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Abstract

This paper proposes a general computational framework for empirical estimation of financial agent
based models, for which criterion functions do not have known analytical form. For this purpose,
we adapt a nonparametric simulated maximum likelihood estimation based on kernel methods.
Employing one of the most widely analysed heterogeneous agent models in the literature devel-
oped by Brock and Hommes (1998), we extensively test properties of the proposed estimator and
its ability to recover parameters consistently and e�ciently using simulations. Key empirical find-
ings point us to the statistical insignificance of the switching coe�cient but markedly significant
belief parameters defining heterogeneous trading regimes with superiority of trend-following over
contrarian strategies. In addition, we document slight proportional dominance of fundamentalists
over trend following chartists in main world markets.

JEL: C14, C51, C63, D84, G02, G12
Keywords: heterogeneous agent model, simulated maximum likelihood, estimation, intensity of
choice, switching

1. Introduction

After the failure of traditional financial models in the deep financial crisis of 2007–2008,
the agent-based approaches in finance have attracted attention of both academicians as well as
practitioners and hence gradually replace traditional financial models in the recent literature. This
advancement emphasises that although the serious macroeconomic consequences of market fluctu-
ations are worldwide, the essence of problems remains at the level of individual market agents with
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are especially grateful. We are also indebted to C. Hommes, B. LeBaron, S. Barde, and participants of WEHIA 2014,
CFE 2014, First Bordeaux-Milano Joint Workshop on Agent-Based Macroeconomics 2015, WEHIA 2015, CEF 2015,
and doctoral seminar at Charles University for many useful comments and suggestions. The research leading to these
results received funding from the European Union’s Seventh Framework Programme (FP7/2007-2013) under grant
agreement No. FP7-SSH- 612955 (FinMaP). Support from the Czech Science Foundation under the P402/12/G097
DYME - ‘Dynamic Models in Economics’ project is gratefully acknowledged. J. Kukacka gratefully acknowledges
financial support from the Grant Agency of Charles University under the 192215 project.

⇤Corresponding author
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their heterogeneous expectations. The financial agent-based models (FABMs)1 reflect this well doc-
umented and systematic human departure from the representative agent’s full rationality towards
reasonably realistic bounded, limited rationality (Simon, 1957). An essential achievement of this
field is the ability to replicate the stylised facts of financial data and account for emergence of asset
market bubbles followed by sudden crashes. Recently, number of projects propose a courageous
attempt to complement or even alternate current mainstream policy making approaches through
the use of agent-based approaches, typically at the level of central banks. For this to happen, it is,
however, essential to be able to estimate these models on the empirical data.

Although the empirical estimation is an important part of the modelling cycle and is crucial
for model validation, one cannot find many attempts on empirical estimation of FABMs. Moreover,
looking a decade back in the financial literature, we neither observe any general consensus on the
estimation methodology, nor conclusive results. Fagiolo et al. (2007, pg. 202) even emphasise
“no consensus at all about how (and if) agent-based models should be empirically validated”.
Generally, there are two essential challenges in the estimation. First, a highly nonlinear and
complex nature of these systems prohibits researchers of using classical estimation methods as the
objective function often has no analytical expression. Second, a possible overparametrisation, high
number of degrees of freedom, and optional model settings together with the stochastic dynamics
further escalate the complexity of the problem. The emerging properties of these models cannot
be analytically deduced, a possible solution via method of moments, “while fine in theory, might
be too computationally costly to undertake” (LeBaron and Tesfatsion, 2008, pg. 249), and thus a
considerable simulation capacity for the numerical analysis is required.

Literature focusing on estimation of FABMs attempted to use several direct and indirect
estimation methods (see Section 2 for detailed review). In terms of direct estimation, the nonlinear
least squares and quasi maximum likelihood are applied in most of the cases instead of the classical
ordinary least squares or maximum likelihood due to complexity of the models. In these appli-
cations, key structural features of agent-based models, e.g. the evolutionary switching between
trading strategies, are sometimes restrained to obtain simplified approach which can be estimated
directly. However, for many models the aggregation equation, which would contain all parame-
ters of interest, cannot be derived analytically and therefore the application of direct estimation
techniques is not feasible. Indirect estimation based on simulating artificial data from the model
through which the aggregation concepts such as moments for the method of simulated moments
are derived is then used instead. These simulation-based methods “are very applicable and may
dramatically open the empirical accessibility of agent-based models in the future” as noted by
Chen et al. (2012, pg. 204). Simulation-based methods already used for the estimation include
the method of simulated moments, or generally the simulated minimum distance (Grazzini and
Richiardi, 2015). All these methods are based on minimising the (weighted) distance between two
sets of simulated and observed moments. So far, however, the use of simulation-based methods
for validation of agent-based models in economics is relatively rare. Moreover, as pointed out by
Fernández-Villaverde and Rubio-Ramı́rez (2010, pg. 23), the main di�culty remains in choosing
set of proper moments characterising the parameters, as choice of di↵erent moments may lead to
rather di↵erent point estimates. Grazzini and Richiardi (2015, pg. 151) further note that although
more complex, the simulation-based maximum likelihood estimation could be used instead, which
has not been explored by the literature yet.

1For a general overview of the financial agent-based modelling and its development, Chen et al. (2012), Hommes
(2006), or LeBaron (2006) provide excellent surveys.
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This paper makes a step forward and proposes more general computational framework for
empirical validation of full-fledged FABMs based on a recently developed non-parametric simulated
maximum likelihood estimator (NPSMLE) by Kristensen and Shin (2012). The main advantage
of this framework is that under general conditions met by FABMs, it is able to approximate the
conditional density of the data-generating process from numerically simulated observations. Thus,
the unknown likelihood function can be replaced by the simulated likelihood in the estimation, and
parameters can be recovered in a traditional way. We extensively test capability of the method
for the FABMs estimation purposes via large Monte Carlo study. We apply the methodology
to the most widely analysed model of Brock and Hommes (1998) for which we customise the
estimation. The key feature of the model is an evolutionary switching of agents between simple
trading strategies based on past realised profits, so called adaptive belief system, governed by the
switching parameter of the intensity of choice. This parameter is responsible for high nonlinearity
of the system and even possibly chaotic price motion. We presuppose that if NPSMLE succeeds in
estimation of the switching parameter in this generally challenging framework, it is likely to appear
more general and useful for other agent-based models in the future.

2. A route to empirical estimation of FABMs: Review of existing approaches

We start the discussion with reviewing of the main methods and results of the studies at-
tempting to estimate the FABMs. Design of these models is to a large extent motivated by empirical
evidence on behaviour of real financial agents accumulated at the turn of 1980s and 1990s (Allen
and Taylor, 1990; Frankel and Froot, 1990). These studies conclude that interactions of the two
main types of expectations govern the dynamics of financial markets. Fundamental traders, who
believe that possible mispricing is likely to be corrected over short periods by arbitrageurs and
that the market price thus tends to revert to its fundamental value, characterise a stabilising mar-
ket force. Technical analysts, also called ‘noise traders’ or chartists, who believe that a currently
observable trend will continue also in the short-run, constitute a destabilising market force respon-
sible for emergence of speculative bubbles. These types of traders might be rather understood as
possible types of available trading strategies as an intelligent market agent is likely to adapt his or
her strategy over time based on its relative historical performance. The time-varying evolution of
market fraction between these two types of trading strategies is thus an essence of many artificial
markets. In the seminal Brock and Hommes (1998) discrete-choice FABM this concept is embodied
via switching parameter of the intensity of choice defining the overall willingness of market agents
to switch between potential trading strategies. ‘N-type models’ consisting of fundamentalists and
few types of chartistic strategies, in which the autonomy of agents is constrained by a predeter-
mined class of beliefs, have been found successful in mimicking many financial stylised facts (Chen
et al., 2012).

By virtue of a relatively simple design, especially the 2-type and 3-type versions have been
subject of empirical estimation so far and therefore occur in the spotlight of this paper. Compared
to so called autonomous agents models, for which a typical representative is the ‘Santa Fe Artificial
Stock Market Model’ (Holland and Miller, 1991; Palmer et al., 1994) with rich system complexity,
advanced individual learning, and idiosyncratic distributions of uncertainty, the heterogeneity in
simple ‘N-type models’ is restrained. First, the agents are in fact homogeneous ex ante, but
randomness of their stochastic choices gives rise to evolving heterogeneity in time. Second, the
evolutionary selection of strategies is based only on social, not individual learning. Especially in
case of the 2-type and 3-type models we therefore believe that the phenomenon of supra-imposed
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artificial heterogeneity does not play an important role, actually, researchers rather balance on the
other side of the problem when designing relatively trivial models that account only for the most
robust heterogeneous features of real markets.

Tables 1 and 2 summarise attempts to statistically estimate the parameters of various FABMs
in the literature. Looking at the few studies representing circa fifteen years of research, we can-
not observe any general consensus on the estimation methodology, nor conclusive results. With
this respect, our summary complements the conclusions of Fagiolo et al. (2007, pg. 199, 202). As
depicted in the third column of Tables 1 and 2, the three estimation methods: nonlinear least
squares, quasi maximum likelihood, and the method of simulated moments, prevail among others.
When moving to the fourth column of Tables 1 and 2, we can see how the choice of estimated
parameters is a↵ected by various model designs. Nonetheless, we can observe a general tendency
to estimate mainly parameters related to behavioural rules of agents: belief coe�cients defining
individual trading strategies and the intensity of choice or its corresponding concepts such as muta-
tion, herding tendency, and switching thresholds. These parameters are unambiguously important
for the economic interpretation of given models.

Note that the estimated intensity of choice from Tables 1 and 2, however, cannot be directly
compared across various models, assets, or time periods. It is a unit-free variable and its magnitude
is conditional on the specific model design or the specific dataset. On the other hand, the intensity
of choice is a crucial and very robust driver of the data generating process behind switching FABMs
and to a large extent determines the behaviour of the system in a very consistent manner: zero
intensity of choice fixes market fractions and does not allow for any evolutionary switching, high
values implicate a wild switching for vast majority of model specifications, assets, or periods. Rela-
tively small positive intensity of choice is associated with a presence of some detectable behavioural
switching.

First, as depicted in Tables 1 and 2, we observe a strong dominance of models derived from
the adaptive belief system: 28 from 43 models to some extent follow the tradition of the Brock and
Hommes (1998) original framework, seven is based on interactive agent hypothesis (Lux, 1995) and
only three on the ant type of system (Kirman, 1993). These numbers strongly reflect conclusions
of Chen et al. (2012, pg. 207) stating that “the Lux model was rejected, similar to the rejection
of the ant type of model” based on its empirical validation in favour of the adaptive belief system
that seems feasible, however challenging, for empirical estimation. Indeed, there are only four
new empirical studies in Table 2 based on the interactive agent hypothesis and none derived from
the ant type. The strong dominance of the adaptive belief system in the recent literature is the
principal reason why we analyse the original Brock and Hommes (1998) model later in this study.

Second, we might observe some regularities in the use of particular estimation methods. Ant
type models are estimated solely using the method of simulated moments, nonetheless, all three
works are considerably related and elaborated by the same group of authors. The three original
interactive agent hypothesis models from Table 1 are intentionally designed so that authors are able
to theoretically derive the likelihood function and use maximum likelihood, while the four ‘new’
models are estimated solely via simulations based on the method of moments. On the other hand,
all adaptive belief system models are estimated via relatively less complicated direct techniques:
nonlinear least squares and quasi maximum likelihood or in some specific simplified cases even by
ordinary least squares and maximum likelihood.

Third, in terms of estimated parameters, authors dominantly make e↵orts to minimise the
set of estimated coe�cients (see the ‘#’ column in Tables 1, 11) to a small number of the most
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Table 1: Estimation methods of FABMs I.

Models Origin Methods Parameters estimated # Data Type Fit |IOC|
Alfarano et al. (2005) IAH ML Herding tendency 2 d:5034–9761 o. s,fx,g - -
Alfarano et al. (2006) IAH ML Herding tendency 2 d:5495,6523 o. s,fx - -
Alfarano et al. (2007) IAH ML Herding tendency 2 d:1975–2001 s - -
Amilon (2008) ABS EMM/ML Intensity of choicea 15 d:1980–2000 s p-v=0% 1.99(i),1.91(s)
Boswijk et al. (2007) ABS NLS Belief coe�cients/Intensity of choice 3 a:132 o. s R2=.82 10.29(i),7.54(i)
de Jong et al. (2009b) ABS NLS Belief coe�cients/Intensity of choice 5 w:102 o. fx adjR2=.14 1.52(i)
de Jong et al. (2010) ABS QML Belief coe�cients/Intensity of choice 7 m:238 o. fx - .0007(i)–6.29(s)
Diks and Weide (2005) ABS ML (G)ARCH relations/Sign of MA(1) c. 3 d:3914 o. fx - -
Ecemis et al. (2005) AA IEC Market fractions/Behavioural rules 3 - s - -
Gilli and Winker (2003) ANT MSM Mutation/Conviction rate 3 d:1991–2000 fx NA -
Manzan and Westerho↵ (2007) ABS OLS Reaction c./Switching threshold 4 m:1/74–12/98 fx NA -
Reitz and Westerho↵ (2007) ABS QML Behavioural rules/Intensity of choice 6 m:365 o. c - .17(s)–.47(s)
Westerho↵ and Reitz (2003) ABS QML Behavioural rules/Intensity of choice 7 d:4431 o. fx - .02(s)–.17(s)
Winker and Gilli (2001) ANT MSM Mutation/Conviction rate 2 d:1991–2000 fx NA -
Winker et al. (2007) ANT MSM Mutation/Conviction rate 3 d:1991–2000 fx p-v<1%b -

Note: The Table is adopted from Chen et al. (2012, pg. 203) and amended by authors. Authors of articles are alphabetised. The full meaning of the acronyms
under ‘Origin’: AA stands for autonomous agents, ABS for adaptive belief system, ANT for the ant type of system, and IAH for interactive agent hypothesis.
The full meaning of the acronyms under ‘Methods’: ML stands for maximum likelihood, EMM for e�cient method of moments, NLS for nonlinear least squares,
QML for quasi maximum likelihood, OLS for ordinary least squares, IEC for interactive evolutionary computation, and MSM (SMM) for method of simulated
moments. ‘#’ displays total number of estimated parameters; ‘Data’ describes data frequency: ‘d/w/m/q/a’ for daily/weekly/monthly/quarterly/annual,
and number of observations (where no specific figure is provided, we report starting and final years); ‘Type’ shows the type of data: ‘s/fx/c/g/re’ for stock
markets/FX/commodity markets/gold/real estate; ‘Fit’ reports the statistical fit of the estimation (R2, its alternatives, p-value of the J-test of overidentifying
restrictions to accept the model as a possible data generating process); and where relevant, ‘|IOC|’ displays the absolute estimated value of the switching
parameter of the intensity of choice (see Equation 17), furthermore ‘s’/‘i’ denotes its statistical significance/insignificance at 5% level. Figures are rounded to
2 decimal digits.

aChen et al. (2012) do not report other important parameters estimated: belief coe�cients, intensities of exogenous noises, risk aversion, information
costs for fundamentalists, forgetting factors, and memory in the fitness measure.

bWhile p-val for GARCH(1,1) model > 5%.

5



Table 2: Estimation methods of FABMs II. a).

Models Origin Methods Parameters estimated

Barunik and Vosvrda (2009) Cusp ML Asymmetry and bifurcation factors/Location and scale coe�cient
Barunik and Kukacka (2015) Cusp RV/ML Asymmetry and bifurcation factors/Polynomial data approximation
Bolt et al. (2011) ABS NLS(?) Expectations’ bias/Discount factor/Belief coe�cients/Intensity of choice
Bolt et al. (2014) ABS NLS Belief coe�cients/A-synchronous updating ratio/Intensity of choice
Cornea et al. (2013) ABS VAR/NLS Fundamentalists’ belief coe�cient/Intensity of choice
Chen and Lux (2015) IAH MSM Standard deviation of innovations/Herding tendency
Chiarella et al. (2014) ABS QML Belief & market maker coe�cients/Memory decay rate/Intensity of choice
Chiarella et al. (2015) ABS QML Belief coe�cients/Variance risk premium/Intensity of choice
de Jong et al. (2009a) ABS ML Belief coe�cients/Intensity of choice
ter Ellen and Zwinkels (2010) ABS QML Belief coe�cients/Intensity of choice
ter Ellen et al. (2013) ABS OLS/NLS Behavioural rules/Intensity of choice
Franke (2009) ABS MSM Reaction coe�cients/Switching threshold
Frijns et al. (2010) ABS EMS Local volatility/Belief coe�cients/Intensity of choice
Franke and Westerho↵ (2011) IAH MSM Behavioural rules/Flexibility/Predisposition coe�cients
Franke and Westerho↵ (2012) ABS/IAH MSM Behavioural rules/Wealth/Predisposition/Misalignment coe�cients
Ghonghadze and Lux (2015) IAH GMM Standard deviation of innovations/Herding tendency
Grazzini et al. (2013) Bass (1969) ML, MSM Probability of independent adoption/Peer pressure/Population size
Grazzini and Richiardi (2015) - SMD -
Goldbaum and Zwinkels (2014) ABS OLS (iterative) Belief coe�cients
Hommes and Veld (2015) ABS NLS(?) Belief coe�cients/A-synchronous updating ratio(?)/Intensity of choice
Huisman et al. (2010) ABS QML Belief coe�cients/Intensity of choice
Kouwenberg and Zwinkels (2014) ABS QML Belief coe�cients/Intensity of choice
Kouwenberg and Zwinkels (2015) ABS QML Price elasticity/Belief coe�cients/Intensity of choice
Lof (2012) ABS NLS Belief coe�cients/Intensity of choice
Lof (2015) ABS VAR/NLS Discount factors/Belief coe�cients/Intensity of choice
Reitz and Slopek (2009) ABS QML GARCH coe�cients/Belief coe�cients/Transition parameter
Recchioni et al. (2015) ABS calibration Belief coe�cient/Intensity of choice/Risk aversion/Fundamental value/Memory
Verschoor and Zwinkels (2013) ABS ML Belief coe�cients/Intensity of choice

Note: The Table follows the logic of Table 1 and summarises recent research not covered there. Authors of articles are alphabetised. The full meaning
of the acronyms under ‘Origin’: Cusp stands for the cusp catastrophe model, ABS for adaptive belief system, and IAH for interactive agent hypothesis.
The full meaning of the acronyms under ‘Methods’: ML stands for maximum likelihood, RV for realised volatility, NLS for nonlinear least squares,
VAR for vector autoregression, MSM (SMM) for method of simulated moments, QML for quasi maximum likelihood, OLS for ordinary least squares,
EMS for empirical martingale simulation by Duan and Simonato (1998), GMM for generalized method of moments, and SMD for simulated minimum
distance. ‘?’ means that given information is unclear to authors.
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relevant ones governing dynamics of the model and determining heterogeneous behaviour of agents:
in 22 cases, four or less coe�cients are estimated and only nine works consider seven or more
parameters. For the adaptive belief system models, belief coe�cients are always estimated and
where relevant, authors always pay specific attention to the sign and statistical significance of
the switching coe�cient of the intensity of choice. This is a justified approach and as aptly
summarised by Chen et al. (2012, pg. 202) w.r.t. simulation studies: “supposing that we are given
the significance of the intensity of choice in generating some stylized facts, then the next legitimate
question will be: can this intensity be empirically determined, and if so, how big or how small is
it?”.

Another interesting aspect is hidden in the utilised datasets (columns ‘Data’). Almost one-
half of studies, 20 out of 43, use daily datasets providing thousands of observations. This is an
important aspect both from the statistical point of view, as datasets are long enough for sound
statistical inference, as well as from the viewpoint of model stability because number of periods
is generally su�ciently long for the model dynamics to stabilise. Especially for simulation-based
methods the stabilisation period deserves adequate consideration. For instance in our Monte Carlo
study (see Section 4), we always discard first 100 observations where the model dynamics is being
established. Working with quarterly or even annual data, we would be forced to fiercely shorten the
stabilisation period, possibly a↵ecting the relevance of the results. Availability of long historical
daily-frequency datasets is one of important distinguishing features of financial agent-based models
compared to macroeconomic agent-based models. Conversely, surprisingly many studies employ
low-frequency data ranging from weekly to annual observations. Regarding the type of the data
(columns ‘Type’), stock market (20 studies) and foreign exchange (FX) data (17 studies) largely
prevail, followed by housing market data (five studies), various commodities (four studies), and gold
(three studies). In the past (see Table 1), almost all models were estimated using stock market and
FX data mainly of daily frequency, more recent estimation attempts (see supplementary Table 11
in Appendix A) o↵er considerably richer composition of markets and frequencies.

2.1. Performance of OLS, NLS, and MSM

One of the most intriguing areas of possible analysis is the relative performance of particular
models and estimation methods. However, we need to admit that strong mutual heterogeneity of
models besides variability of methods make eventual conclusions rather hypothetical and possible
candidates for further research. Starting with the performance, in columns ‘Fit’ we report R2 or
its various alternatives for ordinary least squares, nonlinear least squares, and possibly maximum
likelihood, and the p-value of the general specification J-test of overidentifying restrictions to accept
the structural model as a possible data generating process. Having p-value higher than a chosen
significance level, the null hypothesis of the empirical data being possibly generated by the analysed
model of the ‘true’ moment-generating process cannot be rejected.

Regarding the R2 type of fit, the vast majority of models, eight out of ten, exhibit almost
suspiciously very good fit ranging between 70–97%. Nonetheless, it is important to add that these
results are most often based on low-frequency datasets and therefore relatively straightforward
estimation methods might not be very challenged to find a well fitting model for maximum of a few
hundreds observations. The exception are cusp models that are, however, estimated via maximum
likelihood and only so called pseudo-R2 is reported.

A di↵erent situation is observable for various methods of moments: roughly one-half of mod-
els are rejected based on the J-test as the data generating processes for given dataset and moments
at a usual 5% level. Only the most recent contributions show acceptance of a particular model
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but sometimes only for selected datasets from several options (Chen and Lux, 2015; Ghonghadze
and Lux, 2015). All these studies are based on daily stock market or foreign exchange data. As
a matter of interest, we can compare the performance of models and selected moments based on
the S&P500 dataset that is shared by all six stock market models using the method of moments
and that covers with a small exception of the older work of Amilon (2008) almost the similar span
of data. We can simply follow Franke and Westerho↵ (2012, pg. 1208) arguing by a large number
of existent FABMs and the ‘wilderness of bounded rationality problem’ and calling for a general
guidance and a model contest to “judge which models can mimic the stylized facts, say, ‘fairly well’
and which are even ‘very good’ in this way”. Authors suggest the method of simulated moments
as a “superb tool to serve this purpose”. If we compare the six above mentioned models, the two
most successful are those by Franke and Westerho↵ (2012) based on a rich set of nine moments
reaching the J-test p-value 32.6%, and by Ghonghadze and Lux (2015) employing a partly di↵erent
set of eight moments, with p-value amounting to 50.2% for S&P500.

In summary, application of the methods of moments, mainly the method of simulated mo-
ments version, o↵ers a tool for mutual comparison of models and estimation frameworks, however,
its application struggles with practical technical issues that require a further development of the
method. The most recent contribution of Chen and Lux (2015, pg. 16) explains the main problem
prohibiting proper identification that is shared by all these studies: “we have to cope with multiple
local minima as well as with relatively flat surfaces in certain regions of the parameter space. Any
standard optimisation algorithm could, thus, not be expected to converge to a unique solution from
di↵erent initial conditions”. Another closely related problem is a very rugged surface of the objec-
tive function, further embarrassing standard methods of optimisation search. To tackle all these
issues, authors suggest a strategy of a preliminary rough grid search followed by a fine-tuning on a
considerably restricted subset of the parameter space. We generally follow these recommendations
also within the empirical application of NPSMLE, but opt for a strategy of multiple random start-
ing points. Finally, methods of moments inevitably challenge researchers to partially arbitrarily
select a set of moments that must be representative enough to hope in capturing well the most
crucial features of the data, but at the same time reasonably bounded to accommodate compu-
tational burden and possible clashes in explanatory potential of particular moments. Such a task
does not seem to be satisfactorily resolved for FABMs yet, however, the progress in time is evident
also within the very limited sample of only several analysed papers.

2.2. Performance of ML and QML

Application of methods based on the maximum likelihood principle shares a relatively similar
problem with methods of moments: the objective function is often very flat in direction of some
parameters, typically the switching parameter of the intensity of choice. Problematic identification
of given parameters is then reflected in large standard deviations of estimates preventing from
contributive interpretation of results. In the majority, especially older, studies a discussion about
the shape of the log-likelihood function is missing and the reader might only guess from insignificant
estimates of the switching coe�cient. A few most recent studies report that the likelihood is not
very informative and the model accuracy is not sensitive for given parameter, and “the other
parameters can to a large extent compensate for changes in switching coe�cient” (Bolt et al.,
2014, pg. 15). However, the shape of the objective function is almost never rigorously studied. An
exception is Hommes and Veld (2015), who emphasise a very flat shape of the likelihood function
for the intensity of choice selection that hampers validity of the test to reject the null hypothesis of
switching, especially for small samples. On the other hand, smoothness of the objective function
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does not seem to be an issue for maximum likelihood methods in comparison with methods of
moments. This important finding is further confirmed later in this study.

2.3. Switching

Finally, a high importance is devoted to the existence of behavioural switching, that is, to the
sign, magnitude, and the statistical significance of the intensity of choice. Following the question
of Chen et al. (2012, pg. 202), “how big or how small is it?”, we however need to emphasise once
again that the magnitude of this unit-free variable cannot be directly rigorously compared, because
its e↵ect is conditional on the particular model and data. Four studies find a very large switching
coe�cients (Bolt et al., 2011, 2014; ter Ellen et al., 2013; Frijns et al., 2010), however, statistically
insignificant in all cases. In other relevant studies (20 out of 23), the estimated values are mostly
found single-digit and often close to zero, that well resembles the economic intuition of some, but
realistically low switching frequency between major types of trading strategies. Although the sign
of the parameter is of crucial importance, in Tables 1 and 11 we present absolute values because the
interpretation of the positive/negative sign depends on the specific design of the model. Almost
all studies report the theoretically expected sign of the e↵ect, nonetheless, we do not observe any
conclusive results regarding the statistical significance of the intensity of choice, that is, no apparent
connection can be observed w.r.t. the ‘#’ number of estimated parameters or the frequency and
length of the data. Statistically significant and insignificant findings are reported across these
categories without any clear pattern. On the other hand, some, but rather hypothetical, relation
might be observed based on the ‘Type’ of the data: statistically significant estimates strongly
dominate for commodities and weakly prevail for stock markets; insignificant estimates prevail for
real estate markets and dominate for FX markets. However, as the sample of studies is rather
small and often problematically mutually comparable, these findings should be interpreted with a
high caution.

2.4. Concluding remarks

To sum up, although we claim in the Introduction that so far neither general consensus
on the estimation methodology, nor conclusive results are clearly observable, we might, however,
conclude the most important findings, issues, and tendencies observed within the field. First,
surprisingly no considerable e↵ect of the curse of dimensionality is directly observable across the
sample of assessed studies. Models with only few parameters estimated show a balanced result
in terms of the estimation performance as well as the ability to reveal the switching parameters
of the intensity of choice. Surprisingly, studies where a relatively large number of parameters is
estimated reveal mostly favourable results in both aspects. The adaptive belief system constitutes
a largely dominant modelling framework and seems relatively successfully estimable via nonlinear
least squares and quasi maximum likelihood. But the models need to be specifically designed
and often simplified accordingly to allow for taking advantage of these methods. The flatness of
the log-likelihood function, especially in the direction of the switching coe�cient, seems to be the
main handicap of the maximum likelihood based estimation methods that has not been su�ciently
studied yet. Simulation-based methods are generally applicable and not constrained by strict
theoretical assumptions, but yet not developed enough to bring unambiguous conclusions. Most
importantly, they su↵er from issues related to flatness and roughness of the surface of the objective
function. However, a future progress of simulation-based methods, especially via solving related
rather technical issues, is likely to be largely encouraged and fostered by recent rapid development
of high-speed computational facilities. With this respect, our paper is a step in this direction.
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3. Simulation-based estimation of FABMs: The case of Brock and Hommes model

This section proposes a general computational framework for empirical estimation of full-
fledged FABMs. As discussed in the previous section, few authors apply simulation-based methods
of moments to overcome the problem of unavailability of the criterion functions. We step forward,
and adapt the simulated maximum likelihood estimator (MLE) based on nonparametric kernel
methods recently suggested by Kristensen and Shin (2012). The methodology was developed for
dynamic models where no closed-form representation of the likelihood function exists and thus
we cannot derive the usual MLE. As we see later, NPSMLE constitutes an opportune estimation
method for general class of FABMs.

3.1. The Brock and Hommes (1998) model

Our modelling framework follows one of the most widely analysed FABMs, the seminal Brock
and Hommes (1998) model. The model represents a stylised financial market application of the
adaptive belief system, the endogenous evolutionary selection of heterogeneous expectation rules
(Lucas, 1978). We consider an asset pricing model with one risky and one risk free asset. The
wealth dynamics of each agent is of the following form:

Wt+1 = RWt + (pt+1 + yt+1 �Rpt)zt, (1)

where Wt+1 denotes the total wealth at time t + 1. The risk-free asset is perfectly elastically
supplied at a fixed gross rate R = 1+ r, i.e. r stands for the constant risk-free interest rate. pt and
{yt} denote the ex-dividend price per share of the risky asset at time t and its stochastic dividend
process, respectively. Lastly, zt represents the amount of shares of the risky asset purchased at
time t. The utility of each agent is given by an exponential-type constant absolute risk aversion
(CARA) utility function U(W ) = �exp(�aW ), where a > 0 is a risk-aversion parameter. The
Walrasian auction scenario for setting the market clearing price is assumed, i.e. pt makes demand
for the risky asset equal to supply and agents are ‘price takers’.

There are H 2 N di↵erent trading strategies available to agents. Let Et, Vt denote the
conditional expectation and conditional variance operators. Eh,t, Vh,t then represent beliefs of agent
class 1  h  H that uses trading strategy h about the conditional expectation and conditional
variance of wealth based on a publicly available information set Ft = {pt, pt�1, . . . ; yt, yt�1, . . . }.
For analytical tractability, beliefs about the conditional variance of excess returns are assumed
to be constant, i.e. Vh,t(pt+1 + yt+1 � Rpt) = �2, implying conditional variance of total wealth
Vh,t(Wt+1) = z2t �

2.
Assuming myopic mean-variance maximisation, the optimal demand for the risky asset zh,t

for each agent class h solves:

max
zt

n

Eh,t[Wt+1]�
a

2
Vh,t[Wt+1]

o

. (2)

Therefore:
Eh,t[pt+1 + yt+1 �Rpt]� a�2zh,t = 0, (3)

zh,t =
Eh,t[pt+1 + yt+1 �Rpt]

a�2
. (4)
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Let nh,t denote fractions of agents of classes h 2 {1, . . . H} at time t satisfying
PH

h=1 nh,t = 1. Let
zs,t be the overall supply of outside risky shares per all agents. The Walrasian temporary market
equilibrium for the risky asset then yields:

H
X

h=1

nh,tzh,t =
H
X

h=1

nh,t

⇢

Eh,t[pt+1 + yt+1 �Rpt]

a�2

�

= zs,t. (5)

In a specific case of zero supply of outside risky shares, zs,t = 0 8 t, the market equilibrium satisfies:

Rpt =
H
X

h=1

nh,t{Eh,t[pt+1 + yt+1]}. (6)

In a completely rational market assuming all agents identical with homogeneous expectations, pt
is completely determined by fundamentals and Equation 6 thus reduces to Rpt = Et[pt+1 + yt+1].
The price of the risky asset is then given by the discounted sum of its future dividend cash flow:

p⇤t =
1
X

k=1

Et[yt+k]

(1 + r)k
, (7)

where p⇤t denotes the fundamental price depending upon the stochastic dividend process {yt}. The
fundamental price provides an important benchmark for asset valuation under rational expectations
based on economic fundamentals. In a specific case of an independent identically distributed (i.i.d.)
process {yt}, Et{yt+1} = ȳ is a constant. All agents are then able to derive p⇤t by the simple formula:

p⇤ =
1
X

k=1

ȳ

(1 + r)k
=

ȳ

r
. (8)

For the subsequent analysis it is convenient to work with the deviation xt from p⇤t instead of price
levels:

xt = pt � p⇤t . (9)

3.1.1. Heterogeneous beliefs

A key concept of the model is the existence of heterogeneous beliefs about future prices.
Beliefs of individual agent classes are assumed in the following form:

Eh,t(pt+1 + yt+1) = Et(p
⇤
t+1 + yt+1) + fh(xt�1, . . . , xt�L), for all h, t, (10)

where Et(p⇤t+1 + yt+1) denotes the conditional expectation of the fundamental price based on the
information set Ft, fh is a deterministic function which can di↵er across agent classes h and
represents a ‘h-type’ trading strategy, and L indicates the number of lags.

From Equation 10 it follows that beliefs about future dividends flow:

Eh,t(yt+1) = Et(yt+1), h = 1, . . . H, (11)

are the same for all agents and equal to the true conditional expectation. On the other hand,
agents’ heterogeneous beliefs about future price abandon the perfect rationality paradigm which is
crucial step towards the heterogeneous agent modelling. fh allows individual agents believe that
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the market price will di↵er from the fundamental value p⇤t and thus the form of beliefs:

Eh,t(pt+1) = Et(p
⇤
t+1) + fh(xt�1, . . . , xt�L), for all h, t, (12)

allows prices to deviate from their fundamental value.
The heterogeneous market equilibrium from Equation 6 can thus be reformulated in the

deviations form and conveniently used in empirical and experimental testing. Combining Equations
9, 10 and

PH
h=1 nh,t = 1 we obtain:

Rxt =
H
X

h=1

nh,tEh,t[xt+1] =
H
X

h=1

nh,tfh(xt�1, . . . , xt�L) ⌘
H
X

h=1

nh,tfh,t, (13)

where nh,t represent values related to the beginning of period t, before the equilibrium price de-
viation xt is observed. The actual market clearing price pt might then be calculated simply using
Equation 9.

3.1.2. Selection of strategies

Beliefs of individual agents are updated evolutionary according to the adaptive belief system
driven by endogenous market forces (Brock and Hommes, 1997). The adaptive belief system is an
expectation feedback system in which variables depend partly on the known values and partly on
the future expectations.

The profitability measures for strategies h 2 {1, . . . H} are derived from past realised profits
as:2

Uh,t = (xt �Rxt�1)
fh,t�1 �Rxt�1

a�2
. (16)

Market fractions nh,t of agent classes h 2 {1, . . . H} are derived under the discrete choice
probability framework using the multinomial logit model:

nh,t =
exp(�Uh,t�1)

PH
h=1 exp(�Uh,t�1)

, (17)

2Additional memory can be introduced into the profitability measure e.g. as a weighted average of past realised
values:

UM,h,t = Uh,t + ⌘UM,h,t�1, (14)

where 0  ⌘  1 denotes the ‘dilution parameter’ of the past memory in the profitability measure. Nonetheless, for
the majority of examples, Brock and Hommes (1998) use ⌘ = 0 to keep derivations analytically tractable and thus
they analyse models without memory. Another approach to agents’ memory is suggested by Barunik et al. (2009)
where the profitability measure in Equation 16 is extended via memory parameters mh:

Uh,t =
1
mh

mh�1X

l=0


(xt�l �Rxt�1�l)

fh,t�1�l �Rxt�1�l

a�2

�
. (15)

The memory for each individual trading strategy h 2 {1, . . . H} is then randomly generated from the uniform
distribution U(0,mh).
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where the lagged timing of Uh,t�1 ensures that all information for updating of market frac-
tions nh,t is available at the beginning of period t and � � 0 is the intensity of choice parameter
measuring how fast are agents willing to switch between di↵erent trading strategies.

3.1.3. Basic strategy types

The original paper by Brock and Hommes (1998) analyses an artificial market consisting only
of few simple trading strategies. Authors argue that only very simple forecasting rules can have
a real impact on equilibrium prices because complicated strategies are unlikely to be understood
and followed by a su�cient number of traders. Trading strategies thus have a simple linear form:

fh,t = ghxt�1 + bh, (18)

where gh denotes the trend parameter and bh is the bias parameter of the trading strategy h.
The first agent class are fundamentalists. They believe that the asset prices are deter-

mined solely by economic fundamentals according to the e�cient market hypothesis (Fama, 1970).
Therefore the price can be simply computed as the present value of the discounted future divi-
dends flow. Fundamentalists also believe that prices always converge to their fundamental values.
In the heterogeneous agent model, fundamentalists comprise the special case of Equation 18 with
gh = bh = fh,t = 0. The fundamental strategy have complete past market prices and dividends in
its information set Fh,t. The fundamentalists’ demand also reflects market actions of other agent
classes but fundamental traders are not aware of the fractions nh,t of other trading strategies.
Fundamentalists might pay costs C � 0 to obtain market information and to understand how
economic fundamentals work. However, Brock and Hommes (1998) themselves mostly set C = 0
to keep simplicity of the analysis. Another agent class represents chartists. They believe that asset
prices can be partially predicted taking various patterns observed in the past data into account,
e.g. using simple technical trading rules and extrapolation techniques. If bh = 0, trader h is called
a pure trend chaser if 0 < gh  R and a strong trend chaser if gh > R. Next, the trader h is called
a contrarian if �R  gh < 0 or a strong contrarian if gh < �R. If gh = 0, trader h is considered
to be purely upward biased if bh > 0 or purely downward biased if bh < 0. Combined trading
strategies with gh 6= 0 and bh 6= 0 are certainly also possible.

3.2. Construction of the NPSMLE

This section introduces the estimation framework for the Brock and Hommes (1998) model
based on the simulated MLE proposed by Kristensen and Shin (2012). Let us assume processes
(x, v), x : t 7! Rk, v : t 7! Vt, t = 1, . . . ,1 with time-varying Vt. Suppose that we have T
realisations {(xt, vt)}Tt=1. Let us further assume the time series {xt}Tt=1 are generated by a fully
parametric model:

xt = qt(vt, "t, ✓), t = 1, . . . , T, (19)

where a function q : {vt, "t, ✓} 7! Rk, ✓ 2 ⇥ ✓ Rl is an unknown parameter vector, and "t is an i.i.d.
sequence with known distribution D", which is (without loss of generality) assumed not to depend
on t or ✓. In general, the processes (x, v) can be non-stationary and vt is allowed to contain other
exogenous variables than lagged xt. We also assume the model to have an associated conditional
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density ct(x|v; ✓), i.e.

C(x 2 A|vt = v) =

Z

A
ct(x|v; ✓)dx, t = 1, . . . , T, (20)

for any Borel set A ✓ Rk.
Let us now suppose that ct(x|v; ✓) from Equation 20 does not have a closed-form represen-

tation. In such situation, we are not able to derive the exact likelihood function of the model in
Equation 19 and thus a natural estimator of ✓, the maximiser of the conditional log-likelihood:

e✓ML = argmax✓2⇥LT (✓), LT (✓) =
T
X

t=1

log ct(xt|vt; ✓) (21)

is not feasible.
In such situation, however, we are still able to simulate observations from the model in

Equation 19 numerically.3 The method presented allows us to compute a simulated conditional
density, which we further use to gain a simulated version of the MLE.

To obtain a simulated version of ct(xt|vt; ✓) 8 t 2 h1, . . . , T i, x 2 Rk, v 2 Vt, and ✓ 2 ⇥, we
firstly generate N 2 N i.i.d. draws from D", {"i}Ni=1, which are used to compute:

X✓
t,i = qt(vt, "i, ✓), i = 1, . . . , N. (22)

These N simulated i.i.d. random variables, {X✓
t,i}Ni=1, follow the target distribution by con-

struction: X✓
t,i ⇠ ct(·|vt; ✓), and therefore can be used to estimate the conditional density ct(x|v; ✓)

with kernel methods. We define:

bct(xt|vt; ✓) =
1

N

N
X

i=1

K⌘(X
✓
t,i � xt), (23)

where K⌘( ) = K( /⌘)/⌘k, K : Rk 7! R is a generic kernel and ⌘ > 0 is a bandwidth. Under
regularity conditions on ct and K, we get:

bct(xt|vt; ✓) = ct(xt|vt; ✓) +OP (1/
p

N⌘k) +OP (⌘
2), N �! 1, (24)

where the last two terms are oP (1) if ⌘ �! 0 and N⌘k �! 1.
Having obtained the simulated conditional density bct(xt|vt; ✓) from Equation 23, we can now

derive the simulated MLE of ✓:

b✓NPSMLE = argmax✓2⇥ bLT (✓), bLT (✓) =
T
X

t=1

log bct(xt|vt; ✓). (25)

The same draws are used for all values of ✓ and we may also use the same set of draws from D"(·),
{"i}Ni , across t. Numerical optimisation is facilitated if bLT (✓) is continuous and di↵erentiable in ✓.

3For cases in which the model in Equation 19 is itself intractable and thus we cannot generate observations
from the exact model, Kristensen and Shin (2012) suggest a methodology for approximate simulations and define

regularity conditions for the associated approximate NPSMLE b✓APPROX to have the same asymptotic properties as
the simulated b✓NPSMLE defined in Equation 25.
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Considering Equation 23, if K and ✓ 7! qt(v, ", ✓) are s � 0 continuously di↵erentiable, the same
holds for bLT (✓).

Under the regularity conditions, the fact that bct(xt|vt; ✓)
P�! ct(xt|vt; ✓) implies that also

bLT (✓)
P�! LT (✓) as N �! 1 for a given T � 1. Thus, the simulated MLE, b✓NPSMLE , retains the

same properties as the infeasible MLE, e✓ML, as T,N �! 1 under suitable conditions.

3.3. Advantages and disadvantages

To quote from Kristensen and Shin (2012, pg. 85), “one of the merits of NPSML is its general
applicability”. Authors further provide three examples of application of the methodology. The
first one comprises an estimation of the short-term interest rate model of Cox et al. (1985). The
second example applies the methodology to a jump-di↵usion model of daily S&P500 returns by
Andersen et al. (2002). In the third one the general capabilities of the NPSMLE to estimate a
generic Markov decision processes are examined.

Kristensen and Shin (2012) report several advantages and disadvantages of the proposed
estimator. Starting with the former, the estimator works whether the observations xt are i.i.d. or
non-stationary because the density estimator based on i.i.d. draws is not a↵ected by the depen-
dence structures in the observed data. Second, the estimator does not su↵er from the curse of
dimensionality, which is usually associated with kernel estimators. In general, high dimensional
models, i.e. with larger k ⌘ dim(xt) as we smooth only over xt here, require larger number of
simulations to control the variance component of the resulting estimator. However, the summation
in Equation 25 reveals an additional smoothing e↵ect and the additional variance of bLT (✓) caused
by simulations retains the standard parametric rate 1/N .

Conversely, the simulated log-likelihood function is a biased estimate of the actual log-
likelihood function for fixed N and ⌘ > 0. To obtain consistency, we need N �! 1 and ⌘ �! 0.
Thus, the parameter ⌘ needs to be properly chosen for given sample and simulation size. In the
stationary case, the standard identification assumption is:

E[log c(xt|vt, ✓)] < E[log c(xt|vt, ✓0)] 8 ✓ 6= ✓0. (26)

Under stronger identification assumptions, the choice of the parameter ⌘ might be less im-
portant and one can prove the consistency of the estimator for any fixed 0 < ⌘ < ⌘̄ for some ⌘̄ > 0
as N �! 1 (Altissimo and Mele, 2009). In practice this still requires us to know the threshold
level ⌘̄ > 0 but from the theoretical viewpoint this ensures that parameters can be well identified in
large finite samples after a given ⌘̄ > 0 is set. Moreover, it suggests that the proposed methodology
is fairly robust to the choice of ⌘. In their simulation study, Kristensen and Shin (2012) show that
NPSMLE performs indeed well using a broad range of bandwidth choices.

3.4. Asymptotic properties

As the theoretical convergence of the simulated conditional density towards the true density
is met, we would expect the b✓NPSMLE to have the same asymptotic properties as the infeasible e✓ML

for a properly chosen sequence N = N(T ) and ⌘ = ⌘(N). Kristensen and Shin (2012) show that
b✓NPSMLE is first-order asymptotic equivalent to e✓ML under set a general conditions, allowing even
for non-stationary and mixed discrete and continuous distribution of the response variable. Further,
using additional assumptions, including stationarity, they provide results regarding the higher-order
asymptotic properties of b✓NPSMLE and derive expressions of the bias and variance components of
the b✓NPSMLE compared to the actual MLE due to kernel approximation and simulations.
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Therefore, a set of general conditions, satisfied by most models, need to be verified so that
bc �! c su�ciently fast to ensure asymptotic equivalence of b✓NPSMLE and e✓ML. Kristensen and
Shin (2012) define a set of regularity conditions on the model and its associated conditional density
that satisfy these general conditions for uniform rates of kernel estimators defined in Kristensen
(2009).

The kernel K from Equation 23 has to belong to a broad class of so-called bias high-order or
bias reducing kernels. E.g. the Gaussian kernel, which we use in Section 4, satisfies this condition
if r � 2, where r is the number of derivatives of c. Higher r causes faster rate of convergence
and determines the degree of bc bias reduction. Moreover, general versions of conditions usually
required for consistency and well-defined asymptotic distribution (asymptotic normality) of MLEs
in stationary and ergodic models are imposed on actual log-likelihood function and the associated
MLE to ensure the actual e✓ML in Equation 21 is asymptotically well-behaved.

4. Simulation study

This section analyses capability of the NPSMLE to recover the parameters of Brock and Hommes
(1998) model, and mainly evaluates small sample properties of the estimator via an extensive
Monte Carlo study. We simulate data from the Brock and Hommes (1998) to analyse how well and
under what conditions is the estimation able to recover true values of parameters in the controlled
environment. For its conceptual importance, a detailed focus is devoted to the switching parameter
of the intensity of choice �.

4.1. Simulation setup for the Brock and Hommes (1998) model

In the simulation setup, we follow the previous works of Barunik et al. (2009); Vacha et al.
(2012); Kukacka and Barunik (2013). The joint setup for the basic model (see Subsection 3.1) is
used for all (if not explicitly stated otherwise) conducted simulations in this section and is defined
as follows. The model we use to generate observations is a very stylised simple version compactly
described in Hommes (2006, pg. 1169) and consisting of three mutually dependent equations:

Rxt =
H
X

h=1

nh,tfh,t + ✏t ⌘
H
X

h=1

nh,t(ghxt�1 + bh) + ✏t, (27)

nh,t =
exp(�Uh,t�1)

PH
h=1 exp(�Uh,t�1)

, (28)

Uh,t�1 = (xt�1 �Rxt�2)
fh,t�2 �Rxt�2

a�2

⌘ (xt�1 �Rxt�2)
ghxt�3 + bh �Rxt�2

a�2
, (29)

where ✏t, which coincides with "t in Equation 19, is an i.i.d. noise term sequence with given
distribution representing the market uncertainty and unpredictable market events.

In order to run the model in various di↵erent settings, we inevitably need to fix several
variables less important for the dynamics of the model to enable estimation of the key parameters.
First, we set the constant gross interest rate R = 1 + r = 1.0001 to resemble real market risk free
rate. Assuming 250 trading days per year and daily compounding, this daily value represents circa
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2.5% annual risk free interest rate which is a reasonable approximation. Although this figure is
not based on any rigorous calibration or taken from a specific study, comparable values are largely
used in various financial and macroeconomic works. Moreover, as we describe in further analysis,
the model exhibits considerable robustness w.r.t. various reasonable risk free values and thus there
is no need for more precise derivation of this parameter. We further fix the linear term 1/a�2,
comprising the risk aversion coe�cient a > 0 and the beliefs about the conditional variance of
excess returns �2 to 1, similarly to Barunik et al. (2009); Vacha et al. (2012); Kukacka and Barunik
(2013). It is important to note that a and �2 are only scale factors for the profitability measure U .
Their magnitudes do not a↵ect relative proportions of Uh,t and thus do not influence the dynamics
of the model output, that is on the contrary usually characterised by time-varying variance. In
other words, although we assume constant �2, the output time series generated by the model
does not have constant variance. Strategy-specific ah or time-varying �2h,t are appealing concepts
mainly for simulation analyses of the model (see e.g. Gaunersdorfer, 2000; Chiarella and He, 2002;
Amilon, 2008). Moreover, we intentionally use relatively small number of possible trading strategies
following Kukacka and Barunik (2013), H = 5, for the general model setting or H 2 {2, 3} for
so called 2-type and 3-type model, respectively (Chen et al., 2012). Following Hommes (2006)
via Equation 29, neither ‘dilution parameter’ of the past memory ⌘ nor information costs C for
fundamentalists are implemented into the basic model setup to keep the dynamics of the model
and impacts of assessed modification as clear as possible. Indeed, also Brock and Hommes (1998)
mostly set C = 0 to keep simplicity of the analysis and work with models without memory, i.e.
they set the ⌘ = 0 (see Subsection 3.1.2) to keep derivations analytically tractable.

Within the Monte Carlo setup, several parameters are repeatedly randomly generated to
obtain statistically valid inference. Following Barunik et al. (2009); Vacha et al. (2012); Kukacka
and Barunik (2013), trend parameters gh are drawn from the normal distribution N(0, 0.42) and
bias parameters bh are drawn from the normal distributionN(0, 0.32). ‘Strict’ fundamental strategy
in the sense of the original Brock and Hommes (1998, pg. 1245) article appears in the market by
default, i.e. the first strategy is always defined as g1 = b1 = 0 and therefore some proportion of
fundamentalists are always present in the market.

First, we study the capabilities of the NPSMLE under various levels of the switching param-
eter of the intensity of choice �. Literature estimating � using real marked data is relatively scarce
because of di�culties arising from the nonlinear nature of the model. Thus, � still remains a rather
theoretical concept. Larger � implies higher willingness of agents to switch between available trad-
ing strategies based on their relative profitability. In other words, the best strategy attracts the
most agents at each period. On the one hand, comprising a large variety of possible � values might
seem as a dominant simulation strategy, on the other hand, one has to consider computational
burden of the simulation process in real time. What is perhaps even more important is to consider
intensity of choice � from the economic viewpoint. First, high values give rise to unrealistically
high switching frequency, which can be hardly observed among market agents in reality. Next,
negative � does not make economic sense in the presented model framework as it causes inverse
illogical switching towards less profitable strategies. Although the intensity of choice � cannot be
directly rigorously compared across various models, assets, or time periods, we utilise the general
knowledge of previous estimation e↵orts for models sharing similar framework to set meaningful
simulation grids in this section. Vast majority of research articles sharing the framework derived
from Brock and Hommes (1998) find � single-digit and often close to zero values, that well re-
sembles the economic intuition of some, but realistically low switching frequency between major
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types of trading strategies. Thus, we employ relatively rich, but reasonable discrete range of �
in our simulations: {0, 0.1, 0.5, 1, 3, 5, 10}. It is far beyond the scope of this work to provide a
deep analysis of the model behaviour, e.g. how the intensity of choice � influences the dynamics
of the model that can under some setting even generate purely chaotic behaviour. Many studies
have been devoted to this generally di�cult issue in the past two decades. In this context we refer
the interested reader to the original paper of Brock and Hommes (1998) containing comprehen-
sive model dynamics analysis, extensive studies by Hommes (2006), Hommes and Wagener (2009),
Chiarella et al. (2009), or a recent book summarising two decades of research on the Heterogeneous
Expectations Hypothesis by Hommes (2013).

Next, as discussed by Amilon (2008), the magnitude of noise term has to be considered
carefully. Noise is an inevitable part of the model as it represents the market uncertainty and
unpredictable market events, but it must not overshadow the e↵ect of variables under scrutiny. As
mentioned in Kukacka and Barunik (2013), although varying noise variance can cause some minor
changes in model outcomes, the analysed model embodies major similarities across various noises.
Although theoretically the D" from which the {"i}Ni=1 are drawn to simulate {X✓

t,i}Ni=1 (Equation 22)
is a generic known distribution, the assumptions about market noise can play crucial role in the
NPSMLE application to real world data. Therefore we test the model sensitivity and robustness
of proposed methodology using 30 stochastic noise specifications from an extensive range drawn a)
from various normal distributions and b) from the uniform distributions

1. that cover the same intervals as are covered by their respective normal counterparts by the
99.74% of the probability mass;

2. with the same variances as their respective normal counterparts.

Basically, for the normally distributed noise the range extends from a ‘miniscule’ standard
deviations SD = 10�8, 10�7, 10�6 [a value used by Hommes (2013, pg. 170, 174, 177) in the
similar model setting], or 10�5, followed by ‘small’ standard deviations SD = 10�4, 10�3, 0.01
[another value used by Hommes (2013, pg. 171) in the similar setting], standard normal SD = 1,
and finally a relatively large ‘experimental’ standard deviation SD = 2.

The sensitivity analysis of the NPSMLE to the stochastic noise specification is based on the
normality assumption. The normal distribution of market noise seems reasonably realistic and
similar assumption has already been used in related studies, where “the non-linear models are fed
with an exogenous stochastic process, but the noise process is ‘nice’, which in this case means that
it is normally distributed”, as pointed out by Amilon (2008, pg. 344). We also utilise the favourable
theoretical properties of the Gaussian kernel (Kristensen and Shin, 2012, pg. 81) in Equation 23. To
check the robustness of the method, we concur the previous research in Barunik et al. (2009); Vacha
et al. (2012); Kukacka and Barunik (2013), where uniform stochastic noise specification is utilised.
We compare and contrast the results based on normally distributed noise to the two rather extreme
and economically unrealistic uniform variants defined above. We intentionally do not consider any
at first sight soliciting heavy-tailed noise distribution. The fact that financial data are heavy-tailed
does not suggest any specific distribution of the market noise. In fact, the situation is opposite.
The attractiveness of the model is based on its ability to produce heavy-tailed distribution of model
output although we input normally distributed stochastic noise. Thus the model explains one of the
most important stylised facts of financial time series via endogenous interactions of fundamentalists
and boundedly rational chartists, not as an e↵ect of a specific distribution of noise input. Finally,
five lengths of the resulting series entering the NPSMLE algorithm are used: 100, 500, 1000, 5000,
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and 10000. We always simulate 100 extra observations to be discarded as initial period, where the
model dynamic is being established.

4.2. Simulation setup for the NPSMLE

While we adapt the methodology of Kristensen and Shin (2012) originally proposed for the
estimation of the Cox et al. (1985) short-term interest rate model, we first need to make several
choices about the simulation setup. As discussed earlier, there are two main trade-o↵s: between the
precision of the kernel estimation and the computational burden, and between the smoothness of the
kernel estimation and the bias. Hence we compare the simulations of 100, 500, and 1000 runs with
three di↵erent levels of the kernel estimation precision, namely N = 100, N = 500, and N = 1000.
It is important to note that the same draws {"i}Ni=1 are used to generate the simulations {X✓

t,i}Ni=1

over time to maintain comparability of the results. Further, while the numerical algorithm needs
to be designed to find an optimum of either unconstrained or constrained multivariable function,
we experiment with various optimisation setups.

Using the pre-estimation step with unconstrained parameter space we can obtain reasonably
su�cient preliminary knowledge about the approximate true value of estimated parameters even for
computationally feasible setting. This general principle of a preliminary rough search followed by
a fine-tuning on a considerably restricted subset of the parameter space is successfully applied e.g.
in Chen and Lux (2015) for an estimation using the method of simulated moments. This helps us
to constrain the parameter space in the next step in order to arrive at a computationally feasible
setup with precise results. In the subsequent simulations, we opt for a wide enough parameter
space as h��, 3�i for � > 0 and h�0.5, 0.5i for � = 0. This extended range of the parameter space
bounds covering also economically irrelevant negative values is used to ensure the robustness of the
method and not imposing excessive demands on the precision of the unconstrained pre-estimation.
Moreover, not allowing for negative values might naturally lead to an upward bias of the simulated
estimator especially for � close to 0. For the 2-type model simulation study (see Subsection 4.4), we
use even wider and o↵-centred interval for the bounds of the parameter space for belief coe�cients
set as h�3|g2|, 3|g2|i and h�3|b2|, 3|b2|i, respectively, to allow for possible negative values. For
the 3-type model simulation estimation study (see Subsection 4.5), it is, however, important to
limit bounds for belief coe�cients by zero from one side, i.e. h0, 3|g2|i and h�3|g3|, 0i, to avoid
problems with insu�cient specification of the model leading to ambiguous bimodal distributions of
estimated parameters. The same intervals are used for a random draw of a single4 starting point
of the optimisation search procedure which is drawn from the uniform distributions.

To estimate the conditional density ct(x|v; ✓), the Gaussian kernel and the Silverman’s (1986)
rule of thumb for finding the optimal size of the bandwidth is used:

⌘ =

✓

4

3N

◆1/5

b�, (30)

where b� denotes the standard deviation of {X✓
t,i}Ni=1.

Additionally, Kristensen and Shin (2012, pg. 82) suggest to undersmooth the bandwidth
size. Moreover, as found by Jones et al. (1996), smaller bandwidths are better for larger kernel

4Kristensen and Shin (2012) use multiple starting points for the numerical optimisation but for estimation of
the Brock and Hommes (1998) model in a simulated environment the single starting point is su�cient bringing the
merits of markedly reduced computational time and burden.
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Figure 1: Simulation results for estimation of � 2 {0, 0.5, 10}.
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Note: Stochastic noise ✏t and {"i}Ni=1 drawn from 1000 random runs from normal distribution. Black dotted lines with ⇥
depict the true �. Grey full lines depict sample means of estimated �. Grey dashed lines depict 2.5% and 97.5% quantiles.
Light grey colour represents results for N = 100, normal grey for N = 500, and dark grey for N = 1000. Horizontal axis shows
length of generated time series, vertical axis shows values of �.

approximation precision, as estimator should be local in case of more information is present. How-
ever, we do not use the undersmoothing in our numerical algorithm as for the considered model,
the methodology is robust in this aspect and various levels of undersmoothing do not change the
outcomes. All the results of this preliminary testing are available upon request from authors. We
do not include them here to keep the length of already pregnant text under control.

In the following text, and all tables, we report sample medians and means of the estimated
values together with standard deviations (SD), 2.5% (LQ), and 97.5% (HQ) quantiles based on
1000 random runs with sample size of t = 5000, and the kernel estimation precision N = 1000
i.i.d. draws from given distribution, while figures complement these results with various di↵erent
sample lengths.

4.3. Estimating intensity of choice �

First and foremost, we assess the simplest but also the most crucial case of � estimation in
the general model with H = 5 possible trading strategies. The intensity of choice � is the most
important parameter influencing the dynamics of the system through the multinomial logit model
of a continuous adaptive evolution of market fractions in Equation 17. Not only its magnitude
between two extreme cases � = 0 and � = 1 is important, but � also determines the type of the
model equilibrium that can generally take the form of a (multiple) steady state(s), cycles, or even
chaotic behaviour. The intensity of choice � is also crucial for its conceptual importance, because it
represents the dominant approach how the boundedly rational choices of agents are mathematically
modelled in the current literature.

Despite of its relative simplicity, the setting is otherwise very challenging as capturing the
e↵ect of the switching coe�cient � is generally di�cult. Moreover, algorithm with a single starting
point for the numerical optimisation and new random draws of the parameters gh and bh, h 2
{2, 3, 4, 5} for each independent run requires very robust performance of the optimisation algorithm.

4.3.1. Qualitative results

We primarily aim to verify how consistently and e�ciently is the estimator able to recover
model parameter in small samples. In Figure 1 we depict a ‘snapshot’ of simulation results for
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Table 3: Simulation results for � estimation with Gaussian noise.

� b�, ✏t, {"i}Ni=1 ⇠ N(0, µ2)

Median Mean SD LQ HQ µ

0 -.00 -.00 .05 -.08 .08 2
.1 .10 .10 .04 .01 .20 2
.5 .50 .51 .14 .23 .81 1
1 1.00 1.01 .23 .66 1.45 1
3 2.99 3.05 1.00 1.48 5.86 .1
5 4.99 5.05 1.21 3.75 6.81 .1

10 9.99 9.99 2.22 7.57 11.64 .1

Note: Each sample is based on 1000 random runs,
R = 1.0001, H = 5, t = 5000, and N = 1000. SD,
LQ, and HQ stand for standard deviation, 2.5%, and
97.5% quantiles, respectively. Figures are rounded to
2 decimal digits.

three interesting values of the intensity of choice � 2 {0, 0.5, 10} combined with three distinct
specifications of the stochastic noise: ✏t ⇠ N(0, 22), ✏t ⇠ N(0, 1) and ✏t ⇠ N(0, 0.12).

First, we can clearly observe how the method is able to reveal the true value of � demon-
strated by black dotted lines with ⇥ for all sample sizes. Grey full lines depict sample means of
estimated � and closely follow the true line. Moreover, with increasing length of generated time se-
ries t, as well as with the precision of the kernel estimation N , precision of the estimator increases.
The precision is demonstrated by di↵erent shades of grey dashed lines depicting 2.5% and 97.5%
quantiles of estimated parameters �. We also experimented with smaller number of runs, namely
100 and 500, and the results confirm that number of runs 500 performs su�ciently. These results
are available upon request from authors.

Figure 1 also reveals an important result from the economic point of view of the � parameter
value. Although only the non-negative values of � have an economic interpretation, in simulations
we also allow for negative estimated values to test the capability of the method even for such
extreme values and to avoid the upward bias of the estimator. However, the most important result
is that even for a very small � = 0.5 and sample length of t

.
= 1000 or for � = 10 and an extremely

small sample length of t = 100, we obtain more than 97.5% non-negative estimates. At the same
moment 95% of estimates appear reasonably close to the true value, far from the numerical bounds
of the parameter space imposed to make the constrained optimisation computationally feasible.

These features have important favourable consequences for application of the method to
datasets of various lengths. We should be able to detect even very weak signs of behavioural
switching in long-span daily financial data, but also stronger signs of switching in macroeconomic
data where typically lower-frequency time series of shorter lengths are available. As for the com-
plexity of the estimation issue with the five repeatedly randomly generated strategies, we consider
our results very promising. The most important property of the estimation method in the current
setting is the ability to distinguish between statistically significant and insignificant � and this
objective is well achieved. Importantly, Figure 1 also allow for comparison between estimation of
models with and without switching (� > 0 vs. � = 0).

4.3.2. Quantitative results

Moving from the graphical to the quantitative description of simulation results, we now
consider length of generated time series t = 5000, and the kernel estimation precision N = 1000
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Figure 2: Densities for selected b�.
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Note: Stochastic noise ✏t and {"i}Ni=1 drawn from given normal distributions, R = 1.0001. Each sample is based on 1000 random
runs, H = 5 possible trading strategies, number of observations t = 5000, and the kernel estimation precision N = 1000. Black
dotted lines depict the true �.

i.i.d. draws from given distribution. Here we focus on the robustness of the method w.r.t. various
noise specifications used both for generating the stochastic term ✏t in Equation 29 as well as for N
i.i.d. draws, {"i}Ni=1, to simulate N i.i.d. random variables, {X✓

t,i}Ni=1, used for the kernel estimation
of the conditional density. Again, following results o↵er a direct comparison between estimation
of models with and without switching as first rows of all panels in all tables in this section always
represent the model setting without switching (� = 0).

Table 3 conforms that the proposed method is able to recover the true value of � very
precisely. Sample means and medians display no bias, standard deviation together with 2.5% and
97.5% empirical quantiles are reasonable, and we can see that the estimation strategy is able to
test the null hypothesis H0 : � = 0 even for small values of �. As a robustness check, we repeat the
estimation exercise for several di↵erent levels of noise with no significant changes in the results.
The results for the di↵erent noise levels are summarised in Table 12 in Appendix A.

Larger noises seem to stabilise the system but overshadow the e↵ect of switching under low
� and therefore favour estimation of higher �. Lower values of � require small noises for the e↵ect
of switching to be detectable. These are crucial findings highlighting the necessity of a proper noise
specification within the estimation procedure. A puzzling result is then observed in subpart (j) of
Table 12 associated with the largest noise intensity N(0, 22) but a high precision of estimates of
lowest values of �. Generally, values of the intensity of choice � very close to zero, � = {0.1, 0.5},
are the most di�cult to estimate. However, these values represent almost the extreme case of no
switching of agents among possible strategies in which the dynamics of the model is restrained as
there is only a small di↵erence of the model behaviour compared to the agents’ absolute inertia
case with � = 0.

An important issue emerging from simulations is the occurrence of non-convergent, or ex-
ploding, solutions of the model with respect to several noise levels. This occurs mainly for the
incrementally small levels of stochastic noise with higher levels of the intensity of choice parame-
ters. Hence, with increasing switching dynamic, a small noise does not always su�ce to stabilise
the system. While we focus on studying the properties of the estimation methodology, we explore
the noise levels which produce stable model solutions. Namely, N(0, 0.12) for � = {3, 5, 10}, N(0, 1)
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Figure 3: Shape of the simulated log-likelihood function.
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Note: Results based on 100 random runs, number of observations t = 5000, and the kernel estimation precision N = 1000.
Stochastic noise ✏t and {"i}Ni=1 drawn from given normal distribution. Black dotted vertical lines depict the true �. Bold black
full lines depict sample averages. Horizontal axis shows values of �, vertical axis shows values of log-likelihood.

for smaller � = {0.5, 1} and for extreme cases of � = {0, 0.1} noise N(0, 22). These choices are
natural with respect to the intensity of choice parameters and noises stabilising the system. More
importantly, these choices are also relevant for empirical applications later in the study. Figure 2
depicts smooth histograms of selected estimated � based on these three noise specifications, com-
plementing Figure 1. One can clearly observe how well the estimation methodology recovers the
true parameters.

4.3.3. Behaviour of the simulated log-likelihood function

Kristensen and Shin (2012, pg. 80-81) define a set of regularity conditions A.1-A.4 regarding
the model and its associated conditional density that ensure su�ciently fast convergence of bc �! c
and thus asymptotic equivalence of b✓ and e✓. These conditions basically impose restrictions on
the data-generating functions and the conditional density that is being estimated. With regard to
data-generating functions as well as conditional density function, assumptions are quite weak and
are satisfied by many models (Kristensen and Shin, 2012). However, for the Brock and Hommes
(1998), we are not able to verify these conditions analytically and we must rely on computational
tools. Therefore, we explore the smoothness condition, identification of parameters, and existence
of unique solution via observing the simulated log-likelihood functions.

For these purposes, we draw the simulated log-likelihood function and verify an existence of
a unique maximum. We depict simulated log-likelihood functions for the same three interesting
values of the intensity of choice � 2 {0, 0.5, 10} combined with three specifications of the stochastic
noise: ✏t ⇠ N(0, 22), ✏t ⇠ N(0, 1) and ✏t ⇠ N(0, 0.12) as earlier. In Figure 3 we clearly observe very
smooth shape of the functions over the entire assessed domain with a unique maximum generally
shared for all of 100 random runs. Bold black full lines represent sample averages over these
100 runs. Based on generally smooth shapes and unique optima of the simulated log-likelihood
functions we assume that the regularity conditions are met for the model and the identification of
parameters is also assured.
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Table 4: Results for � estimation with normal noise, fixed gh & bh.

� (a) b�, N(0, 0.12) (b) b�, N(0, 1)

Med. Mean SD LQ HQ Med. Mean SD LQ HQ

0 -.00 .00 .13 -.26 .28 -.00 -.00 .05 -.10 .09
.1 .11 .10 .12 -.10 .30 .10 .10 .06 -.02 .22
.5 .49 .49 .11 .26 .71 .50 .51 .17 .19 .85
1 1.00 1.00 .07 .86 1.14 1.00 1.01 .18 .67 1.40
3 3.01 3.00 .13 2.75 3.23 3.03 3.12 .57 2.49 5.28
5 5.00 5.00 .23 4.56 5.47 5.19 6.42 2.70 4.25 13.65

10 10.00 10.00 .12 9.77 10.23 11.04 12.28 4.64 6.07 24.11

Note: Stochastic noise ✏t and {"i}Ni=1 drawn from normal distributions of given param-
eters, R = 1.0001. Each sample is based on 1000 random runs, H = 5 possible trading
strategies, number of observations t = 5000, and the kernel estimation precision N = 1000.
Sample medians, means, standard deviations (SD), 2.5% (LQ), and 97.5% (HQ) quantiles
are reported. Figures are rounded to 2 decimal digits.

4.3.4. Robustness checks

One of the most challenging concepts in setting of the estimation method is the repeated
random generation of belief parameters gh and bh for each of the 1000 runs. In Table 4 we abandon
this setup feature, fix parameters gh and bh randomly before the loop and use the very same figures
for all 1000 runs. We compute results for the two most useful noise specification based on previous
results, namely N(0, 0.12) and N(0, 1). Comparing results in Table 4 with respective counterparts
in Table 12 [subparts (h) and (i)] in Appendix A, we observe overall significant reduction of standard
deviations of � estimates, hence further increase in the estimation precision. Fixing trend a bias
parameters thus naturally makes the system more predictable and leads to more e�cient estimates.

Next, we focus on ability of the estimation method to recover the true � parameter under be-
lief parameters gh and bh drawn from the normal distribution with variances {0.12, 0.22, 0.32, 0.42}.
This is an important robustness check because drawing the belief parameters have a large impact
on the model dynamics (Barunik et al., 2009; Vacha et al., 2012; Kukacka and Barunik, 2013).
Table 5 reports results from relaxing the assumption on belief parameters with the stochastic noise
from the N(0, 0.12) distribution. We also experimented with di↵erent levels of noises, but the
results are essentially the same, and we make them available upon request.

We observe a general ability of the method to reveal accurately the true value of the intensity
of choice � for the vast majority of combinations of the simulation grid. Increasing the variance of
beliefs’ distribution associated with higher values of randomly generated belief parameters gh and
bh, we generally obtain a richer model dynamics which can be more simply and more e�ciently
estimated.

Another important question is to what extent is the estimation methodology robust to an
assumption of a wrong stochastic noise to perform estimation. This can either be a correct distribu-
tion, but with wrong parameters, or a completely di↵erent distribution. This question is especially
important w.r.t. empirical application because in real world data we are rarely able to ascertain
proper assumption about noise. To analyse this issue, we present results of four combinations of
di↵erent distributions used for random generation of stochastic noises ✏t and {"i}Ni=1. In Table 6
we report the case where stochastic noises ✏t and {"i}Ni=1 are drawn from the same distributions
with di↵erent variances [subparts (a) and (b)], as well as di↵erent distributions with same variances
[subparts (c) and (d)]. Basically, we use combinations of normal and uniform distributions and
for di↵erent variances we use specifications with centupled values. Conclusions for this robustness
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Table 5: Results for � estimation w.r.t. various distributions of gh & bh.

� (a) b�, gh & bh ⇠ N(0, 0.12) (b) b�, gh & bh ⇠ N(0, 0.22)

Median Mean SD LQ HQ Med. Mean SD LQ HQ

0 .02 .01 .29 -.47 .48 -.02 -.01 .28 -.48 .48
.1 .10 .10 .12 -.09 .29 .10 .10 .12 -.10 .30
.5 .50 .51 .57 -.42 1.44 .51 .51 .48 -.40 1.39
1 .87 .94 1.15 -.95 2.91 .99 .99 .80 -.73 2.73
3 2.95 2.95 3.25 -2.67 8.69 3.00 2.97 1.81 -1.65 7.43
5 4.99 5.07 5.04 -4.26 14.17 4.97 4.77 2.60 -3.23 10.94

10 10.02 10.15 9.03 -8.22 27.82 9.98 9.92 3.65 .31 18.84

(c) b�, gh & bh ⇠ N(0, 0.32) (d) b�, gh & bh ⇠ N(0, 0.42)

0 .00 .00 .23 -.47 .47 -.01 -.00 .17 -.38 .43
.1 .10 .10 .12 -.10 .30 .10 .10 .11 -.10 .30
.5 .50 .50 .34 -.34 1.27 .50 .50 .24 -.09 1.17
1 1.01 1.01 .54 -.40 2.33 1.00 1.00 .37 .20 1.85
3 3.00 3.01 .83 1.57 4.93 2.99 2.95 .78 1.24 3.76
5 5.00 5.00 1.35 3.02 6.84 5.00 5.00 .85 4.17 5.65

10 9.99 10.01 1.87 8.19 11.55 10.00 10.02 1.33 9.11 10.77

Note: Belief parameters gh and bh drawn from various normal distributions of given parameter,
stochastic noise ✏t and {"i}Ni=1 drawn from normal distribution N(0, 0.12), R = 1.0001. Each
sample is based on 1000 random runs, H = 5 possible trading strategies, number of observations
t = 5000, and the kernel estimation precision N = 1000. Sample medians, means, standard
deviations (SD), 2.5% (LQ), and 97.5% (HQ) quantiles are reported. Figures are rounded to
2 decimal digits.

check are very clear and can be summarised into several following points.
When a distribution with lower variance is used [subparts (a) and (b)] for generating the

stochastic noise ✏t then for {"i}Ni=1 defining the kernel approximation precision, the NPSMLE
works but it produces statistically insignificant estimates and very uniformly distributed estimated
values. When di↵erent distributions with the same variances are used [subparts (c) and (d)],
we obtain considerably more precise estimates with markedly lower standard deviations. These
findings strongly confirm the need of a proper specification of the magnitude of the stochastic noise
but also relaxed requirements for accurate specification of the noise distribution for the empirical
application of NPSMLE.

To assess the robustness of our general model setting, we further contrast the results in
Table 12 with di↵erent setup modifications. First, we consider ten times higher gross interest
rate R = 1 + r = 1.001. This daily value unrealistically represents circa 28.4% annual risk free
interest rate but can nonetheless serve as a useful robustness check. Repeating the exercise for this
unrealistic interest rate level delivers essentially the same results, hence we do not report them here
to keep the length of the text under control. Still, this is an important finding, as the robustness
of the estimation methodology w.r.t. assumption of the real market risk free rate therefore relaxes
the need of a very precise derivation of this parameter for various countries and historical periods
and the reasonable approximation R = 1 + r = 1.0001 representing circa 2.5% annual risk free
interest rate can be generally used in the empirical estimation later.

Next, we test the ability of the estimation method to provide unbiased estimates even if
bounds of the parameter space are o↵-centred, more specifically shifted up by 50% of actual � to
h�0.5�, 3.5�i for � > 0 and to h�0.375, 625i for � = 0. The ability of the NPSMLE to reveal
true parameter with high precision remains una↵ected and the standard deviations are similar
to the original settings. We therefore verify that there is no need of an excessive precision of the
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Table 6: Results for � estimation with various combined noises.

� (a) b�, ✏t ⇠ N(0, 0.12), (b) b�, ✏t ⇠ U(�
p

12
2 ⇥ 10�1,

p
12
2 ⇥ 10�1),

{"i}Ni=1 ⇠ N(0, 1) {"i}Ni=1 ⇠ U(�
p
12
2 ,

p
12
2 )

Median Mean SD LQ HQ Med. Mean SD LQ HQ

0 .00 .00 .29 -.47 .47 -.01 -.00 .29 -.48 .47
.1 .10 .10 .11 -.09 .29 .10 .10 .11 -.09 .29
.5 .50 .50 .58 -.47 1.45 .51 .51 .58 -.47 1.46
1 .97 .99 1.13 -.86 2.89 .99 .98 1.12 -.90 2.87
3 2.87 2.84 3.30 -2.67 8.60 2.87 2.86 3.43 -2.77 8.72
5 4.89 4.87 5.31 -4.48 14.35 5.24 5.32 5.70 -4.69 14.63

10 10.96 11.42 10.56 -8.40 28.99 11.19 10.21 11.65 -9.95 29.17

(c) b�, ✏t ⇠ N(0, 0.12), (d) b�, ✏t ⇠ U(�
p

12
2 ⇥ 10�1,

p
12
2 ⇥ 10�1),

{"i}Ni=1 ⇠ U(�
p
12
2 ⇥ 10�1,

p
12
2 ⇥ 10�1) {"i}Ni=1 ⇠ N(0, 0.12)

0 .02 .01 .27 -.50 .50 -.00 -.00 .22 -.47 .46
.1 .10 .10 .14 -.10 .30 .10 .10 .12 -.10 .30
.5 .50 .50 .40 -.43 1.44 .50 .50 .33 -.27 1.27
1 1.01 1.01 .53 -.21 2.39 1.00 1.03 .52 -.31 2.45
3 3.02 3.03 .86 1.46 4.70 3.00 3.03 1.06 .64 6.23
5 5.01 5.01 1.18 3.05 6.76 5.00 5.00 1.26 3.32 6.79

10 10.00 10.01 1.43 8.13 11.88 10.00 10.08 1.67 8.83 11.70

Note: Stochastic noise ✏t and {"i}Ni=1 drawn from the same distributions with di↵erent variances in
(a) and (b), and di↵erent distributions with the same variances in (c) and (d), R = 1.0001. Each
sample is based on 1000 random runs, H = 5 possible trading strategies, number of observations
t = 5000, and the kernel estimation precisionN = 1000. Sample medians, means, standard deviations
(SD), 2.5% (LQ), and 97.5% (HQ) quantiles are reported. Figures are rounded to 2 decimal digits.

unconstrained pre-estimation via which we define bounds of the parameter space for the constrained
optimisation.

We further test how the performance is a↵ected by assumption of di↵erent stochastic noises
✏t. For that purpose we select uniform distribution both for its simplicity as well as for its feature
of being the maximum entropy probability distribution of its family of symmetric probability
distributions. Contrasting original results in Table 12 with results based on the uniform distribution
of the stochastic noise, we basically verify the assumption of Kristensen and Shin (2012) that D"

can be any known distribution. The overall result are largely similar and the observed di↵erences
can be attributed mainly to di↵erent shapes of the normal and uniform distributions.

4.4. 2-type model estimation

An important advantage of FABMs is that their dynamics is mostly driven by few crucials
parameters. As a result, we might promisingly attempt to estimate all essential coe�cients simul-
taneously and thus we do not need any rigorous criteria for selection. In the Brock and Hommes
(1998) setting we select estimated parameters consistently with the current literature (see Tables
1 and 2), i.e. the switching parameter � and the behavioural belief coe�cients. The other coe�-
cients, e.g. the risk aversion a, the conditional variance of excess returns �2, or the risk free rate
R are simplified already in the original model as constants and shared by all agent classes. The
model is then theoretically derived based on these assumptions. Given parameters only influence
the absolute values of the profitability measures Uh but not their relative proportions, R addition-
ally a little bit adjusts the model output xt. Thus we can naturally consider them not influencing
dynamics of the model as described in Subsection 4.1.
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A natural subsequent step of the NPSMLE method testing is thus a multiple parameter
estimation in which we simultaneously estimate the intensity of choice � and agents’ belief coef-
ficients gh and bh defining individual trading strategies in the 2-type and the 3-type models for
which both theoretical as well as empirical rationale exists in the current literature as indicated
in Chen et al. (2012, pg. 191, 207). With reference to Biondi et al. (2012, pg. 5534), “it has
been advocated that the two broad categories of chartism and fundamentalism account for most
of possible investment strategies”. The aim of this analysis is to assess the performance of the
NPSMLE method in estimating other model parameters then solely the intensity of choice �.

First, we study the most simple system consisting of two trading strategies, where funda-
mental strategy again appears in the market by default, i.e. g1 = b1 = 0. Based on the knowledge
gained in Subsection 4.3, we define a discrete grid of combinations of the true intensity of choice
� and the chartistic beliefs g2 and b2 representing the second-type trading strategy to cover a
purposeful range of values w.r.t. issues studied in the previous sections. To keep a reasonable
number of combinations and lucidity of results, we opt for � = {0, 0.5, 3, 10}. In defining a grid
of chartistic beliefs, we also cover various combinations of trend following (g2 > 0), contrarian
(g2 < 0), upward-biased (b2 > 0), and downward-biased (b2 < 0) strategies based on multiples of
standard deviations used in previous sections. We refer the reader to the first column of Table 7
for detailed specification. We report only one specification of noise, namely ✏t ⇠ N(0, 0.12), as the
results for ✏t ⇠ N(0, 1) essentially do not change.

4.4.1. Quantitative results

In Table 7 we summarise the simulation results. Basically, we are able to confirm all main
findings from the simulation analysis of the single parameter � estimation. First, the method is
generally able to reveal accurately the true values of estimated parameters also in the 3-parameter
simultaneous estimation case. Especially belief coe�cients g2 and b2 [subparts (b) and (c)], that are
of central importance in this section, are estimated overall significant and with almost surprisingly
high precision. The estimation precision of the � parameter is not directly comparable to previous
results as the setting of the 2-type model is di↵erent from the previous model. Notwithstanding, we
still get generally conformable figures. We again clearly observe the relative estimation ine�ciency
in case of setting combinations with small values of the intensity of choice � = 0, 0.5, especially
when combined with small values of belief coe�cients g2 and b2 (the upper half of Table 7).
On the other hand, for high values of belief coe�cients g2 and b2 (the bottom half of Table 7)
we generally confirm findings from � estimation exercise w.r.t. various distributions of beliefs
parameters (Table 5). We further observe a small upward bias tendency in � estimates for smallest
values of belief coe�cients g2 and b2. When it comes to e�ciency of g2 and b2 estimates, the setup
produces markedly precise estimates.

Although we report all combination of trend following (g2 > 0), contrarian (g2 < 0), upward-
biased (b2 > 0), and downward-biased (b2 < 0) strategy specifications mainly for technical reasons
and the analysis of the model dynamics goes beyond the scope of this paper, we can observe
some patterns regarding the beliefs’ combination. For instance the e�ciency of the estimation is
considerably higher for trend following (g2 > 0) beliefs than for contrarians (g2 < 0).

The favourable results presented above give promise for the function of the method also in
more complex settings.
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Table 7: Results of 3-parameter estimation of a 2-type model.

�, g2, b2 (a) b� (b) bg2 (c) bb2 (d) LL

Median Mean SD Mean SD Mean SD L-rat 2�LL p-v

.0, .2, .15 -.01 -.00 .29 .20 .03 .15 .01 1 0 1

.5, .2, .15 .49 .50 .57 .20 .03 .15 .01 1 0 1
3, .2, .15 3.01 2.99 3.44 .20 .05 .15 .01 1 0 1

10, .2, .15 11.60 12.19 9.46 .19 .10 .15 .01 1 0 1

.0, -.2, -.15 .02 -.00 .28 -.20 .03 -.15 .01 1 0 1

.5, -.2, -.15 .50 .48 .56 -.20 .03 -.15 .01 1 0 1
3, -.2, -.15 3.11 2.97 3.39 -.20 .05 -.15 .01 1 0 1

10, -.2, -.15 10.46 9.93 11.30 -.19 .10 -.15 .01 1 0 1

.0, .2, -.15 .03 .01 .28 .20 .03 -.15 .01 1 0 1

.5, .2, -.15 .56 .52 .56 .20 .03 -.15 .01 1 0 1
3, .2, -.15 3.31 3.12 3.40 .20 .05 -.15 .01 1 0 1

10, .2, -.15 11.97 12.23 9.60 .19 .10 -.15 .01 1 0 1

.0, -.2, .15 -.00 -.01 .30 -.20 .03 .15 .01 1 0 1

.5, -.2, .15 .53 .50 .60 -.20 .03 .15 .01 1 0 1
3, -.2, .15 3.31 3.08 3.53 -.20 .04 .15 .01 1 0 1

10, -.2, .15 11.37 10.62 11.69 -.19 .10 .15 .01 1 0 1

.0, .4, .3 .00 .01 .33 .40 .03 .30 .01 1 0 1

.5, .4, .3 .50 .49 .48 .40 .04 .30 .01 1 0 1
3, .4, .3 2.99 3.04 .46 .40 .04 .30 .01 .99 .01 .92

10, .4, .3 10.00 10.01 .61 .40 .03 .30 .01 .94 .13 .62

.0, -.4, -.3 -.08 -.06 .30 -.40 .03 -.30 .01 1 0 1

.5, -.4, -.3 .31 .35 .58 -.39 .04 -.30 .01 1 0 1
3, -.4, -.3 2.96 2.84 1.47 -.39 .06 -.30 .01 1 0 1

10, -.4, -.3 10.08 10.11 1.24 -.40 .04 -.30 .01 .99 .03 .86

.0, .4, -.3 -.01 .00 .31 .40 .03 -.30 .01 1 0 1

.5, .4, -.3 .51 .48 .48 .40 .04 -.30 .01 1 0 1
3, .4, -.3 3.03 3.04 .46 .40 .04 -.30 .01 .99 .01 .92

10, .4, -.3 9.98 10.02 .63 .40 .03 -.30 .01 .94 .13 .62

.0, -.4, .3 -.06 -.05 .30 -.40 .03 .30 .01 1 0 1

.5, -.4, .3 .23 .32 .58 -.40 .04 .30 .01 1 0 1
3, -.4, .3 2.98 2.87 1.38 -.40 .06 .30 .01 1 0 1

10, -.4, .3 9.98 10.00 1.13 -.40 .04 .30 .01 .99 .03 .86

Note: Stochastic noise ✏t and {"i}Ni=1 drawn from normal distributionN(0, 0.12), R = 1.0001. Each sample is
based on 1000 random runs, number of observations t = 5000, and the kernel estimation precision N = 1000.
Sample medians, means, and standard deviations (SD) are reported. Figures are rounded to 2 decimal digits.
‘L-rat’ denotes the likelihood ratio of the null static (i.e. restricted) model vs. the alternative switching
model, ‘2�LL’ is the test statistics of the log-likelihood ratio test being approximately �2 distributed with
1 degree of freedom, and ‘p-v’ is related p-value of the test.

4.4.2. Behaviour of the simulated log-likelihood function

To verify smoothness conditions and identification of parameters in the 2-type model esti-
mation case, we again depict simulated log-likelihood functions. As we can hardly visualise the
4D shape of the resulting simulated log-likelihood function, we depict sub-log-likelihood functions
in 2D and 3D providing the global shape when combined in a 4D object. One can think of these
sub-log-likelihood functions as transversal cuts or profiles of the likelihood function in the planes
of given parameters.

Figure 4 demonstrates simulated 2D sub-log-likelihood functions for estimation of the single
parameters of the intensity of choice � 2 {0.5, 3, 10}, trend coe�cient g2 = 0.4, and bias coe�cient
b2 = 0.3, keeping the two others fixed. We again clearly observe very smooth shapes and unique
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Figure 4: Simulated sub-log-likelihood functions for � estimation.
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Note: Results based on 100 random runs, g2 = 0.4, b2 = 0.3, number of observations t = 5000, and the kernel estimation
precision N = 1000. Stochastic noise ✏t and {"i}Ni=1 drawn from given normal distribution. Black dotted vertical lines depict
the true �. Bold black full lines depict sample averages. Horizontal axis shows values of �, vertical axis shows values of
log-likelihood.

maxima generally shared for all random runs. In Figure 5 we visualise three dimensional simulated
sub-log-likelihood functions based on all possible combinations of three parameters of interest,
keeping one of them fixed, for the model setting with: � = 0.5, g2 = 0.4, b2 = 0.3. The smoothness
of the surface generally keeps retained also in the 3D visualisations and regions of possible maxima
are well detectable although the 3D depiction cannot provide such detailed and ‘zoomed’ view
as the 2D visualisations in Figure 4. Parameters g2 and b2 seem to be relatively well identified
which is confirms the previous results. As expected, the most challenging part is revelation of the
� coe�cient in which direction the surface is very flat for a large interval of the domain. These
findings are largely in accord with conclusions of Bolt et al. (2014, pg. 15) and Hommes and Veld
(2015) who claim that “the other parameters can to a large extent compensate for changes in �”
and report very flat shape of the likelihood function for the intensity of choice selection. In any
case, based on these results we again generally assume that the regularity conditions are met and
the identification of parameters is assured also for the 2-type model estimation.

4.4.3. Likelihood-ratio test

Previous sections show that the non-parametric simulated maximum likelihood estimation
method does a fairly good job in distinguish between various �. As a next step we might be
interested how capable the estimation method is in a rigorous statistical comparison between
static and switching models. As the static version of the model with � = 0 and the switching
version are nested, i.e. the less complex static model is derived via a restriction on � from the
switching model, we can apply the usual likelihood ratio test to assess the relative goodness of fit
between models with and without switching. For this purpose Table 7 further displays information
about tests of model fit in subpart (d). ‘L-rat’ column denotes the likelihood ratio of the null
static (i.e. restricted) model vs. the alternative switching model, ‘2�LL’ is the test statistics
of the log-likelihood ratio test being approximately �2 distributed with 1 degree of freedom, and
‘p-v’ is related p-value of the test. Application of the likelihood ratio test seems natural in this
situation, nevertheless the Monte Carlo simulation framework brings several imperfections. On the

29



Figure 5: Simulated sub-log-likelihood functions in 3D.

(a) �, g2, N(0, 0.12) (b) �, b2, N(0, 0.12) (c) g2, b2, N(0, 0.12)

Note: Results averaged over 30 random runs, number of observations t = 5000, and the kernel estimation precision N = 1000.
The complete set of true parameters: � = 0.5, g2 = 0.4, b2 = 0.3. Stochastic noise ✏t and {"i}Ni=1 drawn from given normal
distribution.

one hand, simulated data smartly avoid the problem of model misspecification, on the other hand
the goodness of fit test is designed rather for comparison based on a single empirical dataset. In
our situation, new variables and a di↵erent dataset are randomly generated in each of 1000 random
runs and the test is then based on the aggregate mean values over all runs. But since the standard
deviation of individual maximum log-likelihoods is negligible compared to their value (around 1%),
aggregation does not cause any appreciable loss of information. A second imperfection is related
to the relative flatness of the log-likelihood function in the dimension of the restricted switching
coe�cient � for a large interval of the domain. Although the estimation method detects precisely
the true intensity of choice especially for combinations of higher values of �, stronger strategies,
and lower stochastic noise specification, due to flat likelihood the test exhibits only a moderate
capability of distinguishing between the restricted and the unrestricted model. Translated into
p-values of the test, in the most distinct cases the values are far from being able to reject the static
model. Inspecting subpart (d) of Table 7, we observe expected behaviour but generally low power
of the test. In all cases of � = 0, the likelihood ratio is equal to 1 and the p-value remains 100%.
Increasing true � and strength of strategies, the likelihood ratio and the p-value naturally decrease
along with increase of the test statistics ‘2�LL’, but the pace of the progress is low for the selected
range of �.

4.5. 3-type model estimation

Results of simultaneous estimation of 5 parameters in the 3-type model including three basic
strategies: fundamental represented by g1 = b1 = 0 and two chartistic defined in the Table 14,
can be found in Appendix A. We keep the strategy of defining a grid of chartistic beliefs from
previous analysis based on various combinations of trend following (g2 > 0), contrarian (g2 < 0),
upward-biased (b2 > 0), and downward-biased (b2 < 0) strategies and the same multiples of
standard deviations. Conclusions are generally in accord with the results of the 2-type model
estimation, the di↵erence is mainly in e�ciency of estimates that is by nature lower than for the 2-
type model. However, combining two chartistic strategies we also gain some new knowledge about
the system behaviour. For instance, in case of a combination of two trend following strategies
(g2 > 0, g3 > 0), it is rather complicated for the NPSMLE method to distinguish between impacts
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of these two strategies leading to lower statistical significance of both estimates compared to other
combinations of trend following and contrarian strategies.

5. HAM estimation on empirical data

Equipped with the performance study of the proposed methodology, we broaden the topic with
an empirical application and estimate the Brock and Hommes (1998) model using cross section of
world stock markets. We analyse S&P500 and NASDAQ for the U.S., DAX and FTSE and for
Europe, NIKKEI 225 and HSI for Japan and Hong Kong, respectively.

5.1. The estimation setting

Compared to the simulation study, the setting of models estimated using real data is less
challenging. It is also less computationally intensive in terms of statistical validity. On the contrary,
the estimation algorithm is a bit technically more complicated as the structure of the real world data
is far away from regularity of simulated datasets. Concurring findings about the su�cient setting
of the NPSMLE, we compute results for 1000 random runs, number of observations t = 5000, and
the kernel approximation precision is set to N = 500. On the other hand, because of a problematic
numerical stability of the model when real data analysis is introduced, we increase the number of
randomly generated starting points for the numerical optimisation to eight. This is a su�cient
quantity to filter out issues related to possible numerical instability on the system. The other
setting remains the same as defined earlier.

Based on the previous findings, the proper intensity of stochastic market noise is crucial for
the proper estimation. A wrong stochastic noise specification is likely to influence the behaviour
of the model heavily, hence influence validity or results. We do not longer use the grid strategy to
ensure the robustness of result because the stochastic noise intensity in various real markets is a
hardly anticipated variable. Leaving this idea, we instead add the intensity of the stochastic market
noise to the list of estimated parameters. Generally, we thus apply a simultaneous unconstrained
multivariable function estimation of all interesting parameters: agents’ belief coe�cients defining
individual trading strategies gh and bh, the intensity of choice �, and the intensity of market noise,
which is defined as a fraction of the standard deviation of the noise term and the standard deviation
of the data and denoted as noise intensity.

First, we estimate the simple 2-type model including two basic strategies only: fundamental
one represented by implicitly defined g1 = b1 = 0 and chartistic one which is to be estimated.
Within this setting, we simultaneously estimate four parameters of interest: �, g2, b2, and the
noise intensity. To support the numerical stability of the estimated system, we constrain the
intervals for the starting points of random generation to the economically meaningful values which
preserve stability of the model, namely h�0.5, 0.5i for �, h1.3, 2.3i for g2, h�0.2, 0.2i for b2, and
h0.4, 0.9i for the noise intensity. Nonetheless, as the algorithm is designed to find an optimum of
an unconstrained multivariable function, it can freely leave these initial intervals during the search
procedure.

We then continue with the estimation of the 3-type model including three basic strategies:
fundamental and two di↵erent chartistic strategies which are to be estimated. Based on results
of the 2-type model estimation, we assume zero bias of both the trend following as well as the
contrarian strategy, i.e. b2 = b3 = 0. Moreover, the simultaneous estimation of four parameters
of our interest technically requires a modification of the algorithm setting to the constrained mul-
tivariable function estimation. The reason is that the two di↵erent strategies, the trend following
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g2 > 0 and the contrarian g3 < 0, need to be strictly distinguished using the following constrains:
g2 2 h1.8, 2.8i, g3 2 h0,�0.5i.

5.2. Fundamental price approximation

Approximation of the fundamental price is inevitably the most challenging issue of the entire
empirical estimation. In this, we follow the existing literature which approximates the fundamental
price by a moving average (Winker et al., 2007; ter Ellen and Zwinkels, 2010; Huisman et al.,
2010). For example Winker et al. (2007) assume as the proxy for the fundamental price a moving
average (MA) over the last 200 observations of the DM/USD exchange rate time series for the
period 1991/11/11 to 2000/11/9. ter Ellen and Zwinkels (2010) use the MA of the Brent and
WTI Cushing oil monthly USD prices over 24 months, i.e. from 1984/1 to 2009/8. Huisman et al.
(2010) employ the MA of European forward electricity daily historical prices over three years for
the base-load calendar year 2008 forward contracts and set the MA window to 3 as a calibration
result of the optimal length.5

Long-term and short-term MAs are also commonly used by practitioners in trading to ex-
trapolate divergence from the fundamental value in the technical analysis. Since the fundamental
value of stocks is essentially unknown, market practitioners often tend to at least estimate whether
the stock is over or under-valued, whether the possible mispricing is small or large, and whether
the gap is going to increase or whether a soon correction is more likely. As the Brock and Hommes
(1998) model is also formulated in deviations from the fundamental price, the MA approach seems
to be reasonable approximation. The MA filtering is a cornerstone of the technical analysis and
therefore widely used by active traders: Allen and Taylor (1990, pg. 50) present empirical evi-
dence on the perceived importance of technical analysis among London foreign exchange dealers
and refer to prevalent mechanical indicators such as trend-following rules: “buy when a shorter
MA cuts a longer MA from below”. Taylor and Allen (1992) survey chief foreign exchange dealers
operating in London and report that 64.3% of organisations use MAs and/or other trend-following
analytical techniques. Brock et al. (1992, pg. 1735) refer to MA technical rules as to one of the
two simplest and most widely used: “when the short-period MA penetrates the long-period MA,
a trend is considered to be initiated”. Lui and Mole (1998, pg. 541, 535) repeat largely analogical
survey as Taylor and Allen (1992) among Hong Kong foreign exchange dealers and report the same
conclusion for the usefulness of MAs at intraday, intramonth, and > 1 month horizons. Goldbaum
(1999, pg. 70, 71) describes the way how in practice the MA trading rules translate into buy-sell
indicators, and Sullivan et al. (1999, pg. 1656) summarise that “MA cross-over rules. . . are among
the most popular and common trading rules discussed in the technical analysis literature”. Closely
related to our work, Chiarella et al. (2006, pg. 1748) propose a model in which the demand of
chartists is determined by the di↵erence between a long-term MA and current market price.

In our empirical estimation, we keep to the strategy of a wide range of possible settings
to ensure robustness of our findings. We present results for two specific MA window lengths,

5In contrast, another class of FABMs of FX markets successfully utilises the Purchasing Power Parity between two
countries as the approximation of the fundamental value of the currency exchange rate [see e.g. Vigfusson (1997);
Westerho↵ and Reitz (2003); Manzan and Westerho↵ (2007); Wan and Kao (2009); Goldbaum and Zwinkels (2014);
Verschoor and Zwinkels (2013)]. Boswijk et al. (2007) and de Jong et al. (2009a) employ the static Gordon growth
model for equity valuation proposed by Gordon (1962), which is, however, infeasible for the empirical validation of
the original Brock and Hommes (1998) model. Some other papers simply use a random walk formula to drive the
fundamental price (De Grauwe and Grimaldi, 2005, 2006; Winker et al., 2007; Franke, 2009).
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namely 61 (MA61) and 121 (MA121) days. For the robustness check, we also tested other variants
ranging from one month to two years, namely 21, 241, and 481 days, leading to comparable results.
These results are available upon request from authors. Instead of usual ‘historical’ MA taking into
account only the past information for given time, we use the ‘centred’ MA. Both MA versions were
analysed and found to produce to a large extent comparable results. The centred MA is therefore
suggested to reduce the delay of the information flow. Moreover, the centred MA incorporates a
convenient property that the price converges to it by definition that is exactly a feature one would
expect from the fundamental value. Although undoubtedly our fundamental price approximation
di↵ers from the true fundamental value, the MA filter produces a series of an anticipated structures
to be modelled.

5.3. Data description

We use daily close prices of six world stock market indices as the base of our empirical dataset.
For S&P500, we retrieve the close prices of the index from the Yahoo Finance covering the period
from 1994/02/23 to 2013/12/31, i.e. 5000 observations in total. For other indices, only the starting
dates of the dataset vary by reason of di↵erent public holidays a calendar configurations around
the world, i.e. 1994/04/22 for DAX, 1994/11/02 for FTSE, 1994/02/23 for NASDAQ, 1993/09/03
for NIKKEI 225, and 1994/06/13 HSI. For each index we thus obtain a comparable amount of
5000 observations with the same end date 2013/12/31. The fundamental price is simultaneously
calculated as the centred MA and subtracted from the actual price.6 Thus we obtain deviations xt
from the fundamental price that are the subject of further estimation. Descriptive statistics of xt
series for all indices and two MA lengths for the fundamental value approximation are summarised
in Table 13 and in Appendix A.

5.4. Full sample estimates of the 2-type model

We start with the full sample estimation summarised in Table 8. Generally, we can observe
broad similarities across all indices and markedly statistically significant estimates of a positive
belief parameter g2 revealing superiority of trend following over contrarian strategies in markets. In
contrast, the estimates of the intensity of choice � and the bias parameter b2 are largely statistically
insignificant. While for the bias this is an expected result as there is no obvious reason why the
trend following strategies should be somehow biased in the long-term, the insignificance of b� is
an important and interesting result. We thus contrast a large subpart of the FABM estimation
literature (see Section 2) but confirm the main results of e.g. Westerho↵ and Reitz (2005); Boswijk
et al. (2007); de Jong et al. (2009b); ter Ellen et al. (2013); Bolt et al. (2014). Since the heterogeneity
in trading regimes is confirmed by the significance of g2, this might not worrying as discussed in
Boswijk et al. (2007, pg. 1995) or Hommes (2013, pg. 203) who emphasise that “this is a common
result in non-linear switching regression models, where the parameter in the transition function is
di�cult to estimate and has a large standard deviation, because relatively large changes in �⇤ cause
only small variation of the fraction nt. Teräsvirta (1994) argues that this should not be worrying
as long as there is significant heterogeneity in the estimated regimes”. Furthermore, as Huisman
et al. (2010, pg. 17, 20) point out, “the significance of the intensity of choice is not a necessary
condition for the switching to have added value to the fit of the model” and “the non-significant

6For the calculation of the fundamental price we need some extra data points preceding and succeeding the defined
period, the complete dataset retrieved and used therefore consists of ‘4999 + MA window length’ observations.
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Table 8: Empirical results of the 2-type � model estimation.

Data, MA period (a) b� (b) bg2 (c) bb2 (d) \noise intensity (e) LL

Med. Mean SD Med. Mean SD Med. Mean SD Med. Mean SD Med. Mean SD

SP500, 61 .015 .040 .122 1.567 1.587 .233 .009 .003 .121 .653 .656 .108 -1.486 -1.491 .074
NASDAQ, 61 .002 .006 .146 1.717 1.715 .166 -.005 -.003 .092 .609 .609 .079 .117 .115 .038

DAX, 61 .001 .018 .112 1.640 1.646 .215 .008 .001 .117 .590 .601 .099 -1.259 -1.264 .081
FTSE, 61 -.000 .008 .113 1.671 1.668 .201 .001 .004 .117 .597 .602 .092 -.988 -.995 .059

HSI, 61 -.004 -.002 .150 1.724 1.727 .164 -.003 -.001 .098 .566 .570 .069 -.145 -.147 .036
N225, 61 .008 .021 .100 1.601 1.619 .210 .011 .007 .121 .593 .601 .103 -1.544 -1.546 .085

SP500, 241 -.021 -.009 .195 1.878 1.875 .127 .007 .001 .111 .388 .397 .064 .029 .019 .074
NASDAQ, 241 .038 .047 .189 1.882 1.869 .152 -.009 -.003 .105 .423 .419 .078 .422 .424 .111

DAX, 241 .014 .012 .247 1.932 1.928 .109 .007 .003 .103 .292 .315 .070 .328 .309 .096
FTSE, 241 .010 .012 .162 1.871 1.858 .143 .008 .004 .114 .408 .409 .071 -.153 -.157 .085

HSI, 241 .008 .006 .204 1.914 1.908 .130 .004 .002 .103 .351 .366 .080 .369 .363 .118
N225, 241 .003 .012 .147 1.865 1.850 .165 -.000 -.000 .125 .394 .392 .101 -.793 -.793 .160

Robustness check

SP500 monthly, 13 -.016 -.031 .272 .886 .891 .238 .006 .002 .121 .863 .869 .104 -3.660 -3.666 .054
SP500 weekly, 13 -.085 -.103 .228 .953 .971 .224 -.003 -.001 .121 .865 .869 .098 -2.336 -2.349 .057
SP500 weekly, 49 .044 .089 .146 1.119 1.168 .241 .005 .002 .118 .724 .720 .103 -2.626 -2.615 .073

SP500 R=1.001, 61 .016 .035 .112 1.585 1.607 .241 .004 .004 .121 .656 .654 .110 -1.480 -1.485 .073
SP500 R=1.001, 241 .001 -.001 .196 1.889 1.880 .134 .005 .002 .111 .393 .397 .062 .029 .019 .073

SP500 mh=40, 61 -.032 -.041 .149 1.659 1.673 .173 -.002 -.002 .114 .584 .587 .075 -1.393 -1.402 .038
SP500 mh=40, 241 -.028 -.020 .298 1.908 1.905 .107 -.004 -.003 .099 .338 .355 .056 .100 .086 .054
SP500 mh=80, 61 -.047 -.054 .177 1.644 1.664 .182 .003 .003 .115 .573 .576 .065 -1.385 -1.392 .032

SP500 mh=80, 241 -.036 -.014 .309 1.908 1.906 .105 -.002 -.004 .097 .335 .352 .054 .106 .091 .056

Note: Results are based on 1000 random runs, number of observations t = 5000, and the kernel estimation precision N = 500 i.i.d. draws from normal distribution.
Sample medians, means, and standard deviations (SD) are reported. ‘LL’ denotes log-likelihoods of estimated models representing statistical fits. Figures are
rounded to 3 decimal digits.
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intensity of choice. . . indicates that the switching does not occur systematically”. The magnitudes
of trend parameter estimates bg2, that keep roughly between 1.6 and 1.9, might seem large, but
it is important to note that they influence the price change only from circa 50% implied by the
insignificance of the intensity of choice � keeping the population ratio of the two strategies stable
around 0.5/0.5.

In this situation, it is useful to revisit the results from simulations in previous sections,
where we find the estimation methodology able to recover even very small � = 0.5 with a high
precision when similar computational setting is used for number of observations, runs, and kernel
approximations. Thus, if there is some behavioural switching present in the empirical data, it
should have been detectable under similarly robust estimation.

Di↵erences across markets can be partly seen in the (d) column of Table 8 between well

e�ciently estimated values of the \noise intensity. Although the di↵erence are often on the border
of statistical significance, it might be worth mentioning that the highest stock market noise intensity
is estimated for the U.S. indices, specifically S&P500 in case of MA61 based fundamental value and
NASDAQ in case of MA241 based fundamental value. Conversely, the lowest values are estimated
for DAX and the di↵erence is circa 30% in case of the MA241 based fundamental value.

The level di↵erences in values between the upper part of Table 8 depicting results for the
MA61 fundamental price approximation and the middle part with results for the MA241 is perhaps
mainly the technical feature of di↵erent MA windows. It is therefore important to consider absolute
values of estimated coe�cient with this respect and compare both versions. Nevertheless, the
main results concerning the positive sign and statistical significance of bg2 and insignificance of
b� and bb2 keep similar as well as the main detected relative relationships between values of the

\noise intensity. Our most important results thus demonstrate robustness w.r.t. the choice of the
fundamental value specification. The lower values of the \noise intensity might be explained by
reason of a better fundamental value approximation using bigger MA window.

5.4.1. Behaviour of the simulated log-likelihood function

We verify the smoothness conditions and unique maxima presence of the simulated log-
likelihood functions that are crucial for the parameter detection and identification also within the
empirical application. However, the 5D surface resulting from simultaneous estimation of four
parameters makes the graphical demonstration bit complicated. To see the behaviour of log-
likelihoods, we therefore draw sub-log-likelihood functions in 2D, assuming other parameters fixed
at estimated values from Table 8. This graphical depiction shows how the parameters are identified.

Figure 6 demonstrates partial 2D shapes of the simulated sub-log-likelihood function in
direction of individual parameters. Generally we observe a bit rough shape in detail, but very
consistent performance of the estimation method over all 100 random runs leading to unique
maxima consistent with the full sample estimates in all cases. The shape is a↵ected by the structure
of the real world data which is far away from regularity of simulated datasets. For this reason, we
also adapt the computational algorithm by increasing the number of initial points as mentioned
earlier in the estimation setup.

5.4.2. Robustness check of the 2-type model

For the robustness check of the validity of estimated values (results are reported in Table 8,
bottom part), we not only use more than single MA specification of the fundamental value, but also
consider several modification of the setup and even di↵erent frequency of the data. Equipped with
the knowledge from previous analysis, we again only compute results for S&P500. Aside utilisation
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Figure 6: Simulated sub-log-likelihood fcns. for single parameters.
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Note: Results based on 100 random runs, S&P500 data, and given MA fundamental price approximation. {"i}Ni=1 drawn from
normal distribution. Black dotted vertical lines depict estimated parameters (see Table 8). Horizontal axis shows values of
estimated parameters, vertical axis shows values of log-likelihood.

of weekly and monthly data, we also follow the robustness testing from Section 4 and estimate the
model using:

1. 10 times higher assumed market risk free rate R = 1.001;
2. nontrivial memory of agents defined via parameters mh = {40, 80} 8 h 2 {1, . . . H} from

Equation 15. The average memory length thus resembles circa the one- or two-month period,
i.e. 20 or 40 days.

Three new datasets cover S&P500 weekly data from 1994/02/28 to 2013/12/30 (i.e. 1035
observations) and monthly data from 1994/03/01 to 2013/12/02 (i.e. 238 observations). Selected
periods cover the same span as the original daily dataset. The MA lengths are selected so that
they resemble most closely the 61 and 241 days for the fundamental value specification, i.e. 13 and
49 weeks in case of weekly data and 13 months for monthly data. The assumed market risk free
rate is adjusted to reflect the modified data periodicity, namely to R = 1.0005 for weekly data and
R = 1.002 for monthly data.

The most important findings of the preceding empirical analysis remain una↵ected under
the robustness burden. The b� parameter still reveals evident statistical insignificance, the same
does the bias parameter bb2. Di↵erences are basically observable at the level of trend parameters bg2
and \noise intensity, but the behaviour keeps patterns uncovered within the original analysis: bg2
slightly increases and \noise intensity decreases moving from MA61 to MA241 fundamental value
approximation. Results based on monthly and weekly data show considerably lower bg2, the values
fall even under 1 for the MA13 fundamental value specification, that is, instead of a strong trend
chasing strategy only a weak trend chasing strategy is detected. However, this seems to be again
an implied technical side-e↵ect of a small MA window that produces more average dynamics of the
price deviations series. Memory only slightly increases the model fit and as the interconnected e↵ect
it simultaneously decreases the \noise intensity. Nothing surprising is therefore found within the
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Table 9: Empirical results of the 3-type � model estimation.

Data, MA p. (a) b� (b) bg2 (c) bg3 (d) \noise i. (e) LL

Med. SD Med. SD Med. SD Med. SD Med. SD

SP500, 61 -.003 .082 2.502 .175 -.123 .111 .550 .047 -.127 .022
SP500, 241 .007 .050 2.674 .217 -.032 .142 .403 .045 -.289 .094

Note: Results are based on 500 random runs, number of observations t = 5000, and the kernel estimation
precision N = 500 i.i.d. draws from normal distribution. Sample medians and standard deviations (SD) are
reported. ‘LL’ denotes log-likelihoods of estimated models representing statistical fits. Figures are rounded
to 3 decimal digits.

validity check of original results that approve robustness to various data frequency specifications
as well as modifications of interesting parameters in the model.

As another robustness check, we estimate the model on a yearly rolling windows to uncover
dynamics in time. b� and bb2 keep to zero and are statistically insignificant in all the windows. In
general, the rolling approach in particular strongly supports the stability of model behaviour over
time and thus confirms the validity of full sample estimation results. This can be expected, as
values of the intensity of choice close to zero do not allow rich dynamics in the model.

5.5. Full sample estimates of the 3-type model

Estimation of a more-flexible 3-type model reveals markedly similar big picture as the esti-
mation of the 2-type model. For the matter of computational time, based on our knowledge from
the 2-type model estimation revealing large similarities across all estimated stock market indices we
again only compute results for S&P500. Estimated parameters are reported in Table 9. The only
new conclusion is a statistical insignificance of the contrarian strategy represented by coe�cient bg3,
which is now exactly specified in the model and defined via the constraint g3 < 0. Although point
estimates reported via median and mean values are negative, this is only an e↵ect of the enforced
g3 < 0 constraint. The distribution mass of estimates from all 500 runs concentrates close to 0. The
optimised function is likely to be very flat in the dimension of the g3 parameter because the e↵ect
of a very weak contrarian strategy is overshadowed if combined with a very strong trend following
strategy. The estimate of the intensity of choice b� keeps its statistical insignificance and the trend
following strategy coe�cient bg2 retains its positive sign as well as high statistical significance. The
absolute value of bg2 is naturally higher because the trend following strategy impacts the price via
only the 1/3 weight in the 3-type model compared to 1/2 weight in the 2-type model, in both cases
conditional on insignificant b�. Taking those weights into account, we obtain very similar impact of
the trend following strategy in both models. Comparing results for the MA61 and MA241 funda-
mental price approximation shows very same e↵ects as within the 2-type estimation, under MA241
we reveal somewhat stronger trend following strategy and lower intensity of stochastic noise.

5.6. Estimation of market fractions

Statistically insignificant intensity of choice parameter b� implies that any systematic evolu-
tionary switching between trading strategies can not be expected. It also implies stable population
ratio of trading strategies n1,t/n2,t

.
= 0.5/0.5 in time, which means that the population of funda-

mentalists is forced to be of almost the same magnitude as the population of chartists throughout
the entire span of the dataset. Thus the model boils down to a simple weighted AR(1) process and
di↵erent types of trading strategies cannot be identified because agents do not switch over time.
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In such a case the trend bg2 and bias bb2 parameters can be viewed as nuisance parameters, i.e. they
to a large extent lose the original model interpretation and we cannot fully trust the estimated
magnitudes of these parameters.

Moreover, contrarians in the 3-type model, who technically account for 1/3 of the population
size as the b� coe�cient is insignificant, behave as fundamentalists in terms of their price impact
because the size of bg3 coe�cient is small and statistically insignificant. These findings from the
analysis of the 2-type and 3-type model estimation imply two important conclusions. First, the
3-type model does not really help us to capture additional features of the data-generating process
and rather deviates the implied market fraction. Second, it suggests there might be more funda-
mentalists than chartists in real markets and therefore the almost fixed population ratio of trading
strategies n1,t/n2,t

.
= 0.5/0.5 as the result of the 2-type model estimation is likely not capturing

the real market population proportions.
As a consequence of these findings, we trivialise the simulated model (Equations 27, 28, and

29) by disabling the evolutionary switching behaviour and fixing the population ratio of trading
strategies to n1,t/n2,t = const. Equations 28 and 29 are now replaced by Equation 32 and the
coe�cient n1, which we further call percentage fraction of fundamentalists, is to be estimated
instead of the switching coe�cient �:

Rxt =
H
X

h=1

nhfh,t + ✏t ⌘
H
X

h=1

nh(ghxt�1 + bh) + ✏t, (31)

n1 = 1� n2, (32)

where H = 2 in the 2-type model. Interval for the starting points random generation is
constrained to h0.3, 0.9i for fraction and to h1.5, 2.5i for g2, the other setting remains the same as
in the preceding analysis. The modified setup keeps the logic of aforementioned findings and does
not distract the structure of the original model. On the other hand, the population ratio of trading
strategies n1/n2 and implied percentage fraction of fundamentalists in the market is now a direct
subject of estimation.

5.6.1. Full sample estimates of the 2-type fraction model

Outcomes of the full sample estimation of all six stock market indices are reported in Table 10.
The main interest lies in the behaviour of the new variable fraction representing the percentage
market fraction of fundamentalists (g1 = b1 = 0). All other variables behave at average very
similarly as in the 2-type � model estimation, moreover, we do not longer observe considerable
distinctions caused by the MA window length for the fundamental value approximation.

The \fraction coe�cient is strongly statistically significant with value closely around 0.56,
leaving 44% of the market population to chartistic strategies. The model therefore suggests overall
proportional dominance of the fundamental strategy in investigated world stock markets. Estimates
of the trend following coe�cient g2 are generally higher compared to values for the 2-type switching
model estimation but one must realise that within the 2-type fraction model the trend following
strategy is relatively weaker in terms of impact to the market price (see Equation 13) because
the proportion of these strong trend chasers is lower than 0.5. If we consider market proportions

incorrectly implied by the 2-type b� coe�cient and related bg2 and compare it to \fraction and
related bg2 estimated in this section according to Equation 13, we deduce almost similar impact.
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Table 10: Empirical results of the 2-type fraction model estimation.

Data, MA period (a) \fraction (b) bg2 (c) bb2 (d) \noise intensity (e) LL

Med. Mean SD Med. Mean SD Med. Mean SD Med. Mean SD Med. Mean SD

SP500, 61 .569 .555 .088 1.963 1.986 .362 .006 .003 .121 .559 .558 .044 -4.022 -4.023 .013
NASDAQ, 61 .555 .541 .086 1.972 1.985 .344 -.001 -.001 .117 .565 .566 .054 -5.118 -5.119 .019

DAX, 61 .559 .547 .090 2.006 2.021 .387 .008 .005 .123 .489 .490 .035 -5.733 -5.733 .011
FTSE, 61 .556 .545 .085 1.980 1.997 .357 -.009 -.007 .121 .519 .520 .037 -5.507 -5.507 .011

HSI, 61 .559 .549 .082 1.993 2.020 .344 -.006 -.001 .120 .531 .531 .045 -6.999 -7.000 .016
N225, 61 .562 .553 .084 1.995 2.023 .361 .005 .001 .124 .482 .484 .032 -6.700 -6.701 .010

SP500, 241 .562 .556 .084 2.161 2.228 .425 .002 -.001 .133 .331 .348 .053 -4.073 -4.088 .049
NASDAQ, 241 .562 .556 .086 2.191 2.244 .434 -.002 -.001 .133 .311 .345 .077 -5.195 -5.231 .089

DAX, 241 .565 .559 .088 2.219 2.275 .455 .013 .003 .137 .256 .279 .069 -5.782 -5.814 .086
FTSE, 241 .562 .554 .087 2.179 2.227 .445 -.002 .003 .133 .322 .339 .053 -5.547 -5.563 .045

HSI, 241 .562 .554 .084 2.204 2.253 .446 -.009 -.006 .137 .276 .304 .070 -7.057 -7.095 .091
N225, 241 .570 .562 .087 2.232 2.281 .460 -.012 -.005 .138 .255 .272 .058 -6.744 -6.767 .069

Robustness check

SP500 monthly, 13 .606 .592 .114 1.429 1.451 .306 -.000 .000 .116 .806 .801 .064 -5.150 -5.153 .014
SP500 weekly, 13 .635 .616 .128 1.404 1.422 .309 -.011 -.004 .115 .853 .848 .063 -4.598 -4.603 .028
SP500 weekly, 49 .485 .483 .093 1.591 1.624 .292 .012 .006 .117 .606 .606 .057 -4.721 -4.722 .017

SP500 R=1.001, 61 .566 .553 .089 1.967 1.984 .368 -.004 -.004 .121 .557 .557 .044 -4.022 -4.022 .013
SP500 R=1.001, 241 .570 .557 .085 2.220 2.239 .430 .003 -.001 .132 .332 .349 .054 -4.074 -4.089 .047

Note: Results are based on 1000 random runs, number of observations t = 5000, and the kernel estimation precision N = 500. Sample medians, means, and
standard deviations (SD) are reported. ‘LL’ denotes log-likelihoods of estimated models representing statistical fits. Figures are rounded to 3 decimal digits.
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This confirms our suspicion about an improper specification of the model with insignificant b� and we

correct for this misspecification introducing \fraction specification via Equation 32. Evolutionary

switching between strategies can be now captured via changes in the \fraction coe�cient in its
smooth form using the rolling approach as asserted by Teräsvirta (1994, pg. 217): “if one assumes
that the agents make only dichotomous decisions or change their behaviour discretely, it is unlikely
that they do this simultaneously. Thus if only an aggregated process is observed, then the regime
changes in that process may be more accurately described as being smooth rather than discrete.”
Nonetheless, the rolling approach does not reveal any significant dynamics in the behaviour of
\fraction which again only confirms the validity of full sample estimation results. We make the

rolling sample estimates available upon request.

5.6.2. Robustness check of the 2-type fraction model

For the fraction model we employ an identical (except for now irrelevant e↵ect of memory)
robustness check as in the previous case for the switching model. Results of weekly and monthly
data estimation and the model assuming higher market risk free rate are reported in Table 10,
bottom part. Basic conclusions for the robustness and validity checks hold identically to previous

findings. The \fraction, bg2, and \noise intensity generally reveal strong statistical significance, the
opposite behaviour shows the bias parameter bb2. Di↵erences are again observable at the level of
trend parameters bg2 and \noise intensity based on monthly and weekly data, where results show
lower bg2 and higher \noise intensity compared to daily data. These findings are once again likely
to be an implied technical side-e↵ect of a small MA window. Simulated log-likelihood functions
are of similar shapes as in previous models.

6. Conclusion

This paper proposes innovative computational framework for empirical estimation of FABMs.
Motivated by the lack of general consensus on the estimation methodology, not many examples
on structural estimation of FABMs, and inconclusive results in recent FABM literature, we aim at
developing and testing more general methods for estimation of FABMs that significantly reduce
the importance of restrictive theoretical assumptions.

In a large simulation as well as estimation excercise, we show that the NPSMLE generally
estimates the parameters in various versions of the Brock and Hommes (1998) model precisely.
We confirm that simulated MLE constitutes a flexible method to estimate complicated nonlinear
models for which traditional estimation approaches cannot be used and that historically remained
to a large extent inestimable. Employing NPSMLE, we are generally able to estimate models for
which the closed-form solution or theoretical approximation of the objective function does not exist.
We also prove that using simulation-based non-parametric methods the parameters of such systems
can be recovered reasonably well. Together with quickly increasing computational capabilities of
personal computers, server clusters, and super-computers, we anticipate a bright future and rapid
development of simulation-based methods in next years.

The crucial result of the empirical analysis is the statistical insignificance of the switching
coe�cient across main world market indices. This is a common result in the existing literature,
but on the other hand we contrast another part of the estimation literature on FABMs reporting
significant switching coe�cients for various specific markets. In contrary, our estimation results of
the 2-type model reveal markedly statistically significant belief parameters defining heterogeneous
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trading regimes with an absolute superiority of trend-following over contrarian strategies. Our
findings further indicate robustness w.r.t. the fundamental value specification and remain largely
una↵ected under the robustness burden of di↵erent than daily data frequency, jumps in market
risk free rate, or introducing of agents’ memory. Graphical inspection of simulated log-likelihood
functions reveals a bit rough surface, but very consistent performance of the estimation method over
all random runs leading to a unique maxima. The adapted computational algorithm is, however,
able to deal well with the not-completely-smooth surface of the simulated log-likelihood function
and the important identification feature is thus verified also for the empirical application.

Alfarano, S., T. Lux, and F. Wagner (2005). Estimation of agent-based models: The case of an asymmetric herding
models. Computational Economics 26, 19–49.

Alfarano, S., T. Lux, and F. Wagner (2006). Estimation of a simple agent-based model of financial markets: An appli-
cation to australian stock and foreign exchange data. Physica A: Statistical Mechanics and its Applications 370 (1),
38–42. Econophysics Colloquium Proceedings of the International Conference.

Alfarano, S., T. Lux, and F. Wagner (2007). Empirical validation of stochastic models of interacting agents. The
European Physical Journal B 55 (2), 183–187.

Allen, H. and M. P. Taylor (1990). Charts, noise and fundamentals in the london foreign exchange market. The
Economic Journal 100 (400), 49–59.

Altissimo, F. and A. Mele (2009). Simulated non-parametric estimation of dynamic models. The Review of Economic
Studies 76 (2), 413–450.

Amilon, H. (2008). Estimation of an adaptive stock market model with heterogeneous agents. Journal of Empirical
Finance 15 (2), 342–362.

Andersen, T. G., L. Benzoni, and J. Lund (2002). An empirical investigation of continuous-time equity return models.
The Journal of Finance 57 (3), 1239–1284.

Barunik, J. and J. Kukacka (2015). Realizing stock market crashes: stochastic cusp catastrophe model of returns
under time-varying volatility. Quantitative Finance 15 (6), 959–973.

Barunik, J., L. Vacha, and M. Vosvrda (2009). Smart predictors in the heterogeneous agent model. Journal of
Economic Interaction and Coordination 4, 163–172.

Barunik, J. and M. Vosvrda (2009). Can a stochastic cusp catastrophe model explain stock market crashes? Journal
of Economic Dynamics & Control 33, 1824–1836.

Bass, F. (1969). A new product growth for model consumer durables. Management Science 15, 215–227.
Biondi, Y., P. Giannoccolo, and S. Galam (2012). Formation of share market prices under heterogeneous beliefs and

common knowledge. Physica A: Statistical Mechanics and its Applications 391 (22), 5532–5545.
Bolt, W., M. Demertzis, C. Diks, and M. van der Leij (2011). Complex methods in economics: an example of

behavioral heterogeneity in house prices. Technical report, De Nederlandsche Bank.
Bolt, W., M. Demertzis, C. G. H. Diks, C. H. Hommes, and M. van der Leij (2014). Identifying booms and busts

in house prices under heterogeneous expectations. Technical report, De Nederlandsche Bank Working Paper No.
450.

Boswijk, H. P., C. H. Hommes, and S. Manzan (2007, February). Behavioral heterogeneity in stock prices. Journal
of Economic Dynamics & Control 31 (2), 1938–1970.

Brock, W., J. Lakonishok, and B. LeBaron (1992). Simple technical trading rules and the stochastic properties of
stock returns. The Journal of Finance 47 (5), 1731–1764.

Brock, W. A. and C. H. Hommes (1997). A rational route to randomness. Econometrica 65 (5), 1059–1095.
Brock, W. A. and C. H. Hommes (1998). Heterogeneous beliefs and routes to chaos in a simple asset pricing model.

Journal of Economic Dynamics & Control 22, 1235–1274.
Chen, S.-H., C.-L. Chang, and Y.-R. Du (2012, 6). Agent-based economic models and econometrics. The Knowledge

Engineering Review 27, 187–219.
Chen, Z. and T. Lux (2015). Estimation of sentiment e↵ects in financial markets: A simulated method of moments

approach. FinMaP-Working Paper 37, University of Kiel, Department of Economics, Kiel.
Chiarella, C., R. Dieci, and X.-Z. He (2009). Handbook of Financial Markets: Dynamics and Evolution, Chapter

5: Heterogeneity, Market Mechanisms and Asset Price Dynamics, pp. 277–344. North-Holland, Elsevier, Inc.,
Amsterdam.

Chiarella, C. and X.-Z. He (2002). An adaptive model on asset pricing and wealth dynamics with heterogeneous
trading strategies. Technical report, University of Technology, Sydney, Australia.

Chiarella, C., X.-Z. He, and C. Hommes (2006). A dynamic analysis of moving average rules. Journal of Economic

41



Dynamics and Control 30 (9-10), 1729–1753. Computing in economics and finance10th Annual Conference on
Computing in Economics and Finance.

Chiarella, C., X.-Z. He, and R. C. Zwinkels (2014). Heterogeneous expectations in asset pricing: Empirical evidence
from the SP500. Journal of Economic Behavior & Organization 105, 1–16.

Chiarella, C., S. ter Ellen, X.-Z. He, and E. Wu (2015). Fear or fundamentals? heterogeneous beliefs in the european
sovereign CDS markets. Journal of Empirical Finance 32, 19–34.

Cornea, A., C. Hommes, and D. Massaro (2013). Behavioral heterogeneity in U.S. inflation dynamics. Tinbergen
Institute Discussion Paper 13-015/II, Tinbergen Institute, Amsterdam and Rotterdam.

Cox, J. C., J. Ingersoll, Jonathan E., and S. A. Ross (1985). A theory of the term structure of interest rates.
Econometrica 53 (2), 385–407.

De Grauwe, P. and M. Grimaldi (2005). Heterogeneity of agents, transactions costs and the exchange rate. Journal
of Economic Dynamics & Control 29, 691–719.

De Grauwe, P. and M. Grimaldi (2006). Exchange rate puzzles: A tale of switching attractors. European Economic
Review 50, 1–33.

de Jong, E., W. F. C. Verschoor, and R. C. J. Zwinkels (2009a). Behavioural heterogeneity and shift-contagion:
Evidence from the asian crisis. Journal of Economic Dynamics & Control 33, 1929–1944.

de Jong, E., W. F. C. Verschoor, and R. C. J. Zwinkels (2009b). A heterogeneous route to the european monetary
system crisis. Applied Economic Letters 16, 929–932.

de Jong, E., W. F. C. Verschoor, and R. C. J. Zwinkels (2010). Heterogeneity of agents and exchange rate dynamics:
Evidence from the EMS. Journal of International Money and Finance 29, 1652–1669.

Diks, C. and R. Weide (2005). Herding, a-synchronous updating and heterogeneity in memory in a CBS. Journal of
Economic Dynamics & Control 29, 741–763.

Duan, J.-C. and J.-G. Simonato (1998). Empirical martingale simulation for asset prices. Management Science 44 (9),
1218–1233.

Ecemis, I., E. Bonabeau, and T. Ashburn (2005). Interactive estimation of agent-based financial markets models:
Modularity and learning. In Proceedings of the 7th Annual Conference on Genetic and Evolutionary Computation,
GECCO ’05, New York, NY, USA, pp. 1897–1904. ACM.

Fagiolo, G., A. Moneta, and P. Windrum (2007). A critical guide to empirical validation of agent-based models in
economics: Methodologies, procedures, and open problems. Computational Economics 30 (3), 195–226.

Fama, E. F. (1970). E�cient capital markets: A review of theory and empirical work. The Journal of Finance 25 (2),
383–417.

Fernández-Villaverde, J. and J. F. Rubio-Ramı́rez (2010, December). Macroeconomics and volatility: Data, models,
and estimation. Working Paper 16618, National Bureau of Economic Research.

Franke, R. (2009). Applying the method of simulated moments to estimate a small agent-based asset pricing model.
Journal of Empirical Finance 16, 804–815.

Franke, R. and F. Westerho↵ (2011). Estimation of a structural stochastic volatility model of asset pricing. Compu-
tational Economics 38 (1), 53–83.

Franke, R. and F. Westerho↵ (2012). Structural stochastic volatility in asset pricing dynamics: Estimation and
model contest. Journal of Economic Dynamics and Control 36 (8), 1193–1211. Quantifying and Understanding
Dysfunctions in Financial Markets.

Frankel, J. A. and K. A. Froot (1990, earlier versions 1986, 1988). Chartists, fundamentalists, and trading in the
foreign exchange market. AEA Papers and Proceedings 80 (2), 181–185.

Frijns, B., T. Lehnert, and R. C. J. Zwinkels (2010). Behavioral heterogeneity in the option market. Journal of
Economic Dynamics & Control 34, 2273–2287.

Gaunersdorfer, A. (2000). Adaptive beliefs and the volatility of asset prices. Technical report, Vienna University of
Economics, Austria, Working Paper No. 74.

Ghonghadze, J. and T. Lux (2015). Bringing an elementary agent-based model to the data: Estimation via GMM and
an application to forecasting of asset price volatility. FinMaP-Working Paper 38, University of Kiel, Department
of Economics, Kiel.

Gilli, M. and P. Winker (2003). A global optimization heuristic for estimating agent based models. Computational
Statistics & Data Analysis 42, 299–312.

Goldbaum, D. (1999). A nonparametric examination of market information: application to technical trading rules.
Journal of Empirical Finance 6 (1), 59–85.

Goldbaum, D. and R. C. Zwinkels (2014). An empirical examination of heterogeneity and switching in foreign
exchange markets. Journal of Economic Behavior & Organization 107, Part B, 667–684. Empirical Behavioral
Finance.

42



Gordon, M. J. (1962). The savings investment and valuation of a corporation. The Review of Economics and
Statistics 44 (1), 37–51.

Grazzini, J. and M. Richiardi (2015). Estimation of ergodic agent-based models by simulated minimum distance.
Journal of Economic Dynamics and Control 51, 148–165.

Grazzini, J., M. Richiardi, and L. Sella (2013). Indirect estimation of agent-based models. an application to a simple
di↵usion model. Compexity Economics 1(2), 25–40.

Holland, J. H. and J. H. Miller (1991). Artificial adaptive agents in economic theory. The American Economic
Review 81 (2), 365–370.

Hommes, C. (2013). Behavioral Rationality and Heterogeneous Expectations in Complex Economic Systems. Cam-
bridge University Press. Cambridge Books Online.

Hommes, C. and D. Veld (2015). Booms, busts and behavioral heterogeneity in stock prices. Technical report,
University of Amsterdam, CeNDEF Working Paper.

Hommes, C. and F. O. O. Wagener (2009). Handbook of Financial Markets: Dynamics and Evolution, Chapter 4:
Complex Evolutionary Systems in Behavioral Finance, pp. 217–276. North-Holland, Elsevier, Inc., Amsterdam.

Hommes, C. H. (2006). Chapter 23: Heterogeneous agent models in economics and finance. In L. Tesfatsion and
K. Judd (Eds.), Handbook of Computational Economics, Volume 2 of Handbook of Computational Economics, pp.
1109–1186. Elsevier.

Huisman, R., R. A. F. Maliepaard, and R. C. J. Zwinkels (2010). Heterogeneous agents in electricity forward markets.
Technical report, Erasmus University Rotterdam.

Jones, M. C., J. S. Marron, and S. J. Sheather (1996). A brief survey of bandwidth selection for density estimation.
Journal of the American Statistical Association 91 (433), 401–407.

Kirman, A. (1993). Ants, rationality, and recruitment. The Quarterly Journal of Economics 108 (1), 137–156.
Kouwenberg, R. and R. Zwinkels (2014). Forecasting the US housing market. International Journal of Forecast-

ing 30 (3), 415–425.
Kouwenberg, R. and R. C. J. Zwinkels (2015, 06). Endogenous price bubbles in a multi-agent system of the housing

market. PLoS ONE 10 (6), e0129070.
Kristensen, D. (2009, 10). Uniform convergence rates of kernel estimators with heterogeneous dependent data.

Econometric Theory 25, 1433–1445.
Kristensen, D. and Y. Shin (2012). Estimation of dynamic models with nonparametric simulated maximum likelihood.

Journal of Econometrics 167 (1), 76–94.
Kukacka, J. and J. Barunik (2013). Behavioural breaks in the heterogeneous agent model: The impact of herding,

overconfidence, and market sentiment. Physica A: Statistical Mechanics and its Applications 392 (23), 5920–5938.
LeBaron, B. (2006). Chapter 24: Agent-based computational finance. In L. Tesfatsion and K. Judd (Eds.), Handbook

of Computational Economics, Volume 2 of Handbook of Computational Economics, pp. 1187–1233. Elsevier.
LeBaron, B. and L. Tesfatsion (2008). Modeling macroeconomies as open-ended dynamic systems of interacting

agents. The American Economic Review 98 (2), 246–250.
Lof, M. (2012). Heterogeneity in stock prices: A STAR model with multivariate transition function. Journal of

Economic Dynamics and Control 36 (12), 1845–1854.
Lof, M. (2015). Rational speculators, contrarians, and excess volatility. Management Science 61 (8), 1889–1901.
Lucas, R. E. J. (1978). Asset prices in an exchange economy. Econometrica 46, 1429–1445.
Lui, Y.-H. and D. Mole (1998). The use of fundamental and technical analyses by foreign exchange dealers: Hong

kong evidence. Journal of International Money and Finance 17 (3), 535–545.
Lux, T. (1995). Herd behaviour, bubbles and crashes. The Economic Journal 105 (431), 881–896.
Manzan, S. and F. H. Westerho↵ (2007). Heterogeneous expectations, exchange rate dynamics and predictability.

Journal of Economic Behavior & Organization 64, 111–128.
Palmer, R., W. B. Arthur, J. H. Holland, B. LeBaron, and P. Tayler (1994). Artificial economic life: a simple model

of a stockmarket. Physica D: Nonlinear Phenomena 75 (1-3), 264–274.
Recchioni, M. C., G. Tedeschi, and M. Gallegati (2015). A calibration procedure for analyzing stock price dynamics

in an agent-based framework. Journal of Economic Dynamics & Control 60, 1–25.
Reitz, S. and U. Slopek (2009). Non-linear oil price dynamics: A tale of heterogeneous speculators? German

Economic Review 10 (3), 270–283.
Reitz, S. and F. H. Westerho↵ (2007). Commodity price cycles and heterogeneous speculators: A STAR-GARCH

model. Empirical Economics 33, 231–244.
Silverman, B. W. (1986). Density Estimation for Statistics and Data Analysis. London: Chapman and Hall.
Simon, H. A. (1957). Models of Man. New York: Wiley.
Sullivan, R., A. Timmermann, and H. White (1999). Data-snooping, technical trading rule performance, and the

43



bootstrap. The Journal of Finance 54 (5), 1647–1691.
Taylor, M. P. and H. Allen (1992). The use of technical analysis in the foreign exchange market. Journal of

International Money and Finance 11 (3), 304–314.
ter Ellen, S., W. F. Verschoor, and R. C. Zwinkels (2013). Dynamic expectation formation in the foreign exchange

market. Journal of International Money and Finance 37, 75–97.
ter Ellen, S. and R. C. Zwinkels (2010). Oil price dynamics: A behavioral finance approach with heterogeneous

agents. Energy Economics 32 (6), 1427–1434.
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Table 11: Estimation methods of FABMs II. b).

Models # Data Type Fit |IOC|
Barunik and Vosvrda (2009) 8,17 d:1987–1988,2001–2002 s pseudo-R2 up to .8 -
Barunik and Kukacka (2015) 10 d:6739,409 o. s pseudo-R2=.8, .86 -
Bolt et al. (2011) 5 q:164 o. re NA 2716(i),12420(i)
Bolt et al. (2014) 4 q:178 o. re NA 795(i)–26333(i)
Cornea et al. (2013) 2 q:204 o. U.S. inflation R2=.78, .94 4.78(s)
Chen and Lux (2015) 3 d:1/1980–12/2010 s/fx/g p-v 2 h4.6%, 45.5%i -
Chiarella et al. (2014) 6 m:502,251 o. s - .44(s),.54(s),.69(s)
Chiarella et al. (2015) 5 w:2007–4/2013 CDS spreads - .74(i)–6.84(s)
de Jong et al. (2009a) 10 q:112 o. s - 1.03(s),2.87(s)
ter Ellen and Zwinkels (2010) 7 m:295,319 c (crude oil) - 1.19(s),1.36(s)
ter Ellen et al. (2013) 2–5 w:1/2003–2/2008 fx adjR2 up to .7 7.72(i)–454.4(i)
Franke (2009) 6 d:4115–6867 o. s,fx p-v 2 h0%, 2%i -
Frijns et al. (2010) 5 d:01–12/2000 s (index options) - 107.34(i)
Franke and Westerho↵ (2011) 6 d:6866,6861 o. s,fx p-v=12.8%, 27.7% -
Franke and Westerho↵ (2012) 9 d:6866 o. s p-v=12.7%–32.6% -
Ghonghadze and Lux (2015) 3 d:1/1980–12/2009 s/fx/g p-v 2 h.3%, 67%i -
Grazzini et al. (2013) 3 - - - -
Grazzini and Richiardi (2015) 1 d:400 o. s - -
Goldbaum and Zwinkels (2014) 4 m:2825–2941 o. fx (experts’ forecasts) adjR2=.55–.79 -
Hommes and Veld (2015) 4 q:252 o. re R2=.95 2.44(i)
Huisman et al. (2010) 4 d:694,753,1038 o. c (electricity futures) - 1.06(s),1.77(s),15.87(i)
Kouwenberg and Zwinkels (2014) 4 q:127,198 o. re - 2.98(s),1.36(s)
Kouwenberg and Zwinkels (2015) 5 q:204 o. re - 2.18(s)
Lof (2012) 7 q:208 o. s R2=.97 7.45(s), 4.74(s)
Lof (2015) 5 a:140 o. s R2=.55 type-specific: .8(i),1.13(s),5.18(i)
Reitz and Slopek (2009) 6 m:252 o. c (crude oil) - -
Recchioni et al. (2015) 4 d:245 o. s - 2.14(s),.59(i),.03(s),.36(i)
Verschoor and Zwinkels (2013) 5 m:107 o. fx - 2.64(i),14.51(i)

Note: The Table complements information in Table 2 following the logic of Table 1. Authors of articles are alphabetised. ‘#’ displays total number
of estimated parameters; ‘Data’ describes data frequency: ‘d/w/m/q/a’ for daily/weekly/monthly/quarterly/annual, and number of observations (where
no specific figure is provided, we report starting and final years); ‘Type’ shows the type of data: ‘s/fx/c/g/re’ for stock markets/FX/commodity mar-
kets/gold/real estate; ‘Fit’ reports the statistical fit of the estimation (R2, its alternatives, p-value of the J-test of overidentifying restrictions to accept the
model as a possible data generating process); and where relevant, ‘|IOC|’ displays the absolute estimated value of the switching parameter of the intensity
of choice (see Equation 17), furthermore ‘s’/‘i’ denotes its statistical significance/insignificance at 5% level. Figures are rounded to 2 decimal digits.
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Table 12: Simulation results for � estimation with Gaussian noise.

� (a) b�, N(0, 10�16) (b) b�, N(0, 10�14)

Median Mean SD LQ HQ Median Mean SD LQ HQ

0 -.00 .00 .03 -.02 .04 -.00 -.00 .07 -.15 .11
.1 .10 .10 .02 .08 .12 .10 .10 .05 -.03 .21
.5 .50 .50 .05 .47 .54 .50 .50 .11 .40 .67
1 1.00 .99 .08 .91 1.05 1.00 1.00 .18 .84 1.15
3 3.00 3.02 .17 2.88 3.38 3.00 3.01 .35 2.77 3.35
5 5.00 5.08 .90 4.88 5.20 5.00 4.99 .29 4.74 5.16

10 10.00 9.98 .07 9.78 10.10 10.00 9.99 .29 9.57 10.54

(c) b�, N(0, 10�12) (d) b�, N(0, 10�10)

0 .00 -.01 .17 -.46 .41 .00 .01 .24 -.49 .49
.1 .10 .10 .11 -.10 .30 .09 .09 .13 -.10 .30
.5 .50 .49 .26 -.19 1.15 .50 .49 .36 -.37 1.29
1 1.00 .99 .33 .28 1.78 1.00 1.00 .50 -.22 2.25
3 3.00 3.01 .60 2.21 3.78 3.01 3.02 1.07 .39 5.31
5 5.00 4.97 .62 4.12 5.59 5.01 4.97 1.39 2.51 6.83

10 10.00 9.96 1.04 8.91 11.00 10.01 9.80 2.10 5.93 11.29

(e) b�, N(0, 10�8) (f) b�, N(0, 10�6)

0 -.00 -.00 .23 -.48 .48 -.00 -.01 .23 -.46 .46
.1 .11 .11 .12 -.10 .30 .10 .10 .12 -.10 .30
.5 .50 .49 .33 -.30 1.21 .49 .47 .35 -.37 1.26
1 1.01 1.04 .50 -.09 2.36 1.01 1.04 .51 -.10 2.43
3 3.01 3.03 .91 1.33 5.07 2.99 3.00 .95 .93 5.03
5 4.99 5.01 1.27 3.13 6.90 5.00 4.98 1.19 2.52 6.52

10 10.00 10.02 2.28 7.85 12.48 9.99 9.94 2.00 6.83 11.61

(g) b�, N(0, 0.012) (h) b�, N(0, 0.12)

0 .01 -.00 .23 -.49 .45 .01 .01 .22 -.45 .46
.1 .09 .10 .12 -.10 .30 .11 .11 .12 -.10 .30
.5 .50 .49 .34 -.32 1.26 .50 .50 .35 -.35 1.30
1 .99 .99 .52 -.35 2.31 .99 1.00 .50 -.19 2.46
3 3.01 3.00 .89 1.04 4.74 2.99 3.05 1.00 1.48 5.86
5 5.01 5.01 1.26 2.39 7.11 4.99 5.05 1.21 3.75 6.81

10 10.00 9.85 2.42 5.97 11.90 9.99 9.99 2.22 7.57 11.64

(i) b�, N(0, 1) (j) b�, N(0, 22)

0 .00 .00 .11 -.24 .23 -.00 -.00 .05 -.08 .08
.1 .11 .11 .08 -.09 .30 .10 .10 .04 .01 .20
.5 .50 .51 .14 .23 .81 .50 .51 .11 .33 .72
1 1.00 1.01 .23 .66 1.45 1.01 1.05 .27 .71 1.76
3 3.07 3.59 1.41 2.35 7.93 3.34 4.01 1.69 2.14 8.49
5 5.61 7.23 3.30 3.82 14.41 4.96 5.01 1.64 2.57 8.44

10 11.20 13.43 6.31 5.16 28.13 7.77 5.63 5.87 -9.53 10.64

Note: Stochastic noise ✏t and {"i}Ni=1 drawn from normal distributions of given parameters,
R = 1.0001. Each sample is based on 1000 random runs, H = 5 possible trading strategies,
number of observations t = 5000, and the kernel estimation precision N = 1000. Sample
medians, means, standard deviations (SD), 2.5% (LQ), and 97.5% (HQ) quantiles are reported.
Figures are rounded to 2 decimal digits.
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Table 13: Descriptive statistics of deviations from fundamental prices.

Data, MA period Mean Median Min. Max. SD Skew. Kurt. LQ HQ AC AC x2
t

SP500, 61 -.03 2.0 -145.2 113.0 26.5 -.65 5.5 -61.4 50.7 .87 .73
NASDAQ, 61 -.10 2.4 -753.5 639.0 81.8 .03 13.6 -170.7 147.9 .89 .81

DAX, 61 -.28 10.1 -939.6 716.1 163.2 -.50 5.4 -361.8 311.6 .89 .80
FTSE, 61 -.12 7.5 -702.5 404.6 122.7 -.58 5.1 -275.4 235.7 .88 .73

HSI, 61 .35 24.3 -4253.2 3463.5 562.2 -.29 6.7 -1186.7 1130.0 .90 .74
NIKKEI 225, 61 .16 6.8 -2249.8 1900.2 434.7 -.30 4.2 -953.8 799.4 .89 .77

SP500, 241 -.60 2.8 -252.9 160.1 48.4 -.64 4.5 -112.7 85.7 .96 .90
NASDAQ, 241 -1.78 1.6 -756.4 1253.7 168.1 1.01 11.3 -350.9 322.0 .97 .96

DAX, 241 -3.35 1.4 -1531.3 1242.6 330.4 -.21 4.5 -728.0 669.1 .97 .94
FTSE, 241 -.73 11.9 -1072.4 721.0 210.6 -.56 4.4 -479.4 388.5 .96 .90

HSI, 241 2.26 -5.5 -6505.5 7099.5 1177.6 .18 5.7 -2424.1 2282.0 .98 .94
NIKKEI 225, 241 -6.38 -22.6 -3497.8 2872.4 860.0 -.20 3.3 -1821.4 1581.3 .97 .92

Note: Sample means, medians, minima, maxima, standard deviations (SD), skewnesses, kurtoses, 2.5% (LQ) and 97.5%
(HQ) quantiles, and autocorrelations (AC) are reported. Figures are rounded to 1 or 2 decimal digits.
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Table 14: Results of 5-parameter estimation of a 3-type model.

�, g2, b2, g3, b3 (a) b� (b) bg2 (c) bb2 (d) bg3 (e) bb3
Med. Mean SD Med. Mean SD Med. Mean SD Med. Mean SD Med. Mean SD

.5, .4, .3, .2, .15 .39 .45 .53 .37 .38 .27 .25 .28 .19 .24 .22 .27 .20 .17 .19
3, .4, .3, .2, .15 2.53 2.77 1.66 .37 .38 .30 .25 .28 .19 .23 .21 .30 .20 .17 .19

10, .4, .3, .2, .15 9.23 8.70 4.23 .34 .35 .25 .24 .26 .16 .25 .24 .25 .22 .19 .16

.5, -.4, -.3, .2, .15 .46 .53 .50 -.53 -.53 .17 -.26 -.28 .11 .34 .33 .18 .11 .13 .11
3, -.4, -.3, .2, .15 2.87 2.92 3.22 -.39 -.40 .16 -.24 -.27 .12 .23 .26 .19 .09 .12 .11

10, -.4, -.3, .2, .15 11.16 11.10 10.62 -.35 -.35 .17 -.25 -.27 .12 .21 .28 .19 .10 .13 .11

.5, -.4, .3, .2, -.15 .50 .55 .50 -.53 -.53 .17 .26 .28 .11 .34 .34 .17 -.11 -.13 .11
3, -.4, .3, .2, -.15 2.76 2.84 3.32 -.38 -.40 .17 .24 .26 .11 .24 .27 .20 -.09 -.11 .11

10, -.4, .3, .2, -.15 12.14 12.27 10.45 -.35 -.36 .17 .25 .28 .12 .20 .26 .18 -.10 -.14 .11

.5, .8, .6, .4, .3 .51 .48 .19 .75 .78 .45 .45 .50 .33 .45 .42 .45 .45 .40 .33
3, .8, .6, .4, .3 2.47 2.32 .90 .59 .65 .41 .44 .48 .29 .62 .55 .41 .45 .41 .29

10, .8, .6, .4, .3 9.97 9.89 .75 .79 .63 .20 .59 .47 .15 .42 .58 .21 .31 .43 .15

.5, -.8, -.6, .4, .3 .33 .43 .34 -1.00 -1.01 .30 -.69 -.71 .22 .61 .62 .31 .39 .41 .22
3, -.8, -.6, .4, .3 2.29 3.15 2.49 -.85 -.91 .26 -.64 -.66 .22 .49 .54 .30 .34 .37 .21

10, -.8, -.6, .4, .3 10.06 10.12 2.09 -.80 -.80 .06 -.60 -.60 .05 .40 .41 .09 .30 .30 .04

.5, -.8, .6, .4, -.3 .34 .43 .34 -1.02 -1.01 .32 .69 .73 .23 .62 .61 .33 -.39 -.43 .23
3, -.8, .6, .4, -.3 2.49 3.32 2.51 -.83 -.89 .26 .62 .66 .21 .45 .51 .28 -.33 -.36 .21

10, -.8, .6, .4, -.3 10.03 10.05 2.67 -.80 -.79 .07 .60 .59 .06 .40 .41 .12 -.30 -.29 .05

Note: Stochastic noise ✏t and {"i}Ni=1 drawn from normal distribution N(0, 0.12), R = 1.0001. Each sample is based on 1000 random runs, number of
observations t = 5000, and the kernel estimation precision N = 1000. Sample medians, means, standard deviations (SD) are reported. Figures are rounded
to 2 decimal digits.
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