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Abstract

A central question for monetary policy is how asset prices respond to a monetary policy

shock. We provide evidence on this issue by augmenting a monetary SVAR for US

data with an asset price index, using set-identifying structural restrictions. The impulse

responses show a positive asset price response to a contractionary monetary policy shock.

The resulting monetary policy shocks correlate weakly with the Romer and Romer (2004)

(RR) shocks, which matters greatly when analyzing impulse responses. Considering only

models with shocks highly correlated with the RR series uncovers a negative, but near-zero

response of asset prices.
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1 Introduction

The financial crisis of 2008–2009 has stirred up the debate on the conduct of monetary policy

all around the world. One of the questions that came into the focus of the discussion is

the extent to which monetary policy should react to developments in asset markets. Should

central banks “lean against the wind” and try to mitigate turbulences in asset markets through

raising interest rates, or should they rather concentrate solely on stabilizing the output gap

and the inflation?1 Arguing for either of these positions raises the need to quantify the

(contemporaneous) effects of monetary policy actions on asset prices.

Starting with Sims (1980), such empirical questions have often been investigated by

means of (structural) vector autoregressive (VAR) models. The crucial problem of identifying

exogenous, unanticipated monetary policy shocks has been addressed in several studies that

aimed to quantify the effects of monetary policy on, for instance, real output. Most of the

classical procedures developed in these studies have been applied in a monetary policy – asset

price context. As a particular exception, the agnostic sign-restriction approach exemplified

by Uhlig (2005) has not been employed yet to explore the linkage between monetary policy

shocks and asset prices.

Parallel to the SVAR literature, alternative approaches to identify monetary policy shocks

have also been proposed. A major contribution has been put forth by Romer and Romer

(2004), henceforth RR, who combined narrative evidence with statistical methods to construct

a monetary policy shock series free of endogeneity and anticipation effects.

In the present paper we make several, related, contributions. First, we augment the VAR

specification of Uhlig (2005) with the S&P 500 Composite Index, and estimate the model on

monthly US data from 1959 January to 2007 December. We use two set identifying restrictions

to identify monetary policy shocks and examine the effects of these shocks on asset prices.

The first restrictions are the sign restrictions of Uhlig (2005) (Scheme I), and the second set of

restrictions are the zero and sign restrictions on the structural matrix A0 put forth recently by

Arias, Caldara, and Rubio-Ramı́rez (2015) (Scheme II). According to our results, the SVAR

impulse responses point towards a mildly positive asset price response to an increase in the

monetary policy instrument. This result is puzzling in light of earlier literature. Second, we

argue that the resulting identified monetary policy shocks correlate only weakly with the

monetary policy shock series of RR. We show that this finding matters greatly when analyzing

(structural) impulse responses. In particular, we make the following observations: i.) the

1A concise summary of these debates can be found, e.g., in Assenmacher-Wesche and Gerlach (2010).
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majority of admissible models yield impulse responses that vary widely in their shapes and

impact magnitudes; ii.) this ambiguity affects those variables most whose responses are left

agnostic by the identification scheme; iii.) models that are highly correlated with the RR

shocks yield clearly shaped and less ambiguous impulse responses. Thus, third, we propose to

restrict attention to those specifications that yield monetary policy shocks highly correlated

with the RR series. We show that impulse response analysis of these models leads to more

robust and reliable conclusions. Ultimately, we find evidence of: 1.) asset prices responding

mildly negatively (in Scheme I), or ambiguously (in Scheme II) to a positive monetary policy

shock, 2.) a mildly positive output response to what is understood to be a “contractionary”

monetary policy shock. The former findings are contrary to our first results, but in line with

conclusions of earlier studies. The latter finding is contrary to the baseline results obtained

recently by Arias, Caldara, and Rubio-Ramı́rez (2015). Thus, we also conclude that comparing

structurally (set-) identified shocks to a benchmark series can uncover by default hidden,

but relevant and robust empirical conclusions. As a result, our methodological contribution

complements the concerns of Kilian and Murphy (2012) regarding the interpretation of results

from set-identified SVARs, and can be a useful empirical strategy when the identified set is

not sufficiently narrow for sharp empirical conclusions. In fact, the benchmarking approach

that we put forth can be considered as a step towards a frequentist parallel of the most likely

models of Inoue and Kilian (2013).

The paper proceeds as follows: In Section 2 we provide an overview of existing results in

identifying monetary policy shocks and their effects on asset prices. In Section 3 we detail

the econometric model and the structural identifying assumptions. In Section 4 we present

our baseline results,. In Section 5 we analyze the identified monetary policy shock series

and compare them with the Romer and Romer (2004) series. In Section 6 we re-investigate

our baseline results concentrating only on a certain subset of admissible models. Section 7

provides a discussion, some further results and robustness checks. Finally, Section 8 concludes.

2 Monetary policy shocks and asset prices

While the crucial empirical problem in characterizing effects of monetary policy shocks

is identifying exogenous, unanticipated changes in monetary policy, there seems to be no

consensus in the literature on the identifying assumptions to use. Ramey (2016) provides a

critical review of several identifying assumptions and argues that previous results based on

distinct identifying assumptions cannot easily be reconciled, especially in longer, more recent
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samples.

Since distinct identifying assumptions may generate distinct results, the lack of consensus

also applies to the empirical question: what are the effects of monetary policy shocks on asset

prices? Compared with the literature on quantifying the effects of monetary policy on real

variables, the empirical literature on monetary policy and asset prices is relatively small-scale.

While the literature generally concludes that asset prices react negatively to an exogenous

increase in the monetary policy instrument, the magnitude, the timing and the persistence of

this negative reaction varies greatly across studies.

Earlier papers that use a recursive identification scheme, including Patelis (1997), Thor-

becke (1997), Neri (2004), find that an increase in the monetary policy instrument leads

to a small decrease in the stock prices. Bjørnland and Leitemo (2009) criticize the use of

recursive identification schemes. Applying short and long run restrictions, they find large

and persistent negative effects. More recently, Lanne, Meitz, and Saikkonen (2015) assume a

non-Gaussian SVAR and confirm the findings of Bjørnland and Leitemo (2009) in rejecting

the recursive identification scheme, and finding a significant instantaneous negative effect that,

however, dies out quickly. In contrast, utilizing changes in the heteroskedasticity structure of

the error term, Rigobon and Sack (2004) and Lütkepohl and Netšunajev (2014) find smaller,

but relatively persistent negative effects. In a time-varying SVAR, Gaĺı and Gambetti (2015)

find negative short run effects that quickly turn into positive after impact especially in the

1980s and 1990s. Following an event-study approach around the monetary policy decision

changes, Bernanke and Kuttner (2005) uncover that a 25 basis point cut in the federal funds

rate leads, on average, to a 1% increase in asset prices.

As the above list of contributions indicate, a wide variety of approaches to SVAR analysis

have been applied in the monetary policy – asset prices context. Notable exceptions are the

usage of sign restrictions as proposed by, e.g., Uhlig (2005), and sign and zero restrictions

advocated by Arias, Caldara, and Rubio-Ramı́rez (2015). We aim to fill this gap in the present

paper, and we argue in the next section that using these restrictions as identifying assumptions

in the context of our empirical question has several advantages over other identification

schemes.
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3 Identifying monetary policy shocks with sign and zero re-

strictions

We consider the following K-dimensional structural VAR,

A0yt = A1yt−1 +A2yt−2 + · · ·+Apyt−p + εt, (1)

where yt ∈ R
K , εt ∼ WN(0, IK), A0, . . . , Ap ∈ R

K×K , and A0, what we call the structural

matrix, is assumed to be non-singular. In order to define a unique lag length we assume that

Ap 6= 0. In the above equation εt is the vector of structural innovations. The corresponding,

estimable reduced form is

yt = B1yt−1 + · · ·+Bpyt−p + ut, (2)

with Bi = A−1
0 Ai, i = 1, . . . , p. For ut, the vector of reduced form innovations the following

holds: A−1
0 εt = ut ∼ WN(0,Σu). That is, the vector of structural innovations is a linear

combination of the vector of reduced form innovations. Writing B(z) = IK −B1z−· · ·−Bpz
p,

we assume that the reduced form is causal, that is, det(B(z)) 6= 0 ∀ |z| ≤ 1. Then, the moving

average representation of yt exists and is given by (Brockwell and Davis, 1991, Th. 11.3.1,

p. 418):

yt =
∞∑

j=0

Φjut−j =
∞∑

j=0

Θjεt−j , Φ0 = IK , (3)

where element (i, k) of the coefficient Θj = ΦjA
−1
0 is interpreted as the reaction of the i-th

variable on the k-th structural innovation at horizon j. We call A−1
0 the structural impact

matrix, since Θ0 = A−1
0 .

In this paper we aim to identify only one particular structural form innovation, the

monetary policy shock, εmp
t , that is an element of the vector εt. We use sign restrictions

on the impulse responses and zero restrictions on the structural matrix A0 as identifying

assumptions. Zero and sign restrictions on the structural matrix A0 are straightforward: A
(i,k)
0 ,

the (i, k)-th element of A0 is restricted to be zero, positive, or negative. Sign restrictions

on the impulse responses can be formulated as follows: Θ
(i,k)
j , the (i, k)-th element of Θj , is

restricted to be either negative or positive for some a priori selected combinations of (i, k, j),

i, k ∈ { 1, . . . ,K }, j ∈ N0. Note, that an insufficient amount of zero restrictions on A0, or

sign restrictions in general cannot point identify the structural parameters A0, . . . , Ap.
2

2For necessary and sufficient conditions for exact (point) identification see, for example, Rubio-Ramı́rez,
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Using sign restrictions on impulse responses for several periods to identify monetary policy

shocks has been first proposed by Uhlig (2005).3 Somewhat surprisingly, we are not aware of

any attempt to utilize sign restrictions in a monetary policy – asset prices context. The use of

zero restrictions on the structural matrix to restrict the systematic component of monetary

policy in the SVAR has been put forth recently by Arias, Caldara, and Rubio-Ramı́rez (2015),

and we are not aware of any research employing this identification to our empirical question.

While the employed sign and zero restrictions cannot, in general, point-identify a structural

VAR model, or a structural shock, using set identification has two important advantages in

our view.4

First, sign restrictions by construction avoid the problem of deciding upon the exact

recursive ordering of shocks. As Bjørnland and Leitemo (2009) pointed out, it is important to

allow for the possibility of the monetary policy shocks contemporaneously affecting asset prices

and vice versa – a view supported by theoretical models of, e.g., Castelnuovo and Nisticò

(2010). A simple recursive identification scheme necessarily excludes one of these possibilities.

Further, this critique of the recursive identification schemes was also strengthened recently by

Lanne, Meitz, and Saikkonen (2015), who assume non-Gaussian error terms, and statistically

test and reject the adequacy of the recursive scheme.

Second, sign restrictions, and a small number of zero restrictions, on the other hand, are

considered to be mild assumptions that are relatively easy to interpret, justify, and agree

upon. If we are striving for exact identification together with allowing for non-recursivity, or

contemporaneous interdependence, then we have to argue for at least one additional restriction

to achieve it. If, however, one is willing to give up on exact identification, then restrictions

that were used to achieve exact identification may become harder to argue for.

Thus, in the following we use sign and zero restrictions to identify the monetary policy

shock and investigate the effect of this identified shock to a stock price index variable. To this

end, we augment a VAR specification similar to Uhlig (2005) with the S&P500 Composite

Index and use, as our first assumption, the same identifying assumption as Uhlig (2005):

Restriction SR1 A monetary policy shock’s effects on the impulse responses of commodity

prices, GDP deflator and non-borrowed reserves is non-positive, and on the impulse

response of the federal funds rate is non-negative for the impact period and four periods

Waggoner, and Zha (2010).
3Similar contributions are Faust (1998) and Canova and De Nicoló (2002).
4We refer to a shock being set identified if there are at least two parameter points in the structural parameter

space that are observationally equivalent, i.e., lead to the same reduced form parameters. This terminology is
also used by Arias, Caldara, and Rubio-Ramı́rez (2015).

6



after impact.

We call this restriction Scheme I. Besides being intuitively reasonable, these sign restrictions

are also supported by New-Keynesian DSGE models under a wide set of parameter calibrations

(Carlstrom, Fuerst, and Paustian, 2009). Note, that the original formulation by Uhlig (2005)

requires the impulse responses of “prices” in general to be non-positive. While this assumption

may also include asset prices, we prefer to remain agnostic about the signs of effects of

monetary policy on asset prices, hence we do not constrain the response of asset prices to

monetary policy shocks.

Arias, Caldara, and Rubio-Ramı́rez (2015) argue, however, that the sign restrictions of

Uhlig (2005) imply parameter estimates that are incompatible with theoretical considerations

about and empirical evidence on the systematic component of the monetary policy, the Taylor

rule. Since monetary policy shocks are innovations to the Taylor rule, the identification of

monetary policy shocks should be coupled with identifying the corresponding systematic

monetary policy equation in the SVAR. This can be achieved by means of zero restrictions

on the structural matrix. Following Arias, Caldara, and Rubio-Ramı́rez (2015), we use the

following zero and sign restrictions on A0 to identify monetary policy shocks:

Restriction ZR The federal funds rate only reacts contemporaneously to GDP, GDP deflator,

commodity prices, and asset prices.

Restriction SR2 The federal funds rate’s contemporaneous reaction to GDP, and to the

GDP deflator is positive.

We call these restrictions jointly Scheme II. These restrictions explicitly impose a Taylor-type

rule on the federal funds rate equation of the SVAR consistent with empirical and theoretical

evidence about the systematic component of monetary policy. In particular, restriction

ZR implies that the contemporaneous reaction of the federal funds rate to non-borrowed

reserves and total reserves is zero. The monetary policy shock is identified as the innovation

corresponding to this correctly specified equation in the SVAR. Since we are interested in

the response of the monetary policy instrument to asset prices, we allow the federal funds

rate to react contemporaneously to asset prices. This leaves our identification agnostic in the

asset price – monetary policy context. It is important to note that Restrictions ZR and SR2

restrict the structural matrix A0. Thus, in contrast to Restriction SR1, the impact period

impulse response coefficient A−1
0 is restricted only indirectly.5

5Note, that a zero restriction in A0 in general does not imply a zero restriction in A
−1

0 .
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4 Monetary policy shocks and asset prices

First we investigate the effects of monetary policy on asset prices in a structural VAR similar

to Uhlig (2005). The VAR is estimated with monthly US data from 1959:01 to 2007:12. The

seven variables used in the specification are: Real GDP, GDP deflator, commodity price

index, stock price index, federal funds rate, non-borrowed reserves, total reserves. Monthly

series for real GDP and the GDP deflator were interpolated as in Mönch and Uhlig (2005).

Real GDP was interpolated using the industrial production index, while the GDP deflator

was interpolated by means of consumer and producer price indices. The commodity price

index is the Commodity Research Bureau’s BLS spot index obtained from Thomson Reuters’

Datastream and is determined as the monthly average of daily data. Monthly observations of

the S&P 500 Composite Index were obtained from the FRED MD project website maintained

by Michael W. McCracken (McCracken and Ng, 2016). For the empirical analysis, the values

were deflated by the GDP deflator. The remaining variables were obtained from the St.

Louis FRED database under the following names: GDPC1 (real GDP), INDPRO (industrial

production), GDPDEF (GDP deflator), CPIAUSL (consumer price index), PPIFGS (producer

price index), FEDFUNDS (federal funds rate), TOTRESNS (total reserves), and BOGNONBR

(non-borrowed reserves).6

To facilitate comparability, we employ the same VAR specification as Uhlig (2005): the

VAR contains p = 12 lags and does not include a constant or deterministic trend. The federal

funds rate is considered in levels. All other variables are in logarithms and multiplied by

100. We estimate the VAR by OLS. In order to simulate the set of sign and zero restricted

impulse responses, we use the algorithms proposed by Rubio-Ramı́rez, Waggoner, and Zha

(2010) and Arias, Rubio-Ramı́rez, and Waggoner (2014). A detailed description of these

algorithms can be found in Appendix B. In short, we draw random orthogonal matrices, Q,

to rotate the lower-triangular Cholesky decomposition Âc
u of Σ̂u, the estimated reduced form

variance-covariance matrix. The rotation matrices Q are constructed in a systematic way so

that the structural form parameters estimated using Â−1
0 = Âc

uQ satisfy the sign and zero

restrictions (i.e., they are admissible). We repeat the random drawing procedure until we have

65000 admissible impulse responses. Each of these 65000 impulse responses corresponds to a

distinct admissible model, Â−1
0,s = Âc

uQs, where s = 1, . . . , 65000 is the simulation index.7 In

the plots below we also report the median target (MT) impulse responses as advocated by Fry

6Further details on the data and sources can be found in Appendix A.
7While the number 65000 is based on computational constraints, our results are robust to several dozen

runs of the same procedure.
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and Pagan (2011). The MT impulse response is the impulse response that is closest in terms

of a standardized squared distance to the median of the set of admissible impulse responses.

Sign restrictions on impulse responses

We identify a monetary policy shock first solely via Scheme I (Restriction SR1), our baseline

restriction on the impulse responses. In Figure 1 we display the impulse response of the asset

price index to a one per cent increase in the federal funds rate. The sub-figure on the left

contains the pointwise median, as well as the pointwise 0.3 and 0.7 quantiles of the set of

admissible impulse responses. In the sub-figure on the right we report the median target

impulse response joint with a 90% bootstrap confidence band.8

Figure 2 visualizes the set of admissible impulse responses of the rest of the variables

to a one per cent positive monetary policy shock (increase in the federal funds rate). The

results are very similar to those presented in Uhlig (2005, Fig. 6., p. 397), thus we do not

discuss them in detail. The only difference is the slight rising trend of the GDP deflator after

the impact period. Figure 3 contains the MT impulse responses for the same variables as in

Figure 2.

[FIGURES 1, 2, 3 ABOUT HERE]

The conclusion of our baseline analysis is that, for a one per cent increase in the federal

funds rate, the set of admissible impulse responses of asset prices have more mass above the

zero line. A similar result holds also for the response of GDP. While one can argue that these

conclusions are ambiguous, as there are also admissible models that yield negative asset price

responses, the MT impulse responses further point towards positive responses to a positive

monetary policy shock.

Zero and sign restrictions on the structural matrix

The alternative identification scheme we employ is described by Scheme II (Restrictions ZR

and SR2). These are restrictions on the structural matrix, A0, and they are imposed jointly.

The structure and interpretation of the following figures is similar to those in the previous

subsection.

Figure 4 paints a more ambiguous picture than the baseline sign restriction specification:

the median of the admissible impulse responses for asset prices starts at zero. While it turns

positive in the short and medium run, and remains so later on, the admissible set does not

8Details of the bootstrap procedure can be found in Appendix B.
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leave the neighborhood of zero markedly. In the right-hand-side subfigure, the median target

impulse response for asset prices, we can observe a similarly ambiguous pattern, even though

the impulse response is significantly poisitive after the 10th month.

[FIGURES 4, 5, 6 ABOUT HERE]

Figure 5 mostly corroborates the results of Arias, Caldara, and Rubio-Ramı́rez (2015,

Figure 1., p. 12). Under the zero and sign restriction on the structural matrix the identified

monetary policy shock has mostly a contractionary effect on the output. This is in contrast

to our baseline results, and results by Uhlig (2005). Since the responses of the GDP deflator

are mostly negative, the often discovered price puzzle does not seem to appear in this setup.

This picture is further strengthened by the median target impulse responses in Figure 6.

5 Examining the monetary policy shock

As we noted in the previous subsection each of the s = 1, 2, . . . , 65000 impulse responses

corresponds to a different admissible model Â−1
0,s. Similarly, to each Â−1

0,s corresponds an

identified monetary policy shock series {ε̂mp
ts }t=1,...,T that is obtained from the reduced form

residuals by the relation ε̂t = Â0ût. In this section we investigate the identified monetary

policy shocks by comparing the obtained series {ε̂mp
ts }t=1,...,T for each s with the Romer and

Romer (2004) series. In order to keep the argumentation compact, in the present section

we report results using only the baseline identification restrictions, Scheme I. The following

arguments, however, hold similarly for monetary policy shocks identified with the restrictions

of Scheme II.9

Romer and Romer (2004) develop a monthly measure of monetary policy shocks for the

period 1969–1996 that is based on the following methodology: the authors 1.) identify intended

federal funds rate changes around meetings of the Federal Open Market Committee (FOMC)

by combining narrative accounts of the FOMC meetings and the report of the manager of

open market operations; 2.) regress the intended changes on the Fed’s internal (so called

“Greenbook”) forecasts of inflation, real output growth and unemployment in order to control

for information about future developments in the economy. Specifically, the regression that

9Further results on the latter case can be found in Appendix C.
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they estimate is the following (Romer and Romer, 2004, Eq. 1, p. 1061):

∆ffm = α+ βffbm +

2∑

i=−1

γi∆̃ymi+

+
2∑

i=−1

λi(∆̃ymi − ∆̃ym−1,i) +
2∑

i=−1

φiπ̃mi +
2∑

i=−1

θi(π̃mi − π̃m−1,i) + ρũm0 + νm, (4)

where ∆ffm is the change in the intended federal funds rate at the FOMC meeting m, ffbm

is the intended federal funds rate before any changes decided on meeting m, and ∆̃ymi, π̃mi,

ũm0 are the forecasts of real output growth, inflation and unemployment, respectively, for

quarter i at the time of meeting m. The estimated residuals ν̂m represent unanticipated

monetary policy shocks, and they are averaged over months to obtain the monthly series

ε̂rrt , the RR monetary policy shock series that runs from January 1969 to December 1996.10

Figure 7 shows the RR series.

[FIGURE 7 ABOUT HERE]

Romer and Romer (2004) carefully argue about the validity of the interpretation of their

measure as monetary policy shocks. To our knowledge, only Coibion (2012) provides a

critical examination of the implications of the RR shocks. The main objective of Coibion

(2012) is to try to reconcile the surprisingly large influence of monetary policy shocks on,

for example, output, with earlier similar studies. While he argues that the implications of

Romer and Romer (2004) are not robust to, for example, excluding certain episodes in US

central banking history, we do not read Coibion (2012) as an argument against the validity of

interpreting the RR series as a “pure” monetary policy shock series. We, in fact, go further

and argue that any identified structural monetary policy shock series obtained from, e.g., a

SVAR analysis should resemble the RR series, ε̂rrt . Further, Coibion (2012)’s analysis is based

partly on alternative monetary policy shock series proposed in Coibion and Gorodnichenko

(2011). These alternative shock series allow for i.) heteroskedasticity in the error term νm, ii.)

time-varying coefficients in Equation (4). These modifications seem a priori sensible, however,

using the monetary policy shock series from Coibion and Gorodnichenko (2011) does not lead

to conclusions different from what we describe below.11 Thus, in the following we view the

RR series, as a benchmark monetary policy shock series.

How strongly do the identified monetary policy shocks from our baseline analysis resemble

the benchmark monetary policy shocks? In order to answer this question, for each admissible

10Note, that in any particular month there can be several FOMC meetings m or no meetings at all.
11Estimation results are available upon request.
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monetary policy shock series ε̂
mp
ts , with s = 1, . . . , 65000, we calculate the correlation ρs =

Ĉorr(ε̂mp
ts , ε̂rrt ) on the subsample running from January 1969 to December 1996.12 For simplicity

of notation, and without loss of generality, assume that for s < s′ it holds that ρs ≤ ρs′ , that

is, we index admissible models by their corresponding correlation coefficients.

[FIGURE 8 ABOUT HERE]

Figure 8 contains the histogram of the 65000 obtained correlation coefficients ρs. As visual

inspection immediately suggests, the correlations are mostly quite weak. Indeed, the average

correlation is 0.1863, and the median is 0.1899. In the previous section we reported the

median target impulse responses, and used these as further evidence for our results. However,

the correlation corresponding to the median target model is 0.1621, i.e., lower than both the

average and the median. This implies that at least half of the models have larger ρs values

than the median target model.

What does it imply for the impulse response analysis if the identified monetary policy shocks

are weakly correlated with the Romer and Romer shock series? In Figure 11 we report the

impulse responses for each variable of the models s = 1, . . . , 100, i.e., those 100 models where

ρs is the weakest. Figure 12 contains the impulse responses of models s = 37450, . . . , 37550,

i.e., the 100 median models, and Figure 13 contains the impulse responses from models

s = 64900, . . . , 65000 – the 100 models with the highest correlations ρs.

[FIGURES 11, 12, 13 ABOUT HERE]

The figures suggest that by concentrating on impulse responses from models with low

correlations ρs, we might be led to notably different qualitative and quantitative conclusions

in comparison with the impulse responses of models with high correlations ρs. In particular,

Figure 11 supports the conclusion that asset prices react positively to a positive monetary

policy shock, and they persistently remain so for several periods after impact. Similarly,

GDP reacts rather ambiguously on impact, but there is a clear hump-shape suggesting a

sluggish response to a monetary policy shock. In contrast, Figure 13 suggests that GDP reacts

positively to an increase in the monetary policy instrument followed by a steady gradual

decrease. Asset prices, on the other hand, respond mildly negatively on impact.

More surprisingly, according to Figure 12, models that yield shocks featuring an average

correlation with the RR series hardly support any unambiguous empirical conclusion. Anything

can happen as regards the shapes and magnitudes of impulse responses for all variables, and,

12Note, that, while for ε̂
mp
ts the t index runs from January 1960 to December 2007, the RR series, ε̂rrt , is

available only between January 1969 and December 1996.
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especially, for those responses that are left unrestricted by the identification scheme. This

finding is worth emphasizing for two reasons. First, the large majority of models are close to

an average (or median) correlation level, cf., Figure 8. Second, note, that a central idea of

sign restrictions, emphasized by Uhlig (2005), is to leave those variables’ responses agnostic

whose behavior is of key interest to the analysis at hand. Hence, if one randomly selects

two admissible models, then they might, with high probability, lead to distinct conclusions

especially with respect to key variables. Further, since the median target impulse response is

inevitably tied to some “average” model, analyzing the median target alone offers inconclusive,

or even misleading results.

In sum, we have argued in the previous paragraphs that the qualitative and quantitative

features of the impulse response functions of models s = 1, . . . , 65000 are closely linked to their

implied correlation with the RR shocks, ρs. Models with similar high (or low) ρs values imply

similar impulse responses. Models with notably different ρs values imply notably different

impulse responses.

Thus, if one accepts that the identified monetary policy shocks should ideally be closely

correlated with the RR shocks, one should put particular emphasis on analyzing the impulse

responses displayed in Figure 13. Indeed, such highly correlated models grasp best what

is implied by a “true” monetary policy shock. Thus, in the next section we reconsider our

baseline results concentrating on those 100 models that yield monetary policy shocks that

are closest to the RR series. In addition, we give special attention to model number 65000

showing the highest correlation with ε̂rrt .

6 Analyzing models with the highest correlation

We have argued that most of the monetary policy shocks identified in our baseline model

correlate only weakly with the Romer and Romer (2004) monetary policy shock series that we

view as a benchmark series. In this section we reconsider the impulse responses concentrating

only on Shigh = { s : s ∈ [64900, 65000] ∩ N }, those 100 models that have the highest ρs, and

s∗ = 65000, the model with the highest ρs.

Sign restrictions on impulse responses

Figure 14 displays the minimal envelope, the maximal envelope and the median of impulse

responses of models in Shigh identified through Scheme I (Restriction SR1). In response to

a positive monetary policy shock we find evidence for a positive, rising, but then quickly

13



falling and in the end negative GDP response. This finding strengthens the result from the

baseline analysis. Contrary to the baseline analysis, however, we also see evidence for a zero

or mildly negative asset price response, which seems to reconcile results from the baseline

analysis with existing previous studies. Note, that the hump shapes around months 7 and 10,

respectively, are typical in the considered set Shigh, and this shape is also in line with impulse

responses obtained earlier in the literature (e.g., Gaĺı and Gambetti (2015)). The remaining

variables behave similarly to the baseline analysis, but we get a notably sharper picture on

how the GDP deflator, non-borrowed reserves and the federal funds rate behave in reaction to

a positive monetary policy shock.

[FIGURES 14, 15 ABOUT HERE]

We also show in Figure 15 the impulse responses corresponding to model s∗, i.e., the model

that yields identified monetary policy shock series that has the highest correlation with the

RR series. Model s∗ strengthens the results in the previous paragraph: in particular, asset

prices react sizably negatively and they return only slowly to their starting value.

In addition to the impulse responses of model s∗, Figure 9 displays the (standardized)

identified monetary policy shock series corresponding to model s∗, together with the (stan-

dardized) RR series. As visual inspection suggests, ε̂mp
ts∗ matches quite well with ε̂rrt , especially

in those times when ε̂rrt shows sizable swings strengthening the argument to restrict attention

to models that are highly correlated with the RR shocks.13

[FIGURE 9 ABOUT HERE]

Zero and sign restrictions on the structural matrix

Figure 16 shows the impulse response of models in Shigh determined from Scheme II (Re-

strictions ZR and SR2). A remarkable feature of the GDP response to a positive monetary

policy shock is a qualitative similarity to the GDP response of Figure 14. This finding is

worth noting especially in light of our Figure 5, and the arguments of Arias, Caldara, and

Rubio-Ramı́rez (2015), where the main tendency of the GDP response is markedly negative.

[FIGURE 16 ABOUT HERE]

Further, while in the baseline analysis of Scheme II we didn’t find strong evidence for the

price puzzle, based on Figure 16 we cannot claim that the existence of the price puzzle is not

13Note, that an important caveat in interpreting results from model s∗, however, is that the model and the
precise form of the impulse responses depend on the particular draw of the orthogonal matrix.
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plausible. The asset price response is centered around zero. Thus, contrary to the results in

the previous paragraph, we find no evidence of exogenous monetary policy shocks affecting

asset prices. The rest of the responses exhibit high similarity to the baseline analysis, but

concentrating only on hundred models leads to sharper conclusions.

In comparison to the figures describing Shigh the impulse responses of model s∗ in Scheme II

are quite sensitive to the particular draw of the rotation matrix, therefore, we do not attempt

to analyze the impulse responses this particular scheme. The (standardized) monetary policy

shock series implied by Scheme II is shown in Figure 10, jointly with the (standardized)

RR series. Similarly to the conclusions of the previous subsection, we can observe that the

monetary policy shock series matches the RR series quite well especially in the high volatility

phases.

[FIGURE 10 ABOUT HERE]

7 Discussion and robustness

Our proposal of combining structural identifying assumptions with some benchmark series is

similar in spirit to two different approaches proposed earlier in the literature. First, Faust,

Swanson, and Wright (2004) identify monetary policy shocks by requiring the federal funds

rate response to the policy shock to be equal to a certain benchmark response directly

measured from federal funds futures data. Second, Mertens and Ravn (2013, 2014) utilize a

narrative series as a proxy for the identified policy shock series and thereby provide additional

identifying moment conditions. While both approaches solve the identification problem in a

data-oriented way, their explicit aim is exact identification. In contrast, we believe that there

can be several economic (structural) models compatible with the data. Sign restrictions, or

non-exact identification in general, are adequate assumptions in line with this view as long as

one carefully interprets the results.

From a methodological point of view, in the previous sections we argued that one should

evaluate the effects of structural monetary policy shocks only within a subset of the set

of admissible models. That is, in our analysis we started out by constraining the set of

admissible models with set-identifying restrictions. An other possibility would be to simply

generate several Â−1
0 matrices that do not satisfy any a priori structural assumptions and

select the one that generates an estimated shock that has the highest correlation with the

Romer and Romer (2004) series. However, there are several theoretical and empirical caveats

for this approach. First, in the comparison exercise we might simply discover a high but
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spurious correlation between the benchmark and the estimated series. In particular, if the

estimated series does not have a structural interpretation, then we cannot claim that the

selected estimated series is, in fact, not a completely different shock. Second, the selected

estimated series will highly depend on the particular random draw of Â−1
0 . In our analysis

it turns out that by not restricting the response of GDP deflator to be negative in the first

several periods we immediately encounter the so-called price puzzle in a particularly severe

form: the GDP deflator reacts positively to a monetary policy shock and its response remains

positive in the long run. Further, by considering unrestricted models we could not significantly

improve the “fit” to the RR shocks: the maximal correlation is around 0.42 compared with

the approximately 0.39 of the set-identified specifications.

Our approach in this paper is explicitly frequentist. Thus, we cannot discriminate

statistically between competing admissible models, and claiming that a particular admissible

model is “most likely” (Inoue and Kilian, 2013) is not feasible. Nevertheless, our benchmarking

approach extends the possibilities of empirical SVAR analysis in two directions. First, it

restricts the set of models beyond what is achievable by the structural assumptions alone. This

gives the possibility to sharply focus the evaluation of empirical and economic implications of

the identified structural models. The empirical analysis then avoids the point made by Kilian

and Murphy (2012) about the potential perils of analyzing summary statistics of the identified

set when this set is too large. Second, while speaking of most likely models is not possible in

a frequentist setting, if one accepts the postulated structural assumptions and the validity of

the benchmark series, the models in Shigh can be argued to be frequentist counterparts to the

most likely models of Inoue and Kilian (2013).

We argued earlier that using the series proposed by Coibion and Gorodnichenko (2011)

as the benchmark series instead of the RR series does not change any of our conclusions.

This is despite the fact that Coibion (2012) arrives at distinct conclusions regarding the

contribution of monetary policy shocks to fluctuations of real variables using these alternative

narrative-based series. This might imply that our results are not driven by the “identifying

power” of the benchmark shocks. However, if we use a completely uninformative simulated

white noise series as benchmark series in place of the RR series, then the ordering of the

models according to their ρs coefficients yield completely uninformative results: the impulse

responses for models in Shigh are similarly unstructured as the impulse responses for models

in any other subsets of the ordering. This finding strengthens our results: investigating models

relative to a benchmark indeed provides additional information.
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Up until now we were silent about how more conventionally identified monetary policy

shocks compare with the RR shock. As an example, using our baseline variable ordering14 with

a straight-forward recursive identification we obtained a correlation of ρ = 0.3838, which is

very close to our best set-identified models. Values of similar magnitude for exact identification

were reported also by Coibion (2012). These correlations are higher than the majority of

correlations that we uncover in our analysis. On the one hand, this result might indicate that

the applied sign restrictions need not be very successful assumptions to identify monetary

policy shocks. However, the fact that models with the highest ρs have correlation around 0.40

implies that by a careful analysis of admissible models we can improve on other, especially

exact identification procedures while at the same time settling on less restrictive identifying

assumptions. We leave a comprehensive comparative evaluation of other exact identification

schemes and empirical specifications for future research.15

8 Conclusions

How do asset prices respond to exogenous monetary policy shocks? We provide empirical

results on this question. To this end, we augment the VAR specification of Uhlig (2005)

with the S&P 500 Composite Index, and estimate the model on monthly US data from 1959

January to 2007 December. We use two identification schemes that result in set identification

of the monetary policy shock. First, we use the sign restrictions put forth in Uhlig (2005)

(Scheme I). Second, we utilize zero and sign restrictions on the structural matrix A0 proposed

by Arias, Caldara, and Rubio-Ramı́rez (2015) (Scheme II).

The SVAR impulse responses identified via Scheme I and Scheme II both point towards

a mild positive asset price response to an increase in the monetary policy instrument. We

argue that the resulting identified monetary policy shocks correlate only weakly with the

monetary policy shock series of Romer and Romer (2004) that we view as a benchmark

series for monetary policy shocks. We show that this finding matters greatly when analyzing

(structural) impulse responses. In particular, the majority of admissible models yield impulse

responses that vary widely in their shapes and impact magnitudes. Thus, we propose to

restrict attention to those specifications that yield monetary policy shocks highly correlated

with the RR series, and we show that the impulse response analysis of these models leads to

more robust and reliable conclusions.

14Real GDP, GDP deflator, commodity price index, stock price index, federal funds rate, non-borrowed
reserves, total reserves.

15Estimation results regarding the experiments in the above section are available upon request.
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Ultimately, we find evidence of asset prices responding mildly negatively (Scheme I) or

with ambiguous sign (Scheme II) to a positive monetary policy shock. Besides the asset price

response, we also uncover a mildly positive output response under both identification schemes

when concentrating on models with the highest correlation with the Romer and Romer (2004)

series. The expansionary effect of a “contractionary” monetary policy shock on output may

seem surprising, Ramey (2016), however, points out that the consensus on “contractionary”

monetary policy shocks indeed having contractionary effects easily disappears once one lifts

the recursiveness identification assumption.

While the theme of comparing identified monetary policy shocks with the Romer and

Romer (2004) series is quite specific to monetary policy applications on US data, our proposed

approach of evaluating (set-) identified shocks against some benchmark series is more general

and can be applied to a wide variety of empirical questions. As Kilian and Murphy (2012,

p. 1186) point out: “If the set of admissible models remains large, the most useful exercise

will be to search for the admissible model most favorable to each of the competing economic

interpretations (...)”. We believe that our approach complements and extends this advice,

and is, thus, beneficial for empirical research. We have shown that comparing structurally

(set-) identified shocks to a benchmark series can uncover by default hidden, but relevant and

robust empirical conclusions.
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A Data

All data, except for the Romer and Romer (2004) series, is fully available to us from 1959

January to 2007 December. The data was gathered on 16.12.2015.

• Romer and Romer monetary policy shocks: The monthly series from 1/1/1969

to 12/1/1996 was obtained from Christina Romer’s website: http://eml.berkeley.

edu/~cromer/#data.

• Real GDP: The monthly GDP was approximated with state-space methods using the

quarterly GDP series GDPC1 and the monthly industrial production series INDPRO

obtained from the FRED database. The interpolation method is described in Mönch

and Uhlig (2005).

• GDP deflator: The monthly GDP deflator was approximated with state-space methods

using the quarterly GDP deflator series (GDPDEF) and the monthly series CPIAUCSL

(consumer price index for all urban consumers) and PPIFGS (producer price index

for finished goods). All series were downloaded from the FRED database, and the

interpolation method is described in Mönch and Uhlig (2005).

• Commodity price index: Daily data from the Commodity Research Bureau BLS

spot index was obtained from Thomson Reuters’ Datastream. Monthly observations

were calculated as the averages of daily observations for each month.

• Stock price index: Monthly observations of the S&P 500 composite index was

obtained from the FRED MD project website (https://research.stlouisfed.org/

econ/mccracken/fred-databases/) maintained by Michael W. McCracken. For the

empirical analysis, the values were deflated by means of the GDP deflator.

• Measures of monetary policy: Monthly series of the federal funds rate (FEDFUNDS),

total reserves (TOTRESNS), and non-borrowed reserves (BOGNONBR) were obtained

from the FRED database.
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B Econometric details

VAR model and impulse responses

Recall from the main text that we consider the following K-dimensional structural VAR,

A0yt = A1yt−1 +A2yt−2 + · · ·+Apyt−p + εt, (5)

where yt ∈ R
K , εt ∼ WN(0, IK), A0, . . . , Ap ∈ R

K×K , and A0, what we call the structural

matrix, is assumed to be non-singular. In order to define a unique lag length we assume that

Ap 6= 0. In the empirical application K = 7, and p = 12. In the above equation εt is the

vector of structural innovations. The corresponding, estimable reduced form is

yt = B1yt−1 + · · ·+Bpyt−p + ut, (6)

with Bi = A−1
0 Ai, i = 1, . . . , p. For ut, the vector of reduced form innovations the following

holds: A−1
0 εt = ut ∼ WN(0,Σu). Writing B(z) = IK − B1z − · · · − Bpz

p we assume, that

the reduced form is causal, that is, det(B(z)) 6= 0 ∀ |z| ≤ 1. Then the moving average

representation of yt exists and is given by (Brockwell and Davis, 1991, Th. 11.3.1, p. 418)

yt =

∞∑

j=0

Φjut−j =

∞∑

j=0

Θjεt−j , Φ0 = IK , (7)

where element (i, k) of the coefficient Θj = ΦjA
−1
0 is interpreted as the reaction of the i-th

variable on the k-th structural innovation at horizon j.

We estimate the parameters with ordinary least squares, obtaining B̂1, . . . , B̂p and Σ̂u.

The corresponding estimate for the reduced form impulse response sequence (Φ̂j)j≥0 follows

immediately. The starting point for estimating sign restricted impulse responses is the lower

triangular Cholesky decomposition of Σ̂u = Âc
uÂ

c′
u . Since Σ̂u is symmetric and positive

definite, its Cholesky decomposition is unique (Meyer, 2000, p. 154). Note, that for any K×K

orthogonal matrix Q with Q′Q = QQ′ = IK it holds that

Σ̂u = Âc
uQQ′Âc′

u . (8)

We are interested in finding those Âc
uQ = Â−1

0 (Q) matrices that imply structural form impulse

response sequences (Θ̂j)j≥0 = (Φ̂jÂ
−1
0 (Q))j≥0 that satisfy the sign restrictions maintained in

the main text. To this end we use the method proposed by Rubio-Ramı́rez, Waggoner, and
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Zha (2010). Let H be the length of the impulse response horizon that we wish to estimate,

and let J ≤ H be the length of the horizon on which sign restrictions are imposed. Then the

procedure can be described as follows:

1. Draw a matrix M with i.i.d. standard normal entries and perform the QR-decomposition

of the matrix M = QR. The resulting matrix Q is orthogonal and has the uniform (or

Haar) distribution on the group of orthogonal matrices.

2. Calculate the corresponding structural impulse response function {Θ̂Q
j }j=0,...,H =

{Φ̂jÂ
−1
0 (Q)}j=0,...,H and verify whether the formulated sign restrictions are fulfilled for

j = 1, . . . , J . If so, keep
{
Θ̂Q

j

}
j=0,...,H

, otherwise discard it.

3. Repeat steps 1–2 until the set of retained structural impulse responses contains S = 65000

elements.

In the empirical application, we set H = 60, and J = 4 according to Restriction SR in the

main text.

In order to simulate the set of impulse responses resulting from the sign and zero restrictions

on A0 we use the method proposed by Arias, Rubio-Ramı́rez, and Waggoner (2014). Let Â

be (Âu)
−1, that is, the inverse of the Cholesky decomposition of Σ̂u. Then, for our particular

application, the algorithm can be described by the following steps:

1. Find a matrix N1 ∈ R
K×(K−2) with N ′

1N1 = IK−2 such that Â[(K−1: K),•]N1 = 0, with

Â[(K−1: K),•] denoting the 2×K matrix formed by the (K − 1)-th and K-th rows of Â.

2. Generate a vector z ∈ R
K with i.i.d. standard normally distributed entries and form

the vector:

q =
1

||[N1 0K×2]z||
[N1 0K×2]z, (9)

i.e., project the vector z on the space spanned by N1 and normalize it to unit length.

3. Find a matrix N2 ∈ R
K×(K−2) with N ′

2N2 = IK−2 such that q′N2 = 0.

4. Draw a matrix M ∈ R
(K−2)×(K−2) with i.i.d. standard normal entries and calculate the

QR decomposition of N2M , i.e.,

N2M = [Q̃1 Q̃2]


 R1

0


 , (10)
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with Q̃1 ∈ R
K×(K−2).

5. Form the matrix Q+ = [q Q̃1], calculate the corresponding structural matrix Â
Q+

0 =

Q+′Â, and verify whether the formulated sign restrictions are fulfilled. If so, keep Â
Q+

0 ,

and the implied structural parameters, otherwise discard it. Note that by construction,

the zero restrictions on the structural matrix hold for all draws.

6. Repeat these steps until the set of retained structural parameters contains S = 65000

elements.

Inference on the median target impulse response

The median target (MT) impulse response is the impulse response that is (element-wise)

closest in terms of standardized squared distance to the pointwise median of the set of sign

restricted impulse responses (termed here the median curve). Our implementation of the MT

impulse response follows Fry and Pagan (2011). In particular, let Θ̂s = {Θ̂s
j}j=0,...,H be the

set of structural impulse responses for s = 1, . . . , S with S = 65000, estimated on horizons

0, . . . , H. Denote the (element-wise) median curve as Θ̂med = {Θ̂j,med}j=0,...,H . The median

target impulse response is defined as:

Θ̂MT = argmins=1,...,S

∑

r∈R

∑

k∈K

∑

j∈J


Θ̂

(r,k)
j,s − Θ̂

(r,k)
j,med

ŜDr,k,j




2

, (11)

with R,K ⊆ {1, . . . ,K} and J ⊆ {0, . . . , H}. Starting with Θ̂
(r,k)
j,s = 1

S

∑S
s=1 Θ̂

(r,k)
j,s , we can

write ŜDr,k,j =

√(
1
S

∑S
s=1 Θ̂

(r,k)
j,s − Θ̂

(r,k)
j,s

)2

. That is, ŜDr,k,j is, for each impulse response

horizon j, each shock k, and each variable r the (pointwise) empirical standard deviation of

the set of admissible impulse responses. In the empirical analysis we consider in Equation

(11) only responses to the monetary policy shock, i.e., K = {5}, and all the impulse responses,

R = {1, . . . , 7}. The length of the estimated impulse response horizon is H = 60, and

J = {0, . . . , 12}, i.e., impact period plus one year.

We denote by QMT the rotation that yields Â−1
0 (QMT ) corresponding to the median

target model. While the median curve does not correspond to any particular structural model,

it is possible to provide inference on the MT impulse response: an impulse response that

corresponds to a well-defined, unique structural model.

Our bootstrap procedure for inference on the MT response follows Linnemann, Uhrin, and

Wagner (2016). The algorithm can be described by the following steps:
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1. Generate a bootstrap sample, y∗1, . . . , y
∗
T using the Kilian (1998) bootstrap.

2. Estimate the parameters of the VAR model using y∗t , resulting in parameter estimates

B̂∗
1 , . . . , B̂

∗
p . Calculate the structural impulse response function using these parameter

estimates and the original Â−1
0 (QMT ).

3. Verify whether the impulse response function from the previous item, {Θ̂QMT ∗
j }j=0,...,J ,

satisfies the formulated sign restrictions. If it does, keep it, otherwise discard it.

4. Repeat the above steps until 1000 impulse responses are retained and calculate pointwise

bootstrap confidence bands as usual from these 1000 impulse responses.

C Additional results to comparison with the Romer and Romer

(2004) shocks.

In this Appendix we report results on comparison between the monetary policy shock series,

and the Romer and Romer (2004) (RR) series , ε̂rrt , where the monetary policy shocks are

identified with Scheme II (Restrictions ZR and SR2). With a slight abuse of notation we

denote the identified monetary policy shock series as ε̂
mp
ts , similarly to the series obtained

with identification Scheme I. In the context of the present Appendix no confusion should arise

from this shorthand. The arguments of Section 5 remain valid, and are further strengthened

by the evidence below.

[FIGURE 17 ABOUT HERE]

Figure 17 displays the histogram of the 65000 obtained correlation coefficients ρs =

Ĉorr(ε̂mp
ts , ε̂rrt ). As visual inspection suggests, the large majority of models are only midly

correlated with the RR series. The average level of correlation is 0.1692, and the median

is 0.1654. These values suggest, that the achievable correlation level using Scheme II are

on average lower than those attained using Scheme I. However, the maximal correlation

level (0.4) is very similar to the one obtained using Scheme I and the simple recusrive

identification scheme, cf., Section 7). These three experiments suggest that there may be

a cap on the achievable correlation level that is most likely influenced by the data and the

model specification, but not the identification scheme.

Figures 18 – 20 display models with low ρs, medium ρs, and high ρs coefficients, respectively.

As discussed in the main text, these figures show models that imply quite distinct impulse

reponses both qualitatively and quantitatively. The lack of information content of Figure

26



19, displaying models with medium ρs coefficients, is even more pronounced than that of the

corresponding figure in the main text, Figure 12.

[FIGURES 18, 19, 20 ABOUT HERE]
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Figure 1: Sign restricted (left) and median target (right) impulse responses of the S&P 500
index for a one per cent increase in the federal funds rate. Identification Scheme I.
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Figure 2: Sign restricted impulse responses for a one per cent increase in the federal funds
rate. Identification Scheme I.
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Figure 3: Median target impulse responses for a one per cent increase in the federal funds
rate. Identification Scheme I.
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Figure 4: Sign restricted (left) and median target (right) impulse responses of the S&P 500
index for a one per cent increase in the federal funds rate. Identification Scheme II.
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Figure 5: Sign restricted impulse responses for a one per cent increase in the federal funds
rate. Identification Scheme II.
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Figure 6: Median target impulse responses for a one per cent increase in the federal funds
rate. Identification Scheme II.
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Figure 7: Romer and Romer (2004) shock series.
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Figure 8: Histogram of correlations between ε̂
mp
t and ε̂rrt . Scheme I.
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Figure 9: The series ε̂mp
ts∗ and ε̂rrt , divided by their respective standard deviations. Scheme I.
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Figure 10: The series ε̂mp
ts∗ and ε̂rrt , divided by their respective standard deviations. Scheme II.
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Figure 11: Impulse responses from models s = 1, . . . , 100. Identification Scheme I.
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Figure 12: Impulse responses from models s = 37450, . . . , 37550. Identification Scheme I.
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Figure 13: Impulse responses from models s = 64900, . . . , 65000. Identification Scheme I.
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Figure 14: Range and median of models from Shigh. Identification Scheme I.
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Figure 15: Impulse responses from model s∗. Identification Scheme I.
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Figure 16: Range and median of models from Shigh. Identification Scheme II.
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Figure 17: Histogram of correlations between ε̂
mp
t and ε̂rrt . Scheme II.
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Figure 18: Impulse responses from models s = 1, . . . , 100. Identification Scheme II.
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Figure 19: Impulse responses from models s = 37450, . . . , 37550. Identification Scheme II.
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Figure 20: Impulse responses from models s = 64900, . . . , 65000. Identification Scheme II.
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