead that the
fiscal authority deviates from equilibrium at t and plays G̃t and τ̃t, while it reverts to
equilibrium from t+1. Then, iTt = i∗t and the fiscal instruments, together with equations
(9), (29)-(32) and rules A∗t+1, determine variables x̃t, including inflation. Then, choose
πTt = π̃t. Since the central bank adjusts its target after a deviation, (πt/π

T
t )φπ = 1

as initially assumed, irrespective of whether fiscal policy deviates from equilibrium or
not. Notice that even if the monetary policy instrument does not respond to fiscal
policy, the central bank fully internalizes fiscal behaviour: the optimality conditions of
the fiscal policy problem (28) are taken into account in the monetary policy problem.

Thus, the realized interest rate and inflation coincide with their corresponding tar-
gets, which fully describe the Ramsey optimal monetary policy under fiscal discretion.
Should fiscal policy threaten the achievement of the inflation target, an event that is
never observed at equilibrium, the central bank sticks to the announced interest rate
but it compromises on its inflation target: the central bank stands ready to accommo-
date fiscal “misbehaviour”. The formal problem is presented in Appendix B.1.

5.3. Closed-loop monetary policy strategies

We now assume that the inflation target is a function of exogenous events and the
initial level of debt, i.e., πTt (st, b−1). As a result, given iTt and πTt , the nominal interest
changes with the fiscal instruments: if fiscal policy implies a deviation of inflation
from the target, the monetary authority varies the nominal interest rate with elasticity
φπ. We label this class of strategies as closed-loop. The coefficient φπ describes the
extent to which the central bank tolerates “disagreement” with the fiscal authority on
inflation. Given the institutional set-up, we define the equilibrium as follows: (i) fiscal
policy σ∗f is Markov-perfect; and (ii) given σ∗f and φπ, the optimal monetary strategy,
σ∗m, maximizes U0 in the class of closed-loop strategies of the form (27).

As in the previous section, we solve the game by backward induction. A compet-
itive equilibrium A∗ is optimal for the monetary authority if it maximizes U0 subject
to constraints (9), (29)-(32) and the first-order conditions of problem (28). Optimal
strategies of the form (26) and (27) can be designed by choosing G∗t and τ ∗t from con-
tinuations A∗t and targets iTt and πTt from A∗. If the fiscal authority generates inflation
πt 6= πTt , the nominal interest rate endogenously responds by φπ, as we correctly as-
sume in problem (28). This is achieved by committing to interest rate and inflation
targets that do not depend on fiscal instruments.

As with open-loop strategies, the realized interest rate and inflation coincide with
their corresponding targets if the fiscal authority does not deviate from equilibrium.
However, if fiscal policy pushes inflation above the target, an event that is never ob-
served in equilibrium, the monetary authority tightens the monetary policy stance.
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This off-equilibrium response affects the behaviour of the fiscal authority, as we illus-
trate below by comparing open- and closed-loop strategies. The formal problem is
presented in Appendix B.2.

5.4. Simple Taylor-type rules

Finally, we consider the case where the central bank commits once and for all to a
constant inflation target of its choice:

πTt = π∗, iTt =
π∗

β
− 1, ∀t. (33)

Then, the nominal interest rate target iT is also constant and equal to the steady-state
value of the nominal interest rate consistent with the inflation target. This monetary
strategy belongs to the class of rules suggested by Taylor (1993) and is often used in
dynamic stochastic general-equilibrium models to describe the behaviour of inflation-
targeting central banks. In this regime, neither the target nor the elasticity depend on
current economic conditions or the history of the game. Hence, as in the case of the
strategies considered in Section 5.3, the central bank commits to change the nominal
interest rate in response to any deviation of current inflation relative to its target. The
equilibrium in this class of monetary rules can be seen as a particular case of the one
we find in Section 5.3 and is defined as follows: (i) fiscal policy σ∗f is Markov-perfect;
and (ii) the monetary strategy (27) satisfies restriction (33). The formal problem is
presented in Appendix B.3.

6. Results

6.1. Steady state

The previous sections described three alternative strategic environments for mone-
tary and fiscal policy. In this section, we describe and compare the steady states asso-
ciated with these environments, putting emphasis on the level of debt. Table 3 shows
the steady-state values of all the macroeconomic variables of interest under open-loop
monetary strategies, closed-loop strategies with φπ = 1.5 and a simple Taylor-type rule
with φπ = 1.5 and π∗ = 1.

The first-order condition of the fiscal authority relative to inflation, evaluated at
the steady state, implies that

−λ
sb

π2
(βφπ − 1)− λfγ(π − 1)− λp(2π − 1)− βφπ

λb

Cπ2
= 0, (34)

where λs ≥ 0 is the Lagrangian multiplier for the government budget constraint, λf ≥ 0
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for the resource constraint, λp ≤ 0 for the Phillips curve and λb for the Euler equation.14

The first term captures the effect of inflation on the public accounts. An increase in
current inflation reduces debt repayment but raises the nominal interest rate with
elasticity φπ. If φπ > 1/β and the real interest rate also increases, inflation leads to
a loss in real terms, and the government has an incentive to generate deflation if it
is a debtor. If, instead, the central bank does not respond to the actions of fiscal
policy, the impact of inflation on the real cost of debt is only given by λsb/π2: positive
debt gives the incentive to generate inflation, negative debt to reduce it. The second
term is the resource cost, which disappears if net inflation is zero or if prices are fully
flexible (γ = 0). The third term captures the benefits from reduced price markups.
With sticky prices, an increase in trend inflation reduces the average markup and raises
output, which is suboptimally low owing to monopolistic competition. The last term
is the effect on consumption smoothing. Higher inflation leads to lower government
bond prices. Households are thus willing to defer consumption and, ceteris paribus,
public debt tends to increase. This effect raises or reduces welfare, depending on how
debt accumulation affects the inflation-output trade-off. From the first-order condition
relative to debt:

λb

Cπ2
= −λp

∂Π
∂bt
C(2π − 1)− ∂C

∂bt
π(π − 1)

∂Π
∂bt
C + ∂C

∂bt
π

. (35)

Under our calibration, the denominator on the right-hand side of (35) is positive under
all monetary policy regimes. If the numerator is also positive, debt accumulation
increases the forward-looking component of the Phillips curve and worsens the inflation-
output trade-off. As we discuss below, the monetary policy regime determines whether
debt accumulation improves or worsens the inflation-output trade-off and thus the sign
of λb/Cπ2.

First-order conditions (34) and (35) imply that15

b =
γπ2

η(βφπ − 1)

[(
1− χ

Gλs

)
η(π − 1) + (2π − 1) (36)

−βφπ

(
∂Π
∂bt
C(2π − 1)− ∂C

∂bt
π(π − 1)

∂Π
∂bt
C + ∂C

∂bt
π

)]
.

In the case of open-loop monetary strategies, (36) becomes

b = −γπ
2

η

[(
1− χ

Gλs

)
η(π − 1) + (2π − 1)

]
. (37)

14We substitute the Lagrangian multipliers for the monetary rule, λi, by using the first-order con-
dition relative to the nominal interest rate. Even if we require φπ > 1/β across all monetary policy
regimes, equation (34) nests the case of open-loop monetary strategies for φπ = 0. Under open-loop
strategies, the central bank always adjusts its inflation target in such a way that the nominal interest
rate does not respond to the actions of the fiscal authority. Hence, it is as if φπ was zero in (34).

15We substitute for λp and λf by using the first-order conditions relative to the marginal cost and
government expenditures.
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Table 3: Steady state of the policy game

Open-loop Taylor Closed-loop
φπ = 1.5 φπ = 1.5
π∗ = 1

Variable Symbol Value

Consumption C 0.7486 0.7227 0.7222
Government expenditures G 0.1366 0.1227 0.1300

Hours worked N 0.8853 0.8454 0.8522
Debt-to-GDP ratio (annualized) b/(4Y ) -62.13% 112.77% 81.59%

Income tax τ 0.1423 0.2093 0.2036
Gross inflation π 0.9973 1 1.0021

The fiscal authority has an incentive to use inflation to achieve two goals: improve the
public accounts and bring output close to its efficient level. The equilibrium level of
debt is such that, net of the resource cost, the temptation to raise inflation above its
steady state to close the output gap is exactly compensated for by the incentive to
reduce it to raise real revenues – something that arises only when the government is a
creditor. When choosing its policy, the central bank internalizes (37) and trades off the
resource cost of inflation against the benefits of affecting b. For example, π = 1 would
imply that b = −γ/η = −1.8182. Instead, π = 0.9973 and b = −2.2001 at the optimal
steady state. For mild levels of deflation, the fiscal authority has a greater incentive to
rely on inflation to expand output because, as opposed to the case of price stability, a
marginal increase in inflation lowers the resource cost. Hence, a higher level of assets
is needed for π to be a steady state. The central bank thus accepts some deflation to
increase public assets, reduce taxes and improve welfare. When prices are flexible or
the output gap is zero (η → ∞), the optimal level of debt is zero, as highlighted by
Debortoli and Nunes (2012).

In the case of a simple Taylor-type rule with π∗ = π = 1, (36) simplifies to

b =
γ

η(βφπ − 1)

(
1− βφπ

∂Π
∂bt
C

∂Π
∂bt
C + ∂C

∂bt

)
. (38)

In contrast to the case of open-loop strategies, the real interest rate rises if inflation
deviates from its target π∗. The central bank’s response generates two counteracting
effects. On the one hand, it makes inflationary policies costly by reducing the govern-
ment’s real revenues. Such a cost increases in φπ and b as highlighted in (34). On the
other hand, the deterioration in the public accounts triggers debt accumulation, which
in turn encourages the future fiscal authority to reduce inflation. Hence, expected in-
flation falls and the inflation-output trade-off improves. This effect is captured by the
term ∂Π/∂bt, which is indeed negative for our calibration. In this respect, a larger φπ
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makes inflationary policies less costly. At the optimal steady state, debt is such that
the gain from inflating to close the output gap is exactly compensated for by the gain
from reducing debt-servicing costs – something that arises only when the government
is a debtor. In Figure 1, we show the debt-to-GDP ratio, measured on the vertical
axis in percentage points, as a function of the inflation coefficient φπ measured on the
horizontal axis. Overall, the cost of implementing inflationary policies increases in φπ.
Therefore, the stronger the response of the nominal interest rate, the lower will be the
level of debt.

In the case of closed-loop strategies, monetary policy is more flexible: the central
bank can vary the interest rate in response to the shocks and the actions of the fiscal
authority. This flexibility gives the central bank additional leverage to discourage
inflationary fiscal policies. As with Taylor-type rules, the real interest rate increases
and the public accounts deteriorate if inflation is above target. In addition, the central
bank generates expected inflation when the government accumulates debt. In fact,
∂Π/∂bt and the numerator on the right-hand side of (35) are positive: the inflation-
output trade-off worsens as b increases. This outcome can be achieved by committing
to temporarily raising the inflation target in the future. Since inflationary policies both
reduce real revenues and worsen the inflation-output trade-off, they are more costly for
any given φπ, as compared to Taylor-type rules. Therefore, debt is lower, as is shown
in Figure 1. Finally, the central bank deviates from price stability. For example, Table
3 shows that, for φπ = 1.5, a mildly positive inflation rate is optimal. This is because
it makes the fiscal authority less willing to rely on inflation, and a lower level of debt is
needed to discipline discretionary fiscal behaviour. We find, however, that irrespective
of φπ, the inflation rate is small, and we conclude that price stability is roughly optimal.

6.2. Impulse responses

We inspect the dynamics of the model by reporting impulse-response functions of
the variables following an i.i.d. technology shock, under the three monetary policy
regimes defined in Section 5. Figures 2, 3 and 4 compare the FR equilibrium with the
cases of open-loop, closed-loop and simple Taylor-type strategies, respectively. The
blue circled lines represent the FR equilibrium; the red starred lines represent the
equilibria defined in Section 5. For the closed-loop and the Taylor-type rules, we assume
that φπ = 1.5. In each figure, we shock both economies at the steady state and, for
the FR case, we choose a steady-state level of debt equal to the steady state of the
alternative monetary regime under consideration.16 We fix the size of the shock to the
typical standard deviation considered in the business-cycle literature, 0.0071. Then
we normalize consumption, government expenditure, hours worked and output with
respect to the shock and report them in percentage deviations from the steady state.

16In the FR case, for any chosen steady-state level of debt, there exists an initial condition b−1 that
supports it. We do not analyze the transition from t = 0 to the steady state.
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Figure 1: Debt-to-GDP (annualized) ratio as a function of φπ

Hence, a 1% increase in a given variable means that the variable increases as much
as productivity. Inflation and the nominal interest rate are not normalized. Rather,
they are expressed as deviations from the steady state and in percentage points, so
that they can be read as rates. Finally, tax rates and real debt are not normalized
either, and they are reported in percentage deviations from their steady-state values.
We limit our attention to the case where γ = 20 and price adjustments are costly.17

Figure 2 evaluates the open-loop monetary strategy against the FR model. In the
latter regime inflation is stabilized, since changing prices is costly. The real interest
rate falls, which leads to lower revenues, because the government is a net creditor
(b < 0). Labour income taxes remain fairly stable so that hours worked are stabilized,
and the nominal interest rate is reduced so as to raise private consumption. Increased
tax revenues from higher wages finance an increase in public spending. The response of
output and consumption, both private and public, approximate well Pareto efficiency.
Inflation stabilization has two consequences. First, since the government is a creditor,
it generates a budget deficit in the short run. Second, it induces a unit root in public
debt that turns short-run budget imbalances into long-run debt changes. By comparing

17The Ramsey problem with flexible prices has been analyzed by Lucas and Stokey (1983) and
Chari et al. (1991). If initial nominal public assets are negative, the optimal price level at time zero
is infinite so that the distorting labour income tax is reduced. If initial nominal public assets are
positive, the optimal monetary policy at time zero is the one that implements the efficient allocation.
We do not repeat this analysis here.
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Figure 2: Impulse responses to a technology shock: Full Ramsey and open-loop strategy

the open-loop strategy regime with the FR case, three facts stand out. Fiscal discretion
worsens the trade-off between stabilizing inflation and real activity, as becomes clear
when we look at the response of hours worked. Should the current fiscal authority limit
the tax rise, future governments would be endowed with lower credit, and they would
find it optimal to inflate, as we explain in the steady-state section. Since expected
inflation worsens the current inflation-output trade-off, the government decides to raise
taxes to contain public deficits and future inflation. As a result, hours worked fall.
Such a trade-off is absent when a balanced budget is assumed.18 Second, a lack of
fiscal commitment makes inflation more volatile, but the difference is quantitatively
negligible: the central bank is not willing to give up on inflation stabilization, despite
the additional trade-off that fiscal discretion induces. Finally, government expenditure
is barely used for stabilization under either regime, as its responses resemble those under
Pareto efficiency. If anything, public spending increases less and debt is overstabilized
when the fiscal authority cannot commit to future policies.

18See Gnocchi (2013) for the case of monetary commitment and fiscal discretion under a balanced
budget.
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Figure 3 shows impulse responses under the closed-loop monetary strategy. To be-
gin with, differences across Figures 2 and 3 in the FR stabilization plan are entirely
driven by the steady-state level of debt. The government is a net debtor (b > 0) and
inflation stabilization, which is achieved by lowering the interest rate, generates a bud-
get surplus. Hence, government debt and taxes permanently fall. As in the case with
negative debt, inflation is stabilized, and even if inflation volatility becomes greater
under fiscal discretion, differences across regimes are quantitatively negligible. Fur-
thermore, the responses of public and private consumption, hours worked, output and
debt closely match the ones under FR. In particular, hours worked are fairly stable
and the stabilization trade-off is significantly milder than the one arising under open-
loop strategies. This is because the monetary authority threatens to raise the nominal
interest rate if the fiscal authority deviates from the optimal stabilization plan and
pushes inflation above the central bank’s target. A higher interest rate would cause
a deterioration in the public accounts and would thus be costly for the government.
The threat discourages fiscal deviations, and the trade-off induced by the lack of fiscal
commitment is weakened. Therefore, even if fiscal deviations are never observed, the
threat allows the central bank to sustain an equilibrium that is closer to the FR plan,
as compared with the open-loop strategy. Also, debt remains stationary, but its persis-
tency is so high that it is hardly distinguishable from a random walk and its dynamics
mimic the one observed under FR.

We conclude with Figure 4, inspecting the dynamics under a simple Taylor-type rule
with φπ = 1.5 and a zero inflation target π∗ = 1. In contrast with the regimes previously
considered, the interest rate target is constant. It is well known that, for finite values
of φπ, the monetary policy stance is too tight, as compared with the FR, even when
fiscal policy does not suffer from a lack of commitment problem. Hence, consumption
and output do not increase as much as they should, hours worked fall, and inflation is
not stabilized. The effects of a suboptimally tight monetary stance on fiscal responses
are twofold. On the one hand, debt is less volatile than under FR. Since the fall in
nominal and real interest rates is dampened, changes in the service of debt are limited
as well. On the other hand, the use of tax rates and government expenditures can be
rationalized by the suboptimality of monetary policy. Fiscal policy is discretionary but
is still optimally chosen. Therefore, public spending becomes extremely volatile and is
used to sustain aggregate demand. Higher taxes not only help to finance government
expenditures and contain budget deficits, but they also prevent inflation from falling
at the cost of a reduction in hours worked and output. As a result, the effect on output
is less than half its FR counterpart.

7. Monetary Institutions and Welfare

In this section, we compare monetary regimes from a welfare standpoint. While
fiscal policy is always discretionary, monetary policy is committed to either open-
loop strategies, closed-loop strategies or the simple Taylor-type rules described earlier.
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Figure 3: Impulse responses to a technology shock: Full Ramsey and closed-loop strat-
egy, φπ = 1.5
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Figure 4: Impulse responses to a technology shock: Full Ramsey and Taylor-type rule,
φπ = 1.5

We work with the second-order approximation of the model and focus on welfare,
conditional on the deterministic steady state.

Our results can be understood through the lens of our set-up. Because taxes are
distortionary, different levels of public debt lead to different allocations and, thus, to
different levels of welfare. These differences are of first order and emerge already at
the deterministic steady state. Since the three monetary policy regimes have different
steady-state levels of public debt, they can be ranked by evaluating welfare at the
deterministic steady state. By working with the second-order approximation of the
model, we can also evaluate the monetary regimes in terms of their stabilization prop-
erties. Because debt plays a key role for welfare and FR does not pin it down uniquely,
we evaluate policies relative to the efficient allocation.

Figure 5 plots conditional welfare gains relative to the efficient allocation for the
alternative monetary policies. The horizontal axis measures φπ. Welfare is expressed
in efficient consumption-equivalent variation – namely, as the percentage of efficient
steady-state consumption that the household is willing to give up to be indifferent
between the efficient allocation and the monetary regime in question. This percentage
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Figure 5: Conditional welfare

is negative in case of welfare losses. The top-left panel of Figure 5 reports the welfare
gain at the deterministic steady state, the top-right panel reports the welfare gain from
stabilization, and the bottom-left panel reports the total welfare gain, which is the sum
of the previous two. Monetary policy under open-loop strategies does not depend on
φπ and it dominates both closed-loop and Taylor-type monetary policy. For closed-
loop and Taylor rules, total welfare improves as φπ increases. The welfare ranking
is driven by the steady-state component, which depends on the level of public debt
characterizing each regime. Open-loop strategies achieve the highest welfare because
steady-state debt is the lowest. Closed-loop strategies sustain a lower level of debt
than the Taylor-type rule and thereby higher welfare. Welfare improves under both
regimes as the interest rate response gets higher because this implies lower debt levels.
Hence, these welfare results are the mirror image of the steady-state debt results found
in Section 6.1.

Closed-loop strategies are characterized by the highest stabilization component,
even better than open-loop strategies. As emphasized in Section 6.2, closed-loop strate-
gies sustain equilibrium responses to technology shocks that are much closer to FR than
open-loop strategies. This occurs because the government is a debtor (b > 0) under
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Figure 6: Welfare gains from choosing the inflation target

closed-loop strategies and the monetary authority’s threat to raise the nominal interest
rate would lead to a deterioration in the government’s budget, thereby discouraging
fiscal deviations. Taylor ranks worst in terms of stabilization because monetary policy
is too tight and fiscal responses strongly suboptimal. We focus on technology shocks,
but considering additional exogenous shocks is unlikely to change the ranking in terms
of welfare because the stabilization component is small relative to the steady-state
counterpart.

What do we learn regarding the design of monetary policy institutions? Two results
emerge from our analysis. First, and most important, monetary policy plays a key role
in the determination of public debt. Starting from the work of Sargent and Wallace
(1981), many contributions have studied how monetary policy affects fiscal policy. Our
new insight is that commitment to raising the real interest rate in response to inflation
leads to a unique and positive level of debt, and a higher interest rate elasticity to
inflation leads to lower debt and higher welfare. Second, the simple interest rate rule
studied here approximates relatively well the sophisticated closed-loop rule. Being
able to change the state-contingent inflation target and to commit to off-equilibrium
responses helps in achieving better stabilization and slightly lower public debt, but it
is the interest rate response that pins down debt and welfare.

Optimal monetary policy in the sense of Ramsey is difficult to implement in reality.
For this reason, central banks have been adopting simple interest rate rules, which can
be easily communicated to and observed by agents. Our Taylor-type rule belongs to
this class of monetary policy and it features two parameters: elasticity to the interest
rate φπ and the inflation target π∗. Keeping the inflation target constant and equal to
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one, an increase in φπ raises welfare, as shown in Figure 5. Changing the elasticity from
1.5 to 3.5 delivers a welfare gain of 0.8 percentage points in consumption-equivalent
terms. Changes in the inflation target, however, also affect welfare. An increase in
the inflation target is costly because of price-adjustment costs, so that the incentive to
raise inflation to close the output gap is reduced. As a result, the steady-state level of
debt is lower (in absolute value) and welfare improves.

Figure 6 plots the welfare gain of optimally choosing the inflation target. Net
inflation, annual and in percentage points, is measured on the primary vertical axis.
The welfare gain is measured as a percentage of efficient steady-state consumption on
the secondary vertical axis. With an interest rate elasticity equal to 1.5, setting the
net annual inflation target to 2.2 percentage points brings a welfare gain of 0.23% of
efficient steady-state consumption relative to keeping the net inflation target equal to
zero. For an interest rate elasticity of 1.55, the corresponding figures are 3.4 and 0.29.
A couple of comments are in order. First, we report the optimal inflation target for
our class of rules: for each value of φπ, we choose the inflation target that maximizes
welfare, which we plot as the solid black line.19 Second, the welfare gains from raising
the inflation target first increase and then fall with φπ and are largest at the lower end
of the range of interest rate elasticities. The reason is that the high financing costs
drive public debt down. Equilibrium public debt is the mirror image of the inflation
target: it falls rapidly from 1.8 to 0.4 as the inflation target rises from 2 to 6 percentage
points, and then it stabilizes. Given debt, higher inflation is harmful because of price-
adjustment costs and higher tax rates due to increased financing costs. The benefits of
higher inflation, which stem from its disciplining effects on debt, significantly outweigh
the costs only when debt is high – namely, for low values of interest rate elasticity.

8. Conclusions

The design of monetary and fiscal policy institutions emphasizes independence in
setting the policy instrument. Central banks are wary to comment on fiscal policy,
and governments are not supposed to pressure monetary policy. In the euro area,
this independence is reinforced by the prohibition of monetary financing of budgets –
namely, the European Central Bank (ECB) is explicitly forbidden to purchase govern-
ment debt on the primary market. On these grounds, the German Constitutional Court
questioned the consistency of the ECB’s Outright Monetary Transactions (OMTs) an-
nouncement with the European Union primary law. These recent events illustrate the
tension behind this division of powers.

Our analysis assumes independence. Nevertheless, we show that monetary and
fiscal policy inevitably interact in several dimensions via (i) the strategic set-up; (ii) the
ability to commit future actions and responses; and (iii) the general equilibrium effect

19We consider φπ ∈ [1.5, 3.5] with increments of 0.05. For the inflation target, we consider π∗ ∈
[1, 1.02] (at the quarterly frequency) with increments of 0.005.
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on the economy. As a result of these interactions, monetary commitment to an interest
rate response to deviations of inflation from its target is key for the determination of the
level of public debt. An implication of our findings is that the central bank’s ability to
deliver on its mandate contributes to maintaining low levels of debt and fosters welfare.
If limitations placed on the conduct of monetary policy undermine the achievement of
the inflation target, fiscal stability might also be compromised. Ultimately, monetary
and fiscal policy relate to each other: clearly assigning different instruments to separate
authorities is by no means sufficient to strictly separate monetary and fiscal policy. This
view has been emphasized by Justice Gerhardt, a member of the German Constitutional
Court, who openly disagreed with the majority and questioned the interpretation of
OMTs as infringing on the powers of the European member states.

There are several natural extensions to our analysis, which we leave to future re-
search. The effects of monetary policy on the level of debt are of first order, and they
affect the steady state. In our analysis, we focus on welfare, conditional on the steady
state. However, transitional dynamics are likely to be important. It would be inter-
esting to study whether the transition from a given monetary regime to another one
implying a lower level of debt is welfare-improving and thus worth being undertaken.
If welfare fell because of the transition, one could analyze whether and which policies
could be implemented to make such a transition feasible.

Stabilization issues are also important and the focus of a very large body of lit-
erature. We have analyzed the stabilization properties of different monetary policies
conditional only on technological shocks. Extending the analysis to additional shocks,
such as intertemporal preferences and markup, would be interesting. It could shed
light on the ability of each policy to stabilize the economy in response to different
shocks. Nevertheless, these effects are bound to remain of second order, and we do
not expect them to affect our main first-order results. We used a relatively simple
model because the focus of the paper is the strategic interaction of monetary and fiscal
policies. We speculate that adding distortions not central to the issue at hand or other
state variables, such as capital, will not change the nature of our results.
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Schmitt-Grohé, Stephanie and Martin Uribe, “Optimal Fiscal and Monetary
Policy under Sticky Prices,” Journal of Economic Theory, 2004a, 114 (2), 198–230.

32



and , “Solving Dynamic General Equilibrium Models Using a Second-Order Ap-
proximation to The Policy Function,” Journal of Economic Dynamics and Control,
2004b, (28), 755–775.

Steinsson, Jon, “Optimal monetary policy in an economy with inflation persistence,”
Journal of Monetary Economics, October 2003, 50 (7), 1425–1456.

Taylor, John, “Discretion versus policy rules in Practice,” Carnegie-Rochester Con-
ference Series on Public Policy, 1993, 39, 195–214.

Woodford, Michael, “Fiscal Requirements for Price Stability,” Journal of Money
Credit and Banking, 2001, 33 (3), 669–728.

, Interest and Prices, Princeton University Press, 2003.

33



Appendix

Appendix A. Full Ramsey

The Lagrangian associated with the Ramsey problem defined in Section 4 is

LFR = E0

{
∞∑
t=0

βt
[
(1− χ) lnCt + χ lnGt −

N1+ϕ
t

1 + ϕ

]
(A.1)
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[
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γ

2
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]
+ λbt

[
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− β 1
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]
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(
mctzt −

Nϕ
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−Gt

]
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β
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+
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γ
ztNt

(
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η − 1

η

)
− πt(πt − 1)

]}
.

The first-order conditions relative to variables Ct, Nt, Gt, πt,mct, it and bt are

FOC Ct:
1− χ
Ct
− λft −

λbt
(1 + it)C2

t

+
λptβπt+1(πt+1 − 1)

Ct+1

− λstN
1+ϕ
t
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+λbt−1

1

πtC2
t

− λpt−1β
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C2
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= 0, (A.2)

FOC Nt: −Nϕ
t + ztλ

f
t − λst

[
(1 + ϕ)

Nϕ
t Ct
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−mctzt

]
(A.3)

+λpt
η

γ
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(
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η

)
= 0,

FOC Gt:
χ

Gt

− λft − λst = 0, (A.4)

FOC πt: −λft γ(πt − 1) + λst
bt−1

π2
t

− λpt (2πt − 1) (A.5)

+λbt−1

1

π2
tCt

+ λpt−1

Ct−1

Ct
(2πt − 1) = 0,

FOC mct: λ
s
tNtzt + λpt

η

γ
ztNt = 0, (A.6)

FOC it: −
λbt

Ct(1 + it)2
− λstbt

(1 + it)2
= 0, (A.7)

FOC bt:
λst

1 + it
−
λst+1β

πt+1

= 0. (A.8)

Equations (A.2) to (A.7), together with the first-order conditions relative to the La-
grangian multipliers λft , λ

b
t , λ

s
t , λ

p
t , form a system of eleven equations in eleven variables.

34



Appendix B. Fiscal Discretion and Monetary Commitment

Appendix B.1. Open-loop monetary policy strategies

Under open-loop monetary strategies, the fiscal authority can take the interest rate
as given. The Lagrangian associated with the fiscal problem is

LfO(bt−1, s
t) =

[
(1− χ) lnCt + χ lnGt −

N1+ϕ
t

1 + ϕ

]
(B.1)

+λfOt

[
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t+1).

The first-order conditions of the fiscal policy problem relative to variables Ct, Nt, Gt,
πt,mct and bt are
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Expressions ∂CO/∂bt and ∂ΠO/∂bt denote the derivative of functions Ct+1(st+1, bt) and
Πt+1(st+1, bt), respectively, relative to the level of debt. To simplify the monetary policy
problem, we reduce the system (B.2)-(B.7) to four equations by using (B.4) and (B.6)
to substitute for λfOt and λpOt :
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Finally, the Lagrangian associated with the monetary policy problem is

LMO = E0

{
∞∑
t=0

βt
[
(1− χ) lnCt + χ lnGt −

N1+ϕ
t

1 + ϕ

]
(B.12)

+λ̄fOt

[
ztNt − Ct −Gt −

γ

2
(πt − 1)2

]
+ λ̄bOt

[
− 1− χ
Ct(1 + it)

+ β
1− χ

Ct+1πt+1

]
+λ̄sOt

[
bt

1 + it
+

(
mctzt −

Nϕ
t Ct

1− χ

)
Nt −

bt−1

πt
−Gt

]
+ λ̄pOt

[
β
Ctπt+1(πt+1 − 1)

Ct+1

+
η

γ
ztNt

(
mct −

η − 1

η

)
− πt(πt − 1)

]
+ λ̄1O

t

[
1− χ
Ct

+ λsOt

(
1− N1+ϕ

t

1− χ
+
γ

η
β
πt+1(πt+1 − 1)

Ct+1

)
− λbOt
C2
t (1 + it)

− χ

Gt

]
+ λ̄2O

t

[
zt
χ

Gt

− λsOt zt
η
− (1 + ϕ)

λsOt Nϕ
t Ct

1− χ
−Nϕ

t

]
+ λ̄3O

t

[
λsOt

(
γ(πt − 1) +

bt−1

π2
t

+
γ

η
(2πt − 1)

)
− γ(πt − 1)

χ

Gt

]
+ λ̄4O

t

[
λsOt

1 + it
− βλsOt

γCt
η
Et

(
∂ΠO

∂bt

2πt+1 − 1

Ct+1

− ∂CO

∂bt

πt+1(πt+1 − 1)

C2
t+1

)
+ βλbOt Et

(
∂CO

∂bt

1

C2
t+1πt+1

+
∂ΠO

∂bt

1

Ct+1π2
t+1

)
− βEt

λsOt+1

πt+1

]}
,
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where the λ̄s are the Lagrangian multipliers on the constraints in the monetary policy
problem and the λs are the Lagrangian multipliers on the constraints in the fiscal policy
problem. We compute first-order conditions relative to Ct, Nt, Gt, πt,mct, bt, it and λs.

Appendix B.2. Closed-loop monetary policy strategies

Under closed-loop monetary strategies, the nominal interest rate responds to fiscal
instruments according to rule (27), which is internalized by the fiscal authority as a
constraint. Hence, the Lagrangian associated with the fiscal policy problem becomes

LfC(bt−1, s
t) =

[
(1− χ) lnCt + χ lnGt −

N1+ϕ
t

1 + ϕ

]
(B.13)

+λfCt

[
ztNt − Ct −Gt −

γ

2
(πt − 1)2

]
+ λbCt

[
1

Ct(1 + it)
− βEt

1

Ct+1πt+1

]
+λsCt

[
bt

1 + it
+

(
mctzt −

Nϕ
t Ct

1− χ

)
Nt −

bt−1

πt
−Gt

]
+ λpCt

[
βEt

Ctπt+1(πt+1 − 1)

Ct+1

+
η

γ
ztNt

(
mct −

η − 1

η

)
− πt(πt − 1)

]
+λiCt

[
−(1 + it) + (1 + iTt )

(
πt
πTt

)φπ]
+ βEtLfC(bt, s

t+1),

where iTt , πTt and φπ are taken as given by the fiscal authority. Most of the first-
order conditions for the fiscal policy problem coincide with the ones associated with
Lagrangian (B.1). Nevertheless, for the sake of clarity, we report all of them below. In
particular, first-order conditions relative to variables Ct, Nt, Gt, πt,mct, it and bt are

FOC Ct:
1− χ
Ct
− λfCt −

λbCt
C2
t (1 + it)

+ λpCt Et

[
β
πt+1(πt+1 − 1)

Ct+1

]
(B.14)

−λ
sC
t N1+ϕ

t

1− χ
= 0,

FOC Nt: −Nϕ
t + λfCt zt − λsCt

[
(1 + ϕ)

Nϕ
t Ct

1− χ
−mctzt

]
(B.15)

+λpCt
η

γ
zt

(
mct −

η − 1

η

)
= 0,

FOC Gt:
χ

Gt

− λfCt − λsCt = 0, (B.16)

FOC πt: −λfCt γ(πt − 1) + λsCt
bt−1

π2
t

− λpCt (2πt − 1) (B.17)

+λiCt
φπ(1 + iTt )

πTt

(
πt
πTt

)φπ−1

= 0,

37



FOC mct: λ
pC
t ztNt +

λsCt γ

η
ztNt = 0, (B.18)

FOC it: −
λbCt

Ct(1 + it)2
− λstbt

(1 + it)2
− λiCt = 0, (B.19)

FOC bt: βλ
bC
t Et

1

(Ct+1πt+1)2

[
∂CC

∂bt
πt+1 +

∂ΠC

∂bt
Ct+1

]
+

λsCt
1 + it

− β
λsCt+1

πt+1

(B.20)

+β
λpCt Ct
C2
t+1

Et

[
∂ΠC

∂bt
(2πt+1 − 1)Ct+1 −

∂CC

∂bt
πt+1(πt+1 − 1)

]
= 0.

Expressions ∂CC/∂bt and ∂ΠC/∂bt denote the derivatives of functions Ct+1(st+1, bt)
and Πt+1(st+1, bt), respectively, relative to the level of debt. Equations (B.14)-(B.16),
(B.18) and (B.20) coincide with their counterparts (B.2)-(B.4), (B.6) and (B.7) for
the case of open-loop strategies. Equations (B.17) and (B.5) differ because of the
endogenous response of the nominal interest rate. In addition, equation (B.17) coincides
with its counterpart for the case of Taylor-type rules discussed below if πTt = π∗ and
(1+ iTt ) = π∗/β for all t. To keep the monetary policy problem as tractable as possible,
we simplify the system of first-order conditions. First, in equation (B.17), we make use
of the relation

φπ(1 + iTt )

πTt

(
πt
πTt

)φπ−1

=
φπ(1 + it)

πt
,

which directly follows from monetary rule (27). Moreover, substituting for λiCt from
equation (B.19), we obtain

−λ
sC
t

π2
t

[
φππtbt
(1 + it)

− bt−1

]
− φπλ

bC
t

Ctπt(1 + it)
− λfCt γ(πt − 1)− λpCt (2πt − 1) = 0. (B.21)

We further simplify the system (B.14)-(B.20) by using equations (B.16) and (B.18) to
substitute for λfCt and λpCt :

1− χ
Ct

+ λsCt

[
1− N1+ϕ

t

1− χ
+
γ

η
Etβ

πt+1(πt+1 − 1)

Ct+1

]
− λbCt

C2
t (1 + it)

− χ

Gt

= 0, (B.22)

zt
χ

Gt

− λsCt zt
η
− (1 + ϕ)

λsCt Nϕ
t Ct

1− χ
−Nϕ

t = 0, (B.23)

λsCt

[
γ(πt − 1) +

bt−1

π2
t

− φπbt
πt(1 + it)

+
γ

η
(2πt − 1)

]
(B.24)

− φπλ
bC
t

Ctπt(1 + it)
− γ(πt − 1)

χ

Gt

= 0,
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λsCt
1 + it

− βλsCt
γCt
η
Et

[
∂ΠC

∂bt

2πt+1 − 1

Ct+1

− ∂CC

∂bt

πt+1(πt+1 − 1)

C2
t+1

]
+ βλbCt Et

[
∂CC

∂bt

1

C2
t+1πt+1

+
∂ΠC

∂bt

1

Ct+1π2
t+1

]
− βEt

λsCt+1

πt+1

= 0. (B.25)

Finally, the Lagrangian associated with the monetary policy problem is

LMC = E0

{
∞∑
t=0

βt
[
(1− χ) lnCt + χ lnGt −

N1+ϕ
t

1 + ϕ

]
(B.26)

+λ̄fCt

[
ztNt − Ct −Gt −

γ

2
(πt − 1)2

]
+ λ̄bCt

[
− 1− χ
Ct(1 + it)

+ β
1− χ

Ct+1πt+1

]
+λ̄sCt

[
bt

1 + it
+

(
mctzt −

Nϕ
t Ct

1− χ

)
Nt −

bt−1

πt
−Gt

]
+ λ̄pCt

[
β
Ctπt+1(πt+1 − 1)

Ct+1

+
η

γ
ztNt

(
mct −

η − 1

η

)
− πt(πt − 1)

]
+ λ̄1C

t

[
1− χ
Ct

+ λsCt

(
1− N1+ϕ

t

1− χ
+
γ

η
β
πt+1(πt+1 − 1)

Ct+1

)
− λbCt
C2
t (1 + it)

− χ

Gt

]
+ λ̄2C

t

[
zt
χ

Gt

− λsCt zt
η
− (1 + ϕ)

λsCt Nϕ
t Ct

1− χ
−Nϕ

t

]
+ λ̄3C

t

[
λsCt

(
γ(πt − 1) +

bt−1

π2
t

− φπbt
πt(1 + it)

+
γ

η
(2πt − 1)

)
− φπλ

bC
t

Ctπt(1 + it)

−γ(πt − 1)
χ

Gt

]
+λ̄4C

t

[
λsCt

1 + it
− βλsCt

γCt
η
Et

(
∂ΠC

∂bt

2πt+1 − 1

Ct+1

− ∂CC

∂bt

πt+1(πt+1 − 1)

C2
t+1

)
+ βλbCt Et

(
∂CC

∂bt

1

C2
t+1πt+1

+
∂ΠC

∂bt

1

Ct+1π2
t+1

)
− βEt

λsCt+1

πt+1

]}
,

where the λ̄s are the Lagrangian multipliers on the constraints in the monetary policy
problem, and the λs are the Lagrangian multipliers on the constraints in the fiscal
policy problem. We compute first-order conditions relative to Ct, Nt, Gt, πt,mct, bt, it
and λs.

Appendix B.3. Fiscal discretion with Taylor-type rules

LfT (bt−1, st) =

[
(1− χ) lnCt + χ lnGt −

N1+ϕ
t

1 + ϕ

]
(B.27)

+λfTt

[
ztNt − Ct −Gt −

γ

2
(πt − 1)2

]
+ λbTt

[
1

Ct(1 + it)
− βEt

1

Ct+1πt+1

]
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+λsTt

[
bt

1 + it
+

(
mctzt −

Nϕ
t Ct

1− χ

)
Nt −

bt−1

πt
−Gt

]
+λpTt

[
βEt

Ctπt+1(πt+1 − 1)

Ct+1

+
η

γ
ztNt

(
mct −

η − 1

η

)
− πt(πt − 1)

]
+λiTt

[
−(1 + it) +

π∗

β

( πt
π∗

)φπ]
+ βEtLfT (bt, st+1),

where λiTt is the Lagrangian multiplier on the Taylor-type rule followed by the monetary
authority. The fiscal authority maximizes (B.27) relative to Ct, Nt, Gt, πt, mct, it, bt,
and the first-order conditions are

FOC Ct:
1− χ
Ct
− λfTt −

λbTt
(1 + it)C2

t

− λsTt
N1+ϕ
t

1− χ
+ λpTt βEt

πt+1(πt+1 − 1)

Ct+1

= 0, (B.28)

FOC Nt: −Nϕ
t + λfTt zt + λstϕ

[
mctzt − (1 + ϕ)

CtN
ϕ
t

1− χ

]
+ λpTt

η

γ
zt

(
mct −

η − 1

η

)
= 0,

(B.29)

FOC Gt:
χ

Gt

− λfTt − λsTt = 0, (B.30)

FOC πt: − λfTt γ(πt − 1) + λsTt
bt−1

π2
t

− λpTt (2πt − 1) + λiTt
φπ
β

( πt
π∗

)φπ−1

= 0, (B.31)

FOC mct: λ
sT
t + λpTt

η

γ
= 0, (B.32)

FOC it: −
λbTt

Ct(1 + it)2
− λsTt

bt
(1 + it)2

− λiTt = 0, (B.33)

FOC bt: βλ
bT
t Et

1

(Ct+1πt+1)2

[
∂CT

∂bt
πt+1 +

∂ΠT

∂bt
Ct+1

]
+

λsTt
1 + it

− βEt
λsTt+1

πt+1

(B.34)

+βλpTt CtEt
1

C2
t+1

[
Ct+1(2πt+1 − 1)

∂ΠT

∂bt
− πt+1(πt+1 − 1)

∂CT

∂bt

]
= 0.

Expressions ∂CT/∂bt and ∂ΠT/∂bt denote the derivatives of functions Ct+1(st+1, bt) and
Πt+1(st+1, bt), respectively, relative to the level of debt.

Appendix B.4. Implementation

Let Ā be a bounded competitive equilibrium. Assume that there exists a unique
solution to system (7)-(9), (15), (19)-(20), (26) and (27). If {iTt , πTt } ∈ Ā and {Gt, τt} ∈
Āt, the solution to system (7)-(9), (15), (19)-(20), (26) and (27) is Ā. This statement
allows us to break the policy problem into two steps, as commonly done in the primal
approach: (i) the determination of the optimal allocation; and (ii) the determination
of policy rules that implement the desired allocation. The proof of the statement is
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trivial. According to the definition of competitive equilibrium, Ā satisfies (7)-(9), (15),
and (19)-(20). By substituting targets and equilibrium inflation in the monetary rule,
it can be easily seen that (27) is satisfied as well, while (26) holds by construction.
Hence, Ā is a solution to system (7)-(9), (15), (19)-(20), (26) and (27). If the system
admits a unique solution, rules (26) and (27) uniquely implement Ā. Therefore, to
guarantee implementation we need to guarantee uniqueness. To this purpose, we check
numerically that the Blanchard and Kahn (1980) condition holds and the solution to
the system coincides with Ā.

Appendix C. Solution method

We solve the model by resorting to a second-order perturbation method following
Schmitt-Grohé and Uribe (2004b), from whom we borrow some notation. Steinsson
(2003) first uses a perturbation method to solve for a Markov-perfect equilibrium in a
New Kenynesian model. Since his system of equations evaluated at the steady state
is independent of the unknown derivatives of decision rules, the approximation order
is inconsequential for the accuracy of his steady-state results. Klein et al. (2008) first
proposed a perturbation approach for cases similar to ours, where the non-stochastic
steady state and the dynamics of the model have to be solved jointly. In these cases, the
approximation error of decision rules also affects steady-state results. In principle, one
could progressively raise the approximation order until changes in the steady state are
small enough, as suggested by Klein et al. (2008). In practice, when the state space is
large, high-order approximations are computationally very expensive. Azzimonti et al.
(2009) document that in an environment similar to ours a second-order perturbation
method is roughly as accurate as a global method. Global methods still perform
relatively better to study the transitional dynamics, from which we abstract in this
paper.

Appendix C.1. Notation

We first cast the system of equilibrium conditions in the form

Et {f(x′2, x2, x
′
1, x1, θ1)} = 0, (C.1)

where x1 is an n1 × 1 vector of predetermined variables at time t and x2 is an n2 × 1
vector of non-predetermined variables at time t; f ≡ [f 1; ...; fn] is an n × 1 vector
of functions mapping <n2 × <n2 × <n1 × <n1 into <, n = n1 + n2; θ1 is a vector of
parameters; primes indicate variables dated in period t + 1. Vector x1 is partitioned
as x1 = [x11;x12]>, where x11 collects endogenous variables and x12 collects exogenous
variables. We assume that x12 follows the exogenous stochastic process

x′12 = Λx12 + η̃σε. (C.2)

Both vectors x12 and innovation ε have size nε×1, and the innovation is independently
and identically distributed over time with mean zero and variance-covariance matrix I.
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Both η̃ and Λ are matrices of order nε× nε and σ is a scalar. All eigenvalues of matrix
Λ are assumed to have modulus less than one. f is defined so that (C.2) holds and its
parameters are included in θ1. The candidate solution to model (C.1) has the form

x2 = G(x1, σ), (C.3)

x1 = H(x1, σ) + ησε,

where η is a matrix defined as η ≡ [∅; η̃] with size n1 × nε; G ≡ [G1; ...;Gn2 ] and
H ≡ [H1; ...;Hn1 ] are vectors of unknown functions that map <n1 into <. The unknown
functions are a solution to (C.1) if they satisfy the functional equation

F (x1, σ) ≡ Et {f(G(H(x1, σ) + ησε), G(x1, σ), H(x1, σ) + ησε, x)} = 0 (C.4)

for any x1, where (C.4) obtains from substituting the candidate solution (C.3) into
(C.1). The non-stochastic steady state is defined as a couple of vectors (x̄1, x̄2) such
that f(x̄2, x̄2, x̄1, x̄1; θ1) = 0. Notice that x̄2 = G(x̄1, 0) and x̄1 = H(x̄1, 0) because
σ = 0 and (C.1) imply Etf = f = 0.

Appendix C.2. A classic perturbation approach

Assume that f is continuous and twice continuously differentiable. Then, a second-
order Taylor expansion to functions G and H around the non-stochastic steady state
can be written as20

Gi ≈ gi0 + (x1 − x̄1)>gi1 +
1

2
(x1 − x̄1)>gi2(x1 − x̄1), i = 1, ..., n2; (C.5)

Hj ≈ hj0 + (x1 − x̄1)>hj1 +
1

2
(x1 − x̄1)>hj2(x1 − x̄1) + ηjσε, j = 1, ..., n1,

where gi0 and hj0 are scalars; gi1 and hj1 are vectors of order n1×1; gi2 and hj2 are matrices
of order n1 × n1; ηj denotes the j-th row of matrix η. Coefficients in (C.5) relate to
functions Gi and Hj and, at this stage, they are unknown. For example, elements of
gi1 are

gi1(j, 1) =
∂Gi(x1, σ)

∂x1(j, 1)

∣∣∣∣
x1=x̄1,σ=0

. (C.6)

In (C.5), there are n(1+n1 +n2
1) unknown coefficients that we stack in a vector denoted

by θ2. Equation (C.4) implies that for all x1 and σ

Fxk1 ,σj(x1, σ)

∣∣∣∣
x1=x̄1,σ=0

= 0 ∀j, k ∈ {0, 1, 2}, (C.7)

20Schmitt-Grohé and Uribe (2004b) prove that the coefficients of cross terms between x1 and σ are
equal to 0. All other non-zero terms that do not explicitly appear in (C.5), such as the second-order
terms in σ, are included in gi0 and hj0. For further details we refer to Schmitt-Grohé and Uribe (2004b).
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where the left-hand side in (C.7) stands for the derivative of F with respect to x1 taken
k times and with respect to σ taken j times. Schmitt-Grohé and Uribe (2004b) show
that equations (C.7) form a system of n(1 + n1 + n2

1) equations that allow us to solve
for θ2 as a function of the non-stochastic steady state and parameter θ1, i.e.,

S(θ2, x̄1, x̄2, θ1) ≡ Fxk1 ,σj(x1, 0)

∣∣∣∣
x1=x̄1,σ=0

= 0. (C.8)

The method boils down to two simple steps:

1. Solve f(x̄2, x̄2, x̄1, x̄1, θ1) = 0 to find x̄1(θ1) and x̄2(θ1);

2. Solve S(θ2, x̄1, x̄2, θ1) = 0 to find θ2(x̄1, x̄2, θ1).

The two steps can be performed sequentially because the first one does not require
knowledge of θ2.

Appendix C.3. A generalized perturbation approach

Markov-perfect equilibria often present an additional hurdle: the set of conditions
f involves the derivatives of unknown functions Gi and Hj. For instance, our system
of equations contains ∂C/∂bt. Following the notation outlined in the previous section,
system f includes

∂Gi(x1, σ)

∂x1

;
∂Hj(x1, σ)

∂x1

, (C.9)

and model (C.1) needs to be redefined as

Et

{
f

(
x′2, x2, x

′
1, x1,

∂G1(x1, σ)

∂x1

, ...,
∂Gn2(x1, σ)

∂x1

,

∂Hj(x1, σ)

∂x1

, ...,
∂Hn1(x1, σ)

∂x1

, θ1

)}
= 0,

i = 1, ..., n2 j = 1, ..., n1. (C.10)

One can similarly redefine solutions Gi and Hj by rewriting (C.4) accordingly. As in
Steinsson (2003) and Klein et al. (2008), the perturbation approach can be naturally
extended to accommodate this case. If (C.5) approximates (C.3), then derivatives of
Gi and Hj with respect to the state vector x1 can be approximated as

∂Gi(x1, σ)

∂x1

≈ gi1 + gi2(x1 − x̄1), (C.11)

∂Hj(x1, σ)

∂x1

≈ hj1 + hj2(x1 − x̄1).

Recall that unknown coefficients θ2 are found by using (C.6)-(C.8), which involve first-
and second-order derivatives of f evaluated at the steady state. If f also contains
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functions (C.9), their first- and second-order derivatives are needed. Again applying
approximation (C.11) immediately implies that

∂2Gi(x1, σ)

∂2x1

∣∣∣∣
x1=x̄1,σ=0

≈ gi2,
∂2Hj(x1, σ)

∂2x1

∣∣∣∣
x1=x̄1,σ=0

≈ hj2, (C.12)

∂3Gi(x1, σ)

∂3x1

∣∣∣∣
x1=x̄1,σ=0

≈ 0,
∂3Hj(x1, σ)

∂3x1

∣∣∣∣
x1=x̄1,σ=0

≈ 0.

Since the third derivative is zero for second-order accurate solutions, equation (C.8)
contains only the unknown coefficients θ2, as in the classic perturbation approach.
Therefore, conditional on knowing x̄1 and x̄2, the second step continues to apply and re-
sults by Schmitt-Grohé and Uribe (2004b) still hold. We can then recover θ2(x̄1, x̄2, θ1)
by solving

S(θ2, x̄1, x̄2, θ1) = 0. (C.13)

However, after substituting (C.11) into (C.10), the first step is different because

f(x̄2, x̄2, x̄1, x̄1, θ1, θ2) = 0 (C.14)

only defines implicit functions x̄1(θ1, θ2) and x̄2(θ1, θ2). Since the non-stochastic steady
state now depends on θ2, the perturbation steps cannot be performed sequentially. We
thus need to solve the system (C.13)-(C.14) jointly to find θ2, x̄1 and x̄2.

Appendix C.4. Numerical algorithm

We expand on the set of routines made publicly available by Schmitt-Grohé and
Uribe at http://www.columbia.edu/~mu2166/2nd_order.htm. Among others, they
provide routines gx hx.m, gxx hxx.m and gss hss.m to solve for coefficients θ2, given
θ1 and the non-stochastic steady state. We define the following steps:

1. Assume that θ2 is known;

2. Replace derivatives ofG andH with their approximation in f according to (C.11);

3. Compute x̄1 and x̄2 with a non-linear solver using θ1 and θ2 as inputs;

4. Use x̄1 and x̄2 as inputs in gx hx.m, gxx hxx.m and gss hss.m to compute θ∗2;

5. Require consistency by imposing θ2 = θ∗2.

We implement the algorithm in two alternative ways. We perform steps 1 to 5 simulta-
neously by using a non-linear solver on θ2, x̄1 and x̄2. Alternatively, we also start with
an initial guess on θ2 and iterate until convergence. When the number of state variables
becomes large, as in the case of closed-loop strategies, we fail to reach convergence for
some parameter values. In that case, we rely only on the first procedure.
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