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Non-technical summary

Research Question

The CDS market plays an important role in understanding the dynamics of financial

markets and financial stability and consequently has received growing attention in the

recent literature. Despite the rich literature there is still no consensus about which factors

mainly drive CDS spreads. Instead we observe an increasingly large number of potential

determinants being suggested. We aim to provide a transparent and robust analysis for

the determinants of CDS spreads by focusing on the information provided by a large

number of models (the “model space”) instead of focusing on one or few “hand-picked”

specifications. Our model space covers most of the specifications used elsewhere in the

literature and includes several variables measuring the sensitivity of firms to extreme

market movements (tail dependence).

Contribution

We show that the model space includes models which allow backing many different the-

ories by significant coefficients and good fit to the data. Thus, the information content

from single model specifications is rather restricted. In contrast to previous studies,

we use information from the entire model space instead of restricting ourselves to some

“hand-picked” models. Doing so, we provide a transparent and robust analysis for the

determinants of CDS spreads. Besides covering the informational content of most pre-

vious studies in our analysis we also give clear evidence on the impact of using different

estimation procedures to measure tail dependence in CDS markets.

Results

Using a large data-set, we find that CDS price dynamics can be mainly explained by

factors describing firms’ sensitivity to extreme market movements. More precisely, our

results suggest that variables measuring tail dependence – based on so-called dynamic

copula models – incorporate almost all essential pricing information making other poten-

tial determinants such as default risk (Merton-type) factors or variables capturing the

systematic market evolutions negligible.



Nichttechnische Zusammenfassung

Fragestellung

Aufgrund seiner Bedeutung für das Verständnis von Finanzmärkten und wichtigen Im-

plikationen für die Finanzstabilität erfährt der CDS-Markt in der Literatur ein umfang-

reiches und zunehmendes Interesse. Trotz der großen Literatur gibt es bisher keine Ei-

nigkeit darüber, durch welche Faktoren die Dynamik von CDS-Spreads erklärt werden

kann. Stattdessen beobachten wir, dass in der Literatur immer mehr verschiedene Ein-

flussfaktoren vorgeschlagen werden, die in gewissen Kombinationen Erklärungsgehalt auf-

weisen. In diesem Papier untersuchen wir die Einflussfaktoren, indem wir uns nicht auf

einzelne Modellspezifikationen, sondern auf Information aus vielen verschiedenen Model-

len (dem “Modellraum”) stützen. Unser Modellraum enthält nahezu alle Spezifikationen,

die sonst in der Literatur vorgeschlagen werden, und berücksichtigt verschiedene Varia-

blen, welche die Sensitivität einer Firma gegenüber extremen Marktbewegungen messen

(Randabhängigkeit), als erklärende Faktoren.

Beitrag

Wir zeigen zunächst, dass es im Modellraum Modelle gibt, die verschiedenste Theori-

en durch signifikante Koeffizienten und guten Erklärungsgehalt für die Daten stützen

können. Somit ist der Informationsgehalt in einem einzelnen Modell sehr beschränkt. Im

Vergleich zu anderen Studien verwenden wir daher Information aus dem gesamten Modell-

raum und können so eine transparente und robuste Analyse für die treibenden Faktoren

von CDS-Spreads durchführen. Unsere Analyse enthält den überwiegenden Teil an Spe-

zifikationen, die bisher in der Literatur vorgeschlagen wurden, und liefert klare Evidenz

dafür, dass es von zentraler Bedeutung ist, mit welcher Methodik man Randabhängigkeit

auf CDS-Märkten schätzt.

Ergebnisse

Basierend auf Analysen für einen großen Datensatz, zeigen wir, dass die Dynamik von

CDS-Spreads vorwiegend durch die Sensitivität einer Firma gegenüber extremen Markt-

bewegungen erklärt werden kann. Unsere Ergebnisse zeigen, dass Maße für die Randab-

hängigkeit – so wie sie von sog. dynamischen Copula-Modellen gemessen wird – nahezu

alle verfügbare Information zur Bepreisung von CDS enthalten. Der Informationsgehalt

von anderen potentiellen Einflussgrößen, wie z.B. Faktoren für das Ausfallrisiko oder

Indikatoren für die allgemeine Marktbewegung scheint in den Maßen für die Randab-

hängigkeit enthalten.
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1 Introduction

By now literature provides a substantial body of empirical studies on the determinants of

CDS spreads1 (see, amongst others, Collin-Dufresne et al., 2001; Benkert, 2004; Ericsson

et al., 2009; Alexander and Kaeck, 2008; Benkert, 2004). The theoretical foundation for

most of these studies is provided by Merton (1974). He shows theoretically that a firm’s

default probability is influenced by the firm’s leverage, its equity volatility, and the level

of the risk-free interest rate. Consequently, these characteristics should function as main

drivers of the corresponding CDS as well. Additionally, there are many other studies

presenting a variety of additional factors that seemingly explain CDS spreads: examples

are commonality-factors, liquidity, investor sentiment, financial distress indicators and

various macroeconomic variables such as GDP or inflation. Recently, Meine et al. (2015b)

extend evidence from option pricing that investors protect themselves against extreme

downside risk (see Rubinstein, 1994; Gârleanu et al., 2009) to the CDS market for banking

firms and show − using a copula approach − that CDS protection sellers of contracts on

banks require a premium for bearing the risk of a joint tail event in the financial market.

There is increasing evidence that investors demand compensation to redeem their fear of

extreme tail events in financial markets and reward their risk-taking (see, e.g., Bollerslev

and Todorov, 2011; Chabi-Yo et al., 2014; Meine et al., 2015b; Bollerslev et al., 2015;

Ait-Sahalia and Lo, 2000; Jackwerth and Rubinstein, 1996). First evidence of investors

being crash-averse was provided by Rubinstein (1994), but especially the recent literature

studies the impact of crash aversion on the pricing of individual financial instruments.

In times of financial turmoil assets that are crash sensitive are highly unattractive for

investors that show signs of crash-o-phobia. Instead, these investors would prefer assets

that are crash-insensitive. In line with these arguments, Chabi-Yo et al. (2014) provide

evidence that crash-sensitive stocks bear a premium, while Meine et al. (2015b) show

that CDS spreads of banks bear a premium for tail risk during the financial crisis. This

pricing of downside risk can be interpreted as a non-linear addendum to the CAPM asset

pricing theory in which the sensitivity of asset prices to market movements is modeled

linearly (Chabi-Yo et al., 2014).

Despite of the comprehensive empirical literature there is still no consensus about which

factors mainly drive CDS spreads and whether there is a superior model setup which one

should follow. In this sense, we do not observe any convergence in literature, but rather

an increasingly large number of factors that have some influence. Importantly, the related

pricing theory is not explicit about an ultimate setup such that creative theorizing gives

1A credit default swap (CDS) is a financial agreement that provides insurance against default risk
of a reference entity. The seller of the CDS will compensate the buyer in the event of a loan default or
some other predefined credit event. In exchange, the buyer of the CDS makes a series of payments (the
CDS spread or premium, usually measured in basis points) to the seller.
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Figure 1: t-statistics for long-run-multipliers of regressors in the model space.

The figure shows t-statistics for long-run-multiplier (lrm) of different regressors in the model space. The
first histogram (top left) represents the coefficients for the upper tail dependence measure estimated
with the dynamic Gumbel copula, the histogram at the top right shows the CDS Market coefficients, the
lower panel shows the investor sentiment measure provided by the American Association of Individual
Investors on the left, and the equity volatility measure on the right hand side. Dotted vertical lines
indicate the 99% confidence interval for a significance test. LRM were estimated using the so-called
delta method (see Greene, 2003). For the definition of the regressor variables see Table 2.

rise to different setups in the literature. As we will emphasize throughout the paper, in

many empirical settings the data at hand provides the possibility to back many theories

by significant parameter findings if the number of plausible models in the model space

is large enough. Figure 1 illustrates this problem for our empirical setup. Exemplary,

the t-statistics for the Long-Run-Multiplier (LRM) of four different potential regressors

in a fixed effect panel regression with CDS returns as the dependent variable are shown.

The different t-statistics stem from different models where all of the considered models

exhibit values between 50% and 54% of adjusted (in-between) R2.

Obviously various stories can be told based on the models in the model space, e.g. ranging

from a non-significant impact of (upper) tail dependence to a highly positive or even neg-

ative impact. The variety of results is driven by high collinearity between the regressors

used in the CDS literature making the presented models sensitive to the choice of control

variables and the exact model setup (compare Table 6). Importantly, the model setup

is also driven by the concrete specification of variables, i.e. how researchers transform,

specify or estimate their regressor variables. Of particular interest in this context is the

sensitivity of results to differing copula specifications used to measure the effect of tail

dependence on CDS-pricing.
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Copula models to capture dependence structures of financial time series have become very

popular as, e.g., demonstrated by Patton (2009); Genest et al. (2009); Christoffersen

et al. (2012); Meine et al. (2015b) or Weiß and Scheffer (2015). While early models

such as Li (2000) focused on the use of the Normal or Gauß copula, nowadays the use

of the t copula has become the popular choice (see, e.g., Demarta and McNeil, 2005;

Christoffersen et al., 2012; Meine et al., 2015b). In contrast to the Gauß copula, the

t copula exhibits heavy tails and non-zero tail dependence. Additionally, the recent

research relies on dynamic copula models to take evidence that conditional volatility of

economic time series changes through time (Andersen et al., 2006) into consideration.

Consequently, any analysis focusing on the dependence structure between financial time

series should rely on dynamic copula models to capture the time-variation (see also Meine

et al., 2015b).

To illustrate the effect of differing copula specifications in our empirical setup, Table 1

presents the coefficients of simple panel regressions that measure the influence of tail

dependence on returns of CDS spreads. We run four simple regressions, where the tail

dependence measure is estimated using different copula models. As we see, the dimension

of the influence of the tail dependence measure differs in size as well as in significance

depending on the copula model chosen.

(1) (2) (3) (4)
CDS Spread CDS Spread CDS Spread CDS Spread

t copula 0.848∗∗∗

(0.152)
SJC copula 0.0841

(0.106)
Rotated Clayton copula 0.219∗∗

(0.0737)
Gumbel copula 0.222∗∗∗

(0.0631)
Constant -0.0638∗∗∗ -0.00649 -0.0341∗ -0.0522∗∗

(0.0139) (0.0254) (0.0153) (0.0188)
F 30.95 0.634 8.781 12.35

Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table 1: Regressions of tail dependence measured with different copula models.

The regressions estimate the relation between the single name CDS Spreads and differently estimated tail
dependence measures over the period January 1, 2001 to September 18, 2014. Tail dependence measures
are lagged by one period. The sample consists of 336 publicly traded firms. CDS data are retrieved
from Markit database. Estimation procedures of copula models are given in Section A. The regressions
include all firms from our sample. We apply a quarterly panel regression with firm-fixed effects using
clustered robust standard errors at the firm level. P-values are in parentheses, *, **, and *** indicate
statistical significance at the 5%, 1%, and 0.1% levels, respectively.
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In response to the problems sketched above, this paper intends to provide a robust and

transparent analysis for the determinants of CDS spreads by focusing on the model space

instead of just one specific model.2 We intend to include most of the variables suggested

elsewhere in the literature as regressors and we include tail dependence measures derived

from four different dynamic copula models. Using model search algorithms, we identify

the best 10, 000 models according to adjusted R2 and a pre-defined maximum of regressor

variables. By doing so, most specifications suggested elsewhere in the literature will be

part of the model space that we assess. We then analyze the model space by looking first

at the number of significant LRM of the different variables in the model space followed

by so-called Bayesian Model Averaging (BMA) which summarizes the model space by

weighting the different models proportional to their informational content. For more in-

depth analyses, we apply BMA also to subsets of the model space, which include only

models satisfying imposed plausibility and collinearity conditions. Finally, we perform

out-of-sample hypothesis tests for predictive ability to back-up and clarify the results

obtained from BMA. Our CDS data-set set comprises 227 firms from different industries.

We analyze both investment grade and high volatility contracts to consider the possible

(large) differentness between the investment vehicles. Similarly, we distinguish between

pre-, during, and post-crisis periods to account for differences in pricing between bullish

and bearish periods.

Our methodological approach to analyze the CDS-determinants is inspired by the growing

literature focusing on the model space (or a subset of it) rather than single models

(see, e.g., Sala-I-Martin et al., 2004; Hansen, 2007; Hansen et al., 2011; Elliott et al.,

2013). The growing popularity of these approaches can mainly be attributed to the

availability of computational capacities that allow analyses of large subsets of models

and the recognition that in many empirical settings there exists no single model that

dominates competing setups in a statistically significant way.

Our findings suggest that the tendency of an individual CDS to jointly experience extreme

movements with the market is the major determinant of CDS premia: The measure for tail

dependence, estimated using a t copula, has the highest explanatory power - measured by

so-called posterior inclusion probabilities - among all regressors. Also, a model including

only tail dependence measures significantly outperforms the out-of-sample forecast quality

of any other model. Importantly, the choice of the copula to estimate tail dependence

is crucial for the explanatory power, and the t copula dominates all other copula model

specifications. In contrast, Merton-type and macroeconomic factors can be considered as

negligible since their informational content seems to be covered by the tail dependence

measures. This also holds for variables measuring the systematic market evolution based

2For an excellent paper on model risk and the consequences of model risk for the risk exposure of
option writers the reader is referred to Green and Figlewski (1999). For more literature on model risk,
see, e.g., Derman (1996); Hull and Suo (2002); Dańıelsson (2008); Buocher et al. (2014).
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on simple means or principal component analysis (pca).

The main contribution of our paper is the following: We provide a transparent and

robust study for the determinants of CDS spreads. In contrast to previous studies, we

do not restrict our analysis to some selected models but rather analyze the information

content of the entire model space. The CDS market has received growing attention

in the recent literature and plays an important role in understanding the dynamics of

financial markets and also financial stability (see, amongst others, Meine et al., 2015b;

Christoffersen et al., 2014; Oh and Patton, 2013). However, previous studies rely on the

assumption of a/several specific model(s) and thus face - as we show in our analyses -

a substantial degree of model risk. Our analyses of the model space are able to provide

clear evidence on the main determinants of CDS prices.

The paper proceeds as follows. First, we introduce the related literature in Section 2. In

Section 3, the data is described and the expected influence of the included variables is

discussed. Section 4 presents our dynamic copula models and the estimation procedure.

In Section 5, we document the main findings of the analysis on CDS spreads. Section 6

concludes.

2 Related literature

This section present related literature from two different strands. First, we present no-

table contributions from the literature on CDS determinants (Section 2.1). Then, we

turn to the literature on model averaging in Section 2.2.

2.1 Determinants of CDS

The empirical work of our study is related to several recent papers on the determinants of

credit default swaps (using regression analysis) inspired by Collin-Dufresne et al. (2001).

For example, our work is related to the studies by Benkert (2004), Ericsson et al. (2009)

and Alexander and Kaeck (2008). Ericsson et al. (2009) are concerned with the drivers of

credit default swap premia and investigate the relationship between theoretical Merton

determinants of default risk and CDS spreads, while Benkert (2004) studies the influ-

ence of volatility on CDS premia (see also Zhang et al., 2009). The studies find that only

volatility and leverage have substantial explanatory power.3 Alexander and Kaeck (2008)

are interested in regime dependent determinants of CDS spreads. They show that CDS

spreads are extremely sensitive to stock volatility during periods of CDS market turbu-

lence while they are more sensitive to stock returns in ordinary market circumstances.

3Moreover, Chen et al. (2006) and Arora et al. (2005) provide evidence that the Merton model
underestimates the corporate bond spreads.
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Moreover, several studies (e.g. Aunon-Nerin et al. (2002), Hull et al. (2004), Norden and

Weber (2004) and Tang and Yan (2013)) are concerned with the effect of rating events

on CDS spreads. These studies find evidence that CDS spreads predict negative rating

events. More recently, Pires et al. (2015) use a quantile regression approach to study the

determinants of CDS spreads. The authors find evidence that implied volatility, historical

stock returns, leverage, profitability but also illiquidity costs determine CDS premiums.

Also, the authors find that high-risk firms are more sensitive to changes in the explana-

tory variables than low-risk firms and that the goodness-of-fit of the model increases with

CDS premiums, which is consistent with the credit spread puzzle. The credit spread puz-

zle states that structural models are not able to explain yield spreads and default rates

simultaneously (Huang and Huang, 2012). Huang and Huang (2012) find that credit risk

only accounts for a small fraction of the corporate-Treasury yield spreads for investment

grade bonds while it accounts for a much higher fraction of yield spreads for high yield

bonds. Thus, structural models are not able to explain yield spreads and default rates

simultaneously. One possible implication is that the unexplained portion of the yield

spread might be due to non-credit factors such as commonality, tail-dependence or liq-

uidity. More evidence on the influence of liquidity on CDS spreads is provided by Meine

et al. (2015a); Arakelyan et al. (2015); Tang and Yan (2008); Bongaerts et al. (2011);

Longstaff et al. (2005); Qiu and Yu (2012). Following the Lehman Brothers default,

Arora et al. (2012) identify counterparty risk as another factor affecting CDS spreads,

but to an economically small magnitude.

Heinz and Sun (2014) focus on sovereign CDS spreads and find that European countries’

CDS spreads are mainly driven by investor sentiment, macroeconomic fundamentals and

liquidity conditions in the market. Dieckmann and Plank (2012) analyze CDS spreads

of advanced European economies during the financial crisis and document that the state

of a country’s financial system and the state of the world financial system have strong

explanatory power for the behavior of sovereign CDS spreads.

The literature on CDS spreads and its determinants is rich, and covering all contributions

would exceed the scope of this paper. For a more thorough review of the literature on

CDS spreads the reader is referred to Augustin et al. (2014) for a recent survey.

More closely related to our paper, is the study of Berndt and Obreja (2010) who show

that economic catastrophe risk has become more important to explain the variation in

European CDS returns (see also Coval et al., 2009; Gourio, 2011, on catastrophe risk).

The authors find evidence of sizable commonality on European CDS returns using princi-

pal component analysis and study the drivers of the commonality. The authors show that

about half of the variation in European CDS returns can be explained by a common factor

that mimics economic catastrophe risk and that the importance of this factor increased

during the financial crisis, relative to other risk factors. This concurs with Han and Zhou

(2015) who find that the explanatory factor of structural models is very limited and a
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significant common component is missing that affects the term structure of CDS spreads.

Augustin and Tédongap (2011) develop a consumption-based equilibrium pricing model

and find that spreads are mostly driven by compensation for losses in bad states. The

authors find that the first two principal components capture about 75% of the variation

and interpret these two factors as level and slope of the yield curve.

Most closely related to our article are the recent works by Meine et al. (2015b); Christof-

fersen et al. (2014); Koziol et al. (2015) and Keiler and Eder (2013). The paper by Meine

et al. (2015b) provides evidence that the propensity of a bank to experience extreme

co-movements in its own credit default swap together with the market is priced in the

CDS during the financial crisis. The authors find that the effect is limited to the recent

financial crisis. However, their study is limited to a sample of banks and their model is

restricted to the skewed t-copula, while our paper studies the effect of different copulas

and we do not restrict our study to a sample of banks. Going in the same direction is the

study of Keiler and Eder (2013). They address the question of how the CDS spread of one

financial company is influenced by the CDS spreads of other financial companies within

the system. They find significant contagion due to the interconnectedness of financial

institution in their sample. Christoffersen et al. (2014) study a sample of CDS spreads

for 215 firms and find that copula correlations are highly time varying and persistent.

Also, the authors provide evidence that tail dependence in credit spreads increases during

the financial crisis. However, their study is restricted to the use of a skewed t-copula and

some selected models. Also, the sample in this study is restricted to the North America

Investment Grade Index of CDS contracts while we consider a broader sample and a wider

array of methods to verify the robustness of the findings. Also concerned with correlation

amongst CDS contracts is the work by Koziol et al. (2015). The authors study whether

correlated defaults are priced in the CDS market. They find that correlated default fac-

tors did not matter prior to the financial crisis, but the importance increased during and

after the crisis. Moreover, the authors find evidence that especially CDS prices of firms

with an overall low CDS level are affected and that idiosyncratic risk factors are more

important when CDS premia are high. Again, our study relies on a larger sample and a

wider array of methods. Thus, we are able to provide more robust results and additional

insights.

2.2 Model Averaging

From a methodological standpoint, our work is related to the literature of model com-

bination and model averaging, in particular the BMA method, and more general to the

literature focussing on ensembles of models rather than single models (e.g. Hansen et al.,

2011). The key idea of model averaging is to consider and estimate all possible models

(the model space) and to focus on summarized statistics based on weighted averages of

7



the models in the model space. Madigan and Raftery (1994), Kass and Raftery (1995)

and Raftery et al. (1997) provide a sound statistical derivation for a model combination

procedure, called BMA, where the model weights are derived as additional statistical pa-

rameters in a bayesian estimation setup. Since then many authors have applied BMA on

economic topics, especially on empirical growth. The seminal papers on model averaging

and growth are Fernandez et al. (2001) and Sala-I-Martin et al. (2004). Following Raftery

et al. (1997), Sala-I-Martin et al. (2004) combine ordinary least squares (OLS) estimates

with the Bayesian Information Criterion (BIC) approximation as the weight for averaging

and denominated it Bayesian Averaging of Classical Estimates (BACE). To apply BMA

on classical OLS estimates Sala-I-Martin et al. (2004) assume a diffuse prior distribu-

tion for the parameters. Aside from empirical growth, model averaging techniques are

also applied in forecasting financial variables such as stock returns (e.g. Avramov, 2002;

Cremers, 2002) or exchange rates (e.g. Wright, 2008). In the macro forecasting, Garratt

et al. (2003) employ BMA to predict inflation and output growth in the UK and Wright

(2009) forecasts US inflation by BMA.

The papers mentioned above have one thing in common. They restrict the analysis to

cross-country data or time series data which are often constrained by the limited number

of observations. Moral-Benito (2012) extends the BMA approach to panel data models

with fixed effects. The author stresses that his BMA approach solves the problem of

inconsistent estimates with dynamic panel estimators. Eicher et al. (2009) propose a

two-step BMA procedure that first averages across the first-stage models. Then, the

authors take the averaged fitted values for the endogenous regressors from the first stage

and estimate the desired model, again taking averages, in the second stage.

While most of the applications of BMA apply weights based on BIC as originally suggested

in Kass and Raftery (1995), Burnham and Anderson (2002) strongly suggest to replace

BIC by the (smoothed) Akaike Information Criterion (S-AIC) since BIC aims to identify

the models with the highest probability of being the true model for the data assuming a

true model exists. Since a true model in reality does not exist, BIC tends to assign too

much weight to the best model. AIC, on the contrary, tries to select the model that most

adequately fits the unknown model, and can be interpreted as being the probability that

a model is the expected best model in repeated samples. Hansen (2007) report rather

poor performance of BIC weights compared to S-AIC weights, particularly if the sample

size is large.4

Many authors also attend to gauge the efficiency of BMA. Magnus et al. (2010) introduce

a method called Weighted-Average Least Square (WALS) in which the WALS estimator

4Note, that model averaging using smoothed AIC weights instead of BIC in the literature is often
referred to as smoothed AIC estimator (S-AIC), see e.g. Hansen (2007). We however, use the term BMA
more generally, covering also the AIC weight variation.
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employs a non-informative prior and compared to BMA is able to reduce the computa-

tional burden. But when both methods are applied on growth theory the authors do not

find evidence that WALS outperforms BMA. Regarding the analysis of U.S. stock re-

turn, Elliott et al. (2013) access that Complete Subset Regressions (CSR) perform better

than non-equal-weighted methods like BMA. The authors use CSR which is a shrinkage

technique for linear regression to run predictive regression for all models with the same

number of predictors.

BMA and other model averaging frameworks have the great advantage in providing frame-

works to analyze and take into account the information from the entire model space. But

they also increase forecast accuracy in comparison with OLS. Baele et al. (2015) examine

the systemic risk in US banking and show that BMA reduces the root mean square error

and therefore leads to a better-out-of-sample performance.

To apply BMA in practice one has to obtain a reasonable approximation of the posterior

model probabilities (pmp) of all models in the model space. This requires taking into

account all models that have a non-negligible pmp. Raftery et al. (1997) describe two

approaches. First, one can use a Markov Chain Monte Carlo Model Composition (MC3)

as suggested by Madigan and York (1995), which moves through the model space and

focusses on models with high posterior model probability. Second, Madigan and Raftery

(1994) introduce Occam’s window which focusses on a subset of models for which strong

evidence exists that they are superior to the models outside of the subset. The objective is

to exclude models that predict the data far less well than model with the best prediction.

As a rule for the choice of the threshold which defines the relative superiority of the

best model, Hoeting et al. (1999) and Madigan and Raftery (1994) recommend numbers

between 20 and 100.

Using this strategy the number of models to be estimated is drastically reduced, i.e. the

model space is trimmed. However, a search strategy is required to identify the models in

Occam’s window. Volinsky et al. (1997) use the leaps and bounds algorithm suggested by

Furnival and Wilson (1974), which provides an efficient method for identifying the models

in the window. The algorithm provides the top q models for each model size based on

(e.g.) the adjusted R2. If q is chosen large enough, this procedure will return the models

in Occam’s window plus many additional models.

A related strand of the model uncertainty literature suggests to analyze a Model Confident

Set (MCS) (Hansen et al. (2011)) which also intends to overcome the problem of selecting

one best model. The advantage of the MCS is that conditional on the limits to the

information of the data, MCS seeks to find a group of models that are equally likely to

be superior. A hypothesis test for equal predictive ability (EPA) is performed on the set

of initial models M using an equivalence confidence level 1− α. If the null hypothesis is

rejected, an elimination rule is employed to remove an inferior model. The process is then
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repeated until the null hypothesis is not rejected and the remaining set of models is the

MCS. Recently, authors like Samuels and Sekkel (2011) apply MCS to create a set of best

predictors by trimming the worst models. Applying three different trimming techniques

(fixed trimming, MCS trimming, Occam’s window) Samuels and Sekkel (2011) show that

trimmed forecast combinations outperform BMA on an untrimmed model space due to

the parameter estimation error in small sample sizes.

3 Data

This section describes the construction of our sample and presents the choice of our main

independent variables as well as descriptive statistics of our data.

3.1 Sample construction

We retrieve our CDS data from Markit and consider the spread quoted on 5-year CDS

contracts on all cross-industry single names that are included in one of the first 24 series

of the North American investment grade index (CDX NA IG) or the North American

high yield index (CDX NA HY). Thus, we include contracts with different investment

qualities and are able to investigate possible differences between these. We consider 5-

year CDS contracts as these contracts are the most liquid and constitute the majority

of the CDS market (see also Jorion and Zhang, 2007). We restrict our study to senior

unsecured contracts with no restructuring (XR) denoted in US-Dollar as they constitute

the convention for the U.S.5 The CDX NA IG index consists of 125 most liquid North

American entities with investment grade credit ratings that trade in the CDS market,

while the CDX NA HY consists of 100 most liquid North American entities with high

yield credit ratings. Markit is the provider of the included indexes. All indexes are

updated twice a year, based on a liquidity list. E.g., the CDX NA IG is updated in

March and September of each year. The updated index is labeled as on-the run index.

After each update, the previous version of the index continues trading as an off-the-run

index which now does not necessarily consist of the most liquid contracts available. As a

result, the on-the-run indexes comprise the single names with the highest liquidity in the

credit derivatives market (see also Koziol et al., 2015). Thus, using only the most liquid

CDS contracts circumvents a possible illiquidity-pricing effect in our study. We start

with the longest possible sample available from Markit which starts on January 1, 2001

and ends September 18, 2014. Initially, we have 455 time series of CDS data. However,

some of these belong to the same entity, but have changed names or tickers symbols over

5With the CDS Big Bang on April 8, 2009 a move towards more standardized CDS contracts took
place. Since then, contracts with no restructuring (XR) became the convention for North America.
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the course of time. Moreover, we drop all firms that do not have at least one year of

consecutive data available. Overall, we lose 119 firms due to our thorough filtering which

leaves us with 336 unique firms with CDS data.

Figure 2: Time evolution of CDS spreads and CDS spread returns

The figure shows the evolution of CDS spreads and the log differences of CDS spreads (CDS spread
returns) over the sample period from January 2001 to Sept. 2014. For both panels, we show the mean
across all single name contracts (black line) and the inter-quartile range in the shaded area. CDS spreads
are denominated in basis points whereas CDS spread returns are measured in %.

Figure 2 shows the time evolution of CDS spreads and CDS spread returns across our

sample period together with the inter-quartile range. Figure 3 shows the distribution

and the quantile-quantile plot of our CDS market returns. Note, that the returns seem

to exhibit excess kurtosis and skewness. Initial tests on our CDS data confirm that

the spread returns exhibit excess kurtosis (market kurtosis of 155.7) and non positive

skewness (market skewness of −0.165).

We supplement the CDS data with daily share price retrieved from Thomson Reuters

Financial Datastream and financial accounting data from the Worldscope database. From

our initial sample we loose some observations because no accounting or share price data is

available from Datastream or because the data is not available for the same time period.

In total, we loose 59 firms during our matching process of Markit data and Datastream

data which leaves us with a sample consisting of 277 unique firms.

Moreover, we complement our data with proxies for the overall business climate retrieved

from the Federal Reserve Bank of St. Louis and the American Association of Individual

Investors databases.

We use daily CDS data to analyze the dependence structure and focus of log-differences

to ensure econometrical tractability. We then average the daily data on a quarterly basis
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Figure 3: Histogram and Quantile-Quantile Plot of CDS market returns

The figure shows the distribution and the quantile-quantile plot with respect to the normal distribution
of our CDS market returns.

to run our regression analysis using quarterly data. This approach allows us to include a

wide array of control variables that are not available on a daily or weekly basis while at

the same time maintaining some granularity.6

3.2 Variables

Our study intends to provide robust information on the determinants of CDS spreads

by analyzing the entire model space of possible specifications. Hence, we include a large

array of potential explanatory variables with the objective to cover most of the specifi-

cations suggested elsewhere in the literature in our model space. A particular focus of

our analyses lies in the influence of tail risk on CDS premia, which is why we include

tail-dependence measures based on various dynamic copula specifications. As the depen-

dent variable we use log-differences of CDS premia. The estimation procedures for the

tail dependence are presented in section A. Our expectation is that CDS contracts of

firms that show a tendency to jointly surge with the market are traded at a premium

which would be in line with the findings of Meine et al. (2015b) and Christoffersen et al.

(2014). We include the lower tail dependence (LTD) and upper tail dependence (UTD)

of single name CDS contracts with the market in our sample. Contrary to the UTD, the

LTD dependence captures the propensity of the single name CDS to jointly depreciate

with the market. Hence, pronounced LTD characterizes single name contracts that are

6In comparison, Meine et al. (2015b) also rely on quarterly CDS spreads for their study, while Christof-
fersen et al. (2014) use weekly data.
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especially safe during booms. Our expectation is that CDS contracts with a high lower

tail dependence are traded at a discount.

Next, we include the return of an CDS market index to control for general market move-

ments. As an alternative for the market index we consider commonality. To measure

the commonality between CDS spread returns, we follow Berndt and Obreja (2010) and

estimate the first principal component of the standardized CDS returns. We estimate

the principal component for four distinct intervals. We split our sample period into four

subperiods for two reasons. First, we believe the common underlying factors change over

the cause of time. This is underlined by the finding that the variation explained by the

first principal component increases over time. While the first principal component is

able to explain only 13% of the variation for the first subperiod, the number increases to

40.2% for the fourth subperiod. This is consistent with the findings of Berndt and Obreja

(2010). Secondly, splitting our sample period into subperiods allows us to include more

entities into each subperiod analysis. Note, that our sample is unbalanced. Hence, some

firms drop out over the sample period and others enter the sample. Only 35 firms are

in our sample over almost the entire sample period.7 By dividing the sample into sub-

samples, we are able to estimate the commonality for up to 202 firms for each subperiod.

Figure 4 presents the evolution of the commonality of CDS spreads across our sample

together with CDS spreads and CDS spread returns. During times of financial distress

we observe increased commonality.

Further, we include a number of idiosyncratic regressors. First, we include CDS volatil-

ity (see also Kita, 2015) using our GARCH estimates as a proxy, and liquidity on the

CDS market (see, e.g., Meine et al., 2015a; Arakelyan et al., 2015; Tang and Yan, 2008;

Bongaerts et al., 2011; Qiu and Yu, 2012). Note, that we only include our measure for

liquidity using a subsample from 2011 to 2014 as Markit does not provide information on

liquidity prior to 2011. We employ the converted bid-ask spread provided by Markit as

liquidity measure. However, we find that our main results hold regardless of the liquidity

control variable (see Section 5.5).

Moreover, we include equity returns, stock price volatility, and leverage following the

theory of Merton (1974). Further variables to control for firm risk are the stock price

beta and the firm value.8 We calculate the stock price beta on the basis of daily log

differences of stock prices from rolling windows of 100 data points. We rely on the

definition β =
cov(Ri,t,Rm,t)

var(Rm,t)
. As discussed by Merton (1974) the market price of risk must

be the same for all contingent claims on a firm’s assets. Consequently, risk premia in

credit and equity markets should be related.9

7Estimating a principal component using only these 35 firms gives us a first principal component that
is able to explain about 35% of the entire variation over the full sample period.

8To control for firm value we multiply the number of shares outstanding with the current share price.
9Note however the distress puzzle pointed out by several studies. The distress puzzle terms the finding
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Figure 4: Evolution of the commonality of CDS spread returns

The figure shows the commonality of CDS spread returns across our sample (bottom panel) together with
CDS spreads (top panel) and log returns of CDS spreads (second panel). The commonality is measured
using the first principal component of our data as described in Section 3.2.

Finally, we calculate variables for coskewness and tail beta for the CDS spreads and

include them in our study. The rationale behind this is that the effect captured by the

tail dependence might also be captured by these variables. Hence, we show that the

effect we measure is not captured by other variables. The coskewness is defined as the

realized coskewness based on daily log differences of CDS spreads. We compute the

coskewness on the basis of rolling windows of 100 data points according to Coskewness

=
E[(Ri,t−E[Ri,t])(Rm,t−E[Rm,t])3]√

var(Ri,t) var(Rm,t)3/2
. The tail beta is the realized beta defined as regular beta

conditional on the log differences of the CDS index being in its 90% quantile. The

that high credit risk premia square with abnormally low equity risk premia. For example, Friewald et al.
(2013) provide evidence that firms’ stock returns increase with credit risk premia obtained from CDS
spreads.
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computation is again based on daily log differences of CDS spreads for rolling windows

of 100 data points. Formally, β90% =
cov(Ri,t,Rm,t|Rm,t>Rqm,t)

var(Rm,t|Rm,t>Rqm,t)
, where Rq

m,t denotes the 90%

quantile of the log differences of CDS spreads.

Turning to non-idiosyncratic control variables, we use several indicators to control for the

overall state of the economy. First, we include the level of the risk-free interest rate based

on the theory of Merton (1974). We include the TED Spread as a measure of banking

liquidity, and the Federal Funds rate. Also transformations, such as year on year changes

(YoY) and Quarter on Quarter changes (QoQ) of these variables are included.

Furthermore, we control for the business climate with the industrial production (YoY,

QoQ), include an applicable national equity index (Russel 3000, QoQ and YoY), and

national GDP (YoY, QoQ). We also include information on the Crude Oil price (YoY,

QoQ), and Inflation (YoY, QoQ). Next, to control for investor sentiment (see, e.g., Kumar

and Lee, 2006; Heinz and Sun, 2014) we use information from the American Association

of Individual Investors and also include investor risk aversion or fear using the VIX. We

include a financial stress index (level, YoY, QoQ) in our analysis to proxy for the state of

the financial system. All variables are listed in Table 2. Note, that in the BMA analyses

we also control for collinear variables, i.e. we do not include different variables measuring

similar effects in the same models but apply exclusion restrictions on the model space

(these will be discussed in greater detail in Section 4.1. In addition, plausibility conditions

in form of economic sign restrictions are imposed on the model space (see also Section

4.1).

4 Methodology

This section describes our BMA regression setup. A detailed discussion of the univariate

and multivariate modeling of the CDS spread time series using different time-varying

copula models can be found in the appendix (Section A). We employ a symmetric t

copula, a Gumbel copula with its rotated counterpart, a Clayton copula with its rotated

counterpart, and a SJC copula. All copula models are dynamic.

4.1 Regression setup

To explain the determinants of (log) CDS returns we consider in total K = 53 different

explanatory variables (see Table 3).

For the estimation, we apply fixed effect panel regressions and restrict our specifications
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Table 2: Variable definitions and data sources.

This table presents both, definitions and data sources for all dependent and independent variables that
are used in the empirical study. CDS data from Markit, stock market data and firm characteristics were
retrieved from the Thomson Reuters Financial Datastream and Thomson Worldscope databases.

Variable name Definition Data source
CDS Daily CDS spread log returns, denoted in basis points and obtained from

Markit.
Markit

CDSMarket Daily CDS market spread log returns, denoted in basis points and obtained
from Markit.

Markit, own calc.

Comm First principal component of standardized CDS returns, following Berndt and
Obreja (2010).

Markit, own calc.

UTD and LTD Upper and lower tail dependence of daily CDS spread returns with CDS mar-
ket returns, estimated using a dynamic copula approach described in Section
A.

Markit, own calc.

CDSVola Volatility of daily CDS spreads; estimated with GARCH model. Markit, own calc.

Liquidity Liquidity of individual CDS spreads obtained from Markit. Markit

Equity Daily stock market returns, denoted in U.S. Dollar and obtained from Thom-
son Reuters Datastream.

Datastream, own calc.

EquityVola Volatility of daily stock market prices; estimated with GARCH model. Datastream, own calc.

StockBeta Stock price beta on the basis of daily log differences of stock prices from rolling

windows of 100 data points according to the definition β =
cov(Ri,t,Rm,t)

var(Rm,t)
.

Datastream, own calc.

FirmVal Current share price multiplied by the number of ordinary shares in issue. Datastream, own calc.

Leverage Ratio between Total Debt and Total Capital Datastream

CoSkew Realized coskewness based on daily log differences of CDS spreads; we com-
pute the coskewness on the basis of rolling windows of 100 data points ac-

cording to Coskewness =
E[(Ri,t−E[Ri,t])(Rm,t−E[Rm,t])

3]√
var(Ri,t) var(Rm,t)3/2

.

Markit, own calc.

UpBeta Realized beta defined as regular beta conditional on the log differences of the
CDS index being above its 90% quantile; computation is based on daily log
differences of CDS spreads for rolling windows of 100 data points; Formally,

β90% =
cov(Ri,t,Rm,t|Rm,t>R

q
m,t)

var(Rm,t|Rm,t>R
q
m,t)

, where Rqm,t denotes the 90% quantile of

the log differences of CDS spreads.

Markit, own calc.

to the model class of Autoregressive Distributed Lag (ADL) models, i.e.:

Yi,t =
L∑
l=1

alYi,t−l +
J∑
j=0

βjXi,t−j + fi + εi,t (1)

with X as matrix containing the exogenous regressors (including an intercept), Y as vector

including the CDS returns for the different firms i and quarters t, and fi as time-invariant

firm fixed effect. In our basic setup we allow for up to two time lags, i.e. L = 2 and

J = 2, which implies a total of N = 161 potential regressors. Further, in the basic setup

we restrict the maximum number of regressors in a model nvmax to four variables, such
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Table 2: Variable definitions and data sources (II).

Variable name Definition Data source
Sentiment Weekly Bull-Bear-Spread, measured as the difference between the percentage

of individual investors who are bullish, bearish, and neutral on the stock
market for the next six month.

American Association
of Individual Investors

VIX CBOE Volatility index (VIX); measures expectation of near term volatility. Federal Reserve Bank
of St. Louis

Risk-free interest rate Ten year Treasury Bill rate. Federal Reserve Bank
of St. Louis

Fed Effective Federal Funds rate is the rate at which depository institutions trade
federal funds with each other over night.

Federal Reserve Bank
of St. Louis

Ted TED spread, calculated as the spread between 3-month LIBOR and 3-month
Treasury Bill.

Federal Reserve Bank
of St. Louis

Russel National equity index Russel 3000 which measure the performance of the
largest 3,000 U.S. companies.

Federal Reserve Bank
of St. Louis

GDP Real national GDP growth rate (in %). Federal Reserve Bank
of St. Louis

IP Industrial production Index (INDPRO) that measures real output for all fa-
cilities located in the U.S.

Federal Reserve Bank
of St. Louis

Oil Crude oil prices, West Texas Intermediate. Federal Reserve Bank
of St. Louis

I10 GDP deflator. Federal Reserve Bank
of St. Louis

FDI The Financial stress indicator (STLFSI) measures the degree of financial
stress in the markets.

Federal Reserve Bank
of St. Louis

Crisis Dummy variable that equals one if a financial crisis is identified by Laeven
and Valencia (2012) in a country for a given year, and zero otherwise.

Laeven and Valencia
(2012)

that our model space consists of
∑nvmax

j=1
N !

j!·(N−j)! = 28, 355, 643 different model setups.

The number of observations for each variable are 6, 521.

To eliminate the fixed effect, we demean Equation (1) on both sides, yielding:

Ÿi,t =
L∑
l=1

alŸi,t−l +
J∑
j=0

βjẌi,t−j + ε̈i,t, (2)

where Ÿi,t, Ÿi,t−l, Ẍi,t−j and ε̈i,t are variables which were demeaned by their respective

firm-specific means. This specification is known to suffer from the so-called Nickell-Bias,

however the bias is inversely related to the panel time dimension T . Since we have on

average T = 24 observations per firm in the time dimension, we assume that the bias will

be rather small (see, e.g., Nickell, 1981). A potential influence on the outcomes is ruled

out by robustness checks (see Section B in the Appendix).

Instead of choosing one specific panel regression setup for Equation (2), we consider the

entire model space and employ a model averaging approach. In the model averaging we
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Copula Based Idiosyncratic Macro-Factors I Macro-Factors II

ClaytonL − Liquidity CDSMarket + IPQoQ −
ClaytonU + Equity − CPIQoQ IPYoY −
GumbelU + dFirmVal − CPIYoY OilQoQ +
GumbelL − dLeverage + I10 OilYoY +
SJCU + FirmVal − I10QoQ Ted
SJCL − Leverage + I10YoY TedQoQ
tCop EquityVola + GDPQoQ − TedYoY 0
dClaytonL − CDSVola + GDPYoY − RusselQoQ −
dClaytonU + CoSkew + Fed RusselYoY −
dGumbelU + StockBeta FedQoQ Comm
dGumbelL − UpBeta + FedYoY Sentiment −
dSJCU + dCoSkew + FDI + VIX +
dSJCL − dUpBeta + FDIQoQ +
dtCop FDIYoY +

Table 3: List of variables included in BMA regressions and respective sign restriction

The table lists all variables included in the BMA regression setup. The + or − behind each variable
shows the sign of the effect that we expect from the variable based on economic reasoning; no sign means
that the sign can either be positive or negative. A detailed list of all variables included in our study can
be found in Table 2. The use of sign restrictions is explained in Section 4.1.

combine several ADL specifications to one large model using a weighting scheme for the

different models in the model space. While there are several weighting schemes suggested

in the literature (see, e.g., Moral-Benito (2015) for a good overview), we follow a modified

BMA approach which uses (approximations of) posterior model probabilities as model

weights based on smoothed AIC (S-AIC).

4.1.1 Bayesian Model Averaging (BMA)

The rationale behind model averaging is the need to account for model uncertainty in

statistical analyses. Within a bayesian estimation setup model uncertainty can be treated

as an additional parameter. Given a model space M that describes our data D, we

intend to estimate the model parameters β in a linear regression context. The output of

a bayesian estimation is the posterior probability distribution:

Pr(β|D) =
Pr(D|β) · Pr(β)

Pr(D)
, (3)

with Pr(β) as a prior distribution for the parameters, Pr(D|β) as the likelihood function

and a scalar Pr(D) as the density of the data. If we introduce model uncertainty we
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yield the following posterior distribution:

Pr(β|D,M) =
I∑
i=1

Pr(β|Mi, D) · Pr(Mi|D). (4)

This is a weighted average over the posterior distributions for the different specific models

Mi, where weights are defined by the models’ posterior model probabilities Pr(Mi|D) and

the subscript i identifies the individual model. The posterior model probabilities express

our belief for Mi being the true model given the data.

Assuming a diffuse prior for Pr(β|Mi) in the context of a linear regression model leads

to an equivalence between the posterior distribution (3) and the traditional sampling

distribution of OLS (see, e.g., Sala-I-Martin et al., 2004). Hence, the mean of the posterior

distribution in (4) can be written as:

β̂BMA = E(β|D) =
I∑
i=1

Pr(Mi|D) · β̂i, (5)

where β̂i is the OLS estimate for β with the regressor set of model i.

The posterior model probabilities can be expressed as follows:

Pr(Mi|D) =
Pr(D|Mi) · Pr(Mi)∑I
i=1 Pr(D|Mi) · Pr(Mi)

, (6)

with Pr(Mi) as the prior model probabilities, which we will assume in the following to

be uniform for all models such that the prior cancels out in (7).10 Hence, we are left to

determine Pr(D|Mi), which is given by the following marginal likelihood Pr(D|Mi) =∫
Pr(D|β,Mi) · Pr(β|Mi)dβ. Making specific assumptions about the prior of the pa-

rameters Pr(β|Mi) and using ratios of the marginal likelihood of different models (Bayes

Factors) one can directly derive the following BIC based weights (given uniform Pr(Mi)):

ωi =
Pr(D|Mi)∑N
i=1 Pr(D|Mi)

= Pr(Mi|D) =
exp(−0.5 ·BICi)∑M
j=1 exp(−0.5 ·BICj)

(7)

with - if we assume for the errors of the regression εt ∼ N(µ, σ2
ε ) - BICi = n · ln(σ̂ε

2) +k ·
ln(n). These weights, however, were criticized in the literature, and some authors show

that the use of S-AIC based weights improves the performance of model averaging (see

Section 2).

10While this assumption is often made in the literature some authors like Sala-I-Martin et al. (2004)
actually define a prior for the model probabilities and suggest that there is usually a prior belief of
researchers that the true model is rather parsimonious specified. Since we restrict our model space to a
maximum of four regressors we do not face the problem of very large models.
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We follow the suggestions of Burnham and Anderson (2002) and replace the BIC weights

(7) by the following expression:

ωi =
exp(−0.5 ·∆i)∑N
i=1 exp(−0.5 ·∆i)

, (8)

with ∆i = AICi − AICmin and - if we assume εt ∼ N(µ, σ2
ε ) - AIC = n · log(σ2) +

2 · k. Expression (8) - while not directly derived from the marginal likelihood above -

can be interpreted as an approximation or frequentistic analogue of the posterior model

probabilities (6) (see Kapetanios et al., 2008). According to Burnham and Anderson

(2002), the difference between the AIC of two models (∆i) can be interpreted as the

difference between the Kullback-Leibler (KL) distance for the two models (Kullback and

Leibler, 1951) and hence has an attractive information theoretic interpretation.11 Hence,

ωi can be regarded as the probability for model i to be the KL best model in repeated

samples.

To make BMA feasible, i.e. not having to estimate the 28, 355, 643 possible models in our

model space, we apply Occam’s window as described by Madigan and Raftery (1994).

Our objective is to obtain a subset O of the entire model space for which strong evidence

exists that these are superior to the models outside of the subset. To identify O, we

apply the leaps and bounds algorithm suggested by Furnival and Wilson (1974) which

provides us - for each specified model size - in an computationally efficient manner with

the q best models in the model space according to the adjusted R2. We then obtain

(preliminary) weights ωprei for the 10, 000 best models according to adjusted R2, given

the model contains less than five regressors. For given ωprei we determine the model with

the maximum weight, mopt and calculate relative risk weights according to ωreli =
ωpremopt

ωprei
.

Then we drop all models with ωreli > 100 from our set to arrive at the Occam’s window

subset O. The threshold value 100 implies that we drop all models from the subset for

which we have 100 times less evidence to be the KL best model than for the model with

the highest evidence. Finally, we calculate ωi for all models in O and the BMA parameter

estimates are obtained as the weighted averages of the models in this subset.

4.1.2 Long-Run-Multiplier and Posterior Inclusion Probabilities

To analyze the model space we calculate long-run-multiplier (LRM) of the different re-

gressors and the posterior inclusion probabilities (PIP) for the estimated BMA model.

Further, for a general and purely frequentistic view of the model space we calculate signif-

icance tests for the LRM for the 10, 000 best models as obtained by the leaps and bounds

algorithm.

11The use of S-AIC weights is in the literature sometimes referred to as S-AIC estimator (Hansen,
2007) or information theoretic model averaging (Kapetanios et al., 2008).
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The LRM for regressor i is given by:

θi =
∞∑
k=0

∂EYt+k
∂Xi,t

=

∑J
j=0 βi,j

1−
∑L

l=1 αl
, (9)

with J as the number of lags of the exogenous regressors and L as the number of en-

dogenous lags. The LRM describe the effect of the regressor i on Y if the regressor is

permanently increased by one unit. To test for significance of the LRM we apply the

delta method (see, e.g., Greene, 2003) to approximate the standard error for θi. The

corresponding test-statistic is asymptotically N(0, 1) distributed.

For BMA, the LRM are derived on basis of β̂BMA. We normalize θi according to θnormi =
σ(Xi)
σ(Yi)

· θi which makes the LRM directly comparable by size. θnormi describes the effect of

a permanent shock of one standard deviation on regressor i on Y (in terms of standard

deviations of Y ).

The posterior inclusion probabilities (PIP) for regressor i is defined as:

PIPi =
N∑
j=1

1i 6=0 · ωi, (10)

i.e. it corresponds to the sum over the posterior model probabilities of all models in which

the regressor takes a non-zero value. Hence, the PIP summarizes the aggregated evidence

for regressor i in the model space. A regressor is said to be significant in the bayesian sense

if the PIP exceeds the prior inclusion probability (PriorIP), which - assuming uniform

prior model probabilities - is obtained by calculating the ratio of average model size over

the number of potential regressors K, i.e.:

PriorIPi =

∑nvmax
j=1 j· K!

j!·(K−j)!∑nvmax
j=1

K!
j!·(K−j)!

K
. (11)

PriorIP can be interpreted as the share of models in which regressor i will be part of if

we randomly assign variables to the different models. In our basic setup with K = 53

and nvmax = 4, PriorIP equals 7.1% for all regressors.

4.1.3 Clustering of Standard Errors and Model Space Restrictions

To allow for (conditional) heteroscedasticity and serial correlation of unknown form in

the regressions (2) - which otherwise can bias our t-tests for the LRM coefficients - we

use cluster-robust estimators for the covariance matrix treating each individual firm as

a cluster (see, e.g., Wooldridge, 2003). However, since clustering does not prevent to

obtain inconsistent parameter estimates in the presence of endogenous regressors and
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serially correlated errors, we exclude all models with endogenous variables for which

tests indicate serial correlation from the Occam’s window subset O. To test for serially

correlated errors we apply the Breusch-Godfrey Test (see Breusch, 1978; Godfrey, 1978).

In addition to the serial correlation constraints, we also impose some plausibility restric-

tions on the model space. In general, researchers deem some models as more plausible

than others, usually based on the sign of the effect of the regressors. Further, one aims

to minimize collinearity issues in the models and hence avoids putting highly correlated

regressors in the models.

To account for these considerations we filter the model space such that all models in the

subset O satisfy (i) all imposed sign restrictions on the LRM of each model, and (ii)

exclusion restrictions that guarantee that no regressors with correlations of above 70%

will be in the same model. Further, we do not allow that a regressor can be present in

different specifications, i.e. level, QoQ or YoY, in the same model. Note, that any other

plausibility criterion that researchers want to apply can be implemented in the BMA

framework by filtering the model space accordingly.

Table 6 shows the correlation matrix of the regressors, where correlations above 70%

leading to exclusion restrictions are highlighted. The imposed sign restrictions - based

on economic reasoning - can be found in Table 3.

Importantly, in Section 5 we will look at the restricted and the unrestricted model space,

such that the effect of the restrictions on the outcomes is transparent. Moreover, we

present several robustness checks in the appendix (Section B).

4.1.4 Out-of-Sample Hypothesis Testing

Finally, building upon the outcomes of the BMA analyses, we will carry out some hypoth-

esis tests with respect to the forecast accuracy of differing model specifications to back

up and clarify some of the results obtained in the model space analysis. These analyses

will show if the dominating identified model setups in the BMA setting do translate in

increased forecast performance.

To do so, we follow suggestions of Clark and McCracken (2001) to test hypotheses of

predictive ability by focusing on the out-of-sample model errors produced by competing

model setups. For this, we split the sample into a training and holdout sample. The

training sample is used to estimate the parameters of the models while the holdout sample

is used for prediction. To define the two different samples we randomly draw observations

from the full sample, where we restrict the size of the training sample to 10% of the full

sample. The relative small training sample compared to the holdout sample is chosen

since we observe that results in terms of the models mean-squared-errors (MSE) converge

quickly with increasing sample size in our setup. The splitting of the sample ensures that
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the risk of model overfitting is minimized. Based on the model errors from the predictions

we carry out Diebold-Mariano (DM) tests for relative predictive accuracy (Diebold and

Mariano, 1995). The two-sided DM provides a test of the hypothesis of equal expected

loss, e.g. MSE, valid under quite general conditions. We apply the one-sided version of

the test, i.e. we explore the hypothesis that among two competing forecast models one

has superior predictive ability.

5 Tail Dependence and CDS premia

This section presents and discusses the main findings of our study. First, we estimate each

time-varying copula model for every single name CDS in our dataset together with the

market and report the results of several goodness of fit tests in Section 5.1. Then, we take

a look at simple correlations of the regressors with CDS spreads and CDS returns (Section

5.2). In Section 5.3, we present results from our frequentistic model space analysis, before

we turn to the BMA estimates in Section 5.4. In Section 5.5, we discuss the analysis of

several sub-samples to identify possible differences in the determinants of CDS spreads

for bullish and bearish markets, respectively, or for different investment quality classes,

investment grade and high yield, respectively. Section 5.6 presents several hypothesis

tests based on the forecast performance of different model specifications. In the appendix

we provide results from several robustness checks with respect to our BMA setup.

5.1 Copula model estimates, tail dependence and goodness-of-

fit

Figure 5 shows the time evolution of the upper tail dependence measured with the t

copula over our sample period. The figure shows the average daily tail dependence across

all single name contracts in our sample together with the inter-quartile range (shaded

area). The second panel shows the average quarterly tail dependences across all single

name contracts over our sample period.

Similarly, Figure 6 shows the evolution of upper tail dependence when estimated with

the Gumbel copula. Clearly, the estimates using the two different copula models show

some similarities but also differ in other aspects. This raises the question which model

provides the better fit.

The results of our goodness of fit tests are presented in Table 4. The table shows the

proportion of each individual copula being the superior model for a single-name CDS

contract joint with the market based on several gof-tests for our dataset of CDS contracts.

The presented results highlight one aspect of the motivation of our study. Depending on
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Figure 5: Time evolution of daily and quarterly tail dependence: t copula

The figure shows the evolution of daily (panel I) and quarterly (panel II) average tail dependence for the
sample period from 2003 to 2014, respectively. Tail dependence is measured with the dynamic t copula.
For the daily tail dependence, we additionally show the inter-quartile range in the shaded area.
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Figure 6: Time evolution of daily and quarterly tail dependence: Gumbel copula

The figure shows the evolution of daily (panel I) and quarterly (panel II) average upper tail dependence
for the sample period from 2003 to 2014, respectively. Upper tail dependence is measured with the
dynamic Gumbel copula. For the daily tail dependence, we additionally show the inter-quartile range in
the shaded area.
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the selected test to quantify the fit of each model, different models are selected. Also,

our results show that a copula model with a good fit over the entire domain does not

necessarily provide good fit in the tails and vice versa. Hence, we find first evidence

that justifies our approach to take several copula models into account. In the following,

we include all estimated copula models in the BMA regressions and rely on the BMA

approach to select the copula model with the best fit. Note however, that we impose

exclusion restrictions at this point.

Note, that the presented gof-tests show the in-sample goodness-of-fit of the models. We

do not include goodness-of-fit tests based on the out-of-sample performance (see, e.g.,

Diks et al., 2010) as we test the out-of-sample performance of each model with our BMA

approach. We can rely on the BMA approach to select the best copula model, that is,

the copula model with the best out-of-sample forecast performance.12

Copula Cramer- Kolmogorov- Anderson- Pickands
von Misses Smirnov Darling

t 0.13 0.55 0.31 0.02
SJC 0.48 0.18 0.11 0.07
Rotated Clayton 0 0.04 0.1 0.9
Gumbel 0.39 0.23 0.49 0

Table 4: Goodness-of-fit tests of individual copulas

This table presents the proportion of each individual copula model being the superior model to capture
the dependency structure for a single name CDS contract joint with the market based on Cramer-von
Misses, the Kolmogorov-Smirnov, and the Anderson-Darling goodness-of-fit tests. All goodness-of-fit
tests are applied to Rosenblatt transformed data, then the copula with the best goodness-of-fit statistic
is selected. Empirical tail dependence is estimated according to Frahm et al. (2005). The last column
presents the selection based on the Anderson-Darling distance between the empirical tail dependence
and the parametric tail dependence measured with Pickand’s dependency function computed from the
fitted copula models.

5.2 Correlation analysis

Next, we examine simple correlations of the regressors with CDS spreads and CDS re-

turns. Table 5 presents the largest correlations of regressors with CDS spreads, while

Table 6 presents pairwise correlations between all variables included in the BMA regres-

sion setup. We observe the highest correlations between the first principal component,

which is a weighted average of the individual CDS spreads measuring commonality, and

the spreads, followed by the market and the spread. The higher correlation between

Comm and CDS spreads can be attributed to the Commonality extracted by the pca.

Thus, CDS spreads that experience less commonality with the other are attributed a

12Note, that Diks et al. (2010) find that the t copula is superior to the Clayton, Gumbel, or Gauss
copula in comparisons based on the out-of-sample performance.
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lower weight. Also, correlations with overall market movements (Russell) and financial

stress are high. Moreover, we observe high correlations between the CDS spreads and the

tail dependence measured with the t copula (0.52). We attribute this high correlation at

least in part to the correlation being part of the tail dependence estimate.

Further correlations can be seen from Table 6. Most strikingly are high correlations

between the tail dependence measures estimated with different copula models. Note,

that the t-copula measure is least correlated with other copulas, but most correlated with

market and commonality. Moreover, the other copula measures are not highly correlated

with any of the other variables, which can be interpreted as a sign of uniqueness of the

copula measures. The commonality factor is highly correlated with the financial distress

indicator. Also, equity returns do not show any large correlations with other variables.

Notable correlations are only with equity volatility and, not surprisingly, the change in

firm value.

We run additional correlation analysis for our liquidity subsample period. We find that

the liquidity measure is very unique as we do not observe any correlations above .3

(in absolute values). Consequently, we do not impose any exclusion restrictions on the

liquidity measure.

Variable Correlation with CDS Spread
CDSMarket 0.60
Comm 0.67
t copula tail dependence 0.52
Russell -0.48
FDI 0.48

Table 5: Largest correlations with CDS Spreads

The table presents the largest correlations of independent variables with CDS spreads from our sample.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52

1 CDSMarket 1.0 0.2 0.2 0.3 0.2 0.2 0.2 0.7 0.0 0.0 0.0 0.0 0.0 0.0 -0.1 0.0 -0.3 0.0 0.0 0.0 0.0 0.2 0.4 -0.1 0.2 0.1 0.1 -0.3 0.4 0.1 -0.4 -0.1 -0.3 -0.1 0.2 -0.5 -0.2 0.3 0.7 0.3 -0.3 0.1 -0.5 0.3 0.5 0.4 0.5 -0.7 0.0 0.9 -0.4 0.3
2 ClaytonL 0.2 1.0 1.0 0.9 0.9 0.8 0.8 0.4 0.0 0.0 0.0 0.0 -0.1 -0.1 0.0 0.0 0.0 0.0 -0.1 0.0 0.0 0.0 0.4 0.1 0.1 0.1 0.0 0.0 0.1 -0.2 -0.2 -0.3 -0.1 -0.1 -0.2 -0.2 -0.2 0.1 0.1 -0.1 0.0 0.1 0.0 0.2 0.1 0.1 0.0 -0.1 0.1 0.2 -0.2 0.2
3 ClaytonU 0.2 1.0 1.0 0.9 0.9 0.8 0.8 0.4 0.0 0.0 0.0 0.0 -0.1 -0.1 0.0 0.0 0.0 0.0 -0.1 0.0 0.0 0.0 0.4 0.1 0.1 0.1 0.0 0.0 0.1 -0.2 -0.2 -0.3 -0.1 -0.1 -0.2 -0.2 -0.2 0.1 0.1 -0.1 0.0 0.1 0.0 0.2 0.1 0.1 0.0 -0.1 0.1 0.2 -0.2 0.2
4 GumbelU 0.3 0.9 0.9 1.0 1.0 0.9 0.9 0.5 0.0 0.0 0.0 0.0 -0.1 -0.1 -0.1 0.0 -0.1 0.0 -0.1 0.0 0.0 0.0 0.5 0.1 0.2 0.2 0.1 -0.1 0.1 -0.2 -0.2 -0.3 -0.1 -0.1 -0.2 -0.3 -0.2 0.1 0.2 -0.1 0.0 0.1 -0.1 0.2 0.1 0.1 0.0 -0.2 0.1 0.3 -0.3 0.2
5 GumbelL 0.2 0.9 0.9 1.0 1.0 0.9 0.9 0.4 0.0 0.0 0.1 0.0 -0.1 -0.1 0.0 0.0 0.0 0.0 -0.1 0.0 0.0 0.0 0.4 0.1 0.1 0.2 0.0 0.0 0.1 -0.2 -0.2 -0.3 -0.1 -0.1 -0.2 -0.2 -0.2 0.1 0.1 -0.2 0.0 0.1 0.0 0.2 0.0 0.1 -0.1 0.0 0.1 0.2 -0.2 0.2
6 SJCU 0.2 0.8 0.8 0.9 0.9 1.0 0.9 0.4 0.2 0.2 0.2 0.2 0.1 0.0 0.0 0.0 -0.1 0.0 -0.1 0.0 0.0 0.0 0.3 0.1 0.1 0.2 0.1 0.0 0.1 -0.2 -0.2 -0.2 0.0 0.0 -0.2 -0.2 -0.1 0.0 0.1 -0.2 0.1 0.2 0.0 0.2 0.0 0.1 -0.1 -0.1 0.1 0.2 -0.2 0.1
7 SJCL 0.2 0.8 0.8 0.9 0.9 0.9 1.0 0.4 0.2 0.2 0.2 0.2 0.1 0.1 0.0 0.0 -0.1 0.0 -0.1 0.0 0.0 0.0 0.3 0.1 0.1 0.2 0.1 0.0 0.1 -0.2 -0.2 -0.2 0.0 0.0 -0.2 -0.2 -0.1 0.0 0.1 -0.2 0.1 0.2 0.0 0.2 0.0 0.1 -0.1 -0.1 0.1 0.2 -0.2 0.1
8 tCop 0.7 0.4 0.4 0.5 0.4 0.4 0.4 1.0 0.1 0.1 0.1 0.1 0.0 0.0 -0.2 0.0 -0.2 0.0 0.0 0.0 0.1 0.2 0.4 0.0 0.2 0.1 0.1 -0.3 0.2 0.0 -0.4 -0.3 -0.2 -0.2 0.0 -0.6 -0.4 0.3 0.5 0.2 -0.3 0.0 -0.2 0.2 0.5 0.3 0.3 -0.6 -0.1 0.8 -0.5 0.4
9 dClaytonL 0.0 0.0 0.0 0.0 0.0 0.2 0.2 0.1 1.0 1.0 0.7 0.7 0.6 0.6 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -0.1 0.0 -0.1 0.1 0.1 0.0 0.0 0.1 -0.1 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 -0.1 0.1 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.1 -0.1 0.0

10 dClaytonU 0.0 0.0 0.0 0.0 0.0 0.2 0.2 0.1 1.0 1.0 0.7 0.7 0.6 0.6 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -0.1 0.0 -0.1 0.1 0.1 0.0 0.0 0.1 -0.1 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 -0.1 0.1 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.1 -0.1 0.0
11 dGumbelU 0.0 0.0 0.0 0.0 0.1 0.2 0.2 0.1 0.7 0.7 1.0 0.9 0.7 0.7 0.3 0.0 -0.1 0.0 0.0 0.0 0.0 0.0 -0.2 -0.1 -0.1 0.3 0.1 0.1 0.0 0.1 -0.1 0.0 0.1 0.1 0.0 0.0 0.0 -0.1 -0.1 -0.1 0.1 0.0 0.0 0.0 -0.1 -0.1 -0.1 0.0 0.1 0.1 -0.2 -0.1
12 dGumbelL 0.0 0.0 0.0 0.0 0.0 0.2 0.2 0.1 0.7 0.7 0.9 1.0 0.7 0.7 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -0.2 -0.1 -0.1 0.2 0.1 0.0 -0.1 0.0 -0.1 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 -0.1 0.1 0.0 0.0 0.0 0.0 0.0 -0.1 0.0 0.0 0.1 -0.1 0.0
13 dSJCU 0.0 -0.1 -0.1 -0.1 -0.1 0.1 0.1 0.0 0.6 0.6 0.7 0.7 1.0 0.8 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -0.2 0.0 -0.1 0.1 0.1 0.0 -0.1 0.0 -0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 -0.1 0.0 0.0 0.0 0.0 0.0 0.1 -0.1 0.0
14 dSJCL 0.0 -0.1 -0.1 -0.1 -0.1 0.0 0.1 0.0 0.6 0.6 0.7 0.7 0.8 1.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -0.2 0.0 -0.1 0.1 0.1 0.0 -0.1 0.0 -0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -0.1 0.0 0.0 0.0 0.0 0.0 0.1 -0.1 0.0
15 dtCop -0.1 0.0 0.0 -0.1 0.0 0.0 0.0 -0.2 0.2 0.2 0.3 0.2 0.2 0.2 1.0 0.0 0.0 0.0 0.0 0.0 0.0 -0.1 -0.1 -0.1 -0.1 0.1 0.0 0.4 0.1 0.0 0.1 0.1 0.0 0.0 0.0 0.1 0.1 -0.1 -0.2 -0.1 0.1 0.1 0.2 0.1 -0.2 -0.2 -0.1 0.2 0.1 -0.1 -0.1 -0.2
16 Equity 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.2 0.0 0.1 0.0 -0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0
17 dFirmVal -0.3 0.0 0.0 -0.1 0.0 -0.1 -0.1 -0.2 0.0 0.0 -0.1 0.0 0.0 0.0 0.0 0.2 1.0 0.0 0.1 0.0 -0.1 -0.1 -0.1 0.0 -0.1 -0.1 0.0 0.1 -0.1 0.0 0.1 0.1 0.1 0.1 0.0 0.2 0.2 -0.2 -0.2 -0.1 0.2 0.1 0.2 0.0 -0.2 -0.1 -0.1 0.3 0.1 -0.3 0.2 -0.2
18 dLeverage 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0
19 FirmVal 0.0 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.0 1.0 0.0 0.0 -0.1 -0.1 0.0 0.0 0.0 0.0 0.1 0.1 0.0 0.1 0.1 0.0 0.1 0.1 0.0 0.1 -0.2 0.0 0.0 0.1 0.2 0.1 0.1 -0.1 0.1 0.1 0.1 0.2 0.0 0.1 -0.2
20 Leverage 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 1.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 -0.1 0.0 0.0 0.0 0.0 -0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
21 EquityVola 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -0.4 -0.1 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 -0.1 0.0 0.0 0.0 0.0 -0.1 -0.1 0.0 -0.1 -0.1 0.1 0.1 0.0 -0.1 0.0 -0.1 0.0 0.1 0.0 0.0 -0.1 -0.1 0.0 0.0 0.1
22 CDSVola 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 -0.1 0.0 -0.1 0.0 -0.1 0.0 0.0 1.0 0.1 0.0 0.1 0.0 0.0 -0.1 -0.1 0.1 -0.1 -0.2 -0.2 -0.3 0.1 -0.3 -0.3 0.3 0.2 0.2 -0.2 -0.2 -0.2 -0.1 0.3 0.1 0.1 -0.3 -0.3 0.2 -0.2 0.3
23 CoSkew 0.4 0.4 0.4 0.5 0.4 0.3 0.3 0.4 -0.1 -0.1 -0.2 -0.2 -0.2 -0.2 -0.1 0.0 -0.1 0.0 -0.1 0.0 0.0 0.1 1.0 -0.1 0.3 0.1 0.0 -0.2 0.0 0.1 -0.2 0.0 0.0 0.0 0.0 -0.2 -0.1 0.2 0.2 0.0 0.0 0.1 -0.1 0.0 0.1 0.2 0.0 -0.2 0.0 0.3 -0.1 0.2
24 StockBeta -0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.0 -0.1 -0.1 0.0 0.0 -0.1 0.0 0.0 0.0 0.0 0.1 0.0 0.0 -0.1 1.0 0.0 -0.1 0.0 -0.1 -0.3 -0.5 -0.1 -0.2 -0.1 -0.2 -0.3 -0.1 -0.2 0.1 -0.1 0.0 -0.1 -0.1 -0.1 -0.3 0.0 -0.1 -0.1 0.0 -0.1 -0.2 -0.1 0.2
25 UpBeta 0.2 0.1 0.1 0.2 0.1 0.1 0.1 0.2 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 0.0 -0.1 0.0 0.0 0.0 0.0 0.1 0.3 0.0 1.0 -0.1 0.1 0.0 0.1 0.0 -0.1 0.0 -0.1 -0.1 0.0 -0.2 -0.1 0.1 0.2 0.1 -0.1 0.0 0.0 0.1 0.2 0.1 0.2 -0.2 0.0 0.2 -0.1 0.1
26 dCoSkew 0.1 0.1 0.1 0.2 0.2 0.2 0.2 0.1 0.1 0.1 0.3 0.2 0.1 0.1 0.1 0.0 -0.1 0.0 0.0 0.0 0.0 0.0 0.1 -0.1 -0.1 1.0 0.2 0.0 0.1 0.1 0.1 0.1 0.0 0.0 0.1 0.1 0.0 -0.1 -0.1 -0.2 0.0 0.0 0.1 0.1 -0.1 0.0 -0.2 0.1 0.1 0.1 -0.1 -0.1
27 dUpBeta 0.1 0.0 0.0 0.1 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.2 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -0.1 0.0 -0.1 0.1 0.0 0.0 0.0 0.0 0.1 -0.1 0.0 0.1 0.1 -0.1 0.0
28 CPIQoQ -0.3 0.0 0.0 -0.1 0.0 0.0 0.0 -0.3 0.0 0.0 0.1 0.0 0.0 0.0 0.4 0.0 0.1 0.0 0.1 0.0 -0.1 -0.1 -0.2 -0.1 0.0 0.0 0.0 1.0 0.3 0.2 0.3 0.1 0.3 0.3 0.2 0.3 0.3 -0.4 -0.5 -0.2 0.3 0.3 0.7 0.3 -0.4 -0.3 0.0 0.6 0.3 -0.3 0.3 -0.5
29 CPIYoY 0.4 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.0 0.0 0.0 -0.1 -0.1 -0.1 0.1 0.0 -0.1 0.0 0.1 0.0 0.0 -0.1 0.0 -0.3 0.1 0.1 0.0 0.3 1.0 0.4 -0.1 0.0 -0.1 0.4 0.5 0.0 0.2 -0.3 0.2 0.0 0.1 0.5 0.3 0.8 0.1 0.3 0.4 -0.1 0.4 0.3 0.1 -0.4
30 I10 0.1 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 0.0 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -0.1 0.0 0.1 0.1 -0.5 0.0 0.1 0.0 0.2 0.4 1.0 0.2 0.4 0.0 0.2 0.8 0.1 0.3 0.0 0.1 0.0 0.1 0.1 0.2 0.3 0.2 0.2 0.1 0.0 0.1 0.1 0.1 -0.3
31 I10QoQ -0.4 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.4 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 0.1 0.0 0.1 0.0 0.1 0.0 0.0 -0.1 -0.2 -0.1 -0.1 0.1 0.0 0.3 -0.1 0.2 1.0 0.5 0.2 0.1 0.0 0.4 0.2 -0.3 -0.3 -0.2 0.2 0.0 0.5 0.0 -0.4 -0.1 -0.3 0.6 0.2 -0.4 0.4 -0.4
32 I10YoY -0.1 -0.3 -0.3 -0.3 -0.3 -0.2 -0.2 -0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.0 -0.2 0.0 -0.2 0.0 0.1 0.0 0.1 0.0 0.4 0.5 1.0 0.4 0.5 0.2 0.4 0.5 -0.5 -0.1 -0.4 0.5 0.3 0.2 0.2 -0.5 0.1 -0.3 0.3 0.6 -0.2 0.4 -0.5
33 GDPQoQ -0.3 -0.1 -0.1 -0.1 -0.1 0.0 0.0 -0.2 0.0 0.0 0.1 0.1 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 -0.1 -0.2 0.0 -0.1 -0.1 0.0 0.0 0.3 -0.1 0.0 0.2 0.4 1.0 0.7 0.0 0.5 0.6 -0.6 -0.4 -0.5 0.8 0.4 0.3 0.0 -0.7 -0.3 -0.3 0.4 0.5 -0.2 0.4 -0.4
34 GDPYoY -0.1 -0.1 -0.1 -0.1 -0.1 0.0 0.0 -0.2 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.1 0.0 -0.1 -0.3 0.0 -0.2 -0.1 0.0 0.0 0.3 0.4 0.2 0.1 0.5 0.7 1.0 0.2 0.5 0.8 -0.8 -0.1 -0.6 0.8 0.9 0.4 0.6 -0.6 0.2 0.0 0.4 0.8 -0.1 0.6 -0.7
35 Fed 0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 -0.1 0.0 0.1 0.0 -0.3 0.0 0.1 0.0 0.2 0.5 0.8 0.0 0.2 0.0 0.2 1.0 0.1 0.4 -0.1 0.1 0.2 0.1 0.2 0.1 0.2 0.2 0.2 0.4 0.0 0.1 0.2 0.0 -0.4
36 FedQoQ -0.5 -0.2 -0.2 -0.3 -0.2 -0.2 -0.2 -0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.2 0.0 0.0 0.0 -0.1 -0.3 -0.2 -0.1 -0.2 0.1 0.0 0.3 0.0 0.1 0.4 0.4 0.5 0.5 0.1 1.0 0.8 -0.6 -0.5 -0.5 0.5 0.3 0.3 0.0 -0.7 -0.2 -0.4 0.6 0.4 -0.6 0.6 -0.6
37 FedYoY -0.2 -0.2 -0.2 -0.2 -0.2 -0.1 -0.1 -0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.2 0.0 0.1 0.0 -0.1 -0.3 -0.1 -0.2 -0.1 0.0 0.0 0.3 0.2 0.3 0.2 0.5 0.6 0.8 0.4 0.8 1.0 -0.8 -0.2 -0.5 0.7 0.7 0.3 0.2 -0.7 0.0 -0.2 0.5 0.6 -0.3 0.6 -0.7
38 FDI 0.3 0.1 0.1 0.1 0.1 0.0 0.0 0.3 0.0 0.0 -0.1 0.0 0.0 0.0 -0.1 0.0 -0.2 0.0 -0.2 0.0 0.1 0.3 0.2 0.1 0.1 -0.1 -0.1 -0.4 -0.3 0.0 -0.3 -0.5 -0.6 -0.8 -0.1 -0.6 -0.8 1.0 0.3 0.6 -0.8 -0.8 -0.5 -0.4 0.8 0.0 0.2 -0.7 -0.9 0.3 -0.6 0.9
39 FDIQoQ 0.7 0.1 0.1 0.2 0.1 0.1 0.1 0.5 0.0 0.0 -0.1 0.0 0.0 0.0 -0.2 0.0 -0.2 0.0 0.0 0.0 0.1 0.2 0.2 -0.1 0.2 -0.1 0.0 -0.5 0.2 0.1 -0.3 -0.1 -0.4 -0.1 0.1 -0.5 -0.2 0.3 1.0 0.4 -0.3 0.1 -0.5 0.2 0.6 0.8 0.6 -0.7 -0.1 0.7 -0.1 0.4
40 FDIYoY 0.3 -0.1 -0.1 -0.1 -0.2 -0.2 -0.2 0.2 -0.1 -0.1 -0.1 -0.1 0.0 0.0 -0.1 0.0 -0.1 0.1 0.0 0.0 0.0 0.2 0.0 0.0 0.1 -0.2 -0.1 -0.2 0.0 0.0 -0.2 -0.4 -0.5 -0.6 0.2 -0.5 -0.5 0.6 0.4 1.0 -0.7 -0.5 -0.4 -0.3 0.8 0.1 0.8 -0.6 -0.7 0.3 -0.4 0.5
41 IPQoQ -0.3 0.0 0.0 0.0 0.0 0.1 0.1 -0.3 0.1 0.1 0.1 0.1 0.1 0.0 0.1 0.0 0.2 0.0 0.1 0.0 -0.1 -0.2 0.0 -0.1 -0.1 0.0 0.1 0.3 0.1 0.1 0.2 0.5 0.8 0.8 0.1 0.5 0.7 -0.8 -0.3 -0.7 1.0 0.7 0.4 0.3 -0.7 0.0 -0.4 0.6 0.8 -0.2 0.5 -0.7
42 IPYoY 0.1 0.1 0.1 0.1 0.1 0.2 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.1 0.0 0.2 0.0 0.0 -0.2 0.1 -0.1 0.0 0.0 0.0 0.3 0.5 0.1 0.0 0.3 0.4 0.9 0.2 0.3 0.7 -0.8 0.1 -0.5 0.7 1.0 0.3 0.7 -0.5 0.3 0.2 0.3 0.9 0.1 0.5 -0.7
43 OilQoQ -0.5 0.0 0.0 -0.1 0.0 0.0 0.0 -0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.2 0.0 0.1 0.0 -0.1 -0.2 -0.1 -0.1 0.0 0.1 0.0 0.7 0.3 0.2 0.5 0.2 0.3 0.4 0.1 0.3 0.3 -0.5 -0.5 -0.4 0.4 0.3 1.0 0.4 -0.4 -0.1 -0.2 0.7 0.4 -0.4 0.3 -0.6
44 OilYoY 0.3 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.0 0.0 0.0 0.0 -0.1 -0.1 0.1 0.0 0.0 0.0 0.1 0.0 0.0 -0.1 0.0 -0.3 0.1 0.1 0.0 0.3 0.8 0.3 0.0 0.2 0.0 0.6 0.2 0.0 0.2 -0.4 0.2 -0.3 0.3 0.7 0.4 1.0 -0.1 0.3 0.2 0.1 0.6 0.2 0.2 -0.5
45 Ted 0.5 0.1 0.1 0.1 0.0 0.0 0.0 0.5 0.0 0.0 -0.1 0.0 0.0 0.0 -0.2 0.0 -0.2 0.0 -0.1 0.0 0.1 0.3 0.1 0.0 0.2 -0.1 0.0 -0.4 0.1 0.2 -0.4 -0.5 -0.7 -0.6 0.2 -0.7 -0.7 0.8 0.6 0.8 -0.7 -0.5 -0.4 -0.1 1.0 0.4 0.6 -0.7 -0.7 0.6 -0.5 0.7
46 TedQoQ 0.4 0.1 0.1 0.1 0.1 0.1 0.1 0.3 0.1 0.1 -0.1 0.0 0.0 0.0 -0.2 0.0 -0.1 0.0 0.1 0.0 0.0 0.1 0.2 -0.1 0.1 0.0 0.1 -0.3 0.3 0.2 -0.1 0.1 -0.3 0.2 0.2 -0.2 0.0 0.0 0.8 0.1 0.0 0.3 -0.1 0.3 0.4 1.0 0.4 -0.3 0.2 0.4 0.2 0.0
47 TedYoY 0.5 0.0 0.0 0.0 -0.1 -0.1 -0.1 0.3 0.0 0.0 -0.1 -0.1 0.0 0.0 -0.1 0.0 -0.1 0.1 0.1 0.0 0.0 0.1 0.0 -0.1 0.2 -0.2 -0.1 0.0 0.4 0.1 -0.3 -0.3 -0.3 0.0 0.4 -0.4 -0.2 0.2 0.6 0.8 -0.4 0.2 -0.2 0.2 0.6 0.4 1.0 -0.5 -0.2 0.5 -0.1 0.1
48 RusselQoQ -0.7 -0.1 -0.1 -0.2 0.0 -0.1 -0.1 -0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.1 0.3 0.0 0.1 0.0 -0.1 -0.3 -0.2 0.0 -0.2 0.1 0.0 0.6 -0.1 0.0 0.6 0.3 0.4 0.4 0.0 0.6 0.5 -0.7 -0.7 -0.6 0.6 0.3 0.7 0.1 -0.7 -0.3 -0.5 1.0 0.5 -0.7 0.6 -0.7
49 RusselYoY 0.0 0.1 0.1 0.1 0.1 0.1 0.1 -0.1 0.0 0.0 0.1 0.0 0.0 0.0 0.1 0.0 0.1 0.0 0.2 0.0 -0.1 -0.3 0.0 -0.1 0.0 0.1 0.1 0.3 0.4 0.1 0.2 0.6 0.5 0.8 0.1 0.4 0.6 -0.9 -0.1 -0.7 0.8 0.9 0.4 0.6 -0.7 0.2 -0.2 0.5 1.0 -0.1 0.5 -0.8
50 Common 0.9 0.2 0.2 0.3 0.2 0.2 0.2 0.8 0.1 0.1 0.1 0.1 0.1 0.1 -0.1 0.0 -0.3 0.0 0.0 0.0 0.0 0.2 0.3 -0.2 0.2 0.1 0.1 -0.3 0.3 0.1 -0.4 -0.2 -0.2 -0.1 0.2 -0.6 -0.3 0.3 0.7 0.3 -0.2 0.1 -0.4 0.2 0.6 0.4 0.5 -0.7 -0.1 1.0 -0.5 0.4
51 Sentiment -0.4 -0.2 -0.2 -0.3 -0.2 -0.2 -0.2 -0.5 -0.1 -0.1 -0.2 -0.1 -0.1 -0.1 -0.1 0.0 0.2 0.0 0.1 0.0 0.0 -0.2 -0.1 -0.1 -0.1 -0.1 -0.1 0.3 0.1 0.1 0.4 0.4 0.4 0.6 0.0 0.6 0.6 -0.6 -0.1 -0.4 0.5 0.5 0.3 0.2 -0.5 0.2 -0.1 0.6 0.5 -0.5 1.0 -0.5
52 VIX 0.3 0.2 0.2 0.2 0.2 0.1 0.1 0.4 0.0 0.0 -0.1 0.0 0.0 0.0 -0.2 0.0 -0.2 0.0 -0.2 0.0 0.1 0.3 0.2 0.2 0.1 -0.1 0.0 -0.5 -0.4 -0.3 -0.4 -0.5 -0.4 -0.7 -0.4 -0.6 -0.7 0.9 0.4 0.5 -0.7 -0.7 -0.6 -0.5 0.7 0.0 0.1 -0.7 -0.8 0.4 -0.5 1.0

Table 6: Correlation-Matrix of the regressors and exclusion restrictions (highlighted)

The table lists the correlations between all variables included in the BMA regression setup. Cells in bold indicate correlations btw. variables of above 70% in
absolute size in which case we ensure in the restricted model space setup that these variables are not jointly in the same model (exclusion restrictions). The use
of exclusion restrictions is explained in Section 4.1.
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5.3 Frequentistic Model Space Analysis
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Figure 7: Histogram of adjusted R2 for the considered model space.

The figure presents the distribution of adjusted R2 of models in our considered model space.

For our regression analysis we consider all models in the model space as described in

section 4.1. The leaps and bound algorithm provides us with 40, 158 models from which

we consider in our analysis (before applying Occam’s window) the best 10, 000 models

according to the adjusted R2. Figure 7 shows the histogram of the adjusted R2 for our

model space. All of the models exhibit values between 50% and 54% of adjusted R2

which are each on the upper bound of what is reported elsewhere in the literature. To

analyze the model space from a purely frequentistic point of view, we carry out t-tests

on the long-run parameters (LRM) of the estimated models. Table 7 shows the results

from these tests in terms of significance of the parameters on the 1% level. It shows the

relative frequency of test-outcomes (negatively, positively or not significant) for a given

regressor in the model space as well as the relative share of models in which the respective

regressor is present.

Highlighted are variables which are included in more than 10% of the models. It is

obvious that for most of the regressors significant effects can be found in at least some

models. For example, for only five variables from our model space we cannot find any

model with a statistically significant positive influence (GumbelL, Leverage, StockBeta,

dUpbeta, FDIYoY). For many regressors, e.g. for CDSMarket, GDPQoQ or FDIQoQ,

there is a large share of positively, negatively, and non-significant specifications in the

model space. This shows the major problems of empirical studies focusing on single or

a small set of hand-picked specifications. Given some creative theoretic rationale many
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stories can be backed by the data, and often with a model providing great fit to the data.

Choosing one model, e.g. based on the highest adjusted R2, cannot be justified from a

statistical point of view since picking one model simply means discarding the information

from all the other models. Put another way, the information of all models for which we

do not have clear statistical evidence that they are outweighed by other models should

be taken into account.

By looking at Table 7 we see that using all information from the model space we can

get much stronger evidence with respect to the importance of specific regressors than one

specific model can provide. Strikingly, the lower tail coefficient of the Gumbel copula, the

tail dependence estimated using the t-copula, and the commonality factor are present in

the major part of the model space, with mostly unambiguous significant effects. Also there

seems to be quite strong evidence for effects of the delta of the t-copula tail coefficient

and of the CDS volatility.

At this stage of the analysis our conclusions are based on the assumption that all models

provide the same level of information. However, it seems intuitive that if some regressor is

contained in a model which provides a better approximation to the data or the true model

than others, then this regressor should obtain larger weight than a regressor in a model

with a poor approximation. In the next step we will therefore weight the different models

proportional to the statistical evidence to be the Kullback Leibler (KL) best model.
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Negative Significance No Significance Positive Significance Times Included

CDSMarket 50.07% 9.50% 40.43% 6.95%
ClaytonL 37.03% 25.24% 37.74% 4.24%
ClaytonU 37.26% 25.00% 37.74% 4.24%
GumbelU 11.93% 7.99% 80.09% 9.39%

GumbelL 99.98% 0.02% 0.00% 94.19%
SJCU 31.18% 14.92% 53.90% 4.49%
SJCL 21.90% 22.96% 55.15% 3.79%
tCop 0.00% 0.00% 100.00% 99.99%

dClaytonL 0.00% 40.74% 59.26% 2.43%
dClaytonU 0.00% 40.74% 59.26% 2.43%
dGumbelU 0.00% 24.85% 75.15% 3.26%
dGumbelL 7.42% 52.40% 40.17% 2.29%

dSJCU 0.00% 44.26% 55.74% 2.96%
dSJCL 0.00% 66.35% 33.65% 2.11%
dtCop 9.04% 0.05% 90.91% 19.69%
Equity 51.83% 45.03% 3.14% 1.91%

dFirmVal 72.79% 5.10% 22.11% 5.88%
dLeverage 0.00% 67.38% 32.62% 1.87%

FirmVal 0.00% 26.44% 73.56% 2.61%
Leverage 0.00% 100.00% 0.00% 1.83%

EquityVola 21.81% 11.70% 66.49% 1.88%
CDSVola 0.00% 21.99% 78.01% 10.23%

CoSkew 63.90% 29.60% 6.50% 2.77%
StockBeta 77.98% 22.02% 0.00% 2.77%

UpBeta 0.00% 92.75% 7.25% 1.93%
dCoSkew 0.45% 40.27% 59.28% 2.21%
dUpBeta 0.00% 100.00% 0.00% 1.89%
CPIQoQ 49.90% 11.53% 38.57% 4.77%
CPIYoY 13.45% 56.72% 29.83% 2.38%

I10 0.00% 68.42% 31.58% 2.28%
I10QoQ 14.15% 67.32% 18.54% 2.05%
I10YoY 1.11% 34.69% 64.21% 2.71%

GDPQoQ 24.50% 29.63% 45.87% 3.51%
GDPYoY 1.10% 10.97% 87.93% 5.47%

Fed 0.00% 61.97% 38.03% 2.34%
FedQoQ 1.50% 11.99% 86.51% 4.67%
FedYoY 0.19% 4.44% 95.37% 5.40%

FDI 82.82% 14.54% 2.64% 4.54%
FDIQoQ 31.77% 10.29% 57.94% 6.61%
FDIYoY 98.87% 1.13% 0.00% 7.96%

IPQoQ 1.11% 9.83% 89.05% 5.39%
IPYoY 0.46% 10.98% 88.56% 4.37%

OilQoQ 56.90% 12.48% 30.62% 5.29%
OilYoY 2.65% 29.71% 67.65% 3.40%

Ted 82.50% 12.08% 5.42% 4.80%
TedQoQ 4.38% 26.04% 69.58% 4.57%
TedYoY 83.37% 11.31% 5.32% 4.51%

RusselQoQ 9.89% 32.20% 57.91% 3.54%
RusselYoY 1.29% 9.25% 89.46% 4.65%
Common 0.53% 0.02% 99.44% 82.74%
Sentiment 8.33% 27.47% 64.20% 3.24%

VIX 75.12% 21.98% 2.90% 4.14%

Table 7: Results t-tests for LRM of regressor variables based on model space.

The table shows the results from t-tests for long-run multipliers of regressors variables for the entire
model space in terms of significance of the parameters on the 1% level. It shows the relative frequency of
test-outcomes (negatively, positively or not significant) for a given regressor in the model space as well
as the relative share of models in which the respective regressor is present. Highlighted are variables
which are included in more than 10% of the models.
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5.4 BMA Estimates

The BMA methodology provides us with a statistically consistent framework to deal with

model uncertainty by weighting the different models in the model space proportional to

their informational content. Based on the model space used above (without further

restrictions) we first calculate Occam’s window which discards all models for which we

have weak statistical evidence that they are the best approximation to the unknown

true model. Occam’s window leaves us with 51 models (see Table 9), which we combine

according to the BMA weighting scheme. Figure 8 shows graphically the results for the

BMA model: the posterior inclusion probabilities (PIP) and the normalized long-run-

multiplier (LRM). Comparing the PIP to the prior inclusion probabilities (indicated by

the horizontal dotted line), we find that the Gumbel copula (UTD and LTD), the t-

copula (delta and level), CDS volatility, commonality and the financial distress indicator

are significant. From the LRM, however, we learn that the Gumbel copula and the t-

copula (level) have by far the strongest impact, while the other factors - taking delta t-cop

aside - have rather negligible effects. These results suggest that firms’ CDS-returns are

largely dominated by their sensitivity to extreme market movements as measured by the

different copula measures. Further, it seems that - instead of one copula based measure

- one should take into account information provided by differing copula measures. Table

8 summarizes the PIP and LRM for the significant regressors.
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Figure 8: PIP (upper panel) and LRM (lower panel) of all regressors in the unrestricted
BMA model.

The figure shows PIP (upper panel) and LRM (lower panel) of all regressors in the unrestricted BMA
model. A detailed list of all variables included in the models and their description can be found in Tables
tab:bmavariables and 2. The horizontal dotted line in the upper panel indicates the prior inclusion
probabilities. A variable is significant if the PIP is larger than the prior inclusion probability.
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Figure 9: PIP (upper panel) and LRM (lower panel) of all regressors in the restricted
BMA model.

The figure shows PIP (upper panel) and LRM (lower panel) of all regressors in the restricted BMA
model. A detailed list of all variables included in the models and their description can be found in Tables
tab:bmavariables and 2. The horizontal dotted line in the upper panel indicates the prior inclusion
probabilities. A variable is significant if the PIP is larger than the prior inclusion probability.

Since model selection is often also based on assessments of plausibility, we filter the model

space in the next step such that only models satisfying our reasoning will be considered.

We apply sign-restrictions on the coefficients of the LRM and discard models that suffer

from highly collinear variables. In Table 9 an overview for the filtering process is given.

Figure 9 shows the results for the restricted BMA model. We see that, analogue to the

analysis in Section 5.3, the Gumbel copula (LTD), the t-copula (delta and level) and CDS

volatility are the most significant variables. In addition, the financial distress indicator,

the Ted-rate and the firm-value (delta) are significant. The normalized LRM indicate

that the effect of the t-copula dominates the Gumbel copula, the delta t-copula and the

financial distress indicator by more than factor three, while the CDS volatility and the

firm value (delta) have rather negligible effects. Table 8 again summarizes the PIP and

LRM for the significant regressors.

These findings support the studies by Meine et al. (2015b) or Christoffersen et al. (2014)

that find evidence for the relationship between CDS spreads and tail dependence. Note

however, that up to this point, our study confirms this relationship for the entire sam-

ple period which includes crisis and non-crisis periods, and not only for crisis periods.

A more detailed analysis for bullish and bearish markets will be performed in Section

5.5. In contrast to the study by Meine et al. (2015b), we analyze the influence of level

values of tail dependence as well as deltas. As anticipated, the level values of the tail
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dependence measures provide a much better fit for our overall model than the deltas of

the tail dependence measures. A high level of tail dependence captures a high cross-

sectional probability of single name contracts to jointly surge with the market without

the tail dependence necessarily increasing during these surges. Hence, in a cross-section

comparison, single name contracts with a high level of tail dependence indicate a high

probability of joint surges. The tendency to surge with the overall market is persistent.

It does change over time, but not rapidly enough to explain joint surges as good as the

level values do.

Compared to unrestricted BMA the upper Gumbel tail coefficient has dropped from the

model space. The reason is the high correlation between upper and lower tail coefficient

of the Gumbel copula which leads to models being dropped in which both are present.

Importantly, the aggregated LRM effect from the Gumbel copula (upper and lower) in

unrestricted BMA is close to the effect of the Gumbel (lower) in restricted BMA. In

addition, the effects of the t-copula (level) and the financial distress indicator increase.

The basic results from unrestricted BMA, however, remain valid when moving to re-

stricted BMA. Still results are largely dominated from the tail coefficients as measured

by different copula specifications. For example, our results provide some evidence that

commonality indeed is related to CDS returns as argued by, e.g. Berndt and Obreja

(2010). However, this effect seems to be dominated by other factors. We will return to

this observation in Section 5.6.

Unrestricted Restricted

Variable PIP LRM PIP LRM

GumbelU 100% 0.673 - -
GumbelL 100% -0.858 100% -0.247

tCop 100% 0.636 100% 0.702
dtCop 99% 0.191 99% 0.189

dFirmVal - - 8% -0.008
CDSVola 32% 0.045 33% 0.046
FedYoY - - 7% 0.007

FDIQoQ 9% 0.012 72% 0.132
FDIYoY 8% -0.011 - -
TedYoY - - 13% -0.014

Common 24% 0.054 - -

Table 8: PIP and LRM of significant regressors in the unrestricted and restricted BMA
model.

The table shows PIP and LRM of all significant regressors in the unrestricted (left panel) and restricted
(right panel) BMA model. A detailed list of all variables included in the models and their description
can be found in Tables 3 and 2. A variable is significant if the PIP is larger than the prior inclusion
probability.
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Unfiltered Model Space 10,000
Occam’s Window Unrestricted 51

Models satisfying Exclusion Restrictions 1,510
Model satisfying Sign Restrictions 3,610

Models satisfying Exclusion & Sign Restrictions 282
Occam’s Window Restricted 127

R2 Range Model Space 50%-54%

Table 9: Overview of the model space filtering process

The table presents an overview of our model space as a results to thorough filtering. Each line shows
the size of our entire model space as a result of applying the described filter.

5.5 Analyses based on sub-samples

As the BMA approach provides very robust results, we do not present slightly adjusted

model setups here. Instead, we focus on different subsamples to provide evidence whether

our results are driven by specific samples, e.g. by crisis periods, or CDS of a specific

investment quality class, and to determine whether pricing determinants change during

bullish or bearish times, or differ across investment quality classes. Moreover, we use

the analysis of subsamples to follow up on literature that provides evidence that the

sensitivity of CDS spreads towards a specific pricing factor increases during certain market

circumstances (see, e.g., Alexander and Kaeck, 2008). Table 10 shows the results of t-

tests for LRM of regressor variables of the model space, based on different subsamples,

while Table 11 presents PIP and LRM for both, the unrestricted and the restricted BMA

model for our six subsamples. Table 12 shows the overview of the model space filtering

process for different subsamples. We loose many models due to our exclusion and sign

restrictions, but are left with at least 299 models for all subsamples.

The first panel of the tables focuses on an additional liquidity measure. Several studies

highlight the importance of liquidity in the context of asset pricing (see, e.g., Meine et al.,

2015a; Arakelyan et al., 2015; Tang and Yan, 2008; Bongaerts et al., 2011; Longstaff et al.,

2005; Qiu and Yu, 2012) and argue that many effects can be explained by liquidity. As the

Markit dataset only provides a measure of liquidity starting in 2011, and we find it hard

to argue that stock liquidity can serve as a reasonable proxy for CDS spread liquidity,

we rely on a sub-sample analysis covering the period from 2011 to 2015 to check the

influence of liquidity. Our results show that indeed we do find models with a significant

influence of the liquidity measure on CDS spreads. However, we notice that the liquidity

measure is only included in 1.23% of models of the model space, and that the measure

is not included in the BMA models. Thus, our results show that indeed, we are able

to find some models with a significant relationship between liquidity and CDS spreads,

which is in line with Meine et al. (2015a); Arakelyan et al. (2015); Tang and Yan (2008);

Bongaerts et al. (2011); Longstaff et al. (2005); Qiu and Yu (2012), but we cannot confirm

their hypothesis that liquidity can explain many puzzles. Moreover, the results show that
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the influence tail dependence measures, especially measures with the t copula, still have

the highest inclusion rates. Apart from the t copula, the Gumbel copula is included in

many models with a significant sign, and the lower tail dependence estimated with the

SJC copula is included in most of the remaining models. Also, several non-idiosyncratic

measures are included in addition to the copula measures for the liquidity sub-sample.

Next, we run one analysis focusing on single name CDS contracts that are part of the CDX

North America Investment Grade Index and one analysis focusing on CDS contracts that

are part of the High Volatility Index. The results are presented in panels two and three

of Tables 10 and 11. We observe several differences between the determinants of CDS

spreads with regard to the investment quality class. Notably, the delta of the firm value

enters the models of the HV sub-sample in 76.59% of the model space, and in 86% of the

restricted models, while this factor is not considered for investment grade CDS spreads.

Similarly, the overall market development seems to be more important for the HV sample,

but this does not hold for the restricted BMA models. On the other hand, CDS volatility,

lower tail dependence measured with the Gumbel copula, and the delta of the t copula

tail dependence are more important for the IG sample. However, for both samples the

tail dependence measures estimated using the t copula and the Gumbel copula have the

highest inclusion probability. Thus, the connection between tail dependence and CDS

spread returns is not a particular feature for certain investment quality classes.

Finally, we control for the crisis period as, e.g., Alexander and Kaeck (2008) show that

CDS spreads are more sensitive to volatility in the stock market during periods of mar-

ket turbulence, and more sensitive to stock returns otherwise. Thus, one could argue

reasonably well that the pricing of CDS contracts changed during the crisis period. Con-

sequently, we run sub-sample regressions focusing on pre-crisis, during-crisis, and post-

crisis periods. According to Laeven and Valencia (2012), the crisis period in the U.S.

ranges from 2007 to 2011. Indeed, less factors are included in the unrestricted and re-

stricted BMA models during the crisis period. For example, dFirmVal is included in

several models pre- and post-crisis, but not during the crisis period. Also notably, our

volatility measure is included in several models pre- and during the crisis period, but not

post-crisis. Again, the tail dependence measures estimated with the t and the Gumbel

copula are the factor with the highest inclusion probability for all sub-samples. Thus, we

expand the evidence of Meine et al. (2015b) who find a statistically significant relation-

ship between the delta of a tail dependence measure and CDS returns for a sample of

banks during the crisis period. In contrast to their study, we find that this relationship

also holds pre- and post-crisis.

Note, that for all sub-samples we obtain reasonably high R2. The only exception is the

pre-crisis period with R2 values around 40%. For all other periods, we obtain R2 higher

than 50%, which is about the size that is reported in other studies in the literature. For
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the investment grade sub-sample we even obtain R2 values close to 60%.

Negative Significane Non Significance Positive Significance Times Included

L
iq

u
id

it
y

Liquidity 16.26% 83.74% 0.00% 1.23%
tCop 0.00% 0.00% 100.00% 99.99%

dtCop 3.60% 3.41% 92.99% 31.97%
GumbelL 99.91% 0.08% 0.01% 86.48%

Fed 8.00% 2.29% 89.71% 24.49%
FedQoQ 1.89% 1.51% 96.60% 35.00%
FedYoY 3.55% 4.61% 91.84% 14.09%
OilYoY 81.42% 1.84% 16.74% 24.97%

IG

GumbelL 99.88% 0.12% 0.00% 69.10%
tCop 0.00% 0.00% 100.00% 99.66%

dtCop 20.47% 1.95% 77.58% 17.93%
CDSVola 3.23% 3.07% 93.69% 61.53%
FDIYoY 98.84% 1.07% 0.09% 21.57%
Common 5.93% 0.23% 93.84% 48.23%

Sentiment 2.02% 4.81% 93.17% 10.39%

H
V

CDSMarket 0.46% 0.67% 98.87% 53.77%
GumbelU 66.20% 3.33% 30.47% 11.42%
GumbelL 98.31% 1.69% 0.00% 18.92%

tCop 0.00% 0.00% 100.00% 99.31%
dtCop 2.01% 1.45% 96.54% 31.78%
Equity 94.64% 5.36% 0.00% 23.13%

dFirmVal 99.71% 0.27% 0.01% 76.59%
OilQoQ 89.94% 9.10% 0.97% 12.42%

Common 4.48% 4.39% 91.13% 22.54%

P
re

C
ri

si
s CDSMarket 51.33% 2.81% 45.87% 12.82%

GumbelU 1.59% 2.80% 95.61% 20.75%
GumbelL 99.99% 0.01% 0.00% 93.79%

tCop 0.00% 0.00% 100.00% 99.70%
dtCop 0.62% 0.20% 99.18% 56.41%

CDSVola 7.58% 2.77% 89.65% 19.52%
dCoSkew 0.57% 6.40% 93.02% 12.18%

C
ri

si
s

GumbelU 9.18% 6.64% 84.18% 10.24%
GumbelL 99.79% 0.21% 0.00% 72.04%

tCop 0.00% 0.00% 100.00% 99.60%
dtCop 6.97% 0.34% 92.69% 70.75%

CDSVola 0.00% 6.27% 93.73% 15.14%
dCoSkew 67.96% 2.02% 30.02% 26.28%
Common 77.21% 5.17% 17.61% 10.05%

P
os

tC
ri

si
s GumbelL 99.63% 0.34% 0.03% 73.95%

tCop 0.00% 0.00% 100.00% 99.53%
dtCop 9.88% 1.52% 88.60% 20.44%

CPIQoQ 88.47% 6.32% 5.21% 11.71%
Fed 14.57% 3.99% 81.44% 13.04%

FedQoQ 0.87% 2.24% 96.89% 13.84%
FDIYoY 96.34% 3.44% 0.22% 13.65%
Common 0.36% 0.09% 99.55% 75.69%

Table 10: Results t-tests for LRM of regressor variables of model space based on different
sub-samples.

The table shows the results from t-tests for long-run multipliers of regressors variables for the entire
model space for our sub-sample analysis in terms of significance of the parameters on the 1% level.
It shows the relative frequency of test-outcomes (negatively, positively or not significant) for a given
regressor in the model space as well as the relative share of models in which the respective regressor is
present. The table only includes variables which are included in more than 10% of the models.
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Unrestricted Restricted

Subsample Variable PIP LRM PIP LRM

L
iq

u
id

it
y

GumbelL 87% -0.337 89% -0.334
SJCL - - 7% -0.018
tCop 100% 0.661 100% 0.667
dtcop 35% 0.069 48% 0.09

CPIQoQ 12% 0.001 10% 0
I10YoY - - 9% 0.003

Fed 23% 0.063 31% 0.1
FedQoQ 36% 0.099 31% 0.093
FedYoY 15% 0.039 16% 0.047

FDIQoQ 9% -0.013 - -
OilYoY 27% -0.060 8% 0.009

TedQoQ - - 9% -0.012
TedYoY - - 13% -0.005

IG

GumbelU 24% 0.147 - -
GumbelL 100% -0.412 98% -0.233

tCop 100% 0.720 100% 0.739
dtCop 62% 0.102 83% 0.137

CDSVola 88% 0.165 93% 0.16
FedQoQ - - 10% 0.014
FedYoY - - 13% 0.016
FDIYoY 68% -0.142 - -

Ted - - 19% -0.028
TedYoY - - 16% -0.017

Common 9% 0.020 - -

H
V

CDSMarket 51% 0.153 - -
ClaytonL 8% -0.008 - -
ClaytonU 8% -0.008 - -
GumbelU 12% 0.030 - -
GumbelL 22% -0.070 23% -0.041

SJCU 8% -0.009 - -
tCop 100% 0.429 100% 0.550

dtCop 41% 0.079 97% 0.199
Equity 23% -0.041 22% -0.038

dFirmVal 78% -0.173 86% -0.195
CPIQoQ - - 13% -0.016
CPIYoY - - 11% 0.015
FDIQoQ - - 30% 0.065
OilQoQ 15% -0.028 - -
OilYoY - - 13% 0.018

RusselQoQ - - 18% -0.039
Common 20% 0.055 - -

Table 11: PIP and LRM for unrestricted and restricted BMA model for different sub-
samples (Panels 1-3).

The table shows PIP and LRM of all significant regressors in the unrestricted (left panel) and restricted
(right panel) BMA model. A detailed list of all variables included in the models and their description
can be found in Tables 3 and 2. A variable is significant if the PIP is larger than the prior inclusion
probability.
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Unrestricted Restricted

Subsample Variable PIP LRM PIP LRM

P
re

C
ri

si
s

CDSMarket 8% -0.005 - -
GumbelU 42% 0.173 - -
GumbelL 99% -0.384 95% -0.234

tCop 100% 0.607 100% 0.640
dtCop 67% 0.145 80% 0.166

dFirmVal - - 7% -0.008
CDSVola 19% 0.029 27% 0.044
dCoSkew 12% 0.018 16% 0.024
CPIYoY - - 7% -0.008

I10 - - 8% 0.007
GDPYoY 9% -0.013 13% -0.018

Fed 8% 0.010 11% 0.013
FedQoQ - - 10% -0.013
OilYoY 10% -0.015 -

TedQoQ - - 8% -0.009

C
ri

si
s

GumbelU 13.28% 0.056 - -
GumbelL 83.24% -0.269 88% -0.243

tCop 100.00% 0.795 100% 0.820
dtCop 82.89% 0.189 94% 0.220

CDSVola 14.27% 0.019 15% 0.020
dCoSkew 20.02% -0.007 12% 0.017
CPIQoQ 7.25% -0.006 10% -0.006
FDIQoQ 12.64% 0.024 15% 0.034

Ted - - 8% 0.004
TedQoQ 11.70% 0.018 17% 0.030
TedYoY - - 7% -0.006

Common 7.11% -0.010 - -

P
o
st

C
ri

si
s

GumbelU 14% 0.069 - -
GumbelL 95% -0.308 98% -0.295

tCop 100% 0.560 100% 0.738
dtCop 30% 0.042 71% 0.119

dFirmVal - - 11% -0.014
CPIQoQ 14% -0.016 24% -0.029

GDPQoQ 8% -0.007 14% -0.02
Fed 32% 0.059 59% 0.123

FedQoQ 11% 0.014 15% 0.024
FedYoY 9% 0.020 -

FDIQoQ 10% -0.024 9% 0.013
FDIYoY 18% -0.032 -
OilYoY - - 17% 0.026

Ted - - 13% -0.011
TedQoQ - - 10% -0.001
TedYoY - - 9% -0.013

Common 71% 0.215 - -

Table 11: PIP and LRM for unrestricted and restricted BMA model for different sub-
samples (Panels 4-6).

The table shows PIP and LRM of all significant regressors in the unrestricted (left panel) and restricted
(right panel) BMA model. A detailed list of all variables included in the models and their description
can be found in Tables 3 and 2. A variable is significant if the PIP is larger than the prior inclusion
probability.
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Liquidity IG HV PreCrisis Crisis PostCrisis

Unfiltered
Model Space 10,000 10,000 10,000 10,000 10,000 10,000

Occam’s Window
Unrestricted 10,000 122 10,000 4,221 9,890 2,295

Models satisfying
Exclusion Restrictions 6,410 3,430 2,090 5,290 6,520 1,450

Models satisfying
Sign Restrictions 3,670 2,520 4,150 5,320 4,170 3,140
Models satisfying

Exclusion & Sign Restrictions 2,192 570 771 2,961 2,728 299
Occam’s Window

Restricted 2,192 209 771 2,961 2,728 299
R2 Range

Model Space 49%-53% 55%-59% 49%-55% 38%-44% 58%-63% 50%-54%

Table 12: Overview of the model space filtering process for different sub-samples.

The table presents an overview of our model space as a results to thorough filtering for our sub-sample
analysis. Each line shows the size of our entire model space as a result of applying the described filter.

5.6 Hypothesis tests based on forecast performance

Finally, we use want to back up and clarify some of the results obtained in Section 5.4

by comparing the predictive ability of different model setups. To do so, we carry out

a sequence of Diebold-Mariano (DM) tests for different model setups based on out-of-

sample forecasts as described in Section 4.1.4. The setups are BMA models in which we

restrict the possible regressors to a smaller subset. The different specifications take into

account all regressors that were found to be significant in the unrestricted BMA setup

for the full sample. Importantly, even in the case a setup contains only one regressor,

BMA will ensure that different dynamic specifications are considered. Further, we apply

sign restrictions but no exclusion restrictions to the model space to ensure that not some

regressors are crowded out due to collinearity issues. The main purpose of the sequence

of tests is to clarify the working hypothesis obtained from Section 5.4 that focusing on

copula based regressors is sufficient for modeling CDS returns. This would imply that all

pricing information is covered by a combination of different tail dependence measures.

As a benchmark forecasting model we use a simple AR(2) process. In Table 13 the results

from the tests are summarized. In addition the respective root-mean-squared (forecast)

errors (RMSE) for each setup are reported. The test sequence works as follows. In each

test, we test for the superior predictive ability of the respective setup compared to the

best setup obtained from the precedent tests. The tests have three main blocks. First, we

test different specifications based on copula and market based measures. We find that,

confirming the results obtained in Section 5.4, a combination of several copula measures

(setup 1(i)) significantly outperforms all other setups including those in which market

based measures are present. Also note the high explanatory power of the commonality

(pca) even though this is an non-idiosyncratic factor. Thus, we find a high explanatory
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power of the commonality factor, confirming the results of Berndt and Obreja (2010),

but at the same time provide evidence that this effect is dominated by other factors -

namely the tail dependence measures of our copula models.

In the second block of the tests, we recursively add idiosyncratic factors which were

found to be significant in some of the setups of previous sections. We find that only CDS

volatility significantly improves the forecast performance. The gain in RMSE, however is

rather low. The third testing block checks for the contribution of different macro factors.

Here we find that the financial distress indicator (QoQ) can improve the forecasts. But

also here the gain in RMSE is very small.

We conclude, that the hypothesis, indicated by the results from previous sections, is

strongly confirmed that close to all relevant pricing information can be obtained by a

combination of copula based measures of tail dependence.

Overall, these results provide evidence that the tail dependence, when estimated with the

t copula, is significantly superior in explaining CDS spreads to other factors. Moreover,

adding additional different tail dependence measures estimated using different copula

models decreases the RMSE. First, the tail dependence measure of the t copula signifi-

cantly outperforms the measure estimated with the Gumbel copula, the market, and the

commonality measure. We argue that commonality is an important factor when pricing

CDS contracts. However, additional to the linear dependence measured with the simple

means (CDS Market) or weighted averages (Commonality), non-linear dependence (tail

dependence) has significant explanatory power which decreases RMSE. Moreover, we ar-

gue that the specific construction of the t copula, consisting of the correlation, and the

degrees of freedom parameter, allows to capture both, linear and tail dependence at the

same time. Thus, the tail dependence measure estimated using the t copula outperforms

all other tail dependence measures as well as the linear dependence measures. Note, that

the t copula may converge against the Gauss copula, and thus only capture linear depen-

dence for large degrees of freedom parameter. However, in our sample, the estimate for

the parameter capturing the degrees of freedom is never larger than 21. Hence, we do not

observe convergence to linear dependence in our sample. Additionally, adding a different

tail dependence measure to the t copula, the Gumbel copula in our case, increases fore-

casting ability due to the increased modeling flexibility in the tails of the distribution.

Hence, we can state that these measures do not capture the same dynamics, but instead

the Gumbel copula is able to pick up on additional dependence structures that the t

copula cannot capture.
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RMSE t-stat. of DM test p-value of DM test

AR(2) Model 0.516 - -
1

C
op

u
la

/
M

a
rk

et (a) GumbelU + GumbelL 0.460 14.160 2.20E-16***
(b) CDSMarket 0.417 8.570 2.20E-16***

(c) Common 0.396 8.764 2.20E-16***
(d) tCop 0.390 1.550 0.0605*

(e) tCop+Common 0.390 -1.550 0.9395
(f) Common+tCop+CDSMarket 0.390 -1.523 0.9361

(g) tCop+dtCop 0.383 8.944 2.20E-16***
(i) GumbelU+GumbelL+tCop+dtCop 0.355 10.874 2.20E-16***

2
Id

io
sy

n
.

(a) 1(i) + dCoSkew 0.355 -0.388 0.6509
(b) 1(i) + CDSVola 0.353 3.701 0.0001086***

(c) 2(b) + dFirmVal 0.353 -3.041 0.9988
(d) 2(b) + Equity 0.353 -3.298 0.995

3
M

a
cr

o (a) 2(b) + FDIQoQ 0.351 4.071 2.37E-5***
b. 3(a) + TedQoQ 0.351 -4.920 1

c. 3(a) + RusselQoQ 0.351 -4.370 1
d. 3(a) + OilQoQ 0.351 -4.650 1

e. 3(a) + CPIQoQ 0.351 -4.950 1

Table 13: RMSEs and Diebold Mariano (DM) tests for different setups.

The table shows RMSE calculated on basis of holdout sample. In the DM tests the model setup in each
row is tested against the alternative that it has superior predictive ability than the respective best setup
found previous to the checked setup. The respective best setup against which is tested is the setup -
standing above of the checked setup - showing significant superior predictive ability (i.e. is denoted by
*,** or ***). The concrete dynamic specification of each model setup is calculated via BMA. Each setup
uses the same observations in the training and holdout sample respectively.

6 Conclusion

This paper contributes to the literature on the determinants of CDS spreads and to the

literature on the pricing of downside risk. Even though the literature on CDS determi-

nants is rich, there is still no consensus about which factors mainly drive CDS spreads

and whether there is a superior model setup which one should follow. We do not observe

convergence to some factors in the literature. The recent literature on the impact of

crash aversion on the pricing of individual financial instruments, including CDS, shows

that crash-sensitive financial instruments bear a premium (Chabi-Yo et al., 2014; Meine

et al., 2015b) which can be interpreted as a non-linear addendum to the CAPM asset

pricing theory.

Our paper provides a robust and transparent analysis for the determinants of CDS spreads

by focusing on the model space instead of just one specific model. We include many of

the variables suggested elsewhere in the literature as regressors, including tail dependence

measures derived from four different dynamic copula models. Using a CDS data-set set of

227 firms from different industries we analyze both investment grade and high volatility

contracts and distinguish between pre-, during, and post-crisis periods.

Our results suggest, that the tendency of an individual CDS contract to jointly experi-

ence extreme movements with the market is the major determinant of CDS premia. The
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estimated tail dependence of a symmetric t copula has the highest explanatory power

among all regressors. Moreover, we show that a model including only tail dependence

measures significantly outperforms the out-of-sample forecast quality of any other model.

On the other hand, our results suggest that Merton-type and macroeconomic factors

can be considered as negligible. This also holds for variables measuring the systematic

market evolution based on simple means or principal component analysis. While a sys-

temic risk measure based on simple means is just able to capture linear dependencies,

our tail dependence measure incorporates both linear and non-linear dependencies as the

tail dependence critically depends on the correlation between time series, but also on the

degrees of freedom of the estimated t copula model. The pca provides a more precise

measurement of common factors than a simple means model; however, the tail depen-

dence measure is superior. Adding an additional measure to allow for non-symmetric tail

dependence increases out-of-sample forecast quality. Hence, our study suggests that CDS

spreads are mainly determined by investors’ fear of joint turbulences with the market.

Additionally, we show that the choice of the copula to estimate tail dependence is crucial

for the explanatory power. With respect to different copula models, we find that the

symmetric t copula dominates all other copula specifications. We attribute this finding

to the fact, that the tail dependence estimate of the symmetric t copula captures time-

varying correlations with one parameter, but also depends on the degrees of freedom

parameter estimate. However, adding a different tail dependence measure in addition

to the t copula, the Gumbel copula in our case, increases the explanatory power of our

models. Thus, we provide evidence that these different copula measures do not capture

the same dynamics, but instead the Gumbel copula is able to pick up on additional

dependence structures that the t copula cannot capture, i.e. non-symmetric attributes.

Our results have implications for understanding the dynamics of financial markets and

financial stability as we highlight the importance of tail risk and common factors in asset

pricing.
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A Time-varying copula models

This section describes the time-varying copula models employed in our study, as well as
the estimation of tail dependence measures, and goodness-of-fit tests.

A.1 Modeling extreme comovements

To capture the extreme comovement between financial time series, we rely on Copula-
GARCH models (see Jondeau and Rockinger, 2006) in our study. These models allow
for some in an autoregressive manner time-varying parameters, conditional on the set
of past information. To consider conditional distributions of some random variable Xt

given an information set F an extension of Sklar’s theorem (see Sklar, 1959) is necessary.
This extension to the conditional case is due to Patton (2006) who defines the conditional
copula:

Ft(x | Ft−1) = Ct(F1,t(x1 | Ft−1), F2,t(x2 | Ft−1), ..., Fn,t(xn | Ft−1) | Ft−1), ∀x ∈ Rn.

Here, Xi | Ft−1 ∼ Fi,t and Ct denotes the conditional copula of Xt given Ft−1.

A.1.1 Univariate modeling of returns

As noted by Sklar (1959), the use of copulas allows to define multivariate models where
the marginal distributions are not of the same type as the copula model. Thus, we
can combine non-parametric estimation for the marginal distributions with parametric
estimation of the copula (see Chen and Fan, 2006; Chen et al., 2006). As our study
focuses on the dependence structures between CDS spreads, we are not interested in the
estimation of the marginals and only estimate the copula. Estimation methods for the
copula assume identical independent distributed data (see Genest et al., 1995). However,
stylized facts of financial time series state that model residuals are often skewed and fat
tailed in addition to a leverage effect (see Cont, 2001; Joe, 2015). Focusing on CDS spread
time series, Cont and Kan (2011) provide evidence that CDS spread returns are stationary
and exhibit positive autocorrelation. Moreover, the authors find that the returns are
described by conditional heteroscedasticity, two-sided heavy tails, serial dependence in
extreme values, and sizable co-movements that are not necessarily linked to credit events.
Hence, as returns of financial data in general and specifically CDS data are usually not
i.i.d. and we can confirm the stylized facts for our dataset (see section 3.1), we have to
filter the data first.

Thus, we first apply our data to an AR(m)-GARCH(p,q) model, before we standardize
the i.i.d. residuals from the filtration to uniform. We use a probability integral transform
of the following form. Due to the filtration, εt, t = 1, ..., T is a time series of i.i.d.
variables. Under the assumption εt ∼ Fi, t = 1, ..., T , ui,t = Fi(εt) is the probability
integral transform of εt with ui,t ∼ U [0, 1], t = 1, ..., T . Specifically, we employ the
empirical cumulative distribution function (CDF) for the transformation:

F̂i(x) =
1

T + 1

T∑
t=1

1Xi,t≤x
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where 1 denotes the indicator function. Finally, we can estimate the copula parameters
using the uniform residuals with maximum likelihood estimation.

We do not summarize the estimation results for the univariate AR(m)-GARCH(p,q)
model and copula model estimations to preserve space. The results are available from
the authors upon request. We choose the AR lag m for each time series and the GARCH
model according to the AIC value.

Figure A.1 presents representative plots of autocorrelation functions of the market returns
prior to applying the AR-GARCH model and after filtering. Note, that the residuals do
not exhibit significant autocorrelations.

Figure A.1: Autocorrelation functions before and after applying the AR-GARCH filter

The figure shows representative plots of autocorrelation functions of the market returns prior to applying
the AR-GARCH model and after filtering.

A.1.2 Time-varying copulas

In this section, we present the different copula models that we utilize to model tail
dependence. To allow for possibly time-varying dependency structures (see, e.g. Andersen
et al., 2006; Bauwens et al., 2006) between assets we utilize several time-varying copulas
in our study. We include copula models with different characteristics. To be specific, we
employ copulas that allow for pronounced tail dependence in their upper or lower tail,
respectively.

In our study, we include the time-varying symmetric t copula given by

C(u1, u2 | η, P ) =

∫ t−1
η (u1)

−∞

∫ t−1
η (u2)

−∞

Γ(η+n
2

)

Γ(η
2

√
(πη)n | P |

(
1 +

x′P−1x

η

) η+n
2
dx,

where t−1
η denotes the quantile function of the univariate t distribution with degrees of

freedom parameter η. P denotes the covariance matrix with off-diagonal element ρ. Our
t copula allows for variation in the correlation and in the degrees of freedom parameter.
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With τU ∈ (0, 1) and τL ∈ (0, 1), the Joe-Clayton copula (see Joe, 1997) is given by

CJC(u1, u2 | τU , τL) = 1−
(

1− 1(
1

(1−(1−u1)κ)γ
+ 1

(1−(1−u2)κ)γ
− 1
)1/γ

)1/κ

,

where κ = 1
log2(2−τU )

and γ = − 1
log2(τL)

. Here, τU and τL capture the dependence in the

upper and lower tail, respectively. As noted by Patton (2006), the Joe-Clayton copula
exhibits asymmetry even for τU = τL. Thus, he suggests the symmetrized Joe-Clayton
copula

CSJC(u1, u2 | τU , τL) = 0.5 ·CJC(u1, u2 | τU , τL) + (1− u1, 1− u2 | τU , τL) + u1 + u2 − 1)

which is symmetric by construction for τU = τL (see also Han et al., 2015).

The Clayton copula (see Clayton, 1978; Genest and Rivest, 1993) is given by

CC(u1, u2 | θ) = (max{u−θ1 + u−θ2 − 1, 0})−1/θ

for θ > 0.

Finally, the Gumbel copula (see Gumbel, 1960) is given by

CG(u1, u2 | θ) = exp(−((− log u1)θ + (− log u2)θ)1/θ).

For both, the Clayton and the Gumbel copula, we also include the rotated version to
capture upper and lower tail dependence, respectively.

We follow Patton (2006) and Creal et al. (2013) to specify the time dynamics of the cop-
ulas. Time-varying copula models can be characterized by their time varying parameters.
As noted by Patton (2006) it is ”difficult to know what might (or should) influence” the
copula parameter to change unless the parameter has some kind of interpretation. Hence,
we limit our study to copulas characterized by such a parameter. For example, for the
time-varying t copula, the correlation among the risk factors and the degrees of freedom
are time-varying while for the Symmetrized Joe-Clayton Copula the upper and lower tail
dependence parameter is time-varying and for the Clayton copula Kendall’s tau is the
time-varying parameter.

Patton (2006) defines the updating equation for the time varying parameter of a bivariate
model by

ft+1 = ω − 1

m
A1 ·

m∑
i=1

| u1,t−i+1u2,t−i+1 | +B1ft,

where m is a positive integer that characterizes the smoothness of the function and u1,t

and u2,t are the probability integral transforms of the univariate marginals. Let ω < 0,
A1 > 0, and 1 > B1 > 0. If the most recent values of u1,t and u2,t are close together,
hinting at a stronger dependence, ft+1 is likely to increase, while for recent values that are
far apart ft+1 more likely decreases. We employ the approach by Patton for the symmetric
t and the SJC copula. For the symmetric t copula time dynamics are captured by a time
varying correlation parameter ρt that follows the transformation ρt = 1−e−ft

1+e−ft
= tanh(ft

2
).

The modified logistic transformation is used to keep ρt in (−1, 1) at all times.
Additionally, we allow for trends in the degrees of freedom (see also Christoffersen et al.,
2014). We assume that the degree of freedom at time t is given by the exponential
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quadratic spline

ηC,t = ηC + δC,0 exp
(
δC,1t+

k∑
j=1

δC,j+1 max(t− tj−1, 0)2
)
.

ηC marks the lower bound for the degrees of freedom and δC,0, ..., δC,k+1 are scalar pa-
rameters that have to be estimated. We split the sample in k segments of equal length
to obtain {t0 = 0, t1, t2, ..., tk = T}. For our estimations, we set k = 3 which allows us to
capture times of positive and times of negative trends.
By introducing time dependence in correlations and degrees of freedom, Christoffersen
et al. (2014) allow for time-variation in tail dependence that is distinct from time-variation
in correlations as tail dependence for the t copula is characterized by both, correlation
and degrees of freedom.

For the SJC copula we use Λ(x) ≡ 1
1+e−x

as logistic transformation which is used to keep

the parameters τU and τL in (0, 1) at all times (see Patton, 2006).

For the Clayton and the Gumbel copula we rely on the generalized autoregressive score
(GAS) model, GAS (1, 1), introduced by Creal et al. (2013), which is similar to the model
of Patton (2006) for m = 1. Creal et al. (2013) provide a dynamic version of following
their GAS specification. The density regarding to Creal et al. (2013) reads

cC(u1, u2, θ) = 1− 2 + u−θ1 + u−θ2 .

For the Clayton copula the time-varying factor following the GAS equation reads

ft =
1

θ2
t

ln ct(θt)−
( 1

1− θt
− ln(u1,t) +

1

1− 2θt
− ln(u2,t)

)
+
( 1

θt
+ 2
)
ct(θt)

−1
(
u−θt1,t ln(u1,t) + u−θt2,t ln(u2,t)

)
.

For the Gumbel copula, the updating equation for the dynamic parameter is given by

ft+1 = ω + βft + α ·
∂
∂θ

log cG(u1, u2 | θ)√
Et−1[( ∂

∂θ
log cG(u1, u2 | θ))2]

and the density reads

cG(u1, u2 | θ) =

CG(u1, u2, θ)
((− log u1)(− log u2))θ−1

((− log u1)θ + (− log u2)θ)2−1/θ

(
((− log u1)θ + (− log u2)θ) + θ − 1

)
.

The copula parameter of the Gumbel copula is required to be greater than one. Thus,
we use the function θt = 1 + exp ft to ensure this.

A.2 Measures of tail dependence

The main focus of our study is on the influence of tail dependence on CDS returns. A
convenient way to measure for the upper tail dependence at time t is via the probability
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limit:

τUi,j,t = lim
ζ→1

P[ui,t ≥ ζ | uj,t ≥ ζ] = lim
ζ→1

1− 2ζ + Ct(ζ, ζ)

1− ζ
.

Similarly, for the lower tail dependence

τLi,j,t = lim
ζ→0

P[ui,t ≤ ζ | uj,t ≤ ζ] = lim
ζ→0

Ct(ζ, ζ)

ζ
.

As far as our copula models are concerned, the Gumbel and the Clayton copula posses
upper and lower tail dependence that is not equal to zero, while dependence in the
opposite tail is zero for both cases. For the rotated versions of both copula models,
dependence in the tails is opposite. For both (or all four, together with the rotated
versions) copula models, the tail dependence depends on the dynamic copula parameter.
The SJC copula is characterized by positive tail dependence in the lower and the upper
tail, and these measures may be different. The tail dependence is given by the (time-
varying) copula parameters. Lastly, the (symmetric) t copula has the property of non-
negative tail dependence for both tails. However, the lower and the upper tail dependence
is identical for the symmetric t copula. For all copulas included in our study, closed form
equations for the tail dependence are known.

A.3 Tests of goodness of fit

This section briefly presents several goodness of fit tests that we employ to estimate the
fit of each copula model and identify one model as the model with the best fit. Relying
on the works of Genest et al. (2009); Kole et al. (2006) and Berg (2009) we first use the
Kolmogorov-Smirnov test and the Cramer-von Mises test to test the goodness of fit of our
copula models. Both of these tests rely on the empirical copula serving as a nonparametric
estimate of the true conditional copula. However, as our estimated copula is time-varying,
we cannot rely on the two tests directly. Instead, we follow Diebold et al. (1999); Genest
et al. (2009) and Rémillard (2010) and employ the Rosenblatt transformation (Rosenblatt,
1952) before using the Kolmogorov-Smirnov and the Cramer-von Misses tests.

The Rosenblatt transformation of the original data produces a vector of identical inde-
pendent uniform distributed variables on the interval [0, 1]. In the bivariate case, the
transform is given by

v1,t = u1, ∀t,
v2,t = C2|1,t(u2,t | u1,t, θ).

Note, that the ordering of the variables affects the transformation. Employing the Rosen-
blatt transformation, the Kolmogorov-Smirnov and the Cramer-von Misses tests are as
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follows:

ĈT (v) =
1

T

T∑
t=1

n∏
i=1

1Vi,t≤vi ,

C(Vt, θ̂T ) = V1,t · V2,t,

KS = max
t
| C(Vt, θ̂T )− ĈT (Vt) |,

CvM =
T∑
t=1

(
C(Vt, θ̂T )− ĈT (Vt)

)2

.

Note, that these gof-tests are designed to test the fit of the copula model over the entire
domain. For example, the Kolmogorov-Smirnov distances are sensitive to deviations in
the center of the distribution. However, as our study focuses on the tail dependence,
we additionally estimate a non-parametric dynamic estimator of upper tail dependence.
More precisely, we estimate the log estimator proposed by Frahm et al. (2005) using
rolling window estimation. Note, that we again perform the Rosenblatt transformation
before estimating the log estimator of tail dependence. We then calculate the Integrated
Anderson-Darling distances between the non-parametric tail dependence coefficients and
the tail dependence coefficients we infer from the fitted copula models via

Dj,AD =
T∑
ti=1

T∑
tk=1

(
λ̂U( ti

T
, tk
T

)− λUj ( ti
T
, tk
T
, θ̂)
)2

λUj ( ti
T
, tk
T
, θ̂) · (1− λUj ( ti

T
, tk
T
, θ̂))

,

where λU denotes the upper tail dependence coefficient, λ̂U denotes the empirical tail
dependence coefficient, θ̂ the estimated copula parameter(s), and the copula models are
evaluated at every point on the lattice

L =
[( ti
T
,
tk
T

)
, ti = 1, ..., T, tk = 1, ..., T

]
.

Lastly, we estimate the fit of each copula model based on the AD-distance to Pickands
dependency function evaluated at 0.5.

B Robustness Checks

Our basic BMA setup resides on some ad hoc assumptions such as to restrict the maximum
number of regressors to four and using the 10, 000 best models from the leaps and bounds
algorithm. Further, there might be concerns that models exhibiting serial correlation are
dynamically misspecified and this should be cured by additional lags of the endogenous
variable. However, since lagged endogenous infer the so-called Nickell-Bias in fixed effect
regressions, we also check robustness with respect to purely exogenous specifications, i.e.
where no lagged endogenous are present. To ensure that the assumptions made do not
influence our results, we carry out the following robustness checks:

1. We increase the number of models provided by the leaps and bounds algorithm from
10, 000 to 40, 000.
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2. We consider only models which exhibit no serial correlation. To ensure that the
model space provided by the leaps and bounds algorithm is large enough only models
with two lagged endogenous variables are considered in the search algorithm.

3. We consider only models without lagged endogenous variables to control for the
effect of the Nickell Bias.

4. We set nvmax, the maximum number of regressors in a model, to six instead of
four.

Table A.1 shows the results from our robustness checks regarding the BMA setup (un-
restricted and restricted). Each of the four robustness checks confirms our findings, i.e.
the model space is dominated by the t-copula followed by other copula based variables
by a large difference. Notably, the BMA specification (Setup D) where we allow for up
to six variables instead of four, shows that the inclusion of more variables leads to a
model space where no model satisfies the imposed model space conditions. As can be
seen from Table A.2, the exclusion restrictions ”kill” almost all models. From this we
conclude that the inclusion of more variables in the regressions simply supports models
where redundant information is present (i.e. variables with correlation of more than 70%
in absolute value).
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Unrestricted Restricted

S
et

u
p

A

Variable PIP LRM PIP LRM

GumbelU 100% 0.673 - -
GumbelL 100% -0.858 100% -0.247

tCop 100% 0.636 100% 0.702
dtCop 99% 0.191 99% 0.189

dFirmVal - - 8% -0.008
CDSVola 32% 0.045 33% 0.046
FedYoY - - 7% 0.007

FDIQoQ 9% 0.012 72% 0.132
FDIYoY 8% -0.011 - -
TedYoY - - 13% -0.014

Common 24% 0.054 - -
S

et
u

p
B

GumbelU 15% 0.073 -
GumbelL 87% -0.225 100% -0.217

tCop 100% 0.471 100% 0.660
dtCop - - 58% 0.081

CDSVola - - 15% 0.020
FDIQoQ - - 8% 0.011
Common 75% 0.208 - -

S
et

u
p

C

GumbelU 100% 0.673 - -
GumbelL 100% -0.858 100% -0.248

tCop 100% 0.636 100% 0.704
dtCop 99% 0.191 99% 0.190

dFirmVal - - 8% -0.009
CDSVola 32% 0.046 34% 0.047
FedYoY - - 8% 0.008

FDIQoQ 9% 0.012 72% 0.132
FDIYoY 9% -0.011 - -

Ted - - 7% -0.008
TedYoY - - 14% -0.015

Common 24% 0.055 - -

S
et

u
p

D

GumbelU 100% 0.64 - -
GumbelL 100% -0.85 - -
tCop 100% 0.64 - -
dtCop 100% 0.20 - -
CDSVola 95% 0.14 - -
GDPQoQ 12% -0.02 - -
FDIYoY 67% -0.11 - -
Common 15% 0.03 - -

Table A.1: Robustness Tests: Estimated PIP and LRM for different BMA setups.

The table shows PIP and LRM of all significant regressors in the unrestricted (left panel) and restricted
(right panel) model space for different BMA setups. A detailed list of all variables included in the models
and their description can be found in Tables 3 and 2. A variable is significant if the PIP is larger than the
prior inclusion probability. Setup A: Number of models obtained from the leaps and bounds algorithm is
increased from 10, 000 to 40, 000. Setup B: Model space restricted to models without serial correlation.
Setup C: Model space restricted to models without lagged endogenous variables to control for the effect
of the Nickell bias. Setup D: Maximum number of regressors allowed in a model is increased from four
to six.
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Setup A Setup B Setup C Setup D

Unfiltered Model Space 40,000 10,000 10,000 10,000
Occam’s Window Unrestricted 51 13 49 453

Models satisfying Exclusion Restrictions 1,510 8,360 1,490 53
Model satisfying Sign Restrictions 3,610 5,170 3,510 3,364

Models satisfying Exclusion & Sign Restrictions 282 2,187 510 0
Occam’s Window Restricted 127 14 123 0

R2 Range Model Space 50%-56% 44%-52% 51%-56% 55%-58%

Table A.2: Overview of the model space filtering process in the different robustness
checks.

The table presents an overview of our model space as a results to thorough filtering for our robustness
checks. Each line shows the size of our entire model space as a result of applying the described filter.
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Tang, D. Y. and H. Yan (2008). Liquidity and credit default swap spreads. SSRN Working
Paper .

Tang, D. Y. and H. Yan (2013). What moves cds spreads? Journal of Banking &
Finance 37 (3), 875–894.

Volinsky, C., D. Madigan, E. Raftery, and R. Kronmal (1997). Bayesian model averaging
in proportional hazard models: Assessing the risk of a stroke. Applied Statistics 46,
433–448.

Weiß, G. N. and M. Scheffer (2015). Mixture pair-copula-constructions. Journal of
Banking & Finance 54, 175–191.

Wooldridge, J. (2003). Cluster-sample methods in applied econometrics. American Eco-
nomic Review 93, 133–138.

Wright, J. H. (2008). Bayesian model averaging and exchange rate forecasts. Journal of
Econometrics 146 (2), 329–341.

Wright, J. H. (2009). Forecasting us inflation by bayesian model averaging. Journal of
Forecasting 28 (2), 131–144.

Zhang, B. Y., H. Zhou, and H. Zhu (2009). Explaining credit default swap spreads
with the equity volatility and jump risks of individual firms. The Review of Financial
Studies 22, 5099–5131.

58


	Non-technical summary
	Nicht-technische Zusammenfassung
	1 Introduction
	2 Related literature
	2.1 Determinants of CDS
	2.2 Model Averaging

	3 Data
	3.1 Sample construction
	3.2 Variables

	4 Methodology
	4.1 Regression setup
	4.1.1 Bayesian Model Averaging (BMA)
	4.1.2 Long-Run-Multiplier and Posterior Inclusion Probabilities
	4.1.3 Clustering of Standard Errors and Model Space Restrictions
	4.1.4 Out-of-Sample Hypothesis Testing


	5 Tail Dependence and CDS premia
	5.1 Copula model estimates, tail dependence and goodness-of-fit
	5.2 Correlation analysis
	5.3 Frequentistic Model Space Analysis
	5.4 BMA Estimates
	5.5 Analyses based on sub-samples
	5.6 Hypothesis tests based on forecast performance

	6 Conclusion
	A Time-varying copula models
	A.1 Modeling extreme comovements
	A.1.1 Univariate modeling of returns
	A.1.2 Time-varying copulas

	A.2 Measures of tail dependence
	A.3 Tests of goodness of fit

	B Robustness Checks
	References
	Leere Seite



