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Abstract

We propose theory-based Monte Carlo simulations to quantify the extent to which the

estimated speed of convergence depends on the underlying econometric techniques. Based

on a theoretical growth model as the data generating process, we find that, given a true

speed of convergence of around 5%, the estimated values range from 0.2% to 7.72%. This

corresponds to a range of the half life of a given gap from around 9 years up to several

hundred years. With the exception of the (very inefficient) system GMM estimator with

the collapsed matrix of instruments, the true speed of convergence is outside of the 95%

confidence intervals of all investigated state-of-the-art estimators. In terms of the squared

percent error, the between estimator and the system GMM estimator with the non-collapsed

matrix of instruments perform worst, while the system GMM estimator with the collapsed

matrix of instruments and the corrected least squares dummy variable estimator perform

best. Based on these results we argue that it is not a good strategy to rely on only one or

two different estimators when assessing the speed of convergence, even if these estimators

are seen as suitable for the given sources of biases and inefficiencies. Instead one should

compare the outcomes of different estimators carefully in light of the results of Monte Carlo

simulation studies.

Keywords: Speed of Convergence, Panel Data, Monte-Carlo Simulation, Estimator Bias,

Estimator Efficiency, Economic Growth.

JEL classification : C13, C23, O47.



1 Introduction

Since the publication of Islam (1995), panel data estimators have became a very popular tool

in the empirical analysis of economic growth (see Durlauf et al., 2005, for an overview of the

literature and a very detailed discussion of the problems that arise in these types of growth

regressions). While it seems that there is a broad consensus in the profession that a reasonable

estimate for the speed of convergence lies around 2%, the results of different econometric studies

vary wildly: Abreu et al. (2005) analyze 48 articles with 619 estimated values for the speed

of convergence and show that the estimates range from negative values to the maximum of

65.59%. This huge dispersion can be attributed partly to the use of different specifications,

different control variables, and different sample sizes, the presence of measurement errors, and

to endogeneity issues (see, for example, Durlauf, 2001; Durlauf et al., 2005). However, purely

methodological aspects also seem to play an important role: Abreu et al. (2005, p. 410) note

that generalized method of moments (GMM) estimators and the corrected least squares dummy

variable (LSDVC) technique yield substantially higher estimates than other approaches and

Hsiao et al. (2002) show in Monte-Carlo studies that the biases of GMM-based estimators can

be large.

From the perspective of growth economics, the large differences in the results delivered by the

different estimation techniques urge for a thorough analysis of the biases and inefficiencies of the

different state-of-the-art estimators that are used in growth econometrics. In a sample taken from

the real world, one can only speculate about the true speed of convergence because of the issues

described in the previous paragraph. However, simulations based on a theoretical model as the

“true” and known data-generating process offer an interesting opportunity to put the different

econometric techniques to a test. Such an approach allows to abstract from complications that

emerge in the real world such as measurement errors, omitted variables, different sample sizes,

and endogeneity by performing essentially a controlled experiment. Hauk and Wacziarg (2009)

were the first to provide a systematic analysis of the different biases involved with panel data

estimators in growth regressions. Our study differs from theirs along the following lines: i) while

Hauk and Wacziarg (2009) simulate data based on estimated fixed effects, we simulate different

trajectories of per capita GDP for different countries based on a Solow (1956) type of growth

model with different deep parameters (such as the savings rate and the population growth rate).

This yields simulated country-specific fixed effects without the need to rely on estimations and

allows us to infer the true underlying speed of convergence by design;1 ii) we do not only analyze

the extent of the bias of different estimators but also their confidence intervals. This yields the

surprising insight that the true speed of convergence is outside of the 95% confidence intervals

of all estimators, except for the system GMM (SYSGMM) estimator with a collapsed matrix

of instruments, which, however, delivers very inefficient estimates; iii) we include the LSDVC

estimator that has been proposed most recently as an alternative to GMM-based estimators as

a remedy for the Nickell (1981) bias in our analysis.

1Note that we do not need to simulate “realistic” convergence processes. In fact, all we need is that the
underlying true speed of convergence is known and that there are enough available data points for estimation.

2



In our paper we explicitly address the biases of the pooled least squares (POLS) estimator,

the random effects (RE) estimator, the between estimator (BE), the fixed effects (FE) estimator,

the difference GMM (DIFFGMM) estimator, the system GMM (SYSGMM) estimator, and the

LSDVC estimator.2 Knowing the true speed of convergence from the simulations, we compare

the different estimators and their confidence intervals for identifying those estimators that are

most promising for estimating the rate of convergence in practical applications. Since even al-

legedly unbiased estimators perform badly, we argue that researchers should not rely on only one

estimator when assessing the speed of convergence, even if this estimator is deemed to be suitable

for the different sources of biases involved in the given specifications and in the corresponding

data set. A better strategy would be to compare the outcomes of different estimators in light of

the results of Monte Carlo studies. Furthermore, we propose to use the information of different

available estimators by computing a simple average over the implied speeds of convergence and

to report this average in addition to the estimates that are directly obtained from the different

econometric methods.

The paper is organized as follows. In Section 2 we provide a short discussion of important

articles on convergence and we briefly describe known biases of panel data estimators and the

state-of-the-art solutions to cope with them. In Section 3 we provide a detailed explanation of

the data-generating process and the different scenarios and trajectories that we simulate. In

Section 4, we employ our generated data set to estimate the autoregressive coefficient of the

dynamic panel data model with the different state-of-the-art methods. We report the point

estimates and their confidence intervals for the different estimators and we compute the implied

speed of convergence and the squared percent error for each estimator. This allows us to assess

the biases of the estimators in terms of the deviations from the true speed of convergence and

the efficiency of the estimators in terms of the range of their confidence intervals. Finally, in

Section 5 we summarize our findings and conclude.

2 Panel data estimators and their known biases

While earlier studies of convergence relied on cross-sectional data (cf. Barro, 1991, 1997; Sala-i-

Martin, 1997), progress has been made toward the use of panel data in the mid 1990s (cf. Caselli

et al., 1996; Islam, 1995).3 The main advantages of the use of panel data in this context are that

i) the number of available observations increases substantially, ii) it becomes possible to control

for unobserved heterogeneity that stays constant over time, and iii) dynamic relationships can

be captured in a more accurate way by including the lagged dependent variable as a regressor

(see, for example, Baltagi, 2013; Hsiao, 2014; Pesaran, 2015, for detailed discussions).

While the inclusion of the lagged dependent variable in panel data growth regressions is

2For the conceptual details of the different estimators and their advantages and disadvantages see Hurwicz
(1950), Nickell (1981), Arellano and Bond (1991), Blundell and Bond (1998), Judson and Owen (1999), Wooldridge
(2002), Bun and Kiviet (2003), Bruno (2005), Hauk and Wacziarg (2009), Baltagi (2013), Hsiao (2014), Pesaran
(2015), Durlauf et al. (2005).

3For recent applications see, for example, Esposti (2007), Gehringer and Prettner (2014), Crespo-Cuaresma
et al. (2014), Hauk and Wacziarg (2009), Brückner (2013), Irmen and Litina (2016), and Cohen and Soto (2007).
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crucial for the calculation of the speed of convergence, its introduction comes with a substantial

cost: the estimation of dynamic models is subject to the Hurwicz (1950) bias and endogeneity

between fixed effects and the lagged dependent variable in FE estimation gives rise to the

Nickell (1981) bias. While the Hurwicz (1950) bias can only be mitigated by increasing the time

dimension of the panel data set, a number of estimators have been proposed to deal with the

endogeneity between fixed effects and the lagged dependent variable: difference GMM (Arellano

and Bond, 1991; Arellano and Bover, 1995), system GMM (Blundell and Bond, 1998) and the

LSDVC estimator (Bruno, 2005; Bun and Kiviet, 2003; Judson and Owen, 1999). In spite of the

fact that the new panel data estimators offer promising improvements over older ones (such as

POLS, FE, and BE), there are still a number of known biases arising from these estimators. The

sources of those biases that are relevant in our analysis are summarized in Table 1. Of course,

the extent of the bias may be different from case to case.

Table 1: Biases of panel data estimators that we address in our study

Biases POLS FE RE BE LSDVC DIFFGMM SYSGMM

Non-random heterogeneity x x
Omitted group effects x x x
Endogeneity of yt−1 x x x
Validity of instruments x x x

Sources: Buddelmeyer et al. (2008); Fernández-Val and Vella (2011); Hauk and Wacziarg (2009); Hayakawa (2007);

Roodman (2009); Wooldridge (2002).

With regards to POLS and RE estimators, Wooldridge (2002, pp. 249 and 257) notes that,

if the country-specific fixed effect denoted by μi is correlated with the explanatory variables,

then both estimators are biased. A very insightful overview of known biases of well-established

panel data estimators is provided by Hauk and Wacziarg (2009): among other biases, they note

that the omitted country-specific fixed effect may create a bias for BE and RE estimators and

endogeneity of the lagged dependent variable would cause a bias for FE and RE estimators.

Another issue is the problem of weak instruments as also noted by Hauk and Wacziarg (2009):

this problem is particularly severe in SYSGMM estimation because two types of instruments

are used, lagged levels and lagged differences. Even if the instruments are not weak, there

can simply be too many of them – this is described by Roodman (2009) for DIFFGMM and

SYSGMM and referred to as instrument proliferation. In general, the validity of instruments is

often not guaranteed in case of GMM-based estimators.4

4In our study we focus on the biases described in Table 1. However, there are other known sources for biases the
analysis of which would require a different underlying data-generating process. For example, all of the estimators
involved are exposed to the bias that arises because of measurement errors (Wooldridge, 2002, p. 311) and to the
serial correlation of the error term (see Wooldridge, 2002, pp. 282–283 and 307).
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3 The data-generating process

This section provides the detailed information on the data-generating process and the param-

eters that we use in the Monte-Carlo simulations. We proceed in the following manner: First,

we generate a time series of per capita output for one country over a pre-specified number of

years according to a dynamic process based on a Solow (1956) type of growth model. Note that

this is the simplest framework for simulating a convergence process of which we know the true

underlying speed and which we can use to assess the biases and the confidence intervals of our

different estimators. Nothing – except for additional complexity – would be gained by using

more sophisticated growth models with endogenous saving rates (as, for example, Cass, 1965;

Diamond, 1965; Koopmans, 1965; Ramsey, 1928) or endogenous technological progress (as, for

example, Howitt, 1999; Jones, 1995; Romer, 1990; Segerström, 1998) as baseline frameworks.

Second, we introduce unobserved heterogeneity, μi, by the means of a randomization of the

parameters of the Solow model to generate time series of per capita output for a pre-specified

number of different countries (the cross-country dimension, N). Third, we introduce idiosyn-

cratic distortions by means of stochastic shocks to account for the fact that there are deviations

from the output series that are not explained by the underlying theoretical framework.

Suppose that time t = 1, 2 . . . , T evolves discretely and that we are observing i = 1, 2, . . . N

different economies. Aggregate output of these economies is described by a Cobb-Douglas pro-

duction function of the form

Yi,t = AKα
i,tL

1−α
i,t ,

where Yi,t is aggregate output of country i at time t (which, by the national accounts identity, is

equal to aggregate income), A refers to the total factor productivity (TFP), Ki,t is the physical

capital stock (machines, production facilities, office buildings, etc.), Li,t is the amount of ag-

gregate labor input, and α is the elasticity of aggregate output with respect to physical capital

input. Households save a constant fraction si of their income Yi,t in each year, which implies

that physical capital accumulation is given by the dynamic equation

Ki,t+1 = siYi,t + (1− δ)Ki,t,

where δ is the rate of depreciation that does not differ between countries. We denote per worker

variables with lowercase letters such that per worker capital is given by ki,t = Ki,t/Li,t and per

worker output pins down to

yi,t = Yi,t/Li,t = kαi,t. (1)

Altogether, we can derive the following approximation of the fundamental equation of the Solow

(1956) model in terms of the evolution of capital per worker

ki,t+1 ≈ siAkαi,t + (1− δ − ni)ki,t, (2)

where ni is the growth rate of the workforce. Since we abstract from unemployment, childhood,

and retirement, per worker variables and per capita variables coincide, such that ni is equivalent
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to the population growth rate. Note that, in continuous time, the differential equation counter-

part to Equation (2) holds with equality. The approximation in case of discrete time becomes

better the lower the population growth rate and the smaller the time step between t and t+ 1.

In our case, where t is measured in yearly terms, this is a reasonable approximation. It would be

more difficult to defend this approximation in an overlapping generations framework in which a

time step refers to one generation and therefore lasts for around 25 years.

The steady-state capital stock can be determined by setting ki,t+1 = ki,t in Equation (2) and

is given by

k∗i =

(
siA

ni + δ

) 1
1−α

. (3)

Steady-state output per capita is then equal to

yi = (k∗i )
α =

(
siA

ni + δ

) α
1−α

. (4)

From now on we normalize A ≡ 1 for all countries, which does not impact on our qualitative

results.

The true speed of convergence λtrue,i can easily be derived for each country as (see Romer,

2006, pp. 25-26):

λtrue,i = (1− α)(ni − δ). (5)

The average values of λtrue,i over all countries are compared to the estimated speed of conver-

gence from the different estimation methodologies in Section 4. The variable that is crucial for

generating convergence is the initial level of capital, ki,0. In case that we set ki,0 to a small

value, we generate a poor country i that has a strong catch-up potential and will grow fast

initially. By contrast, if we set ki,0 close to the steady-state value, we generate a rich country

with a low catch-up potential that will grow sluggishly. To rule out the situation of convergence

to the steady state from above (i.e., with negative growth rates)5, we initialize the simulation

by setting ki,0 to a level below the steady-state according to

ki,0 = Dik
∗
i ,

where Di ∈ (0, 0.3] is the distance to the steady state as drawn from a truncated normal

distribution (see Tables 2 and 3 for an overview of the parameter values used in the different

simulation scenarios). We set the upper bound of the relative position of the initial capital stock

at 30% to ensure catch-up growth over a considerable time period.

Instead of generating the data set for different countries by relying on estimated fixed ef-

fects from empirical specifications as in Hauk and Wacziarg (2009, p. 116), we create artificial

countries, where we follow the theoretical limitations that are imposed on the parameters by

5It is often argued that the negative growth rates in the former countries of the Soviet Union in the 1990s
can be attributed to a shrinking capital stock. While the Soviet Union had a very high forced investment rate
that could not be sustained anymore after the communist system collapsed, in our simulations the question would
arise how a country could have built up a capital stock that is larger than its steady-state capital stock in the
first place.
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the structure of the Solow (1956) model in the simulation of the unobserved heterogeneity, μi.

Although it is not required to use plausible parameter values — because we could generate any

data set we want and use it as our data-generating process as long as we can compute the true

underlying speed of convergence — we think it is more comprehensible to use parameter values

that are familiar from growth theory and/or that are empirically plausible. Most of the param-

eters of the Solow model are bounded in some way, for example, si ∈ (0, 1), k0 > 0, α ∈ (0, 1),

and δ > 0 cannot attain negative values and some cannot exceed 1. This provides theoretical

restrictions that we impose on the parameter space by truncating the corresponding simulated

distributions (see Robert, 1995; Robert and Casella, 2005). Second, we use mean values of the

parameters that are reasonably close to the data observed in reality. We assume that α and δ

are fixed and equal across countries and set α = 0.35, which is broadly in line with the literature

(cf. Acemoglu, 2009; Jones, 1995), and δ = 0.06, which follows from the findings of Fraumeni

(1997). We introduce country-specific heterogeneity via the savings rate si and the population

growth rate ni. In so doing we rely on World Bank (2016) data for 214 countries over the years

1966 to 2014 to get the mean population growth rate of 1.83% and the mean gross savings rate

of 27.97%.6 While we could easily introduce additional country-specific heterogeneity in A, α,

and δ, this would merely complicate the analysis without leading to additional insights.7

We simulate four scenarios, two deterministic and two stochastic ones, for 150 countries and

100 time steps. In contrast to the deterministic scenarios, which result in smooth and concave

trajectories of output as it converges toward its steady-state level, the stochastic scenarios feature

additional shocks over time on output, denoted by εy, on the savings rate, denoted by εs, and on

the population growth rate, denoted by εn. Doing so introduces time-varying savings rates and

population growth rates si,t and ni,t (see Table 3, Scenario 4) without altering the underlying

speed of convergence in a systematic way. The stochastic shocks εy, εs, and εn are simulated

from a normal distribution such that these shocks can be considered as stochastic perturbations

similar to unsystematic measurement errors or transient exogenous shocks. We leave out the

first 5 time steps from the resulting series because the convergence effects are very strong for

countries with a low value of Di. We also drop the last 45 time steps because most countries

are already very close to their steady states after 50 years (see Figure 1 for the simulated time

paths of output per capita in the four scenarios). Out of the resulting time series variables, we

generate five-year averages to mimic the estimation strategy that is often employed to average

out business-cycle effects in real-world data (cf. Crespo-Cuaresma et al., 2014; Islam, 1995). As

a consequence, we have an artificial data set for 150 countries and 10 time periods (as five year

averages) such that N = 150 and T = 10 are the dimensions of our panel data set. These values

are quite common for panel data growth regressions.

The first scenario involves a limited randomization relying on a truncated normal distribution

only for Di and si, whereas in the second scenario we also randomize the population growth

6Countries with negative average values for s and n over this time period were left out of the consideration.
7Altogether, the distributions from which we draw the underlying parameters for the simulation are indepen-

dent from each other. It is possible to build in collinearity between the variables and to analyze the extent to
which different estimators can cope with multicollinearity. While this is outside of the scope of our paper, it is
surely a promising avenue for further research.
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rate ni. In the third scenario we introduce stochastic shocks to Equation (1) for the dynamics

of output, while the fourth scenario also features stochastic shocks on the savings rates and on

the population growth rates such that si,t and ni,t enter Equation (2) and the model dynamics

in a time-varying manner.

In the next section we estimate the AR(1) coefficient, which is required to determine the

speed of convergence, with different state-of-the-art panel data methods. We use the resulting

coefficient estimates to calculate the implied speed of convergence, λimplied, for each method.

The resulting value is compared to the true underlying speed of convergence, λtrue, such that

we can assess the direction and the extent of the bias of the different estimators. Furthermore,

we provide information on the confidence intervals of the different estimators to assess their

efficiency in a comparative way.

Table 2: Fixed parameter values and distributions from which the remaining parameters are
drawn for the deterministic scenarios

Scenario 1 2

Distance to the D ∼ N(0.1, 0.152) D ∼ N(0.1, 0.152)

steady state D ∈ [0.001, 0.3] D ∈ [0.001, 0.3]

s s ∼ N(0.2797, 0.09192) s ∼ N(0.2797, 0.09192)

s ∈ [0.0266, 0.6109] s ∈ [0.0266, 0.6109]

n 0.0183 n ∼ N(0.0183, 0.01172)

n ∈ [0, 0.0837]

α 0.35 0.35

δ 0.06 0.06

λtrue 0.0509 0.05208
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Table 3: Fixed parameter values and distributions from which the remaining parameters are
drawn for the stochastic scenarios

Scenario 3 4

Distance to the D ∼ N(0.1, 0.152) D ∼ N(0.1, 0.152)

steady state D ∈ [0.001, 0.3] D ∈ [0.001, 0.3]

s s ∼ N(0.2797, 0.09192) s ∼ N(0.2797, 0.09192)

s ∈ [0.0266, 0.6109] s ∈ [0.0266, 0.6109]

n n ∼ N(0.0183, 0.01172) n ∼ N(0.0183, 0.01172)

n ∈ [0, 0.0837] n ∈ [0, 0.0837]

α 0.35 0.35

δ 0.06 0.06

εy εy ∼ N(0, 0.0062) εy ∼ N(0, 0.0062)

εs - εs ∼ N(0, 0.00082); s.t. s > 0

εn - εn ∼ N(0, 0.000082); s.t. n > 0

λtrue 0.05208 0.0508
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Figure 1: Convergence paths for 150 countries from the different simulated scenarios of the Solow
(1956) model over 55 years (we excluded the first 5 years from the sample in the estimation part;
see Section 3 for details). Scenario 1 considers deterministic paths, where Di and si are allowed
to differ between the different countries. In Scenario 2 also the population growth rate ni is
country-specific. Scenario 3 introduces a stochastic shock εy on the per capita output series.
Scenario 4 allows for stochastic shocks also on the savings rate (εs) and on the population growth
rate (εn).
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4 Estimation and comparative assessment of the results

In this section we estimate the speed of convergence that is implied by the different parameter

estimates of the AR(1) term in the dynamic panel data growth regressions (λimplied). We

compare the resulting value to the true value (λtrue) that we know for each scenario from the

simulations. Based on these values, we measure the error of each estimated value as captured

by the relative distance of the implied estimated speed of convergence from the corresponding

true speed of convergence. This allows us to compare the extent of the biases of the different

estimators. Furthermore, we provide the confidence intervals for the different estimates of the

AR(1) term and assess whether or not its true value is captured by them. Finally, we assess

the efficiency of the different estimators by comparing the size of their confidence intervals. The

equations that we estimate are described in detail by Bond et al. (2001, p. 15) and Islam (1995,

p. 1136):

yi,t̄ = γyi,t̄−1 + φt̄ + μi + υi,t̄,

γ = e−λimplied·τ ,

λimplied = − log(γ)

τ
.

where yi,t̄ is average per capita output of country i between time t and t − 4, yi,t̄−1 refers to

the corresponding lagged variable, φt̄ is a vector of time-specific fixed effects, μi is a vector of

country-specific fixed effects, υi,t̄ is an idiosyncratic error term, γ refers to the auto-regressive

coefficient, λimplied is the implied speed of convergence obtained via the estimate for γ, and τ is

the number of periods captured by each time step, which is 5 in our case.

The POLS, FE, RE, and BE estimators are applied without the implementation of additional

corrections/options. In case of LSDVC, DIFFGMM, and SYSGMM, we had to make further

decisions. For both, DIFFGMM and SYSGMM, standard errors have been estimated with the

small-sample correction proposed by Windmeijer (2005). In DIFFGMM and SYSGMM, the

5-year period dummies were used as variables and as instruments. In addition, for SYSGMM,

we implemented two versions, one with the full matrix of instruments and one with the matrix of

instruments collapsed, which reduces the number of instruments from 64 to 20. In this context,

instrument proliferation (or “too many instruments”) can lead to various problems as described

in detail by Roodman (2009). Both versions of the estimates are presented here. The ones

obtained with the collapsed matrix on instruments are marked by ‘col’. In the initialization of

the LSDVC estimator we use the SYSGMM estimator with the collapsed matrix of instruments.

Furthermore, we implement bias correction up to the third order as proposed by Bruno (2005)

and we report bootstrapped standard errors for this estimator based on 50 replications.

Before displaying the values of λimplied as obtained from our estimates, we first plot the AR(1)

coefficients with the corresponding confidence intervals in Figure 2. Since we know λtrue, we can

derive the true AR(1) coefficient, which is indicated by the green dotted line for each scenario.

Even if the estimated AR(1) coefficient is close to the true value, the confidence intervals can
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be very large such that even the cases of no convergence [with the AR(1) coefficient being equal

to 1] and immediate convergence [with the AR(1) coefficient being equal to zero] are inside the

confidence interval.

Figure 2: Estimated values of the AR(1) coefficient, γ. Note: The dotted green lines refer to
the true value (γtrue) as calculated from the known speed of convergence (λtrue). The different
estimators are denoted by the following list of letters A = POLS, B = FE, C = RE, D = BE, E
= LSDVC, F = DIFFGMM, G = SYSGMM col, and H = SYSGMM. The circles indicate the
point estimates for the corresponding parameters, while the whiskers refer to the 95% confidence
intervals.

Let us first discuss the results for the deterministic Scenarios, 1 and 2. Our expectations

regarding the different forms of biases and their direction (see Table 1) are met in case of

the POLS, FE, and BE estimators. The first two underestimate the true value of the AR(1)

coefficient, whereas the latter overestimates it. Note that the BE estimator performs badly,

which contrasts with the findings of Hauk and Wacziarg (2009) – in their analysis BE performs

reasonably well.

In general, the RE estimator performs surprisingly well in Scenarios 2, 3, and 4. Whereas in

Scenario 1 only Di and si are randomized, in Scenario 2, ni is randomized as well and we have

additional random shocks in Scenarios 3 and 4. By the design of our simulations, the variables

that are responsible for the country-specific heterogeneity (Di, si, and ni) were sampled from

truncated normal distributions with the mean being different from zero. At first glance it might
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seem that this construction provides an advantage for the RE estimator. However, the key

assumption of the RE estimator is that E(μi|xi) = E(μi) = 0 (Wooldridge, 2002, p. 257), or

that the country-specific effects are orthogonal to the explanatory variables. This is not the case

in our generated data set. By the design of our simulations, the dynamics of yi,t̄ are related to

its lagged level, which is a regressor. The latter can also be seen in Table 4, which illustrates

three facts that are common for all of our scenarios: i) the country-specific effects correlate

with the regressors; ii) the F test rejects the null of μi = 0; and iii) the Hausman test indicates

that the parameter estimates of the RE specification differ from the ones of the FE specification

(which does not need to be problematic because we know that the FE estimator is biased in the

given setting). For Scenarios 1-4 in Table 4 the Hausman test is conducted for the basic model

with time dummies. In case of “Scenario 4, expanded”, we additionally control for si,t and ni,t

because they are allowed to vary over time in Scenario 4. Even for the expanded specification,

the Hausman test indicates that the parameter estimates of the RE specification differ from the

ones of the FE specification. Therefore, while the results of the RE estimator are close to the

target, this should be interpreted cautiously.

Table 4: A closer look at the fixed effects

Fixed effects inference corr(μi, Xβ) F test, H0: μi = 0 Hausman FE vs. RE
(p-values) (p-values)

Scenario 1 0.5855 0.0000 0.0000
Scenario 2 0.6290 0.0000 0.0000
Scenario 3 0.6279 0.0000 0.0000
Scenario 4 0.6098 0.0000 0.0000
Scenario 4, expanded 0.6661 0.0000 0.0000

The GMM methods tend to yield estimates for the AR(1) coefficient that are quite far off

the mark. DIFFGMM underestimates the true value, whereas SYSGMM overestimates it. As

we see in Figure 4, these discrepancies have direct implications for λimplied: DIFFGMM yields

a higher speed of convergence than the true value, whereas SYSGMM yields a substantially

lower one. SYSGMM with the collapsed instrument matrix gives a coefficient estimate that is

close to the true coefficient, yet, the confidence intervals are extremely wide, which indicates

that the estimator might not be useful from a practical point of view. The LSDVC estimator

overestimates the true AR(1) coefficient, but, in general, the estimator performs better than the

others in Scenario 1 (see Figure 3) when bearing the confidence intervals for SYSGMM with the

collapsed instrument matrix in mind.

For the deterministic Scenarios 1 and 2, the worst three performers in terms of the squared

percent error are the BE, SYSGMM (with the full matrix of instruments), and the FE estimators.

The best three performers are the SYSGMM (with the collapsed matrix of instruments), LSDVC,

and RE. Recalling the mentioned problems with the RE estimator and that the SYSGMM

estimator with the collapsed matrix of instruments yields extremely wide confidence intervals,

LSDVC again performs reasonably well.
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Figure 3: Squared Percent Error of the different estimators. Note: The estimators are referred to
by the following letters; A = POLS; B = FE; C = RE; D = BE; E = LSDVC; F = DIFFGMM;
G = SYSGMM, col; H = SYSGMM.

The stochastic Scenarios 3 and 4 offer interesting information on the performance of the

estimators after the introduction of stochastic shocks. In Scenario 3 only the time series for

output is perturbed, while, in Scenario 4, s and n are also affected by shocks (see Table 3).

For these scenarios, the POLS, FE, and BE estimators perform as poorly as in the determin-

istic scenarios. The DIFFGMM estimator still underestimates the true coefficient, whereas the

SYSGMM estimator with the full matrix of instruments overestimates it. Yet, both estimators

perform slightly better in terms of the error than for the deterministic cases (see Figure 3).

The worst performers remain the BE, the SYSGMM (with full matrix of instruments), and the

FE estimators. For Scenario 3, SYSGMM with the collapsed matrix of instruments, RE, and

LSDVC yield the best results. However, the confidence interval of the SYSGMM estimator with

the collapsed matrix of instruments is still the widest among all estimators. For Scenario 4 the

situation is similar: RE and SYSGMM with the collapsed matrix of instruments have the lowest

error. However, DIFFGMM slightly outperforms the LSDVC estimator, which contrasts with

the other scenarios. For the exact values see Table 5, which contains the squared percent error

as described above.

Finally, Table 6 provides the numerical values obtained by the different estimators for the

implied speed of convergence and the true speed of convergence for comparison, while Figure

4 illustrates the discrepancies graphically. We observe that the implied speed of convergence
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ranges from barely above 0 in case of the BE and the SYSGMM estimators to almost 8% in case

of the POLS, FE, and DIFFGMM estimators. Consequently, depending on the estimator that

is used in a certain study, the half life (the time it takes until half of the gap between current

per capita GDP and steady-state per capita GDP is closed), ranges from around 9 years in

case of the FE estimator to several hundred years in case of the BE estimator. Finally, we also

compute the mean over the values for the estimated speed of convergence for all of the involved

estimators. The result is surprisingly close to the true speed of convergence.

The central conclusion of our paper is therefore immediately clear. One should never rely on

only one or two different estimators when assessing the speed of convergence, even if they are

deemed to be suitable for the different sources of biases involved in the empirical specification

and in the corresponding data set. A better strategy is to compare the outcomes of different

estimators and to keep their biases and inefficiencies from Monte Carlo studies in mind when

drawing conclusions based on them. Our computations of the mean over the estimated speed of

convergence for all of the involved estimators suggests that this mean is surprisingly close to the

true speed of convergence. It might therefore be good strategy in applications to also provide

the averages of estimated parameter values.
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Table 5: Squared percent error (Fig. 3)

Estimator Scenario 1 Scenario 2 Scenario 3 Scenario 4

PA 0.0006704 0.0005688 0.0005790 0.0004119
FE 0.0006930 0.0006105 0.0006212 0.0004545
RE 0.0003393 0.0000251 0.0000186 0.0000772
BE 0.0023887 0.0025366 0.0025469 0.0023729
LSDVC 0.0002541 0.0003280 0.0002836 0.0003750
DIFFGMM 0.0004697 0.0005790 0.0005289 0.0003565
SYSGMM, col 0.0000220 0.0000729 0.0000156 0.0000261
SYSGMM 0.0007674 0.0024855 0.0024144 0.0016961

Table 6: Estimates of the implied speed of convergence (Fig. 4)

Estimator Scenario 1 Scenario 2 Scenario 3 Scenario 4

POLS 0.0768 0.0759 0.0761 0.0711
FE 0.0772 0.0768 0.0770 0.0722
RE 0.0693 0.0571 0.0564 0.0536
BE 0.0020 0.0017 0.0016 0.0021
LSDVC 0.0350 0.0340 0.0352 0.0315
DIFFGMM 0.0726 0.0761 0.0751 0.0697
SYSGMM, col 0.0462 0.0435 0.0481 0.0457
SYSGMM 0.0232 0.0022 0.0029 0.0097

True lambda 0.0509 0.0521 0.0521 0.0508
Simple average over all estimators 0.0503 0.0459 0.0466 0.0445
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5 Conclusions

We generated an artificial data set from the simulated growth trajectories of a Solow (1956)

model for 150 countries over a time span of 100 years to construct a panel data set with the

dimensions N = 150 and T = 10 (with the data being averaged over 5 years). This is a typical

sample size of panel data growth regressions used to assess the speed of convergence. The

resulting trajectories exhibit a rate of convergence that can be calculated and used as the true

underlying rate of convergence in a controlled experiment to assess the biases and inefficiencies

of different panel data methods against each other. In the simulation exercise we considered two

deterministic scenarios, where the first assumes differences in initial capital stocks and savings

rates between the different countries, the second allows for different population growth rates,

the third introduces stochastic shocks on the per capita output series, and the forth allows for

stochastic shocks on savings rates and population growth rates. We use a battery of standard

estimators to assess the speed of converge and find that the estimated speed of convergence is

typically far off the true speed of convergence. With the true rate being around 5% throughout

the 4 scenarios, the estimated rate of convergence ranges from barely above 0% to almost 8%.

This means that, while the true half life is around 14 years, the estimated half life ranges from

9 years to several hundred years.

Our analysis sheds some light on the performance of different estimators in certain underlying

stylized environments. This is crucial, given that the results of different econometric techniques

regarding the analysis of panel data vary widely. For the sake of clarity, we did not include

additional complications such as autocorrelated disturbances, multicollinearity, problems with

small samples, and systematic measurement errors. These would have required a more elaborate

simulation design with some additional arbitrary choices involved, which is outside the scope of

the present paper. We think that analyzing these issues is a promising area for further research.

The immediate conclusion from our results is that it might not be a good strategy to rely

on only one or two different estimators when assessing the speed of convergence in empirical

growth regressions, even if these estimators are seen as suitable for the given sources of biases and

inefficiencies. It seems to be a better strategy to compare the outcomes of different estimators

carefully in light of the results of Monte Carlo simulation studies. Furthermore, it could be useful

to compute and report also the mean over the different estimated parameter values derived from

the different estimators.
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