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Abstract

As panel vector autoregressive (PVAR) models can include several countries and
variables in one system, they are well suited for global spillover analyses. However,
PVARs require restrictions to ensure the feasibility of the estimation. The present
paper uses a selection prior for a data-based restriction search. It introduces the
stochastic search variable selection for PVAR models (SSVSP) as an alternative es-
timation procedure for PVARs. This extends Koop and Korobilis’s stochastic search
specification selection (S4) to a restriction search on single elements. The SSVSP al-
lows for incorporating dynamic and static interdependencies as well as cross-country
heterogeneities. It uses a hierarchical prior to search for data-supported restrictions.
The prior differentiates between domestic and foreign variables, thereby allowing a
less restrictive panel structure. Absent a matrix structure for restrictions, a Monte
Carlo simulation shows that SSVSP outperforms S4 in terms of deviation from the
true values. Furthermore, the results of a forecast exercise for G7 countries demon-
strate that forecast performance improves for the SSVSP specifications which focus
on sparsity in form of no dynamic interdependencies.
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1 Introduction

Intensifying international goods and knowledge flows, as well as trade agreements,
show the importance of international interdependencies among economies. With
these inter-linkages, considering spillovers in real and financial variables across coun-
tries is essential. Shocks are likely to propagate internationally with asymmetric
effects across various economies. Global spillover analyses require taking both the
interdependencies and heterogeneities across countries into account. Analyses dis-
regarding country specific information and global dependencies could end up with
biased results regarding spillover effects and transmission channels.1

One tool that is able to consider dynamic and static global interdependencies as
well as cross-section heterogeneities is the unrestricted panel vector autoregressive
(PVAR) model. A PVAR includes several countries and several variables in one
model. Thus, lagged foreign variables can impact domestic variables, meaning that
dynamic interdependencies exist. Static interdependencies between two variables of
two countries occur if the covariance between the two is unequal to zero. Finally,
the PVAR accounts for heterogeneity across countries since the coefficient matrices
can vary across economies. This strength of PVARs to be able to take into account
interdependencies and heterogeneities across countries in one model comes at the
cost of a large number of parameters to estimate. The unrestricted PVAR model
which includes N countries, G variables, and P lags has (NG)2P parameters of the
coefficient matrix and NG(NG+1)

2
parameters of the covariance to estimate. This is

set against a usually relatively low number of time series observations for macroe-
conomic variables. To overcome this problem, the researcher has to set restrictions
on the PVAR.

Despite the high potential of PVAR models for international spillover analy-
ses, estimation strategies for PVARs are still limited. Papers implementing PVAR
models often use assumptions on homogeneity and no dependencies to ensure the
feasibility of the estimation.2 Others follow the cross sectional shrinkage approach
proposed by Canova and Ciccarelli (2009), which factorize the coefficients. A third
and straightforward way of setting restrictions is to use the inherent panel struc-
ture in the data to assume that there are only interdependencies and heterogeneities

1Compare to Canova and Ciccarelli (2009), Canova and Ciccarelli (2013), Luetkepohl (2014)
and Georgiadis (2015).

2Estimation procedures for these models are described in Canova and Ciccarelli (2013) and
Breitung (2015).
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across countries for specific country and variable combinations. The aim of this
paper is to conduct a data-based restriction search by using a selection prior.

The paper specifies a selection prior for PVAR models that differentiates between
domestic and foreign variables for each country. The algorithm, based on the selec-
tion prior, will search for dynamic interdependencies by checking whether the impact
of lagged foreign variables is zero. Further, it will assess static interdependencies
and use the restrictions as additional zero restrictions on a recursively identified
structural PVAR model. This will be achieved by searching for zero restrictions
on the upper triangular decomposition matrix of the covariance matrix. Finally,
the algorithm searches for homogeneity between coefficients of domestic variables of
different countries. It follows closely the selection prior for PVAR models of Koop
and Korobilis (2015), which is called stochastic search specification selection (S4),
but extends the approach from a matrix wide search to single elements, as George
et al. (2008) do in their stochastic search variable selection (SSVS) for VAR models.
In order to distinguish the algorithm from S4 and SSVS, the algorithm is called
stochastic search variable selection for PVAR models (SSVSP).

The SSVSP extends the estimation procedure for PVAR models, contributing to
the existing literature on PVARs. The paper adds to the selection prior literature,
in particular by extending the S4 algorithm. By implementing their prior on country
matrices, Koop and Korobilis (2015) assume a specific panel structure; namely, all
variables of one country are treated in a similar way: either restricted or not. The
SSVSP allows for a less restrictive panel structure. It does not restrict variables on a
country basis but searches for dynamic and static interdependencies for each foreign
variable as well as for homogeneity for each domestic variable. Thus, the underlying
panel structure separates domestic and foreign variables, although foreign variables
are not separated on a country basis.

This less restrictive panel structure has the advantages that, firstly, the SSVSP
prior has a wider range for empirical application than does the more rigid S4. Ap-
plications, including financial and real variables, can especially benefit from a less
restrictive form since the SSVSP can incorporate variable specific restrictions. For
example, the prior allows for the possibility that only foreign financial variables
have a dynamic impact on a domestic variable while real variables have no impact.
Secondly, the SSVSP is able to provide a clear ranking of posterior probabilities of
which variables to include in the model and which coefficients are homogeneous for
each equation. Using the S4 prior of Koop and Korobilis (2015) has the problem that
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the decision for excluding a single variable depends on the results for a matrix-wide
search. Thirdly, compared to the commonly used Litterman prior for Large Bayesian
VAR models, which assumes a specific shrinkage depending on the lag number, the
SSVSP differentiates between domestic and foreign variables, thus taking the panel
structure into account.3

These advantages are reflected in the results of both a Monte Carlo simulation
and a forecasting exercise. Firstly, the results of the Monte Carlo studies show that
especially when a more flexible panel structure is present, the posterior estimates
of the SSVSP deviate less from the true values than the ones of S4. Furthermore,
the SSVSP is accurate in the selection of the restrictions displayed in the poste-
rior probabilities for no interdependencies and homogeneity. Secondly, the results
of the empirical application demonstrate that forecast performance improves for the
SSVSP specifications which focus on sparsity in form of no dynamic interdependen-
cies. The very large number of restrictions searched for in the SSVSP - dynamic
and static interdependencies as well as homogeneity restrictions - leads to relatively
weak forecast performance. In addition, the impulse responses to a shock in the US
interest rate show plausible results which are in line with the literature. Overall, the
results regarding the use of the SSVSP for PVAR models are encouraging.

2 Literature

So far, the literature basically has two ways to overcome the curse-of-dimensionality
problem in PVAR models. One strand of the literature using PVAR models makes
the assumption of either homogeneity or a lack of dynamic or static interdepen-
dencies.4 These assumptions should be based on a solid theory. One common re-

3In addition to PVARs, large Bayesian VAR and Global VAR models are also potential tools
to analyze international spillovers. Detailed descriptions of the two models are in Banbura et al.
(2010), Pesaran et al. (2004), and Dees et al. (2007). However, these two types of models come with
some limitations. Large Bayesian VAR models are limited in terms of neglecting the existence of a
panel dimension in the data. BVAR models usually assume identical priors for each country. Thus,
large BVAR models are especially applicable for analyzing intra-country spillovers, including a large
number of variables. Global VARs, however, are restrictive in the way that they impose a particular
structure on interdependencies by the chosen weights for aggregating the foreign component. GVAR
models are especially useful for studies focusing on aggregated impacts or on spillovers from one
large economy. In contrast to macroeconomic panel regressions, PVAR models allow to focus on
effects on each single country and variable in the structural analysis while standard panel regressions
deliver averaged or pooled results.

4Examples include Love and Zicchino (2006), assuming homogeneity and no dynamic interde-
pendencies, and Ciccarelli et al. (2013), restricting for no dynamic interdependencies.
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striction is to block exogeneity based on the small-open-economy assumption. The
second strand of literature follows the cross sectional shrinkage approach proposed
by Canova and Ciccarelli (2009).5 The authors reduce the number of coefficients to
be estimated, generating a common, country-specific, and variable-specific factor.

For global spillover analyses, it is hard to justify exogeneity, homogeneity, and
no dependence assumptions. However, using the estimation strategy of Canova and
Ciccarelli (2009) complicates structural shock identification because their model has
two potential types of impulses. The first type is an impulse to the factors, the other
to the variables. These two types come from the estimated evolution of the factors
and from the regression in which the coefficients depend on a number of factors. To
be able to only focus on impulses to the variables, the impulse response analysis
must be done conditionally on shocks to the factors and vice versa. This paper
follows a different approach to estimate the PVAR model by using a selection prior.
An advantage of this prior is that it can easily account for the panel structure of
the data and can handle both an over-parameterized unrestricted model as well as
a large number of restricted models.

The selection prior literature starts with the paper of George and McCulloch
(1993), who developed the prior for multiple regression models. The procedure,
which the authors call stochastic search variable selection (SSVS), selects the vari-
ables that should be included in the regression model. This is achieved by using a
hierarchical prior for the coefficients of the right hand side variables. The variables
that should be included in the model occur more frequently when sampling from the
conditional posterior distributions in the Gibbs sampler. George et al. (2008) further
develop the SSVS, extending it for use with VAR models. They set a hierarchical
prior on the autoregressive coefficients and find the elements that equal zero. Addi-
tionally, the authors use the prior for structural identification. They decompose the
covariance matrix into two upper triangular matrices and let the SSVS algorithm
find additional zero restrictions by searching for the elements of the decomposition
matrix that are zero. Korobilis (2008) and Jochmann et al. (2010) show that forecast
performance is improved for VAR models when using SSVS. The first paper uses
SSVS in a factor model that includes a large number of macroeconomic variables
for the United States. The second paper allows for structural breaks. Using data
for the United States, the authors show that forecasts improve mainly due to the
usage of SSVS and not due to the consideration of structural breaks. Subsequently,

5Examples include Canova et al. (2012) and Ciccarelli et al. (2012).
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Korobilis (2013) extend the selection priors further to nonlinear set-ups.
Koop and Korobilis (2015) are the first to develop a selection prior for PVAR

models. Their stochastic search specification selection (S4) builds closely on George
et al. (2008) but adds a restriction search for homogeneity of domestic autoregressive
coefficients across countries. Further, in contrast to SSVS, they run the restriction
search on whole matrices including all variables of one country and, thusly, assume a
specific matrix panel structure. Therefore, the authors called their procedure speci-
fication search. Koop and Korobilis (2015) show with their Monte Carlo simulation
that S4 performs better than the OLS estimates. On average, the S4 estimates are
closer to the true values than the OLS estimates. Using data for sovereign bond
yields, industrial production, and bid-ask spread for euro area countries from Jan-
uary 1999 through December 2012, they show that model fit improves when taking
the characteristics of a panel model into account compared to a BVARmodel without
restriction search. Thus, the results of Koop and Korobilis (2015) show clearly that
a prior for the PVAR model has to account for the inherent panel dimension within
the data. Korobilis (2016) comes to the same conclusion. He compares different prior
specifications for PVAR models. For larger PVAR models, priors taking the panel
dimension into account deviate less from the true values than other VAR priors. In
addition, priors with a panel dimension improve the forecasting performance that
he demonstrates for the same empirical application as in Koop and Korobilis (2015).
For small samples, however, the Bayesian shrinkage priors cannot outperform the
OLS estimates.

One main drawback of S4 is that the results lose detail since the S4 algorithm is
applied to matrices. Koop and Korobilis (2015) assume a specific country grouping
for the restrictions. The authors can only make statements about interdependencies
and heterogeneities between the countries but not which variables are driving the
linkages and country specific coefficients. But this detail is essential for further in-
terpretation of the results. Doing the restriction search for matrices can also lead to
the exclusion of potentially important variables since decisions can only be made for
whole matrices. Instead, the SSVSP makes a restriction search for each variable and,
thus, can provide evidence supporting the exclusion of a single lag of a variable. In
addition, in a set-up where country grouping for restrictions does not hold, Korobilis
(2016) shows that the absolute deviation from the true value is lower for SSVS than
it is for S4. This result contributes to the argument for a restriction search on single
elements.
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One problematic issue is that SSVSP requires the SUR form of a VAR model,
leading to the inversion of large matrices. This leads to a computationally demand-
ing algorithm for medium and large size VARs.6 To overcome this problem, Koop
(2013) develops a natural conjugate selection prior for VARs. Here, no MCMC
methods must be used. However, the natural conjugate selection prior has two dis-
advantages.7 Firstly, each variable can only be either included or excluded in the
whole VAR system. Secondly, the natural conjugate specification requires a spe-
cific covariance prior. Thus, a restriction search for the covariance elements of the
VAR is not possible. Hence, for the purpose, being able to include static interde-
pendencies and to allow for dynamic interdependencies that are not homogeneous
across countries, the natural conjugate SSVS prior is not an alternative. Instead,
the computational burden is accepted for having a differentiated prior that is able to
account for the characteristics of a PVAR model, which should be less of a problem
with increasing computational capacities.

3 PVAR Restrictions

A PVAR model for country i at time t with i = 1, ..., N and t = 1, ..., T is given by

yit = Ai1Yt−1 + Ai2Yt−2 + ...+ AiPYt−P + uit, (1)

where Yt−1 = (y′1t−1, ..., y
′
Nt−1)

′ and yit denotes a vector of dimension [G× 1].8 The
number of variables is defined as G. All Aip have dimension [G × NG] for lag
p = 1, ..., P . The index i denotes that the matrices are country specific for country
i. The uit are uncorrelated over time and normally distributed with mean zero and
covariance matrix Σii. The covariance matrix between errors of different countries
is defined as E(uitu

′
jt) = Σij ∀ i 6= j with dimension [G×G].

The PVAR model for all N countries can then be written as

Yt = A1Yt−1 + A2Yt−2 + ...+ APYt−P + Ut. (2)

The Yt and Ut are [NG× 1]-vectors. The Ut is normally distributed with mean zero
and covariance matrix Σ that is of dimension [NG×NG]. The [NG×NG]-matrix

6Both Koop (2013) and Korobilis (2013) elaborate further on this issue.
7Koop (2013) explains the disadvantages of the natural conjugate prior in detail.
8Although this specification does not include a constant, it can be extended to include one.
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Ap for one lag p, p = 1, ..., P , is defined as

Ap =



α11
p,11 · · · α1k

p,1j · · · α1G
p,1N

... . . . ... . . . ...
αl1p,i1 · · · αlkp,ij · · · αlGp,iN
... . . . ... . . . ...

αG1
p,N1 · · · αGkp,Nj · · · αGGp,NN


.

The element αlkp,ij refers to the coefficient of lag p of variable k of country j in the
equation of variable l of country i. Thus, it measures the impact of lag p of variable
k of country j on variable l of country i.

The following simple example will make the notation of α clear. The exemplary
PVAR is a model with one lag and includes 3 countries and 2 variables (N = 3,
G = 2).9 The A matrix for the model with one lag will have the following form:

A =



α11
11 α12

11 α11
12 α12

12 α11
13 α12

13

α21
11 α22

11 α21
12 α22

12 α21
13 α22

13

α11
21 α12

21 α11
22 α12

22 α11
23 α12

23

α21
21 α22

21 α21
22 α22

22 α21
23 α22

23

α11
31 α12

31 α11
32 α12

32 α11
33 α12

33

α21
31 α22

31 α21
32 α22

32 α21
33 α22

33


,

where the first two rows are the equations for country 1, then rows 3 and 4 are the
equations for country 2, and the last two rows belong to country 3. Thus, α21

13, for
example, measures the impact of variable 1 of country 3 on variable 2 of country 1.

A structural form of the PVAR model is derived by decomposing the covariance
matrix Σ into Σ = Ψ−1

′
Ψ−1 where Ψ is a upper triangular matrix. Therefore, the

structural identification is based on a recursive order. An element ψlkij of the upper
triangular matrix Ψ defines the static relation between variable l of country i and
variable k of country j.

This structural PVAR model can account for dynamic interdependencies (DI),
static interdependencies (SI), and cross-section heterogeneities (CSH).10 Firstly, the
model allows lagged variables of foreign countries to impact domestic variables.

9The notation is changed for simplicity from now on. If a model with only one lag is considered,
the index of the coefficient matrix and of single coefficients referring to the lag order is omitted.

10Canova and Ciccarelli (2013) provide a survey of the PVAR restrictions.
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Secondly, there are static interdependencies between two variables of two countries
if the element of the upper triangular decomposition matrix of the covariance matrix
is equal to zero. Thus, the search for static interdependencies allows for a data-based
structural identification of a PVAR model using additional zero restrictions on top
of a recursive order. Thirdly, the PVAR accounts for heterogeneity across countries
since the Aip matrices can vary across countries.

The strength of PVARs to account for interdependencies and heterogeneities
comes at the costs of many parameters to estimate. To overcome this problem
the researcher must set restrictions on the PVAR. A straightforward way of setting
restrictions is to use the panel structure inherent in the data. Thus, one can expect
that there are only interdependencies and heterogeneities across countries for specific
country and variable combinations. For example, expectations could be that the
short term interest rate of the United States impacts the Eurozone interest rate or
that strong GDP growth in France also impacts German exports. On the other hand,
one would assume that the Canadian GDP growth does not influence the Eurozone’s
short term interest rate or that Japanese GDP growth is dynamically independent of
changes in Italian GDP growth. We would also expect that the sign and magnitude
of the impact of Portugal’s and Spain’s GDP growth on their domestic GDP growth
is fairly similar, while it would differ from the impact of United States’ GDP growth
on itself.

Therefore, for some coefficients the following restrictions can be found in the
data:

1. No dynamic interdependencies (DI): no lagged impact from variable l of
country i to variable k of country j if αlk1,ij = ... = αlkp,ij = 0 for j 6= i and
∀p = 1, ..., P

2. No static interdependencies (SI): no correlation between the error term
of equation l of country i, ulit, with the error term of equation k of country j,
ukjt, if ψlkij = 0 for j 6= i

3. No cross-section heterogeneities (CSH): homogeneous coefficient across
the economies if αlkp,jj = αlkp,ii for j 6= i and ∀p = 1, ..., P

We can define [(NG−G)NG] DI, [(N(N − 1)/2)G2] SI, and [(N(N − 1)/2)G2] CSH
restrictions.11 The essential part is to determine for which country and variable

11Note that while SI restrictions are symmetric, DI restrictions cannot be symmetric.
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combinations these restrictions hold. The SSVSP algorithm is able to search for
PVAR restrictions that are supported by the data. The SSVSP of this paper follows
closely Koop and Korobilis (2015).

4 Selection Prior for PVAR

The stochastic search variable selection algorithm for PVARs works with the unre-
stricted PVAR model. In the following, the PVAR model is simplified to a model
including only one lag. If the researcher includes several lags, the restriction search
for dynamic interdependencies would provide guidance as to which lags should be
included in the model. Thus, the DI restriction search can be used as a lag length
selection criterion. The full unrestricted model with one lag can be rewritten as

Yt = Zt−1α + Ut, (3)

where α is the vectorized matrix A and Zt−1 = (ING ⊗ Yt−1).
The basic idea of a selection prior is that the selection of a variable is made

by a hierarchical prior. Each element of α is drawn from a mixture of two normal
distributions centering around the restriction, either with a small or large variance.
Depending on a hyperparameter, γ, which is Bernoulli distributed, the coefficient
shrinks to the restriction (small variance case) or is estimated with a looser prior
(larger variance case). Thus, the algorithm imposes soft restrictions by allowing for
a small variance. In contrast to Koop and Korobilis (2015), the restriction search
is completed for each single element and not on the whole matrices that includes
all variables for a given country. A Gibbs sampler is used to obtain the posterior
distributions.

The SSVSP algorithm has now specific priors for the parameters of A1 and for the
covariance matrix building with the DI, SI, and CSH restrictions. The DI restrictions
impose limits on the coefficients of the lagged foreign endogenous variables. The DI
prior is given by

αlkij | γlkDI,ij ∼ (1− γlkDI,ij)N (0, τ 21 ) + γlkDI,ijN (0, τ 22 )

γlkDI,ij ∼ Bernoulli(πlkDI,ij).

9



The prior distribution of αlkij is conditional on the hyperparameter γlkDI,ij. This
hyperparameter also has a distribution. That is why the prior is called a hierarchical
prior. γlkDI,ij is Bernoulli distributed.12 Thus, it takes either the value one or zero. If
γlkDI,ij is equal to zero, αlkij is drawn from the first part of the normal distribution with
mean zero and variance τ 21 . If γlkDI,ij is equal to one, αlkij is drawn from the second
part of the normal distribution with mean zero and variance τ 22 . The values of τ 21
and τ 22 must be chosen such that τ 21 is smaller than τ 22 . Thus, if γlkDI,ij = 0, the prior
is tight in the sense that the parameter is shrunk to zero. Whereas the prior is loose
for γlkDI,ij = 1 since the prior variance is larger. Hence, if γlkDI,ij = 0, no dynamic
interdependency is supported by the data and the coefficient will be estimated with a
small variance around zero. Going back to the simple 3-country-2-variable example,
the coefficients of A, which are checked for dynamic interdependencies, are now
marked with DI:

A =



DI DI DI DI

DI DI DI DI

DI DI DI DI

DI DI DI DI

DI DI DI DI

DI DI DI DI


.

The covariance matrix of the PVAR model is decomposed into two upper tri-
angular matrices Ψ, Σ = Ψ−1

′
Ψ−1. This ensures a recursive order to identify the

structural shocks of the PVAR model. The SI prior is set on the elements of the
upper triangular matrix. If SI restrictions are found, the structural PVAR is overi-
dentified since additional zero restrictions can be set on top of the recursive ordering.
The SSVSP prior is a data-based method to structurally identify the system. It has
the drawback that the identification is limited since it only allows for a recursive
structure. A clear advantage of this decomposition is that it assures that by con-
struction every simulated Σ is positive definite.13

12How πlk
DI,ij is set is described in detail in the Appendix. This holds also for the CSH and SI

priors.
13Compare also to Koop and Korobilis (2015).
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The prior for SI restrictions follows the same logic as the DI prior:

ψlkij | γlkSI,ij ∼ (1− γlkSI,ij)N (0, κ21) + γlkSI,ijN (0, κ22)

γlkSI,ij ∼ Bernoulli(πlkSI,ij).

The prior is for all j 6= i. To assure positive variance elements, the (ψkkii )2 are gamma
distributed, (ψkkii )2 ∼ G(a, b). The elements for the same country, ψlkii for l 6= k, are
normally distributed with mean zero and variance κ22. All ψlkij elements (j 6= i) are
drawn from the specified hierarchical prior. Thus, the parameters are drawn from
a weighted normal distribution with weights γlkSI,ij ∈ {0, 1}. The parameter κ21 is
smaller than κ22. If γlkSI,ij is equal to zero, the parameter shrinks to zero showing that
the data do not support static interdependency. The SI restrictions are symmetric.
Back to the example, the following elements of the covariance matrix are checked
for static interdependencies:

Ψ =



SI SI SI SI

SI SI SI SI

SI SI

SI SI


.

The selection prior can also easily be used to only estimate the reduced form of a
PVAR model by not defining the Ψ-matrix and not searching for static interdepen-
dency restrictions but by assuming a standard distribution for the PVAR variance,
e.g. an inverse Wishart distribution.

Searching for homogeneity across countries is not as straightforward as searching
for the zero restrictions for dynamic and static interdependencies. The main contri-
bution of Koop and Korobilis (2015) is the development of a procedure how to search
for CSH restrictions. Possible homogeneity across countries is assessed for the coeffi-
cients measuring the impact of domestic variables on domestic variables. Economies
have homogeneous coefficient if αlkjj, the coefficient of variable k of country j in the
equation of variable l of the same country j, is equal to αlkii , the coefficient of the
same variable k but of country i in the equation of variable l of country i. The
restricted part of the distribution assumes that in mean the coefficients are equal,
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αlkjj = αlkii in mean, while the unrestricted part has mean zero. The CSH prior is
given by

αlkjj | γwCSH ∼ (1− γwCSH)N (αlkii , ξ
2
1) + γwCSHN (0, ξ22)

γwCSH ∼ Bernoulli(πwCSH).

The prior is for all j 6= i. There are (N(N − 1)/2)G2 = K combinations of coeffi-
cients that are checked for homogeneity. The index w = 1, ..., K refers to a specific
combination. Again, ξ21 is smaller than ξ22 . The main difference to the DI and SI
prior is that instead of shrinking the parameter to zero in the first part of the nor-
mal distribution, the mean is equal to the coefficient for which homogeneity is being
checked. Going back to the 3-countries-2-variables example, the coefficients that are
marked with CSH are checked for homogeneity:

A =



CSH CSH

CSH CSH

CSH CSH

CSH CSH

CSH CSH

CSH CSH


.

The algorithm checks, for example, whether the coefficient of the first variable of
country 1 (in the equation of the first variable for country 1) is equal to the co-
efficient of the first variable of country 2 (in the equation of the first variable for
country 2), the same between country 1 and 3 as well as between 2 and 3. Thus,
for the first variable in the equation of the same variable three combinations are
checked for homogeneity. The restrictions are α11

11 = α11
22, α11

11 = α11
33, and α11

22 = α11
33.

To be able to check all possible combinations, the procedure of Koop and Koro-
bilis (2015) is followed, who define a selection matrix

Γ =
K∏
w=1

Γw.

The number of Γw matrices equals the number of possible combinations to check for
homogeneity, w = 1, ..., K. Each Γw has the dimension [NG×NG]. The matrix Γw

is an identity matrix with two exceptions. The diagonal element at the position αlkjj
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is set equal to γwCSH and the off-diagonal element referring to the element αlkii is set
equal to (1 − γwCSH). Back to the example, if α11

11 = α11
22 is checked, the restriction

matrix is an identity matrix of dimension [NG × NG] = [36 × 36]. The element
in the first row and first column is replaced by γ1CSH and the element in the 15th
row and first column, referring to the position of α11

22 in the vectorized A matrix, by
(1 − γ1CSH). If γ1CSH equals zero, α11

11 and α11
22 are homogeneous. If all coefficients

are heterogeneous, all Γw are identity matrices. To impose the CSH restrictions, the
posterior mean of α is multiplied by the selection matrix Γ.

The posterior distributions are simulated using a Gibbs sampler. The prior spec-
ification, normal mixture distributions, has the advantage that it allows the usage
of the Gibbs sampler which is easily solvable.14 The means of the posterior distri-
butions are used as point estimates for the coefficients.

The outcome of the algorithm can be interpreted in two ways.15 Based on the re-
sults of the algorithm, the researcher can select one specific restricted PVAR model.
Hence, the algorithm is used as a model selection criterion. The posterior probabil-
ities γDI , γSI , γCSH give the information whether a variable is included in the model
or not and whether it is homogeneous or not. These probabilities are calculated as
the proportion of γDI , γSI , or γCSH draws that equal one over all draws. Based on
the estimated γDI , γSI , γCSH values, it is possible to provide a ranking for DI, SI
and CSH restrictions. The posterior probabilities γDI , γSI , γCSH can be sorted in
descending order. The researcher can set the restrictions successively starting with
the variable for which the posterior probability of γDI , γSI , or γCSH being zero is
highest or for which the probability being one is lowest. The researcher can set the
restrictions successively until the model with the best fit is found.

Another way to make the selection is via a threshold value. The selection prior
literature often uses 0.5 as a threshold value to determine whether a restriction is set.
Using the results as a model selection criterion shows particularly well the strong
advantages of the SSVSP prior for PVAR compared to the S4. While Koop and
Korobilis (2015) can only make statements about including or excluding a whole
country, based on the SSVSP it is possible to make clear decisions on exclusion for
every single variable. Using the SSVS of George et al. (2008) would also allow the
researcher to make clear statements about single variables, but it neglects the pos-

14The Gibbs sampler algorithm is described in detail in the Appendix.
15Compare to the general survey in Koop and Korobilis (2010) or the specific explanation for

the S4 in Koop and Korobilis (2015).
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sibility of cross-sectional homogeneities as an important characteristic of PVARs.
Alternatively, the outcome of the algorithm can be used as a Bayesian model aver-
aging (BMA) result. Thus, the posterior means averaged over all draws are taken as
coefficient estimates. Since each draw leads to a specific restricted model, the BMA
results average over all possible restricted models.

5 Monte Carlo Simulation

5.1 Simulation Set-up

In order to evaluate the prior, two Monte Carlo simulations are conducted.16 For
both Monte Carlo simulations data are generated from a panel VAR model which
includes three countries, two variables for each country, one lag, and 100 observa-
tions. Assume for an international spillover analysis that both dynamic and static
interdependencies as well as cross-sectional heterogeneities exist for specific variable
and country combinations. Firstly, assume that country 2 has a dynamic impact
on country 1 and country 1 on country 3. Country 3 does not impact the other
two countries dynamically. Coefficients are homogeneous between countries 2 and
3. Static interdependencies exist between country 1 and 2. This example has a
clear country grouping structure. Hence, all variables of one country have either an
impact on all variables of a second country or not. The same holds for homogeneity
across countries. A scenario like this is given by the first Monte Carlo simulation
where the following parameter values are set:

Atrue =



0.8 0 0.2 0.2 0 0

0 0.7 0.3 0.3 0 0

0 0 0.6 0.5 0 0

0 0 0 0.5 0 0

0.3 −0.4 0 0 0.6 0.5

0.2 0.4 0 0 0 0.5


,Ψtrue =



1 0 0.5 0.5 0 0

0 1 0.5 0.5 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


.

16100 samples, each with a length of 100 are simulated. The Gibbs sampler is done with 55000
draws, of which 5000 draws are disregarded as draws of the burn-in-phase. The calculation is
based on a further development of the MATLAB code provided by Koop and Korobilis (2015)
(https://sites.google.com/site/dimitriskorobilis/matlab/panel_var_restrictions).
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Separating A1 and Ψ into [2× 2] matrices that only include variables of one country
shows the clear country grouping structure.

Secondly, assume that the interdependency and homogeneity structure is not
automatically similar for all variables of one country. Hence, a less restrictive panel
structure exists. Thus, the first variable of country 2 and 3 has a dynamic impact on
country 1’s variables, but not the second variable of the foreign countries. Assume
that variable 1 of country 3 is dynamically influenced by both variables of country 1,
while there are no such interdependency structures for variable 2. Static interdepen-
dencies and homogeneity across coefficients also only exist for special country and
variable pairs. The second Monte Carlo simulation incorporates these properties
and has the following true parameters:

Atrue =



0.8 0 0.2 0 0.2 0

0 0.7 0.2 0 0.2 0

0 0 0.6 0.5 0 0

0 0 0 0.3 0 0

0.3 −0.4 0 0 0.6 0.5

0 0 0 0 0 0.5


,Ψtrue =



1 0 0.5 0 0 0

0 1 0 0.5 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


.

Here the interdependency structure between the countries and homogeneity across
parameters varies across variables. There is no clear country grouping.

The performance of SSVSP will be compared to the performance of different
prior specifications. The benchmark model is a model with no restriction search,
referred to as unrestricted VAR. This model is estimated using the SSVSP prior but
with fixed γ values such that each parameter is drawn from the distribution with
the higher variance. Furthermore, the SSVSP will be compared to the S4 and to the
SSVS of George et al. (2008).17 The SSVS prior sets the DI prior on all lagged values
and the SI prior on all covariance elements. Thus, no distinction between domestic
and foreign variables is made. Additionally, two specific specifications of the SSVSP
will be compared. Firstly, the SSVSP will only search for DI restrictions (abbrevi-
ated with SSVSP_DI), meaning that the γ values for the SI and CSH priors are set
to one (coefficients are drawn from the looser parts of the distributions). Secondly,
the restriction search will only be done for CSH restrictions (SSVSP_CSH).

The performance of each estimator is checked via the Absolute Percentage De-
17The prior hyperparameters used in the Monte Carlo simulations for all different priors are

given in the Appendix.
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Table 1: Absolute percentage deviation for estimated coefficient matrix A from the true
value

Simulation 1 Simulation 2

SSVSP 0.043 0.036
SSVSP_DI 0.026 0.023
SSVSP_CSH 0.041 0.037
S4 0.048 0.056
SSVS 0.067 0.066
unrest VAR 0.027 0.027

APD: deviation of the estimated coefficients from the true value, average over 100 MC draws
and all coefficients. Coefficient estimates are the posterior means averaged over all MC draws.
SSVSP_DI: SSVSP with only DI restrictions. SSVSP_CSH: SSVSP with only CSH restrictions.
S4: prior of Koop and Korobilis (2015). SSVS: prior of George et al. (2008). Unrest VAR:
parameters drawn from unrestricted part of distributions. Simulation 1: DGP has matrix panel
structure. Simulation 2: DGP has flexible panel structure.

viation (APD) statistic:18

APD =
1

(NG)2

(NG)2∑
i=1

| αi − αtruei | .

The statistic measures the absolute deviation of the estimated coefficient αi, given
by the posterior mean averaged over all simulation draws, from the true value, αtruei .
Furthermore, the accuracy of the SSVSP to find the restrictions is checked. This is
achieved by comparing the restrictions’ probabilities to the true values. Thus, the
probabilities that αlkij = 0, ψlkij = 0, and αlkjj = αlkii are compared among themselves
and in relation to the true values. These posterior probabilities are calculated as
the proportion of γlkDI,ij, γlkSI,ij, and γwCSH draws that equal zero averaged over all
Gibbs sampler draws and all simulated samples. The higher the proportion of γ
draws that equal zero is, the higher the probability is that no dynamic and no static
interdependencies exist and coefficients are homogeneous.

5.2 Results

The results of the Monte Carlo study demonstrate that, firstly, the SSVSP outper-
forms the S4 in terms of closeness to the true coefficients. This especially holds when

18Both Koop and Korobilis (2015) and Korobilis (2016) use mean deviation statistics to evaluate
the performance of estimators in Monte Carlo simulations.
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Figure 1: Range of posterior probabilities αlkij = 0, ψlkij = 0, and αlkjj = αlkii

Posterior probabilities, p(αlk
ij = 0), p(ψlk

ij = 0), and p(αlk
jj = αlk

ii ), are calculated as the proportion
of γlkDI,ij , γ

lk
SI,ij , and γwCSH draws that equal zero averaged over all Gibbs sampler draws and

all simulated samples. Simulation 1: DGP has matrix panel structure. Simulation 2: DGP has
flexible panel structure.

a less restrictive panel structure is present. Secondly, the SSVSP accurately selects
the restrictions. This is validated by the higher posterior probabilities for no inter-
dependencies and homogeneity for parameters which are truly zero or homogeneous
compared to the probabilities for non-zero and heterogeneous parameters.

As table 1 shows, the estimated coefficients which are the posterior means aver-
aged over all simulation draws from the SSVSP are on average slightly closer to the
true values compared to S4 for both simulations.19 The APD for the SSVSP takes
a lower value, APDSSV SP = 0.043 for simulation one and APDSSV SP = 0.036 for
simulation two, compared to the value for the S4, APDS4 = 0.048 for simulation
one and APDS4 = 0.056 for simulation two. This holds also for the SSVSP_DI
and SSVSP_CSH. In particular, the S4 performs weaker in simulation two, where a
less restrictive panel structure is present, since the grouping structure on which the
restriction search is done is not present in the data. However, the unrestricted VAR
outperforms the SSVSP and S4. But, the estimated coefficients from SSVSP_DI
deviate less from the true values, APDSSV SP_DI = 0.026 for simulation one and

19SSVSP estimates for A and Σ are given in the Appendix for both simulations.
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Table 2: Accuracy of selecting DI restrictions: posterior probabilities for restrictions
p(αlkij = 0)

Simulation 1 Simulation 2

- - 0.2 0.2 0 0 - - 0.2 0 0.2 0
0.26 0.38 0.88 0.78 0.30 0.62 0.38 0.59

- - 0.3 0.3 0 0 - - 0.2 0 0.2 0
0.06 0.18 0.83 0.76 0.31 0.70 0.30 0.70

0 0 - - 0 0 0 0 - - 0 0
0.71 0.75 0.85 0.73 0.82 0.73 0.84 0.65
0 0 - - 0 0 0 0 - - 0 0
0.74 0.77 0.89 0.79 0.84 0.75 0.86 0.71
0.3 -0.4 0 0 - - 0.3 -0.4 0 0 - -
0.15 0.03 0.79 0.64 0.19 0.03 0.76 0.67
0.2 0.4 0 0 - - 0 0 0 0 - -
0.25 0.05 0.78 0.66 0.86 0.79 0.83 0.71

True values are in bolt, probabilities for restrictions, p(αlk
ij = 0), are in italic. Posterior prob-

abilities, p(αlk
ij = 0), are calculated as the proportion of γlkDI,ij draws that equal zero averaged

over all Gibbs sampler draws and all simulated samples. Simulation 1: DGP has matrix panel
structure. Simulation 2: DGP has flexible panel structure.

APDSSV SP_DI = 0.023 for simulation two, than the estimates of the unrestricted
VAR. Doing the restriction search only for CSH, however, reduces the average de-
viation from the true values only in simulation one compared to the SSVSP. This
indicates that the gain cannot be explained by the reduced number of restrictions
on which the search is done for but rather by searching for no dynamic interdepen-
dencies. Thus, the use of a prior which incorporates no dynamic interdependencies
is beneficial for the DGPs of both simulations.

Furthermore, the SSVSP algorithm is accurate in selecting the restrictions. This
is true because posterior probabilities that no interdependencies or heterogeneities
exist are higher for true zero or homogeneous values compared to the probabilities
for true non-zero or true heterogeneous values shown in figure 1. The graph presents
the range of posterior probabilities for simulation one and two for true zero or ho-
mogeneous coefficients and true non-zero or true heterogeneous coefficients. The
posterior probabilities, p(αlkij = 0), p(ψlkij = 0), and p(αlkjj = αlkii ), are calculated
as one minus the posterior means for γlkDI,ij, γlkSI,ij, and γwCSH averaged over all MC
draws. Since the γ parameters are Bernoulli distributed, the posterior probabilities
measure the proportion of γlkDI,ij, γlkSI,ij, and γwCSH draws that equal zero averaged
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Table 3: Accuracy of selecting SI restrictions: posterior probabilities for restrictions
p(ψlkij = 0)

Simulation 1 Simulation 2

- - 0.5 0.5 0 0 - - -0.5 0 0 0
0.56 0.54 0.72 0.80 0.49 0.95 0.78 0.95

- - -0.5 -0.5 0 0 - - 0 -0.5 0 0
0.56 0.50 0.74 0.76 0.91 0.20 0.89 0.91

- - - - 0 0 - - - - 0 0
0.84 0.86 0.90 0.93

- - - - 0 0 - - - - 0 0
0.91 0.91 0.92 0.93

True values are in bolt, probabilities for restrictions, p(ψlk
ij = 0), are in italic. Posterior prob-

abilities, p(ψlk
ij = 0), are calculated as the proportion of γlkSI,ij draws that equal zero averaged

over all Gibbs sampler draws and all simulated samples. Simulation 1: DGP has matrix panel
structure. Simulation 2: DGP has flexible panel structure.

over all Gibbs sampler draws and all simulated samples. Looking at simulation one
and DI restrictions, the probabilities that αlkij = 0 are considerably higher for true
zero parameters than for true non-zero values. The first are in a range between
0.64 and 0.89 while the latter one are between 0.03 and 0.38. Turning to simulation
two, if no dynamic interdependencies occur in truth, shown by zero values for the
parameters, the probabilities that αlkij = 0 are between 0.59 and 0.86. These values
are all higher than the probabilities for the parameters which dynamically affect the
dependent variables. These probability values are between 0.03 and 0.38. Table 2
shows the posterior probabilities for αlkij = 0 and 3 for ψlkij = 0 in detail. The true
values of the simulations are presented in bolt, probabilities for the restrictions in
italic. Results for simulation one are shown in the left column, results for simulation
two in the right column. Focusing on simulation one, the probability for no dynamic
impact of country 2 on country 1 for variable 2, for example, shown in the second
row of the table, is 0.06 for variable 1 and 0.18 for variable 2. The true values,
each 0.3, show that dynamic interdependencies exist. The variables of country 3,
however, have no dynamic impact on variable 2 of country 1, shown by the zero
values. The algorithm finds here a substantially higher probability for no dynamic
interdependencies with values of 0.83 for variable 1 and 0.76 for variable 2.

The SSVPS also selects accurately the SI restrictions in both simulations. This
is true since for both simulations the probabilities that ψlkij = 0 are higher for true
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Table 4: Accuracy of selecting CSH restrictions: posterior probabilities for restrictions
p(αlkjj = αlkii )

Simulation 1 Simulation 2

coefficients true αlkjj true αlkii p(αlkjj = αlkii ) true αlkjj true αlkii p(αlkjj = αlkii )

α11
11 = α11

22 0.8 0.6 0.61 0.8 0.6 0.65
α21
11 = α21

22 0 0 0.73 0 0 0.79
α12
11 = α12

22 0 0.5 0.19 0 0.5 0.28
α22
11 = α22

22 0.7 0.5 0.54 0.7 0.3 0.30
α11
11 = α11

33 0.8 0.6 0.63 0.8 0.6 0.64
α21
11 = α21

33 0 0 0.75 0 0 0.82
α12
11 = α12

33 0 0.5 0.18 0 0.5 0.27
α22
11 = α22

33 0.7 0.5 0.57 0.7 0.5 0.40
α11
22 = α11

33 0.6 0.6 0.79 0.6 0.6 0.75
α21
22 = α21

33 0 0 0.80 0 0 0.80
α12
22 = α12

33 0.5 0.5 0.64 0.5 0.5 0.57
α22
22 = α22

33 0.5 0.5 0.65 0.3 0.5 0.48

Probabilities for CSH restrictions, p(αlk
jj = αlk

ii ), are in italic. Posterior probabilities, p(αlk
jj = αlk

ii ),
are calculated as the proportion of γwCSH draws that equal zero averaged over all Gibbs sampler
draws and all simulated samples. Simulation 1: DGP has matrix panel structure. Simulation 2:
DGP has flexible panel structure.

zero compared to non-zero parameters. The results for simulation one show that
probabilities are in a range of 0.72 and 0.91 for zero values while for the existing
static interdependencies between country 1 and 2 for both variables probabilities are
between 0.50 and 0.56. For simulation two the probabilities for no static interdepen-
dencies, between 0.78 and 0.95, are clearly higher for the true zero values compared
to the probabilities for non-zero values, 0.20 and 0.49.

Moreover, the SSVSP is mostly accurate in the selection of the cross-section het-
erogeneity restrictions. The detailed results for p(αlkjj = αlkii ) are presented in table 4.
For both simulations probabilities that the coefficients are homogeneous are higher
for true homogeneous coefficients (with few exceptions for simulation two). However,
especially for true values which are close to each other but not equal the probabilities
for homogeneity are relatively high with values above 0.5. For example, α11

22 = α11
33,

true values 0.6 and 0.6, has a higher posterior probability for homogeneity, 0.79 for
simulation one and 0.75 for simulation two, than the clearly heterogeneous coeffi-
cients α12

11 and α12
33, 0 and 0.5, with probabilities of 0.18 for simulation one and 0.27

for simulation two. However, the coefficients α11
11 and α11

33, with true values 0.8 and
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0.6 have a relatively high posterior probability for homogeneity, 0.63 for simulation
one and 0.64 for simulation two. This slightly weaker performance of the SSVSP to
pick the correct CSH restrictions compared to DI and SI was already visible in the
APD results for the SSVSP_CSH.

6 Empirical Application

6.1 Data and Procedure

The SSVSP is now applied to a simple empirical application. The analysis consists
of three key macroeconomic variables: a growth rate of industrial production (IP),
a CPI growth rate (CPI), and a short term interest rate (IR). The model includes
the G7 countries.20 The application can be used to study cross-country spillovers in
macroeconomic variables. The variables can show synchronized business cycles or
spillovers from monetary policy. The data are from the OECD and have monthly fre-
quency from 1990:1 through 2015:2. The PVAR model includes one lag.21 The model
which is considered here serves as an illustration for the performance of SSVSP. In
many ways it will not be the best model for the DGP as it, for example, takes into
account only a fraction of variables which could be of interest for assessing the ques-
tion of global spillovers. Furthermore, the lag order one is set by assumption and
not further validated.

The variables are ordered in a recursive way. Thus, the upper triangular matrix
Ψ has the following simplified form focusing on the country order:

CA

I

UK

F

J

D

US



× × × × × × ×
× × × × × ×
× × × × ×

0 × × × ×
× × ×
× ×
×


.

20The countries are Canada (CA), Italy (I), United Kingdom (UK), France (F), Japan (J),
Germany (D), and United States (US).

21The hyperparameters of the prior distributions are set as in the Monte Carlo simulations.
Detailed information is provided in the Appendix. 110,000 draws are computed for the Gibbs
sampler, the first 10,000 are disregarded as burn-in-phase.
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For each country the three macroeconomic variables are included. The industrial
production growth rate is ordered first, CPI growth rate second, and the short term
interest rate third. The monetary policy shock for one country is thus identified
by the assumption that the interest rate does not react contemporaneously to un-
expected changes in real variables while a monetary policy shock instantaneously
impacts the two real variables. The recursive country ordering is based on the open-
ness of a country. Openness is measured based on yearly import and export data
for the economies. The higher the trade of a country is, the more open it is. The
countries are arranged in ascending order meaning that the most open country, the
United States, is ordered last. Thus, US variables can influence all other countries
contemporaneously but are not affected by the variables of the remaining G7 coun-
tries.

Using the empirical application as an example, the SSVSP is validated based
on its forecasting performance, on the restriction posterior probabilities, and on an
impulse response analysis. At first, forecasts are provided for 12 horizons for the
period beginning from January 2005 through the end of the sample.22 To obtain
the forecasts a predictive distribution is simulated based on the reduced form of
the PVAR model with normal distributed error terms. The reduced form model
is the model where no SI restriction search is done and the covariance matrix is
drawn from an inverse Wishart distribution.23 The forecasts are evaluated using the
mean squared forecast error (MSFE) and the average predictive likelihoods (PL).
The MSFE is calculated as the difference between the estimated forecast and the
true value given by the data. The MSFEs for a specific variable and horizon are
averaged over all forecasts. The PL is the posterior predictive density evaluated at
the true observation yt+h.

The forecast performance is compared to the unrestricted VAR, SSVSP_DI,
SSVSP_CSH, S4, and SSVS. Furthermore, two specifications are added which ac-
cess the selection property of the SSVSP: SSVSP_setDI_v1 and SSVSP_setDI_v2.
SSVSP_setDI_v1 uses the outcome of the SSVSP and sets zeros whenever the pos-
terior probability for a DI restriction is larger than 0.99. Based on this model the
forecasts are produced. SSVSP_setDI_v2 also sets these coefficients to zero but
uses 0.5 as a threshold value. Furthermore, the SSVSP is validated based on the

22The forecasts for the included 21 variables are generated iteratively. Forecasts start conditional
on the data from January 1990 to December 2004.

23The covariance matrix is drawn from an inverse Wishart distribution with T degrees of freedom
and identity matrix plus sum of squared residuals as scaling matrix.
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Table 5: MSFEs relative to unrestricted VAR

number of MSFEs ≤ 1(in %)

horizon 1 2 4 6 12

SSVSP 38.10 42.86 33.33 28.57 33.33
SSVSP_DI 100.00 85.71 85.71 95.24 90.48
SSVSP_CSH 33.33 38.10 19.05 23.81 52.38
SSVSP_setDI_v1 0.00 0.00 52.38 57.14 66.67
SSVSP_setDI_v2 4.76 4.76 52.38 71.43 80.95
S4 42.86 33.33 38.10 33.33 47.62
SSVS 19.05 9.52 66.67 95.24 76.19

MSFE: difference between the estimated forecast and the true value given by the data, relative to
unrestricted VAR. Forecasts are provided for 12 horizons for the period beginning from January
2005 through the end of the sample. Unrestricted VAR: parameters drawn from unrestricted
part of distributions. S4: prior of Koop and Korobilis (2015). SSVS: prior of George et al.
(2008). SSVSP_DI: SSVSP with only DI restrictions. SSVSP_CSH: SSVSP with only CSH
restrictions. SSVSP_setDI_v1: threshold 0.99 to set zero DI restrictions. SSVSP_setDI_v2:
threshold 0.5 to set zero DI restrictions. Σ drawn from inverse Wishart distribution with T
degrees of freedom and identity matrix plus sum of squared residuals as scaling matrix. 110,000
Gibbs draws, 10,000 disregarded as burn-in-phase.

posterior probabilities of the SSVSP for DI, SI and CSH restrictions. Finally, an
impulse response analysis is conducted based on the recursive identification system.

6.2 Results

The results of the empirical application demonstrate three key findings. Firstly,
the MSFEs and PLs results favor the SSVSP_DI and the two selection models,
SSVSP_setDI_v1 and SSVSP_setDI_v2, indicating that restrictions search is ben-
eficial since sparsity in form of no dynamic interdependencies exist. However, the
very large number of restrictions searched for in the SSVSP leads to relatively weak
forecast performance. Secondly, the posterior probabilities for the restrictions indi-
cate that domestic interest rates and inflation evolve unaffected by lagged foreign
industrial production growth rates, validated by high posterior probabilities for no
dynamic interdependencies. The interest rate of a country depends likely statically
and dynamically on foreign interest rates. No heterogeneities are in particular found
for the effect of domestic industrial production growth on the domestic interest rate
and inflation. Thirdly, the impulse response analysis supports the reliability of the
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Table 6: PLs compared to unrestricted VAR

number of PLs ≥ 0 (in %)

horizon 1 2 4 6 12

SSVSP 33.33 28.57 47.62 23.81 38.10
SSVSP_DI 57.14 42.86 42.86 42.86 61.90
SSVSP_CSH 28.57 19.05 38.10 23.81 57.14
SSVSP_setDI_v1 28.57 28.57 47.62 47.62 42.86
SSVSP_setDI_v2 28.57 52.38 52.38 61.90 66.67
S4 47.62 47.62 33.33 33.33 38.10
SSVS 47.62 38.10 57.14 71.43 61.90

PL: posterior predictive density evaluated at the true observation yt+h, compared to unre-
stricted VAR. Forecasts are provided for 12 horizons for the period beginning from January
2005 through the end of the sample. Unrestricted VAR: parameters drawn from unrestricted
part of distributions. S4: prior of Koop and Korobilis (2015). SSVS: prior of George et al.
(2008). SSVSP_DI: SSVSP with only DI restrictions. SSVSP_CSH: SSVSP with only CSH
restrictions. SSVSP_setDI_v1: threshold 0.99 to set zero DI restrictions. SSVSP_setDI_v2:
threshold 0.5 to set zero DI restrictions. Σ drawn from inverse Wishart distribution with T
degrees of freedom and identity matrix plus sum of squared residuals as scaling matrix. 110,000
Gibbs draws, 10,000 disregarded as burn-in-phase.

results. In the following the key findings are explained in more detail.
Table 5 shows in percent the number of MSFEs which are smaller or equal to one

averaged over all variables for forecast horizon 1, 2, 4, 6, and 12. The MSFEs are
given relative to the unrestricted VAR. Thus, a MSFE smaller than one indicates im-
proved forecast performance to the unrestricted VAR. Between 28.57% and 42.86%
of the MSFEs of the SSVSP are below or equal to the MSFEs of the unrestricted
VAR.24 Thus, the SSVSP cannot improve the forecasts compared to the unrestricted
VAR. This is quite similar to the performance of the S4. However, the SSVSP_DI
performs particularly well. It outperforms the unrestricted model at the best in
100.00% of the cases (horizon one) and at worst in 85.71% of the cases (horizons
two and four). Since the number of restrictions which are examined in the SSVSP
are high, the information in the data might not be enough for the estimation. Thus,
the improved performance of SSVSP_DI could be a result of the reduced number
of restrictions. However, only searching for CSH restrictions does not lead to im-
provements compared to the SSVSP. The SSVSP_DI captures the high probabilities
for no dynamic interdependencies which are present in the data. The probability

24Detailed results are given in the Appendix.
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Table 7: MSFEs for SSVSP relative to S4

horizon 1 2 4 6 12

IP_CA 0.98 0.95 0.95 0.95 0.99
CPI_CA 0.98 1.01 0.98 0.90 1.00
IR_CA 0.99 0.86 1.00 0.99 0.91
IP_I 1.06 0.95 1.04 1.11 1.11
CPI_I 0.67 1.05 1.05 1.03 1.03
IR_I 1.44 1.38 1.40 1.39 1.39
IP_UK 0.90 0.99 0.94 0.91 0.97
CPI_UK 1.06 1.07 0.98 1.06 1.07
IR_UK 0.99 0.91 0.91 0.92 0.95
IP_F 1.02 0.98 1.00 1.06 1.01
CPI_F 1.00 1.04 1.01 1.04 1.15
IR_F 1.70 1.35 1.34 1.51 1.51
IP_J 0.80 0.97 1.02 1.07 1.01
CPI_J 0.94 0.94 1.01 1.00 1.00
IR_J 3.35 2.25 2.16 2.00 1.95
IP_D 0.99 0.98 1.01 1.01 0.99
CPI_D 1.00 0.98 1.00 1.01 1.00
IR_D 1.45 1.17 0.97 0.98 0.98
IP_US 1.00 0.93 0.93 0.98 1.03
CPI_US 1.00 1.02 1.01 1.00 1.01
IR_US 1.00 0.99 0.97 0.95 0.98

MSFE ≤ 1(in %) 66.67 57.14 52.38 42.86 33.33
MSFE: difference between the estimated forecast and the true value given by the data, relative
to S4. Forecasts are provided for 12 horizons for the period beginning from January 2005
through the end of the sample. Σ drawn from inverse Wishart distribution. 110,000 Gibbs
draws, 10,000 disregarded as burn-in-phase.

for homogeneity seems to be lower. Excluding dynamic interdependencies based
on a specific threshold improves the forecast performance for the higher horizons.
The two specifications, SSVSP_setDI_v1 and SSVSP_setDI_v2, can particularly
well pick up the sparsity in the data. The model with a lower threshold value,
SSVSP_setDI_v2, leads to higher improvements. The performance of the SSVS is
volatile, ranging from 9.52% to 95.24% of MSFEs below or equal one. It performs
well for the last three reported horizons. The SSVS also searches for dynamic inter-
dependencies, thus, it is similar to the SSVSP_DI specification. With the exception
that the SSVSP_DI distinguishes between domestic foreign variables. The results
of the SSVS support the finding that the MSFEs favor priors which capture the
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Table 8: PLs for SSVSP compared to S4

horizon 1 2 4 6 12

IP_CA 0.00 -0.30 0.21 0.21 0.01
CPI_CA -0.25 -0.23 -0.35 0.41 0.26
IR_CA 0.07 0.72 0.98 0.60 -0.55
IP_I 0.09 -0.12 0.07 0.27 0.32
CPI_I 0.56 0.07 -0.21 0.27 0.20
IR_I 0.05 -2.00 -0.83 -0.32 -1.60
IP_UK 0.71 -0.11 0.03 -0.12 -0.48
CPI_UK -0.32 -0.79 -0.04 0.24 0.16
IR_UK -0.01 0.62 0.13 0.64 0.48
IP_F -0.71 0.12 -0.01 0.11 0.10
CPI_F -1.26 -0.47 0.66 0.10 0.14
IR_F -4.84 -2.22 -0.83 -1.22 -0.48
IP_J 0.00 0.11 -0.08 0.05 0.17
CPI_J 0.03 -0.54 -0.01 -0.41 -0.67
IR_J -3.28 -2.02 -1.75 -1.84 -1.99
IP_D 0.00 0.08 0.07 -0.19 0.12
CPI_D -0.04 0.04 0.06 0.09 -0.33
IR_D -1.23 -0.74 -0.33 -0.81 0.79
IP_US -0.01 -0.27 -0.62 0.09 -0.44
CPI_US 0.01 0.37 0.16 -0.08 0.17
IR_US 0.00 -0.38 0.17 0.55 0.17

PL ≥ 0 (in %) 52.38 38.10 47.62 61.90 61.90
PL: posterior predictive density evaluated at the true observation yt+h, compared to S4. Fore-
casts are provided for 12 horizons for the period beginning from January 2005 through the
end of the sample. Σ drawn from inverse Wishart distribution. 110,000 Gibbs draws, 10,000
disregarded as burn-in-phase.

possibility of no dynamic interdependencies. The S4 also includes DI but assumes
a specific matrix structure which does not seem to be supported by the data.

Table 6 presents in percent the number of PL, in difference to the unrestricted
model, which are higher or equal zero. In general, a higher PL indicates a better
performance since the posterior predictive density covers the true observation with
a higher probability. The results are generally in line with the findings based on
the MSFEs but differ in magnitude and also in horizon. In particular, the PL re-
sults favor the SSVSP_DI, SSVSP_setDI_v1, and SSVSP_setDI_v2 as well as the
SSVS. In contrast to the extremely volatile MSFE results, the SSVS outperforms
the SSVSP at all horizons. However, the SSVSP_DI exceeds the SSVS at two and
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is equally good at one out of five horizons. Again, the results point to the direction
that no dynamic interdependencies are present in the data and a prior which can
pick up these characteristics performs well. Compared to the findings based on the
MSFEs the prior specifications are less often able to outperform the unrestricted
VAR. This could be explained by a higher parameter uncertainty of the selection
priors since they are a mixture of two distributions. The higher uncertainty is re-
flected in the posterior predictive density. The results are in general in line with
Korobilis (2016) who also shows a high volatility in the performance as well as im-
proved forecasting results for the SSVS compared to the S4. However, combining the
advantages of both priors, the panel dimension of the S4 and the single restriction
search of the SSVS, in the SSVSP does not seem to pay of due to the large number
of restrictions to search for. As Korobilis (2016) shows the approach of Canova and
Ciccarelli (2009) has no clear advantage, measured by forecasting performance, over
the selection priors.

Table 7 and 8 report for horizons 1, 2, 4, 6, and 12 MSFEs and PLs relative to
S4. On average, over these five horizons the forecast of SSVSP are equally good
compared to the forecasts of S4. In 50.48% the MSFEs relative to S4 are below one
and in 52.38% the PLs compared to S4 are above zero. There is no clear pattern
whether SSVSP can outperform the forecasts of S4 for a specific forecast horizon.
66.67% of the first horizon forecasts have MSFE below one, indicating that the fore-
cast performance improves by using SSVSP. The forecast performance, measured by
MSFEs, seem to decrease over the forecast horizon. At horizon twelve 33.33% of the
MSFE are below one. However, evaluated on the average predictive likelihood the
SSVSP offers the highest gain in forecast performance for higher horizons, 61.90%
for horizon six and twelve.

Tables 9, 10, and 11 provide posterior probabilities for the restrictions. The
probabilities, p(αlkij = 0), p(ψlkij = 0), and p(αlkjj = αlkii ), are calculated as one mi-
nus the posterior means for γlkDI,ij, γlkSI,ij, and γwCSH . The probabilities measure the
proportion of γlkDI,ij, γlkSI,ij, and γwCSH draws that equal zero averaged over all Gibbs
sampler draws meaning that the coefficients are drawn from the restricted part of
the distribution. Tables 9, 10, and 11 show that the SSVSP can provide a detailed
ranking on how likely a restriction should be set based on the data on a variable
basis. The algorithm is able to detect a nuanced structure of the restrictions present
in the data. Since the presented PVAR model serves as an illustration, the economic
findings should not be over-interpreted.
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Figure 2: Responses of US variables to a shock to US interest rate

Solid line shows response, shaded area 68% Bayesian credible interval.

The posterior probabilities show that restrictions are especially supported for the
industrial production variable while it is vice versa for interest rates.25 Table 9 pro-
vides the posterior probabilities for no dynamic interdependencies. A one indicates
that the probability for no DI is between one and 0.99, 1 ≤ p(αlkij = 0) ≤ 0.99, a
zero that 0.1 ≤ p(αlkij = 0) ≤ 0 and the diagonal stroke that 0.99 < p(αlkij = 0) < 0.1.
The results show that the probabilities are high, indicated by ones, that no dynamic
impacts of foreign lagged IP on interest rates and CPI growth exist. Lagged foreign
interest rates seem to affect the domestic variables. Furthermore, US variables have
a dynamic impact on other countries’ variables. Both findings are supported by a
low probabilities for no DI, meaning a zero in table 9.

25Detailed results for all parameters are given in the Appendix.
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Figure 3: Responses of foreign interest rates to a shock to US interest rate

Solid line shows response, shaded area presents 68% Bayesian credible interval.
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The lowest probabilities for the SI restrictions are found for combinations of the
same variable. Results are shown in table 10. Additionally, industrial production
seems to be fairly independent from other variables, shown by the high probabilities
for no static interdependencies between IP and other variables. Finally, the probabil-
ities for homogeneity of coefficients are especially high for the industrial production
variables in other equations, shown in table 11. The values in parentheses count how
often the posterior probability took the value one or zero for a specific coefficient in
the comparison αlkjj = αlkii . Heterogeneity is favored - low probability for no CSH -
for the effect of the interest rate on industrial production growth.

The impulse response analysis sheds light on the reliability of the findings. Ex-
emplary, the responses to a shock to the US interest rate, presented in figure 2 for
US variables and in figure 3 for foreign interest rates, will be discussed. A contrac-
tionary US monetary policy, shown by an increase in the US interest rate, leads to
a rise in US CPI in this system. The response of industrial production growth is
insignificant. The increase of inflation in response to a tightening in the monetary
policy is in line with the price puzzle. The price puzzle - first mentioned by Sims
(1992) - refers to this result contradicting theoretical models and empirical findings
which would claim that a rise in the interest rate leads to a decline in inflation. The
puzzle is expected for VAR models which just include industrial production growth,
inflation, and a short term interest rate and have a structural identification based
on a recursive system. The finding of the price puzzle underlines that the here esti-
mated PVAR model can only serve as an illustration and has its clear limitations.
The foreign interest rates immediately raise in response to a tightening in the US
monetary policy. The increases in the interest rates are lower, below 0.5, than the
initial raise in the US interest rate, which is normalized to one. The UK interest
rate is initially affected most, followed by the Canadian and German interest rate
responses. After around two horizons the effect of the US shock is insignificant for
the interest rate of the United Kingdom, Germany, and Italy. The responses of the
interest rates of Japan and France are lowest. For Japan the response is insignificant
after the first horizon while for France the response is insignificant for all horizons.
The raise in the Canadian interest rate lasts longest and comes to zero after six
horizons. To sum up, the impulse repose functions show that the results based on
SSVSP are in line with theoretically expected responses from a recursively identified
system with the three included variables. The illustrative model shows that the
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results obtained using SSVSP are plausible.

7 Concluding Remarks

This paper introduces the SSVSP as an extension of the Bayesian S4 proposed
by Koop and Korobilis (2015). The SSVSP is an alternative Bayesian estimation
procedure for PVARs that is able to fully incorporate dynamic and static interde-
pendencies as well as cross-country heterogeneities. It allows for a flexible panel
structure since it only distinguishes between domestic and foreign variables. Using
a hierarchical prior, the SSVSP searches for restrictions that are supported by the
data.

The results of the Monte Carlo simulations show that the SSVSP outperforms
the S4 in terms of deviation from the true values in particular when a less restric-
tive panel structure is present. The average deviation of the estimated parameters
from the true values for the simulation with a flexible panel structure is less for the
SSVSP, APDSSV SP = 0.036, than for S4, APDS4 = 0.056. The SSVSP_DI, where
a mixture prior is only set on the parameters measuring dynamic interdependen-
cies, has the smallest deviation from the true values of all models. Furthermore,
the accuracy of the SSVSP in selecting the restrictions is proven by the posterior
probabilities for no interdependencies and homogeneity.

The results of the empirical application are summarized in three main findings.
Firstly, the forecast performance is especially good for the SSVSP_DI and the
two selection models, SSVSP_setDI_v1 and SSVSP_setDI_v2. Thus, restrictions
search for no dynamic interdependencies is beneficial. However, the performance of
the SSVSP is limited by the very large number of restrictions searched for. Secondly,
posterior probabilities for DI and SI restrictions show that interest rates likely de-
pend on foreign interest rates while foreign industrial production growth does not
impact other domestic variables. Thirdly, responses to a shock in the US interest
rate are in line with expected response functions.

The SSVSP prior can be further developed. The SI restriction search, based on
data, is an initial way to achieve structural identification, but it is limited by the
fact it is built on a recursive system. For just identified systems, the BMA result
of the reduced form can be used combined with the clear mapping between reduced
form covariance matrix and a short run restriction matrix to obtain the structural
form. For overidentified systems, however, the draws of the coefficient matrices have
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to be from the structural form. This means a selection prior for A, conditional on a
restriction matrix A0, must be stated and a valid Gibbs sampler has to be derived.

One critical issue is the selection of hyperparameters. In this specification, the
hyperparameters are fixed for all parameters that are estimated. George et al. (2008)
propose a default semi-automatic approach to select the hyperparameters. The val-
ues are not fixed but vary for each coefficient. For example τ1,i = c1

√
var(αi) and

τ2,i = c2
√
var(αi), whereby c1 = 0.1 and c2 = 10. The var(αi) is the estimated

variance of the OLS estimate for αi in a model without restriction search. The κ
and ξ are set in an equal manner. Trying this approach leads to hyperparameters
that tend to be so small that the majority of values are drawn from the loose part of
the prior. Koop and Korobilis (2015) specify distributions for the hyperparameters
as also suggested in Giannone et al. (2015). This allows them to have varying hyper-
parameters and a less subjective choice of hyperparameters. The issues regarding
structural identification and choices of hyperparameters can be addressed in further
research.

To sum up, the findings of the Monte Carlo simulations conducted and the ex-
emplary empirical application encourage the use of the SSVSP to estimate PVAR
models. However, further research regarding both the recursive structural identifi-
cation and the specified hyperparameters should be undertaken.
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Gibbs Sampler Algorithm

The full unrestricted PVAR model with one lag including N countries and for each
country G variables can be written as

Yt = Zt−1α + Ut,

where α is the vectorized [NG×NG]-coefficient matrix A for lag one. The Zt−1 =

(ING ⊗ Yt−1) where Yt−1 = (y′1t−1, ..., y
′
Nt−1)

′ and yit denotes a vector of dimension
[G × 1]. The Yt and Ut are [NG × 1]-vectors. The Ut is normally distributed with
mean zero and covariance matrix Σ that is of dimension [NG×NG]. The element
αlkij refers to the coefficient of variable k of country j in the equation of variable l of
country i.

The Gibbs sampler algorithm has the following three steps:

Step 1:
Sample α from a normal posterior conditional on Σ, γDI , γCSH .

α | Σ, γDI , γCSH ∼ N (Γµα, Vα),

where Vα = ((D′D)−1 + Σ−1 ⊗ X ′X)−1 with X = Yt−1 and µα = Vα((Σ−1 ⊗
X ′X)αOLS). D is a diagonal matrix with D = diag(h1111, ..., h

GG
NN). The value of

h depends on γDI and γCSH : hlkij =

τ1, if γlkDI,ij = 0

τ2, if γlkDI,ij = 1
for the parameters, where

DI restriction search is done (i 6= j) and hlkjj =

ξ1, if γwCSH = 0

ξ2, if γwCSH = 1
for the block di-

agonal parameters where CSH restriction search is done. αOLS is the OLS estimate
of α. The posterior mean is restricted with the selection matrix Γ.

Step 2:
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Update γDI and γCSH from Bernoulli distribution:

γlkDI,ij ∼ Bernoulli(πlkDI,ij)

πlkDI,ij =
u2lkDI,ij

u1lkDI,ij + u2lkDI,ij

γwCSH ∼ Bernoulli(πwCSH)

πwCSH =
v2wCSH

v1wCSH + v2wCSH
.

Hereby, u1lkDI,ij = f(αlkij | 0, τ 21 )probDI and u2lkDI,ij = f(αlkij | 0, τ 22 )(1 − probDI). f()

denotes the p.d.f. of the normal distribution with mean zero and variance τ 21 or τ 22
evaluated at αlkij . The parameter probDI is set equal to 0.5. This shows that a pri-
ori the researcher assumes that it is equally likely that a dynamic interdependency
between two variables of country i and j are zero or nonzero. v1wCSH = f(αlkjj |
αlkii , ξ

2
1)probCSH and v2wCSH = f(αlkjj | 0, ξ22)(1 − probCSH). Again, probCSH is set

equal 0.5. Depending on γwCSH the elements in Γw are updated.

Step 3:
Update Σ = Ψ−1

′
Ψ−1 and γSI . The variance elements, ψkkii , are drawn from a

Gamma distribution:
(ψkkii )2 ∼ G(a+

T

2
, Bn),

where n = 1, ..., NG and

Bn =

b+ 0.5SSEnn n = 1

b+ 0.5(SSEnn − s′n(Sn−1 + (R′R)−1)−1sn) n = 2, ..., NG
.

Note that ψ11
11 is assigned to B2, ψ22

11 to B2, ..., and ψGGNN to BNG. T is defined as
the length of the time series and SSE as the sum of squared residuals. Sn is the
upper-left n × n submatrix of SSE, and sn = (s1n, ..., sn−1,n)′ contains the upper
diagonal elements of SSE. R is a diagonal matrix with R = diag(r1111, ..., r

GG
NN). The

value of r depends on γSI : rlkij =

κ1, if γlkSI,ij = 0

κ2, if γlkSI,ij = 1
.

Define the vector ψ = (ψ11
12, ..., ψ

GG
N−1,N)′. Thus, ψ contains the covariance elements,

ψlkij for all i 6= j and has the dimension nSI × 1, where nSI = 1, .., NSI and NSI is
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the length equal to the number of SI restrictions. The elements of ψ are updated
from a normal distribution:

ψnSI
| α, ψ, γSI ∼ N (µnSI

, VnSI
).

Hereby, µnSI
= −ψkkii (SnSI−1 + (R′R)−1)−1snSI

and VnSI
= (SnSI−1 + (R′R)−1)−1.

The element ψkkii is the variance element in the same row of Psi as ψlkij = ψnSI
for

all i 6= j. The off-diagonal elements of the covariance matrix that belong to one
country are drawn from a normal distribution with mean zero and variance κ2.

Hyperparameter

Table 12: Hyperparameters

τ1 τ2 ξ1 ξ2 κ1 κ2 a b

0.2 4 0.2 4 0.3 4 0.01 0.01

A value of τ1 = 0.2 and τ2 = 4 means that the variance of the tight prior equals
0.04 and 16 for the loose prior. The criterion that the variance of the first part of
the normal distribution is smaller than the second part is clearly fulfilled. Several
other specifications are also checked. The accuracy of the algorithm in selecting the
restrictions varies with the specification of the hyperparameters. If the τ1, κ1, and
ξ1 are chosen too small, the majority of values is drawn from the second part of the
normal distribution (γ equals one with a very high probability). Still, γ equals more
often one in the cases no restriction is set in the true specification of the Monte
Carlo simulation. Values for hyperparameters smaller than or equal to 0.1 prove to
be too small, resulting in the difficulties mentioned. George et al. (2008) propose
a default semi-automatic approach to selecting the hyperparameters. The values
are not fixed, but varying for each coefficient. For example τ1,i = c1

√
var(αi) and

τ2,i = c2
√
var(αi) whereby c1 = 0.1 and c2 = 10. var(αi) is a OLS estimated of

the variance of the coefficient in an unrestricted model. κ and ξ are set in an equal
manner. Trying this approach also leads to hyperparameters smaller than 0.1. The
hyperparameters of the other priors are set to the proposed default values of the
authors. For S4 the small variance values are set to 0.1 and the high variance values
to square root of 10, for the SSVS small variance values are set to 0.1 and high
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variance values to 5 as used by Koop and Korobilis (2015) and George et al. (2008).

Estimates - Monte Carlo Simulation

The simulation is done with 100 samples, each with a length of 100. The Gibbs
sampler has 55,000 draws of which 5,000 draws are disregarded as draws in the
burn-in-phase. The posterior means for the first Monte Carlo Simulation based on
the SSVSP prior are the following:

ASSV SP =



0.59 0.00 0.03 0.02 0.28 0.23

0.11 0.49 0.01 −0.02 −0.41 0.38

0.21 0.31 0.52 −0.02 −0.03 −0.04

0.17 0.28 0.47 0.40 −0.03 −0.03

−0.02 −0.04 −0.02 −0.01 0.51 −0.03

0.02 −0.01 −0.05 −0.02 0.48 0.41



ΣSSV SP =



1.42 0.15 −0.36 −0.45 0.25 0.22

0.15 1.48 −0.35 −0.47 0.17 0.26

−0.36 −0.35 1.65 0.49 0.12 0.16

−0.45 −0.47 0.49 1.58 −0.01 0.03

0.25 0.17 0.12 −0.01 1.45 0.23

0.22 0.26 0.16 0.03 0.23 1.37


The estimated values for the second Monte Carlo Simulation are given by:

ASSV SP =



0.56 0.00 0.01 0.00 0.25 0.00

0.17 0.53 −0.02 0.00 −0.41 −0.02

0.21 0.19 0.51 −0.01 0.00 −0.01

0.02 −0.01 0.44 0.27 0.00 0.01

0.17 0.18 0.01 0.00 0.51 0.00

−0.01 −0.01 −0.02 0.00 0.45 0.40
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ΣSSV SP =



1.70 0.15 −0.45 0.02 0.30 0.04

0.15 1.25 0.03 −0.50 0.11 0.00

−0.45 0.03 1.34 −0.03 0.01 0.00

0.02 −0.50 −0.03 1.33 −0.02 0.01

0.30 0.11 0.01 −0.02 1.30 0.01

0.04 0.00 0.00 0.01 0.01 1.08


Empirical Application

The Gibbs sampler has 110,000 draws of which 10,000 draws are disregarded as draws
in the burn-in-phase. The probabilities, p(αlkij = 0), p(ψlkij = 0), and p(αlkjj = αlkii ),
are calculated as one minus the posterior means for γlkDI,ij, γlkSI,ij, and γwCSH . The
probabilities measure the proportion of γlkDI,ij, γlkSI,ij, and γwCSH draws that equal
zero averaged over all Gibbs sampler draws meaning that the coefficients are drawn
from the restricted part of the distribution. The MSFE is calculated as the difference
between the estimated forecast and the true value given by the data. The MSFEs
for a specific variable and horizon are averaged over all forecasts. The PL is the
posterior predictive density evaluated at the true observation yt+h.
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Table 13: MSFE of SSVSP relative to unrestricted VAR

horizon 1 2 4 6 12

IP_CA 1.02 0.98 0.94 1.06 1.13
CPI_CA 1.07 1.00 1.04 1.00 0.96
IR_CA 1.22 1.18 1.26 1.40 1.37
IP_I 1.12 0.99 1.05 1.10 1.11
CPI_I 0.99 1.00 1.02 0.99 0.98
IR_I 1.46 1.44 1.57 1.56 1.52
IP_UK 1.13 0.99 1.04 1.03 1.02
CPI_UK 1.10 1.03 1.02 1.02 1.01
IR_UK 1.17 1.07 1.03 1.10 1.00
IP_F 1.02 0.98 0.99 1.08 1.00
CPI_F 1.00 1.01 1.01 1.01 1.02
IR_F 1.70 1.33 1.34 1.53 1.51
IP_J 0.99 1.00 1.01 1.03 1.02
CPI_J 1.04 1.01 0.99 1.01 1.02
IR_J 3.80 3.60 3.73 4.00 3.36
IP_D 0.99 1.01 1.01 1.04 0.99
CPI_D 1.00 0.99 0.99 1.01 0.97
IR_D 1.45 1.14 0.98 1.00 0.98
IP_US 1.00 0.97 0.97 1.00 1.01
CPI_US 1.00 1.00 1.01 1.00 0.99
IR_US 1.00 1.00 0.99 0.99 1.01

MSFE ≤ 1(in %) 38.10 42.86 33.33 28.57 33.33
MSFE: difference between the estimated forecast and the true value given by the data, relative to
unrestricted VAR. Unrestricted VAR: parameters drawn from unrestricted part of distributions.
Forecasts are provided for 12 horizons for the period beginning from January 2005 through the
end of the sample. Σ drawn from inverse Wishart distribution. 110,000 Gibbs draws, 10,000
disregarded as burn-in-phase.
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Table 14: PL of SSVSP relative to unrestricted VAR

horizon 1 2 4 6 12

IP_CA 0.00 -0.69 0.14 0.06 -0.25
CPI_CA -0.26 -0.49 0.25 0.20 0.30
IR_CA -2.52 -1.05 -1.12 -1.16 -1.71
IP_I -0.25 0.22 0.02 -0.02 0.28
CPI_I -0.98 -0.13 -0.38 -0.20 -0.03
IR_I 0.98 -1.45 -1.16 -0.99 -1.70
IP_UK -0.45 -0.76 -0.45 -0.01 -0.12
CPI_UK 0.59 0.02 0.20 0.36 0.45
IR_UK -0.95 -1.65 -0.38 -1.31 -0.64
IP_F -0.72 -0.03 -0.01 -0.05 0.09
CPI_F -1.24 -0.13 0.03 0.29 0.17
IR_F -4.82 -2.18 -0.89 -1.53 -0.86
IP_J 0.00 0.18 -0.13 -0.10 0.06
CPI_J 0.21 -0.32 0.03 -0.41 -0.38
IR_J -3.58 -4.45 -3.95 -4.15 -4.44
IP_D 0.00 0.12 0.16 -0.18 -0.02
CPI_D -0.04 -0.59 0.17 0.69 -0.08
IR_D -1.22 -0.67 -0.30 -0.71 0.77
IP_US 0.00 0.16 0.32 -0.12 -0.37
CPI_US -0.01 0.35 0.10 -0.01 0.32
IR_US 0.02 -0.87 -0.76 -0.47 -0.54

PL ≥ 0(in %) 33.33 28.57 47.62 23.81 38.10
PL: posterior predictive density evaluated at the true observation yt+h, compared to unrestricted
VAR. Unrestricted VAR: parameters drawn from unrestricted part of distributions. Forecasts
are provided for 12 horizons for the period beginning from January 2005 through the end of the
sample. Σ drawn from inverse Wishart distribution. 110,000 Gibbs draws, 10,000 disregarded
as burn-in-phase.
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