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Université Paris Dauphine, the University of Glasgow, at the Workshop on Game Theory and Social
Choice at Corvinus University Budapest, at the “Tagung des Theoretischen Ausschusses des Vereins für
Socialpolitik” in Basel and at the COMSOC conference in Toulouse. I am grateful to the participants for
valuable discussion and comments. Special thanks to Ulle Endriss, Martin Hellwig, Anke Gerber, Gleb
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Abstract It is proved that, among all restricted preference domains that guarantee con-
sistency (i.e. transitivity) of pairwise majority voting, the single-peaked domain is the only
minimally rich and connected domain that contains two completely reversed strict prefer-
ence orders. It is argued that this result explains the predominant role of single-peakedness
as a domain restriction in models of political economy and elsewhere. The main result
has a number of corollaries, among them a dual characterization of the single-dipped do-
main; it also implies that a single-crossing (‘order-restricted’) domain can be minimally
rich only if it is a subdomain of a single-peaked domain. The conclusions are robust as
the results apply both to domains of strict and of weak preference orders, respectively.

JEL Classification D71, C72

Keywords: Social choice, restricted domains, Condorcet domains, single-peakedness,
single-dippedness, majority voting, single-crossing property.



1 Introduction

A subset of preference orders on a finite set of alternatives is called single-peaked if there
exists a left-to-right arrangement of alternatives such that all upper contour sets are
connected (‘convex’) with respect to the given left-to-right arrangement of alternatives.
The celebrated median voter theorem of Black [1948] and Arrow [1951] states that the
domain of all single-peaked linear orders with respect to a fixed underlying spectrum
of alternatives form a ‘Condorcet domain,’ i.e. pairwise majority voting with an odd
number of individuals each of whom has preferences from the given domain induces a
transitive relation. Moreover, the domain of all single-peaked preferences is minimally
rich in the sense that every alternative is on top of at least one preference ordering; it
is connected in the sense that every two single-peaked orders can be obtained from each
other by a sequence of transpositions of neighboring alternatives such that the resulting
order remains single-peaked at each step; and it contains two completely reversed orders
(namely, the order that has the left-most alternative at the top and the order that has
the right-most alternative at the top).

This paper’s main result (Theorem 1) shows that, conversely, every minimally rich
and connected Condorcet domain which contains at least one pair of completely reversed
orders must be single-peaked.1 As is easily seen, any single-peaked domain contains at
most one pair of completely reversed orders. We thus obtain as a corollary that, for any
given pair of completely reversed orders, there is a unique maximal Condorcet domain
that contains them and is minimally rich as well as connected: the domain of all orders
that are single-peaked with respect to either one of the given pair of completely reversed
orders (Corollary 1).

This result is remarkable in particular in view of the fact that quite a number of non-
single-peaked Condorcet domains have been identified in the literature, among others the
domains satisfying Sen’s ‘value restriction’ condition (Sen [1966]) with the ‘single-dipped’
domain (Inada [1964]) as a special case, the domains satisfying the so-called ‘intermediate-
ness’ property (Grandmont [1978], Demange [2012]), and the ‘order-restricted’ domains
identified by Rothstein [1990]; the latter domains are sometimes also referred to as the
domains with the single-crossing property (Gans and Smart [1996], Saporiti [2009], Puppe
and Slinko [2015]). Our analysis shows that none of these domains can jointly satisfy
the three conditions of minimal richness, connectedness and the inclusion of a pair of
completely reversed orders unless it is also single-peaked. In particular, a single-crossing
domain can be minimally rich only if it is at the same time single-peaked (Corollary 3).

The purpose of the present analysis is not to justify the assumption of single-peakedness
per se and, in fact, the empirical evidence for single-peakedness is mixed, see the review
of the literature below. The main argument put forward here is that, among all domains
that guarantee consistency of pairwise majority voting, the single-peaked domain is dis-
tinguished by a remarkably simple set of additional requirements: connectedness, minimal
richness and the existence of two completely reversed orders. The main conclusion to be

1In fact, as detailed in Section 2 below, the condition of connectedness can be substantially relaxed in
this result to the condition that there exist one path that connects a pair of completely reversed orders.
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drawn from the present analysis is therefore that, if a modeler wishes to guarantee tran-
sitivity of the majority relation for any possible profile of agents’ preferences, then the
assumption of single-peakedness follows very naturally. In this sense, the present study
may thus be interpreted as a conditional defense of single-peakedness.2

The results presented here are robust as they generalize with some additional work,
but using the same underlying logic, to the case of weak preference orders, i.e. to the case
in which individual preferences may display indifferences. In this case, the domain of all
(weakly) single-peaked weak orders does not form a Condorcet domain in our sense since,
even with an odd number of voters, the indifference relation corresponding to pairwise
majority voting may be intransitive. Moreover, the notion of connectedness has to be
suitably adapted since two ‘neighboring’ weak orders may differ in the ranking of more
than one pair of alternatives if one of these orders displays an indifference class with
more than two elements. Nevertheless, we still obtain that any connected, minimally
rich Condorcet domain that contains (at least) two completely reversed strict orders must
be single-peaked with respect to either one of the pair of completely reversed orders
(Theorem 3). However, if one allows for indifferences – in particular also on the top
of individual preferences – there are different possibilities to formulate the condition of
minimal richness. If one only requires that each alternative be among the top elements
of at least one order in the domain, the stated conditions characterize a class of different
non-isomorphic maximal Condorcet domains, all of which are proper subdomains of the
domain of all single-peaked orders. If, on the other hand, one imposes the stronger
requirement that each alternative be the unique top element of at least one order in the
domain, the stated conditions characterize a unique maximal Condorcet domain of single-
peaked orders (with respect to the left-to-right arrangement of alternatives given by either
one of the completely reversed strict orders).

The above characterization results of the single-peaked domain imply ‘dual’ charac-
terization results for the single-dipped domain in a straightforward way, both in the case
of linear and and in the case of weak orders. Specifically, any connected Condorcet do-
main containing two completely reversed orders such that every alternative is (among)
the least preferred alternative(s) for some order in the domain must be single-dipped (see
Theorems 2 and 4).

Relation to the literature

The literature on single-peaked preferences is abundant both in economics and political
science. Their application ranges from the Hotelling-Downs model of political competition
to models of local public good provision (for a modern treatment see, e.g., Austen-Smith
and Banks [1998]). It is well-known that the assumption of single-peakedness enables pos-
sibility results both in the theory of preference aggregation (Black [1948], Arrow [1951])
and in the theory of strategy-proof social choice (Moulin [1980]). Moreover, it has fre-
quently been argued that the assumption of single-peakedness is reasonable in contexts

2Of course, by contraposition, the same argument transforms potential doubts about the validity of
single-peakedness in specific contexts into corresponding doubts on the existence of consistent pairwise
majorities at all in these contexts.
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in which alternatives are naturally arranged according to an exogenous one-dimensional
scale, e.g., in terms of political views on a left-to-right spectrum, or in terms objective
distance, temperature, etc. The empirical evidence on single-peakedness is mixed. Some
authors have argued that a tendency towards single-peakedness may be assumed under
certain circumstances, in particular when there is repeated interaction and/or ‘delibera-
tion’ (see, e.g., Spector [2000], DeMarzo et al. [2003], List et al. [2013]). Others have cast
doubt on the applicability of single-peakedness, in particular in cases where compromises
are difficult to reach and a search for them threatens to lead to a deadlock (Egan [2014]).

The paper in the literature that is closest to the present analysis is Ballester and
Haeringer [2011]. These authors also provide an axiomatic characterization of the single-
peaked domain (though only in the case of linear orders).3 However, the conditions
employed by these authors are very different in character from the ones used here. Specif-
ically, Ballester and Haeringer [2011] use two families of conditions. The first is the
condition that among every triple of alternatives their should be at least one that is never
the worst of the three for any voter. This is one of Sen’s family of ‘value restrictions’
(Sen [1966]), and it evidently amounts to assuming single-peakedness on all triples, hence
it directly implies transitivity of the majority relation. However, it is also known that
single-peakedness on all triples (‘local single-peakedness’) is not sufficient to guarantee
single-peakedness globally (cf. Inada [1964]). Therefore, additional conditions are needed
to characterize the single-peaked domain. The important contribution of Ballester and
Haeringer [2011] is to show that the absence of a certain preference constellation on all
quadruples of alternatives does the job. By contrast, the present analysis only assumes
transitivity of the majority relation corresponding to every profile with an odd number of
voters, and derives the single-peakedness of the domain from the three conditions of con-
nectedness, minimal richness and the existence of two completely reversed orders (either of
which then represents the underlying left-to-right spectrum). The latter three conditions
are global properties of a domain, hence the title of this paper. By contrast, all conditions
used by Ballester and Haeringer [2011] are ‘local’ conditions as they apply simultaneously
either to all triples or to all quadruples of alternatives. While the conditions of the present
analysis can be suitably adapted to yield a corresponding characterization of the weakly
single-peaked domain, it is not obvious how to appropriately formulate Ballester’s and
Haeringer’s local conditions in the case of weak orders.

The present study also informs the literature that aims at identifying ‘large’ Condorcet
domains, see the excellent survey Monjardet [2009] and the more recent work on this
topic by Danilov et al. [2012], Danilov and Koshevoy [2013]. Indeed, our main result
suggests that Condorcet domains with the maximal number of elements on a given set of
alternatives, the so-called maximum Condorcet domains, are most likely not minimally
rich. This may seem particularly surprising, as it is known that that the cardinality of a
maximum Condorcet domain exceeds the cardinality of the domain of all single-peaked
domain considerably; for instance, with n alternatives a single-peaked domain has at most
2n−1 elements, while the cardinalities of the maximum Condorcet domains are 9, 20, 45,

3Strictly speaking, Ballester and Haeringer [2011] characterize the domain of all single-peaked profiles
which is a slightly different task.
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for n = 4, 5, 6, respectively, and these numbers are all attained by connected Condorcet
domains containing a pair of completely reversed orders. The general structure and precise
cardinality of the maximum Condorcet domains for larger n is unknown. However, it is
known that the largest cardinality of a connected Condorcet domain on n alternatives
that contains two completely reversed orders always exceeds 2n−1, see Fishburn [1997].
By this paper’s main result, the corresponding domains can never be minimally rich.

We finally emphasize the implications of our analysis for the literature on the single-
crossing property. In the present finite framework, a domain is said to have the single-
crossing property if the agents can be arranged in a fixed linear order such that, for
every pair of alternatives, if two voters prefer one alternative to the other, then so do all
agents that are between them in the given linear order of voters.4 It has frequently been
noted that single-peakedness and the single-crossing property in this sense are logically
independent conditions, see, e.g., Saporiti [2009]. However, since every single-crossing
domain can be extended to a connected single-crossing domain containing two completely
reversed orders, our main result yields as a corollary that all minimally rich single-crossing
domains must also be single-peaked, i.e. a subset of the domain of all single-peaked or-
ders (cf. Elkind et al. [2014]). Since for n > 3, only proper subsets of the domain of
all single-peaked preferences can have the single-crossing property, this has the further
interesting consequence that no minimally rich single-crossing domain can constitute a
maximal Condorcet domain.

The remainder of this paper is organized as follows. In Section 2 we state and prove
our main result in the case of linear (‘strict’) orders. We also show by means of examples
that none of the conditions can be omitted in the characterization of the single-peaked
domain. Section 3 generalizes the characterization to the case of weak orders. In the
appendix, it is shown that, for all ‘closed’ (in particular, maximal) Condorcet domains
containing at least one pair of completely reversed orders, the condition of connectedness
is implied by the substantially weaker property that there be at least one path connecting
a pair of completely reversed orders; and that this weaker property in fact not only implies
connectedness but the stronger property of ‘direct’ connectedness. (This holds both in
the case of linear and weak orders.)

2 Characterizing the single-peaked domain:

The case of strict preference orders

2.1 Statement of main result

Consider a finite set of alternativesX and the set P(X) of all linear (strict) orders (i.e., com-
plete, transitive and antisymmetric binary relations) on X. A subset D ⊆ P(X) will be
called a domain of preferences or simply a domain. A profile π = (P1, . . . , Pn) on D is an

4This condition is related to but prima facie different from the well-known Spence-Mirrlees ‘single-
crossing’ condition which requires that agents’ types are unambiguously ordered according to their
marginal rate of substitution uniformly across the good space.
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element of the Cartesian product Dn for some number n ∈ N of ‘voters,’ where the linear
order Pi represents the preferences of the ith voter over the alternatives from X. A profile
with an odd number of voters will simply be referred to as an odd profile. Frequently, we
will denote linear orders simply by listing the alternatives in descending order, e.g. the
linear order that ranks a first, b second, c third, etc., is denoted by abc . . ..

The majority relation associated with a profile π is the binary relation Pmaj
π on X

such that xPmaj
π y if and only if more than half of the voters rank x above y. Note that,

according to this definition, the majority relation is asymmetric and for any odd profile π
and any two distinct alternatives x, y ∈ X, we have either xPmaj

π y or xPmaj
π y. The class

of domains D ⊆ P(X) such that, for all odd n, the majority relation associated with any
profile π ∈ Dn is transitive has received significant attention in the literature, see the
excellent survey of Monjardet [2009] and the references therein. In the following, we will
refer to any such domain as a Condorcet domain. A domain D is called a maximal Condorcet
domain if every Condorcet domain (on the same set of alternatives) that contains D as
a subset must in fact coincide with D. It is well-known that any maximal Condorcet
domain D is closed in the sense that the majority relation of any odd profile from D is
again an element of D (and not only of P(X)), cf. [Puppe and Slinko, 2015, Lemma 2.1].

A domain D is single-peaked with respect to the linear order > on X if, for all P ∈ D and
all w ∈ X, the upper contour sets UP (w) := {y ∈ X : yPw} are connected (‘convex’) in
the order >, i.e. {x, z} ⊆ UP (w) and x < y < z jointly imply y ∈ UP (w). A domain D is
simply called single-peaked if there exists some linear order > such that D is single-peaked
with respect to >. The domain of all orders that are single-peaked with respect to the
fixed order > on X is denoted by SP>(X). If a domain is single-peaked with respect to
>, we will often call the linear order > the spectrum underlying the single-peaked domain.

A path in P(X) is subset {P1, . . . , Pm} ⊆ P(X) with m ≥ 2 such that for all j =
1, . . . ,m− 1, the two consecutive orders Pj and Pj+1 differ in the ranking of exactly one
pair x, y of (distinct) alternatives; note in that case x and y must be adjacent alternatives
in both orders Pj and Pj+1. A pair of orders which differ in the ranking of exactly one
(adjacent) pair of alternatives will be called neighbors. A domainD will be called connected
if, for every pair P, P ′ ∈ D of distinct orders in D, there exists a path {P1, . . . , Pm} that
connects P and P ′ (i.e. P1 = P and Pm = P ′) and that lies entirely in D (i.e. Pj ∈ D for
all j = 1, . . . ,m).

Two orders P and P inv are called completely reversed if P and P inv rank the alternatives
in X in exactly the opposite way, i.e. for all distinct x and y, xPy ⇔ not(xP invy). Note
that by the completeness assumption, two orders P, P inv ∈ P(X) are completely reversed
if and only if xPy ⇔ yP invx. A domain is said to have maximal width if it contains at
least one pair of completely reversed orders.5 The following property may look artificial
at first, but turns out to be conceptually very natural. Say that a domain D ⊆ P(X)
is semi-connected if it contains two completely reversed orders P and P inv and an entire
path connecting them (cf. [Danilov et al., 2012, p.938]). Evidently, semi-connectedness
implies maximal width, and is implied by, but logically weaker than, the conjunction of

5Domains with that property are called ‘normal’ in Danilov and Koshevoy [2013].
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connectedness and maximal width.6 Finally, a domain D will be called minimally rich if,
for every alternative x ∈ X, there exists an order P ∈ D such that P has x as the top
alternative.

The following characterization of the single-peaked domain is this paper’s main result.

Theorem 1. a) For every linear order > on X, the domain SP>(X) of all single-
peaked orders with respect to > is a connected and minimally rich Condorcet domain
with maximal width. (In particular, SP>(X) is semi-connected.)

b) Conversely, let D ⊆ P(X) be a semi-connected and minimally rich Condorcet do-
main. Then, D is single-peaked.

Except perhaps for the connectedness, the properties of the domain of all single-
peaked orders stated in part a) are straightforward to verify. Clearly, the two completely
reversed orders are > itself and its reverse. Note that a single-peaked domain can contain
at most one pair of completely reversed orders,7 therefore such pair uniquely determines
a corresponding maximal single-peaked domain, and we have the following corollary.

Corollary 1. Let D ⊆ P(X) be a maximal Condorcet domain that is (semi-)connected,
minimally rich and contains the pair P, P inv of completely reversed orders, then D =
SP>(X) where the spectrum > is given by either P or P inv.

Figure 1 below depicts the (unique) maximal single-peaked domain containing the
pair abcd and dcba of completely reversed orders on the set X = {a, b, c, d}. Neighboring
orders are connected by an edge; the domain consists of the orders marked in red color.

The proof of Theorem 1 is provided in Section 2.3 below. Note that in the sufficiency
part b) it is not asserted that D must contain all orders that are single-peaked with respect
to some given linear order (and this does in fact not follow); on the other hand, due to the
semi-connectedness, any domain satisfying the conditions of Theorem 1b) must contain
at least #X · (#X − 1)/2 + 1 elements (because every ordered pair of alternatives has to
be switched at least once on any path connecting two completely reversed orders).

Before providing the proof, we discuss the meaning and significance of the character-
izing conditions in Theorem 1. We will also show by means of concrete examples that the
characterization of the single-peaked domain provided by Theorem 1 is tight in the sense
that each condition in part b) is indeed necessary to obtain the conclusion.

2.2 Discussion

The conditions imposed on preference domains in Theorem 1 will now be discussed. In
particular, we demonstrate by means of examples that each condition in part b) is neces-
sary to obtain the single-peakedness of the domain. A secondary purpose of this subsection
is to illustrate the great diversity of the class of (maximal) Condorcet domains.

6In fact, in the appendix it is shown that for ‘closed’ Condorcet domains semi-connectedness implies
connectedness and is thus equivalent to the conjunction of connectedness and maximal width. This result
is important for understanding the structure of Condorcet domains, but it is not needed for our main
results and therefore deferred to the appendix (see also the remark in Subsection 2.3 below).

7This follows, e.g., immediately from Fact 2.2 below.
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2.2.1 Consistency of majority voting

The condition of consistency of pairwise majority voting lies of at the heart of the present
analysis and ‘defines’ the problem. Transitivity of the majority relation (for odd profiles)
is certainly a strong requirement but, as already noted in the introduction, the goal here
is not to justify it but to study its implications. Clearly, the condition that D be a
Condorcet domain is necessary for the conclusion that D is single-peaked. For instance,
the universal domain P(X) evidently satisfies all other conditions in Theorem 1b), but
the universal domain is clearly not single-peaked.

Fig. 1: A maximal single-peaked domain on X = {a, b, c, d}.

2.2.2 Maximal width: The existence of two completely reversed orders

One may think of a domain as the description of a ‘society.’ Under this interpretation,
the existence of two orders in the domain that are completely reverses of each other is a
condition of maximal ‘width’ of opinions. The underlying society is required to admit the
most extreme opinions with respect to at least one dimension. As with the other conditions
in Theorem 1, the maximal width condition describes a substantial requirement.8 On
the other hand, it is not evident whether there are natural classes of maximal Condorcet
domains that violate the maximal width condition. Figure 2 illustrates the necessity of the

8Also mathematically, it has significant consequences. Indeed, it is well-known that, together with the
consistency of majority voting, maximal width implies that the domain can be embedded in a distributive
lattice (cf. Abello [1991], Chameni-Nembua [1989], Monjardet [2009], Danilov and Koshevoy [2013], Puppe
and Slinko [2015]).
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maximal width condition in Theorem 1b) by displaying a maximal Condorcet subdomain
of P(X) on X = {a, b, c, d} that is not single-peaked but connected as well as minimally
rich. The connectedness and minimal richness of the depicted domain (the red marked
orders) is evident. To verify that it is not single-peaked, note first that a and d are the
only two alternatives that occur at the bottom of each marked order. Since abcd is a
member, this implies that if the domain is to be single-peaked with respect to >, we must
have either a > b > c > d or d > c > b > a. However, in either case the contained order
bdca, for instance, would not qualify as single-peaked.

Fig. 2: A connected and minimally rich Condorcet domain
without a pair of two completely reversed orders.

The fact that the domain depicted in Fig. 2 is indeed a Condorcet domain can be
easily inferred from the following well-known result.9

Fact 2.1. Let D ⊆ P(X) with X finite. The following statements are equivalent.

i) D is a Condorcet domain, i.e. the majority relation corresponding to every odd
profile on D is an element of P(X).

ii) The majority relation corresponding to every profile on D is acyclic.10

9See, e.g. [Monjardet, 2009, p. 142]). Condition iii) is Sen’s [1966] ‘value restriction’ and condition iv)
has been introduced by Ward [1965] as the ‘absence of a Latin square’ (in other terminology, it requires
the absence of a ‘Condorcet cycle’; cf. Condorcet, 1785). In light of this condition, Condorcet domains
of (linear) orders are sometimes referred to as ‘acyclic sets of linear orders’ (e.g. by Fishburn [1997]).

10An asymmetric binary relation P is acyclic if there does not exist a subset {x1, . . . , xm} ⊆ X such
that x1Px2, x2Px3,. . . , xm−1Pxm and xmPx1.
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iii) In any triple x, y, z ∈ X of pairwise distinct alternatives, there exists one element
that either never has rank 1, or never has rank 2, or never has rank 3 in the restric-
tions of the orders in D to the set {x, y, z}.

iv) For no triple P1, P2, P3 ∈ D, and no triple x, y, z ∈ X of pairwise distinct alterna-
tives one has xP1yP1z, yP2zP2x and zP3xP3y.

We finally note that the domain depicted in Fig. 2 is in fact a maximal Condorcet
domain.11

2.2.3 (Semi-)Connectedness

Continuing with the metaphor of a domain representing a society, connectedness has a
clear meaning as well: it must be possible to reach any admissible opinion from any other
admissible opinion by a series of minimal changes in the corresponding rankings while
staying in the domain at each step. This may be viewed as a ‘homogeneity’ condition
which forbids that opinions are clustered around a few ‘representative’ opinions. Figure
3 illustrates this; it depicts a maximal Condorcet domain on X = {a, b, c, d} that satisfies
all conditions of Theorem 1b) except semi-connectedness.

Fig. 3: A non-(semi-)connected, minimally rich Condorcet domain
containing pairs of completely reversed orders.

11The verification of this statement is straightforward if somewhat tedious.
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The ‘society’ corresponding to this domain is clustered around the ‘opinion’ that the
pair of alternatives {a, b} dominates the pair {c, d} (the 4-cycle in the front) and the
opposite ‘opinion’ that the pair {c, d} dominates the pair {a, b} (the 4-cycle in the back).
That the depicted domain is a maximal Condorcet domain follows again easily using Fact
2.1; that it is not single-peaked follows at once from the fact that it violates the following
simple (and well-known) necessary condition for single-peakedness.

Fact 2.2. Suppose that D ⊆ P(X) is single-peaked. Then there are at most two alterna-
tives in X which can occur at the bottom of any order in D.12

The conditions of connectedness and also its weakening to semi-connectedness are ar-
guably the most substantial and restrictive conditions used in Theorem 1b) (on top of
the consistency of majority voting). Indeed, the minimally rich Condorcet domain dis-
played in Fig. 3 is only one instance of a general procedure that yields ‘large’ Condorcet
domains that are neither connected nor even semi-connected, Fishburn’s so-called replace-
ment scheme (Fishburn [1997]). The scheme takes two Condorcet domains D1 ⊆ P(X1)
and D2 ⊆ P(X2) on two disjoint sets of alternatives and replaces one alternative, say
x ∈ X1, in each of the orders in D1 by each of the orders in D2 to obtain a new Condorcet
domain D1 ∗ D2 on the set (X1 \ {x}) ∪X2. It is easily verified that the domain D1 ∗ D2

is not semi-connected. On the other hand, D1 ∗ D2 evidently is minimally rich whenever
both D1 and D2 are, and it contains two completely reversed orders whenever both D1

and D2 do. Whether the replacement scheme is important for economic applications is
open to debate.

2.2.4 Minimal richness

Minimal richness has a straightforward interpretation as well: no alternative should a
priori be ruled as the individually most desired choice. The condition is termed ‘minimal’
here because in the literature much stronger ‘richness’ conditions have been imposed.13

Note that the domain of all single-peaked preferences with respect to some fixed linear or-
der > on X in fact also satisfies a stronger richness condition, namely that each alternative
occurs not only sometimes as the best but also as the second-best alternative.

Despite its innocuous appearance, the minimal richness condition has quite some bite
as well, as illustrated by the two domains depicted in Figure 4. Both domains are maximal,
connected Condorcet domains and contain the pair abcd and dcba of completely reversed
orders. Evidently, neither domain is minimally rich, and by Fact 2.2 above, neither domain
is single-peaked. That the depicted domains are indeed Condorcet domains follows again
from Fact 2.1, and their respective maximality can be verified in a straightforward way.

Interestingly, among all maximal connected Condorcet domains on X = {a, b, c, d}
with maximal width, the domain on the left hand side of Fig. 4 has the minimal number

12Note that this condition is clearly not sufficient for single-peakedness as the domain depicted in Fig. 2
shows.

13Our terminology follows Aswal et al. [2003] and Chatterji and Sen [2011]; the latter work also discusses
domains violating the minimal richness requirement. Stronger richness conditions have been used, e.g.,
in Chatterji et al. [2013], Nehring and Puppe [2007]).
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of elements (in this case, #X · (#X − 1)/2 + 1 = 4 · 3/2 + 1 = 7) and the domain on the
right hand side has the maximal number of elements. In fact, the domain depicted on the
r.h.s. of Fig. 4 has the maximal number of elements among all Condorcet domains on a set
of four alternatives, namely 9 (Monjardet [2009]). A Condorcet domain with the maximal
number of elements is sometimes referred to as a maximum Condorcet domain. It is known
that for #X ≤ 6, the maximal number of elements of a Condorcet domain is attained
by connected domains with maximal width,14 and that the maximal number of elements
of such domains always exceeds the number of elements of any single-peaked domain
(Monjardet [2009]). Theorem 1b) thus implies that these domains are never minimally
rich, and that the maximal cardinality of a semi-connected and minimally rich Condorcet
domain is 2#X−1, the number of all single-peaked orders with respect to some fixed linear
order of X.

Fig. 4: Two connected but not minimally rich Condorcet domains
containing a pair of completely reversed orders.

The strength of the minimal richness condition, at least when imposed jointly with
semi-connectedness, can also be inferred from the following immediate corollary of Theo-
rem 1b) and Fact 2.2.

Corollary 2. Let #X ≥ 3. There does not exist a semi-connected and minimally rich
Condorcet domain on X such that every alternative in X is worst for some order in D.

Note that the domain depicted in Fig. 3 above satisfies all conditions in Corollary 2
except for the semi-connectedness.

14For #X = 3, 4, 5, 6, the maximum Condorcet domains are connected and have 4, 9, 20, 45 elements,
respectively (Fishburn [1997, 2002]). For #X = 7, the maximal number of elements of a connected
Condorcet domain is 100 (Galambos and Reiner [2008]), but it is not known whether this is also the
maximal number of elements among all Condorcet domains on a set with 7 elements.

11



2.3 Proof of the main result

First, we show that the domain SP>(X) of all single-peaked orders with respect to any
spectrum > is connected, see also Obraztsova et al. [2013].15 The other properties of
SP>(X) asserted in Theorem 1a) are obvious.

Thus consider the domain SP>(X) on X with a > b > c > . . .. We proceed by
induction over #X; for the case #X = 3 the assertion is obvious. Thus assume that
the assertion holds for all cardinalities < #X. Take any two single-peaked orders P and
Q in SP>(X). By moving the alternative a in each of these orders stepwise down to
the bottom we obtain two orders Pa and Qa that agree with P and Q, respectively, on
X \ {a}. Since a is an extreme point of the spectrum >, the resulting orders at each
step as well as Pa and Qa are all single-peaked. Thus, P and Pa, as well as Q and Qa

are connected by a path in SP>(X), respectively. (Note that we allow for the possibility
that P = Pa and Q = Qa.) Now consider the restrictions P |X−a and Q|X−a of P and Q
to the set X \ {a}. Clearly, P |X−a and Q|X−a are single-peaked on X \ {a} with respect
to the restricted spectrum b > c > . . .. By the induction hypothesis, there exists a path
{P 1, P 2, . . . , P k} of single-peaked orders on X \ {a} that connects P |X−a and Q|X−a such
that P 1 = P |X−a and P k = Q|X−a. For each j, denote by P j

a the order on X that coincides
with P j on X \ {a} and that puts alternative a at the bottom. Evidently, (i) P 1

a = Pa
and P k

a = Qa, (ii) each order P j
a is single-peaked on X with respect to >, and (iii) the set

{P 1
a , P

2
a , . . . , P

k
a } constitutes a path in SP>(X). Combining the path connecting P and

Pa with the path connecting Pa and Qa and the path connecting Qa and Q, we obtain a
concatenated path connecting P and Q, as desired. This proves part a) of Theorem 1.

The proof of Theorem 1b) starts with the following simple observation. For every
D ⊆ P(X) and all triples {x, y, z} ⊆ X of pairwise distinct alternatives, denote by
D{x,y,z} ⊆ P({x, y, z}) the domain of the restrictions of all orders P ∈ D to the set
{x, y, z}, i.e.

D{x,y,z} := {P |{x,y,z} : P ∈ D}.

Fact 2.3. Let D ⊆ P(X) and consider any triple {x, y, z} ⊆ X of pairwise distinct
alternatives.

a) If D is a Condorcet domain on X, then D{x,y,z} is a Condorcet domain on {x, y, z}.

b) If D is connected on X, then D{x,y,z} is connected on {x, y, z}.

c) If D has maximal width on X, then D{x,y,z} has maximal width on {x, y, z}.

d) If D is semi-connected on X, then D{x,y,z} is semi-connected on {x, y, z}.

e) If D is minimally rich on X, then D{x,y,z} is minimally rich on {x, y, z}.

Proof. Part a) follows at once from Fact 2.1 iv) above, since a Condorcet cycle in D{x,y,z}
would induce a corresponding Condorcet cycle in D. Part b) also follows easily. Consider

15Theorem 4.10 in Obraztsova et al. [2013] asserts the same result; a proof (different from the one
presented here) is available in the full (working paper) version of Obraztsova et al. [2013]. I am grateful
to Edith Elkind for notifying me.

12



any two orders P̃ and Q̃ in D{x,y,z}, and let P,Q ∈ D be such that P̃ = P |{x,y,z} and

Q̃ = P ′|{x,y,z}. By assumption there exists a path {P 1, . . . , P k} connecting P and Q in

D. Evidently, then {P 1|{x,y,z}, . . . , P k|{x,y,z}} is a path in D{x,y,z} that connects P̃ and Q̃
(observe that P j|{x,y,z} and P l|{x,y,z} can coincide for distinct j, l ∈ {1, . . . , k}). To verify
part c), simply observe that if P and P are completely reversed in D, then P |{x,y,z} and
P |{x,y,z} are completely reversed in D{x,y,z}. Part d) follows at once from parts b) and c).
Finally, if D is minimally rich, then in particular x, y and z must be on top of at least
order in D; this proves part e).

2

The significance of the previous result in our context stems from the observation that
on a set of three alternatives, there are only two types of semi-connected Condorcet
domains: the single-peaked and the ‘single-dipped’ domain (as also observed by [Danilov
et al., 2012, Th. 4(ii)]). A domain D ⊆ P(X) is called single-dipped with respect to the
linear order > on X if, for all P ∈ D and all w ∈ X, the lower contour sets LP (w) := {y ∈
X : wPy} are connected (‘convex’) in the order >, i.e. {x, z} ⊆ LP (w) and x < y < z
jointly imply y ∈ LP (w). A domain D is called single-dipped if there exists some linear
order > such that D is single-peaked with respect to >.16 The domain of all orders that
are single-dipped with respect to the fixed order > on X is denoted by SD>(X).

Fact 2.4. There are exactly two semi-connected Condorcet domains on the set {x, y, z} ⊆
X that contain the two completely reversed orders xyz and zyx, namely

SP>({x, y, z}) = {xyz, yxz, yzx, zyx}, and

SD>({x, y, z}) = {xyz, xzy, zxy, zyx},

where the spectrum > is given either by the order xyz, or by the completely reversed order
zyx (see Figure 5).

Fig. 5: The single-peaked (left) and single-dipped (right) domains on {x, y, z}.

Proof. By the semi-connectedness of D, there exists a path in D connecting xyz and
zyx. Thus, D contains at least one neighbor of xyz, i.e. either yxz or xzy. On the other

16Inada [1964] introduced the condition of single-dippedness under the name of ‘single-cavedness.’ We
follow here the terminology of Klaus et al. [1997] and others.
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hand, D cannot contain both of these neighbors because the triple yxz, xzy, zyx forms
a Condorcet cycle. If D contains yxz it must coincide with SP>({x, y, z}) by the semi-
connectedness; similarly, if it contains xzy it must coincide with SD>({x, y, z}).

2

Remark. By Fact 2.4, semi-connectedness of a Condorcet domain implies its connect-
edness in the case of three alternatives. This does not hold in general. However, in the
appendix it is shown that every semi-connected and closed Condorcet domain must in
fact be connected; thus, for closed (in particular, for all maximal) Condorcet domains
with maximal width the notions of semi-connectedness and connectedness coincide, see
Propositions A.1 and A.2.

We can now complete the proof of Theorem 1b). Thus, suppose that D is semi-
connected and minimally rich. By the semi-connectedness there exist two completely
reversed orders P , P ∈ D that are connected by a path in D. By the minimal richness,
every alternative is in top of some order in D. Consider any triple x, y, z ∈ X with
xPyPz. By Fact 2.3, the domain D{x,y,z} is minimally rich and semi-connected. Since the
single-dipped domain SD>({x, y, z}) is not minimally rich, we obtain by Fact 2.4 that,
for all triples x, y, z ∈ X,

D{x,y,z} = SP>({x, y, z}), (2.1)

where > is given by the restriction of P to {x, y, z}. Thus, the restriction of D to any
triple is single-peaked with respect to the spectrum inherited from P (or, equivalently,
from P ).

It remains to show that this implies the single-peakedness of D itself. This is the
content of the following simple observation.

Fact 2.5. Let D satisfy (2.1) for all triples x, y, z ∈ X where > is given by the restriction
of P to {x, y, z}. Then D is single-peaked with respect to > = P .

Proof. We have to show that all upper contour sets of all orders P ∈ D are connected in
the order > = P . Thus, consider any order P ∈ D and any triple x, y, z with x > y > z,
i.e. xPyPz, and suppose that {x, z} ⊆ UP (w) for some w ∈ X. By (2.1) the restriction
of P to {x, y, z} takes one of the following form: xPyPz, yPxPz, yPzPx, or zPyPx
(cf. Fig. 5). Evidently, in each case {x, z} ⊆ UP (w) implies y ∈ UP (w).

2

2.4 A dual characterization of the single-dipped domain

Theorem 1 above entails a ‘dual’ characterization of the single-dipped domain in a straight-
forward way, as follows.

Theorem 2. a) For every linear order > on X, the domain SD> is a connected Con-
dorcet domain with maximal width such that every alternative in X is the worst
alternative for some order.

b) Conversely, let D ⊆ P(X) be a semi-connected Condorcet domain such that every
alternative in X is the worst alternative for some order in D. Then, D is single-
dipped.
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Proof. Part a) is analogous to the proof of Theorem 1a). For part b) note that among the
two admissible semi-connected domains on triples according to Fact 2.4 only the single-
dipped domain has every alternative at the bottom of at least one order. Thus, if D
satisfies the conditions of Theorem 2b), and if P ∈ D is one of a pair of completely reversed
orders in D that are connected by a path in D, we obtain, for all triples x, y, z ∈ X,

D{x,y,z} = SD>({x, y, z}), (2.2)

where> is given by the restriction of P to {x, y, z}. By an argument completely symmetric
to that given in Fact 2.5 we obtain from (2.2) that the lower contour sets of all orders in
D are connected in the spectrum > = P , and thus that D itself is single-dipped.

2

2.5 A corollary for single-crossing domains

Our analysis has an important implication for a class of domains known as ‘single-crossing’
domains. A domain D ⊆ P(X) is a single-crossing domain if it can be written in the
form D = {P1, ..., Pm} such that, for all ordered pairs (x, y) ∈ X × X, the set {P ∈
D : xPy} is ‘connected’ in {1, ...,m}, i.e., for all x, y ∈ X, xPjy and xPly with j < l
implies xPky for all k ∈ {j, . . . , l}, and yPjx and yPlx with j < l implies yPkx for all
k ∈ {j, . . . , l}. This property has been introduced in the literature by Rothstein [1990]
under the name of ‘order-restriction.’ It underlies the analysis in Roberts [1977], Gans
and Smart [1996], and is employed frequently under the name of ‘single-crossing property’
(see, e.g., Saporiti [2009]). It is well-known that all single-crossing domains are Condorcet
domains (Rothstein [1990, 1991]).

Corollary 3. Let D ⊆ P(X) be a single-crossing domain. If D is minimally rich, then
it is single-peaked. If every alternative in X is worst in at least one order in D, then D
is single-dipped.

Proof. Every single-crossing domain D can be extended to a semi-connected single-
crossing domain D∗ ⊇ D (note that we are not asserting that D∗ is a maximal Condorcet
domain). Indeed, if D = {P1, ..., Pk} has the single-crossing property, then so does the
domain {P1, ..., Pk, Pk+1} where Pk+1 = P inv

1 (we allow that Pk+1 = Pk). We can now fill
possible ‘gaps’ in the sequence P1, ..., Pk, Pk+1 as follows. If P1 and P2 differ in the ranking
of more than one pair of alternatives, at least one of these pairs must be an adjacent pair
in P1. Then, we can add the order P ′1 that switches exactly this pair and agrees with P1

in the ranking of all other pairs, and consider the domain {P1, P
′
1, P2, ...}. Continuing in

this fashion, we obtain a semi-connected and single-crossing domain D∗ ⊇ D. Evidently,
if D is minimally rich, so is D∗; and if every alternative is worst in at least one order in D,
then the same property holds for D∗. Since every single-crossing domain is a Condorcet
domain, we thus obtain by Theorem 1b) that D∗, and hence also D, is single-peaked if D
is minimally rich. Similarly, if D has every alternative at the bottom of some order, then
D∗, and hence also D, is single-dipped by Theorem 2b).

2
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Remark. The semi-connected domain D∗ constructed in the proof of Corollary 3 is in
fact a maximal single-crossing domain in the sense that no proper superdomain of D∗
can be single-crossing. The maximal single-crossing domains are sometimes referred to as
maximal chains in the literature, since they indeed correspond to the maximal chains in
the so-called ‘weak Bruhat order’ (Abello [1991], Chameni-Nembua [1989], Galambos and
Reiner [2008], Monjardet [2009]). Note that the maximal single-crossing domains are in
general not maximal as Condorcet domains. For instance, all paths connecting the orders
abcd and dcba in the single-peaked domain in Fig. 1, as well as in the maximum domain
on the right hand side of Fig. 4 correspond to maximal single-crossing domains; but
evidently, these maximal paths do not form maximal Condorcet domains. On the other
hand, the maximal single-crossing domain on the left hand side of Fig. 4 is also maximal
as Condorcet domain; a simple necessary and sufficient condition for the maximality (as
Condorcet domain) of a maximal single-crossing domain is given in [Monjardet, 2007,
p. 79] and Puppe and Slinko [2015]. The fact that every single-crossing profile of linear
orders in which every alternative is at the top of at least one voter must be single-peaked
has also been observed by Elkind et al. [2014].

3 The case of weak preference orders

3.1 The basic concepts and definitions generalized

Consider now the set R(X) of all weak orders (i.e., complete and transitive binary rela-
tions) on X, and subdomains D ⊆ R(X). Individual weak preferences are denoted by
R,R′ etc., and profiles by ρ = (R1, . . . , Rn) ∈ R(X)n. Frequently, we will denote weak
orders by listing the alternatives in descending order and putting indifferent alternatives
in brackets, e.g. the weak order that ranks a first and b and c indifferently as second best
is denoted by a(bc) . . .; similarly, the weak order that has a and b indifferently at the top
and c at the following rank is denoted by (ab)c . . .; finally, the weak order that has a, b
and c indifferently on top is denoted by (abc) . . ., etc.

The majority relation associated with a profile ρ is the binary relation Rmaj
ρ on X such

that xRmaj
ρ y if and only if xRiy for more than half of the voters.17 Note that, according

to this definition, the majority relation is complete for every odd profile ρ. As above,
the domains D ⊆ R(X) such that, for all odd n, the majority relation associated with
any profile ρ ∈ Dn is transitive are referred to as Condorcet domains. Condorcet domains
of weak orders have been studied much less than their counterparts with linear orders,
see the monograph of Gaertner [2001] for a state-of-the-art survey. As above, a domain
D ⊆ R(X) is called a maximal Condorcet domain (of weak orders) if every Condorcet
domain (on the same set of alternatives) that contains D as a subset must in fact coincide
with D.

17It is well-known that this is not the only possible definition of majority rule with weak preferences
(see, e.g., [Gaertner, 2001, Ch. 3]); for our purpose it turns out to be the appropriate one. Moreover, it
represents the natural notion of majority rule inherited from the general judgement aggregation model,
see List and Puppe [2009], Nehring et al. [2014, forthcoming].
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The generalization of our main result to the case of weak orders requires careful adap-
tion of the employed concepts since some additional complications arise. As a first indi-
cation of these, observe that the equivalences in Fact 2.1 do not carry over to the domain
of weak orders. As a simple example, consider the domain on X = {a, b, c} consisting of
the three weak orders (ab)c, a(bc) and cba, say. If ρ is the profile in which three voters
have each one of these preferences, respectively, the majority relation is acyclic but not
transitive, since a majority strictly prefers a to c while [aRmaj

ρ b and bRmaj
ρ a] as well as

[bRmaj
ρ c and cRmaj

ρ b], i.e. both pairs of alternatives (a, b) and (b, c) are deemed indifferent,
respectively, according to the majority relation. Thus, the domain is not a Condorcet
domain in our sense.

A domain D ⊆ R(X) is called weakly single-peaked with respect to the linear order >
on X if, for all R ∈ D and all w ∈ X, the upper contour sets UR(w) := {y ∈ X : yRw}
are connected (‘convex’) in the order >, i.e. {x, z} ⊆ UR(w) and x < y < z jointly imply
y ∈ UR(w). A domain D ⊆ R(X) is called weakly single-peaked if there exists some linear
order > such that D is weakly single-peaked with respect to >. Similarly, a domain
D ⊆ R(X) is called weakly single-dipped if there exists a linear order > on X such that,
for all R ∈ D, the lower contour sets LR(w) := {y ∈ X : wRy} are connected with respect
to >.

Remark. Several generalizations of the concept of single-peakedness in order to accom-
modate indifference have been discussed in the literature. [Moulin, 1988, p. 264] notes
that for many purposes indifferences across the (unique) peak could be allowed with-
out difficulty. On the other hand, the concept of ‘single-plateaued’ preferences allows
for multiple best alternatives and has proven useful in some contexts ([Gaertner, 2001,
p. 68]); however, this concept still assumes strict monotonicity below the optimum (Moulin
[1984]). The above notion of ‘weakly’ single-peaked preferences has also been employed
by Duggan [2016] (under this name) and is weaker than single-plateauedness as it allows
for multiple ‘plateaus’ and, in particular, not only at the top. From an abstract per-
spective, it represents a natural generalization of the usual notion of single-peakedness,
as it corresponds to convexity of all upper contour sets of the weak relations, just as
standard single-peakedness corresponds to convexity of the upper contour sets of all strict
relations. However, I do not want to argue that the adopted definitions are the only rea-
sonable extensions of the concepts of single-peakedness and Condorcet domain to the case
of weak orders. For instance, one could require only acyclicity of the majority relation
for a domain to be called ‘Condorcet domain,’ or base the notion of Condorcet domain
on the so-called ‘strict’ majority relation ([Gaertner, 2001, p. 27]), or require uniqueness
of the top alternative in the definition of single-peakedness. However, as the subsequent
analysis will show, the adopted definitions are precisely the appropriate notions for which
the robustness of the main characterization result can be demonstrated.

A further important difference to the case of linear orders is that not all weakly single-
peaked domains are Condorcet domains; in particular, the domain of all weak orders that
are weakly single-peaked with respect to some order > is not a Condorcet domain. The
same example as above can be used to demonstrate this. Indeed, we have already argued
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above that the domain D = {(ab)c, a(bc), cba} is not a Condorcet domain. On the other
hand, it is clearly weakly single-peaked with respect to the linear order a > b > c.

We also have to generalize the notion of ‘connectedness,’ as follows. For R ∈ R(X),
denote by ¬R the negation of R, i.e., for all x, y ∈ X, x¬Ry ⇔ not xRy. For any two
orders R,R′ ∈ R(X), denote by [R,R′] ⊆ R(X),

[R,R′] := {Q ∈ R(X) : Q ⊇ R ∩R′ and ¬Q ⊇ ¬R ∩ ¬R′}. (3.1)

We will refer to [R,R′] as the interval spanned byR andR′, and to its elements as the orders
between R and R′; furthermore, two distinct orders R and R′ are called R(X)-neighbors if
[R,R′] = {R,R′}. Figure 6 depicts the ‘neighborhood structure’ of R({a, b, c}), connect-
ing all neighbors by an edge. Note that, due to transitivity of the indifference relation,
the six neighbors of the weak order (abc) on the set X = {a, b, c} each differ from (abc)
in the ranking of two pairs of alternatives, respectively.18

Fig. 6: The neighborhood structure of R({a, b, c}).

A path in R(X) is a subset {R1, . . . , Rm} ⊆ R(X) with m ≥ 2 such that for all
j = 1, . . . ,m− 1, the two consecutive orders Rj and Rj+1 are R(X)-neighbors. A domain
D ⊆ R(X) will be called connected if, for every pair R,R′ ∈ D of distinct orders in D,
there exists a path {R1, . . . , Rm} that connects R and R′ (i.e. R1 = R and Rm = R′) and
that lies entirely in D (i.e. Rj ∈ D for all j = 1, . . . ,m).

As above, two orders R and Rinv are called completely reversed if, for all distinct x
and y, xRy ⇔ not(xRinvy). Note that by the completeness assumption, two completely
reversed weak orders must both in fact be linear orders, i.e. neither of the two can contain
any non-trivial indifference. A domain D ⊆ R(X) is said to have maximal width if D

18The neighborhood relation can be defined analogously on the space P(X) of all linear orders; in this
case, definition (3.1) simplifies to [P, P ′] = {Q ∈ P(X) : Q ⊇ P ∩P ′} due to the antisymmetry condition.
Moreover, two linear orders are P(X)-neighbors in P(X) if and only if they differ in the ranking of exactly
one pair of alternatives (see the appendix for further details).
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contains at least one pair of completely reversed orders. Finally, a domain D ⊆ R(X) is
called semi-connected if D contains at least two completely reversed orders and an entire
path connecting them.

3.2 All (semi-)connected Condorcet domains on triples

As in the case of linear orders, a crucial step in our characterization of the single-peaked
(and single-dipped) domain will be the complete classification of the semi-connected Con-
dorcet domains on triples. This is provided by the next result (see Figure 7 for illustration
with the domains D1−D6 depicted clockwise from top left in the first row to bottom left
in the second row).

Proposition 3.1. Let x, y, z ∈ X be pairwise distinct. The following are the semi-
connected Condorcet subdomains of R({x, y, z}) that contain the completely reversed or-
ders xyz and zyx. All of them are maximal and in fact connected.

D1(x, y, z) = {xyz, (xy)z, yxz, y(xz), yzx, (yz)x, zyx},
D2(x, y, z) = {xyz, (xy)z, (xyz), z(xy), zyx},
D3(x, y, z) = {xyz, (xy)z, (xyz), (yz)x, zyx},
D4(x, y, z) = {xyz, x(yz), (xyz), z(xy), zyx},
D5(x, y, z) = {xyz, x(yz), (xyz), (yz)x, zyx},
D6(x, y, z) = {xyz, x(yz), xzy, (xz)y, zxy, z(xy), zyx}.

Proof. By the semi-connectedness of D, there exists a path in D connecting xyz and
zyx. Thus, D contains at least one neighbor of xyz, i.e. either (xy)z or x(yz). On the
other hand, D cannot contain both of these neighbors because the triple [(xy)z, x(yz),
zyx] is ‘forbidden:’ if three voters each have one of these preference orders, respectively,
we obtain a non-transitive majority relation since x and y, as well as y and z are deemed
indifferent by the majority relation while x is strictly superior to z.

Case 1. Suppose first that D contains (xy)z. By the semi-connectedness, D must contain
either the neighbor yxz, or the neighbor (xyz) of (xy)z ‘in direction of’ zyx. Again, D
cannot contain both of them since the triple [yxz, (xyz), zyx] is forbidden (in the same
sense as above).

Case 1.1. Thus, suppose D contains yxz. By the semi-connectedness it must contain
D1(x, y, z). On the other hand, D1(x, y, z) is a maximal Condorcet domain. For this it
remains to show that it cannot contain any order from the set {xzy, (xz)y, zxy, z(xy)}.
For the two linear orders xzy and zxy this follows immediately from the existence of
appropriate Condorcet cycles with two elements from D1(x, y, z), respectively; for the
order z(xy) it follows since the triple [xyz, (yz)x, z(xy)] is forbidden; and for (xz)y it
follows since the triple [(xy)z, yzx, (xz)y] is forbidden. Thus, in Case 1.1 we obtain
D = D1(x, y, z).

Case 1.2. Now suppose D contains (xyz) (in addition to (xy)z). Then, D can neither
contain y(xz) nor (xz)y since both triples [(xy)z, (xyz), y(xz)] and [xyz, (xyz), (xz)y] are
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forbidden.19 Thus, by the semi-connectedness D must contain either z(xy) or (yz)x, but
as already argued, it cannot contain both. In the first case, D thus contains D2(x, y, z),
and in the second case D contains D3(x, y, z). But by arguments completely symmetric
to those given so far it follows that either of these domains is maximal.

Case 2. If D contains x(yz), a completely symmetric analysis yields the possible cases D =
D4(x, y, z), D = D5(x, y, z), or D = D6(x, y, z). This completes the proof of Proposition
3.1.

2

Fig. 7: The (maximal) (semi-)connected Condorcet subdomains of R({x, y, z}).

A crucial observation for the following is that the domains D1−D5 are weakly single-
peaked, while the domains D2 − D6 are weakly single-dipped with respect to the linear
order x > y > z (in particular, the five-element domains D2 − D5 are simultaneously
weakly single-peaked and weakly single-dipped with respect to x > y > z).

3.3 Main result

Due to the inclusion of indifferences, there are two natural formulations of the minimal
richness condition. Let us say that a domain D ⊆ R(X) is strongly minimally rich if, for
each alternative x ∈ X, there is at least one weak order R ∈ D that has x has the unique
top alternative. Analogously, say that a domain D ⊆ R(X) is weakly minimally rich if, for

19That these two triples are forbidden hinges on the adopted definition of the majority relation. For
instance, if in a profile ρ, each of the orders [(xy)z, (xyz), y(xz)] receives one third of the votes, we obtain
both xRmaj

ρ y and yRmaj
ρ x; moreover, xRmaj

ρ z and zRmaj
ρ x but not zRmaj

ρ y.
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each alternative x ∈ X, there is at least one weak order R ∈ D such that x is among the
top alternatives of R.

The following characterization extends the main result of the previous section to the
case of weak orders.

Theorem 3. a) For every linear order > on X, there exists a unique maximal Con-
dorcet domain R̂> ⊆ R(X) that contains the domain SP>(X) of all single-peaked
linear orders with respect to >. The domain R̂> is weakly single-peaked and con-
nected. Evidently, R̂> has maximal width and is strongly minimally rich.

b) Conversely, let D ⊆ R(X) be a semi-connected and weakly minimally rich Condorcet
domain. Then, D is weakly single-peaked.

c) Moreover, if D ⊆ R(X) is a semi-connected and strongly minimally rich Condorcet
domain, then D ⊆ R̂> for some linear order > on X. (In particular, D is weakly
single-peaked.)

The domain R̂> admits the following explicit characterization. First, each indifference
class of every weak order in R̂> has at most two elements, i.e. any indifference prevails
over at most two distinct alternatives. Moreover, whenever all indifferences are ‘resolved’
for a weak order in R̂> by transforming all indifferent pairs into strictly ranked adjacent
alternatives, one obtains an order in SP>(X), no matter which combination of strict
rankings for the indifferent pairs is chosen. For illustration, consider Figure 8 which
depicts the domain R̂> on X = {a, b, c, d} for the spectrum a > b > c > d.

Fig. 8: The domain R̂> on X = {a, b, c, d} with spectrum a > b > c > d.
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As an example, consider the weak order (bc)(ad) in the middle of Fig. 8, i.e. the order
that declares b and c as indifferent on the top and a and d as indifferent at the bottom.
There are exactly four ways to transform these two indifferent pairs into adjacent strictly
ranked pairs resulting in the linear orders bcad, cbad, bcda, and cbda, all of which belong
to SP>({a, b, c, d}) for the spectrum a > b > c > d. By contrast, the order a(bc)d does
not belong to the domain R̂> for the spectrum a > b > c > d, since the linear order acbd is
not single-peaked. Note that the weak order a(bc)d is nevertheless weakly single-peaked.

Proof of Theorem 3. a) Let D ⊆ R(X) be a maximal Condorcet domain with
D ⊇ SP>(X) for a given spectrum > on X. As is easily verified, for every triple of
distinct alternatives x, y, z ∈ X with x > y > z, the restriction D{x,y,z} of D to {x, y, z}
is a maximal Condorcet domain of weak orders on {x, y, z} that contains the domain
SP>({x, y, z}) (strictly speaking, in the latter term ‘>’ denotes the restriction of > to
{x, y, z}). By Fact 2.1, D{x,y,z} can neither contain the linear order xzy nor the linear order
zxy. Moreover, D{x,y,z} can contain neither of the weak orders x(yz), (xz)y, z(xy), nor the
complete indifference relation (xyz); indeed, the following are forbidden triples of weak or-
ders: [x(yz), yxz, zyx], [(xz)y, yxz, zyx], [z(xy), xyz, yzx], [(xyz), xyz, yzx]. This implies
that D{x,y,z} ⊆ D1(x, y, z), where D1(x, y, z) is defined as in Proposition 3.1 above. By the
maximality of both D{x,y,z} and D1(x, y, z), we obtain that in fact D{x,y,z} = D1(x, y, z).20

This implies the desired conclusion D = R̂> since evidently no indifference class in any
order in D can have more than two elements; moreover, for no weak order in D, one can
obtain a linear order outside SP>(X) by strictly ranking all indifferent pairs and keeping
the relative position of all other pairs of alternatives fixed (indeed, if this was possible
there would exist a triple x > y > z such that D{x,y,z} would contain at least one of the
weak orders x(yz), (xz)y, or z(xy)). From the above it is immediate that the domain
R̂> is weakly single-peaked. It is easily seen that R̂> is semi-connected: indeed, any
two single-peaked orders in SP>(X) that differ in the ranking of exactly one pair are
connected to each other in R̂> by the weak order that declares this pair of alternatives as
indifferent (keeping the position of all other alternatives fixed). The connectedness of R̂>

thus follows from Proposition A.2 in the appendix. This completes the proof of part a).

b) Suppose that D ⊆ R(X) is a semi-connected and weakly minimally rich Condorcet
domain. Denote by P one of the pair of orders in D that are complete inverses of each
other and are connected by a path in D (recall that each one of a pair of completely
reversed orders in R(X) must be a linear order). For each triple of distinct alternatives
x, y, z ∈ X with xPyPz, the restriction D{x,y,z} is a semi-connected and weakly mini-
mally rich Condorcet domain that contains the completely reversed orders xyz and zyx.
By Proposition 3.1, D{x,y,z} coincides with one of the domains D1(x, y, z) − D6(x, y, z),
but by the weak minimal richness in fact with one of the domains D1(x, y, z)−D5(x, y, z)
(observe that no weak order in D6(x, y, z) has y among its top alternatives). But we have

20Note that we cannot invoke Proposition 3.1 to directly conclude this, since we do not yet know
whether or not D is semi-connected. In fact, there exist several maximal Condorcet domains of weak
orders on a triple {x, y, z} different from the ones listed in Proposition 3.1; these domains are either not
connected or do not have maximal width (cf. Dittrich [2016]). The argument just given in the main text
shows that none of them contains the single-peaked domain SP>({x, y, z}) as a subdomain.
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already observed that the domains D1(x, y, z) − D5(x, y, z) are all weakly single-peaked.
As in Section 2 above, the weak single-peakedness of D on all triples with respect to the
same spectrum > := P implies its weak single-peakedness globally with respect to >.

c) Finally, suppose that D ⊆ R(X) is a semi-connected and even strongly minimally rich
Condorcet domain. Then, for all triples x, y, z ∈ X with xPyPz the restriction D{x,y,z}
coincides with D1(x, y, z) (all other semi-connected Condorcet domains on {x, y, z} are
not strongly minimally rich). By the arguments given in part a) this implies that D ⊆ R̂>.
This completes the proof of Theorem 3.

2

While, for a given spectrum >, the Condorcet domain R̂> is uniquely determined by
the conditions in Theorem 3 c) and maximality, there are several non-isomorphic maximal
single-peaked domains that satisfy the weaker richness property in part b). Figure 9
depicts four of them.

Fig. 9: Four maximal weakly single-peaked domains satisfying weak minimal richness.
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The reason for the multiplicity of weakly single-peaked Condorcet domains that satisfy
the weak minimal richness condition is that the restrictions to different triples of alter-
natives may correspond to different types of Condorcet domains on the triples (for each
triple x, y, z ∈ X, one of the domains D1(x, y, z) − D5(x, y, z)). By contrast, under the
strong minimal richness conditions, the restrictions to all triples x, y, z coincide uniformly
with D1(x, y, z).

3.4 A dual characterization of the weakly single-dipped domain

As in the case of linear orders, we obtain a corresponding characterization of the single-
dipped domain, as follows.

Theorem 4. a) For every linear order > on X, there exists a unique maximal con-
nected Condorcet domain Ř> ⊆ R(X) that contains the domain SD> of all single-
dipped linear orders with respect to >. The domain Ř> is weakly single-dipped and
connected. Evidently, Ř> has maximal width and contains, for every alternative in
X, at least one order that has this alternative uniquely at the bottom.

b) Conversely, let D ⊆ R(X) be a semi-connected Condorcet domain such that every
alternative is among the worst alternatives for some order in D. Then, D is weakly
single-dipped.

c) Moreover, if D ⊆ R(X) is a semi-connected Condorcet domain such that every
alternative is uniquely worst for some order in D, then D ⊆ Ř> for some linear
order > on X. (In particular, D is weakly single-dipped.)

The proof of Theorem 4 is completely symmetric to the proof of Theorem 3 above;
the details are left to the reader.

3.5 A corollary for weakly single-crossing domains

The following is a natural generalization of the single-crossing property for domains of
weak orders. Say that a domain D ⊆ R(X) is a weakly single-crossing domain if it can be
written in the form D = {R1, ..., Rm} such that, for all ordered pairs x, y ∈ X, the sets
{R ∈ D : xRy} and {R ∈ D : x¬Ry} are connected in {1, ...,m}. As is easily verified, this
condition implies that in the order 1, ...,m, for all distinct alternatives x, y ∈ X, either
(i) all weak orders Rj that rank x strictly above y are followed by all weak orders Rj that
declare x and y as indifferent, and these are followed by all weak orders Rj that rank y
strictly above x or, conversely, (ii) all weak orders Rj that rank y strictly above x are
followed by all weak orders Rj that declare x and y as indifferent, and these are followed
by all weak orders Rj that rank x strictly above y (cf. Rothstein [1990, 1991]).
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Corollary 4. Let D ⊆ P(X) be a weakly single-crossing domain.

a) If D is weakly minimally rich, then it is weakly single-peaked.

b) If every alternative in X is among the worst alternatives in at least one order in D,
then D is weakly single-dipped.

c) If D is strongly minimally rich, then D ⊆ R̂> for some linear order > on X. (In
particular, D is weakly single-peaked.)

d) If every alternative in X is the uniquely worst alternative in at least one order
in D, then D ⊆ Ř> for some linear order > on X. (In particular, D is weakly
single-dipped.)

Proof. The proof follows from Theorems 3 and 4 since every weakly single-crossing
domain D can be extended to a semi-connected weakly single-crossing domain D∗ ⊇ D as
in the proof of Corollary 3. Here is a sketch how to construct the semi-connected domain
D∗ ⊆ R(X). Given the weakly single-crossing domain D = {R1, ..., Rm}, let R0 be any
linear order satisfying, for all x, y ∈ X, (i) xPmy ⇒ yP0x, and (ii) (xImy & xP1y)⇒ xP0y,
where Pm, P1, P0 are the asymmetric parts of Rm, R1, R0, respectively, and Im is the
symmetric part of Rm; moreover, let Rm+1 := Rinv

0 be the inverse of R0. Then consider
the domain {R0, R1, ..., Rm, Rm+1}, where we allow for the possibility that R0 = R1 and/or
Rm = Rm+1. As is easily seen, the domain {R0, R1, ..., Rm, Rm+1} is again weakly single-
crossing. Now fill all possible ‘gaps’ in an appropriate way, as in the proof of Corollary 3
above, whenever the interval [Rj, Rj+1] contains weak orders distinct from both Rj and
Rj+1 for j = 0, ...,m.

2

Conclusion

How restrictive is the assumption of single-peakedness as a domain restriction? In this
paper it is argued that single-peakedness follows very naturally from transitivity of the
majority relation for all odd profiles under a few simple and reasonable conditions of rich-
ness and connectedness. But transitivity of the majority relation for every odd profile is
clearly a very demanding condition. As is well-known, its full strength is not needed in
order to derive possibility results in social choice theory. For instance, the existence of
non-dictatorial Arrovian aggregators and/or strategy-proof social choice functions can be
demonstrated under much weaker domain restrictions (Kalai and Muller [1977]). Also in
this context, richness and/or connectedness assumptions have frequently been imposed,
and variants of the single-peakedness condition have been found to play an important role
in the derivation of possibility results (Nehring and Puppe [2007], Chatterji et al. [2013],
Chatterji and Massó [2015]). In a recent paper, Chatterji et al. [2016] have characterized
a weaker notion of single-peakedness (‘single-peakedness with respect to a tree’) using
strategy-proofness and other conditions imposed on random social choice functions. It
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seems a worthwhile task for future research to further explore whether, and how, the
present methodology can contribute to our understanding of the weaker domain restric-
tions that still enable consistent preference aggregation and/or non-dictatorial strategy-
proof social choice. One important lesson that can be drawn from the present analysis in
this context is that each of the conditions of (semi-)connectedness, minimal richness, and
the presence of two completely reversed orders substantially restrict the combinatorial
space of possibilities. Even if these conditions are justifiable by the specific context or ap-
plication at hand, they cannot be considered mere ‘technical’ requirements nor innocuous
assumptions.
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Appendix: Maximal semi-connected Condorcet
domains are (directly) connected

In this appendix it is proved that all closed (in particular, all maximal) semi-connected
Condorcet domains are in fact connected, and even satisfy a stronger property called
direct connectedness. This holds both for domains of linear orders and domains of weak
orders. These results and their proofs have been deferred to this appendix because they
require some additional definitions and concepts; moreover, they are not needed to derive
the results of Sections 2 and 3 above.21 On the other hand, Propositions A.1 and A.2
below are included here because they describe a fundamental and remarkable property of
Condorcet domains that turns out to be very useful in the classification of all maximal
Condorcet domains (for small numbers of alternatives), see Dittrich [2016].

A.1 The case of linear orders

The domain P(X) of all linear orders on X is naturally endowed with a betweenness
structure as follows. An order Q is between the orders P and P ′ if Q ⊇ (P ∩ P ′),
i.e., if Q agrees with all binary comparisons in which P and P ′ agree (Kemeny and
Snell [1960]).22 The set of all orders that are between P and P ′ is called the interval
spanned by P and P ′ and is denoted by [P, P ′]. The domain P(X) endowed with this
betweenness relation is sometimes referred to as the permutahedron. A subset D ⊆ P(X)
is called median stable if, for any triple of elements P1, P2, P3 ∈ D, there exists an element
Pmed = Pmed(P1, P2, P3) ∈ D, the median order corresponding to P1, P2, P3, such that

Pmed ∈ [P1, P2] ∩ [P1, P3] ∩ [P2, P3].

It is well-known that the median order of any triple P1, P2, P3 ∈ P(X), if it exists, is
unique. The following observation is well-known but fundamental, and will be useful in
the following (cf. [Nehring and Puppe, 2007, Cor. 5]).

Fact A.1. A triple P1, P2, P3 ∈ P(X) admits a median order if and only if the majority
relation Pmaj

π corresponding to the profile π = (P1, P2, P3) is transitive, in which case
Pmed(P1, P2, P3) and Pmaj

π coincide. In particular, a domain D is a closed Condorcet
domain if and only if it is median stable.

Recall that every maximal Condorcet domain D is closed in the sense that the majority
relation of every odd profile from D is again an element of D (and not only of P(X)).
In particular, the maximal Condorcet domains are exactly the maximal median stable
subsets of P(X).

A domain D ⊆ P(X) is called directly connected if every pair P1, Pm ∈ D is connected
by a path {P1, ..., Pm} ⊆ D such that for all 1 ≤ j < k ≤ m, {Pj, Pj+1, ..., Pk} ⊆ [Pj, Pk].

21Theorems 3a) and 4a) invoke Proposition A.2 in order to demonstrate the connectedness of R̂> and
Ř>, respectively; the connectedness of these two domains can also be directly verified.

22Some authors such as, e.g., Grandmont [1978] and Demange [2012] refer to orders that are between
two others in this sense as ‘intermediate’ orders.
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A path as required in this definition is also called a direct path connecting P1 and Pm.23

Evidently, direct connectedness implies connectedness, but the converse does not hold. A
simple example is the domain {xyz, yxz, yzx, zyx, zxy} ⊆ P({x, y, z}), which is connected
but not directly connected (see Fig. 5 above). Indeed, the two orders xyz and zxy are
connected, but not directly so. To see this, simply note that these two orders agree in
their ranking of x versus y, while all other orders on the unique path connecting them
display the opposite ranking of x versus y.

The following concepts will be useful. Say that two distinct orders P, P ′ ∈ P(X)
are P(X)-neighbors if [P, P ′] = {P, P ′}. Note that P and P ′ are P(X)-neighbors if and
only if they differ in the ranking of exactly one (adjacent) pair of alternatives. Moreover,
for all subdomains D ⊆ P(X), say that two distinct orders P, P ′ ∈ D are D-neighbors
if [P, P ′] ∩ D = {P, P ′}. The following lemma provides a useful criterion for direct
connectedness.

Lemma A.1. A domain D ⊆ P(X) is directly connected if and only if all D-neighbors
are also P(X)-neighbors.

Proof. Evidently, if D is directly connected, then all D-neighbors must be P(X)-
neighbors. For the converse statement, we will use the following property which is known
in the literature on abstract interval operators as the geometricity condition (cf. van de
Vel [1993]) and which is easily verified in our case. For all P, P ′, Q,Q′ ∈ P(X),

P, P ′ ∈ [Q,Q′] and P ′ ∈ [Q,P ]⇒ P ∈ [P ′, Q′]. (A.1)

Let Q,Q′ be two distinct elements of D, and suppose that all D-neighbors are P(X)-
neighbors. We show by induction over m := #[Q,Q′] that there exists a direct path in D
connecting Q and Q′. For #[Q,Q′] = 2, i.e. [Q,Q′] = {Q,Q′} there is nothing to show,
since then Q and Q′ are P(X)-neighbors. Thus, suppose #[Q,Q′] > 2, i.e. suppose that
Q and Q′ are not P(X)-neighbors. By assumption, Q and Q′ cannot be D-neighbors
either, thus there exists P ∈ [Q,Q′] ∩ D distinct from both Q and Q′. Way may choose
P such that P and Q′ are D-neighbors, hence by assumption also P(X)-neighbors. By
the induction hypothesis, there exists a direct path A ⊆ D connecting Q and P . Let
P ′ ∈ A be the neighbor of P on this path. By the geometricity condition (A.1), we have
P ∈ [P ′, Q′]. From this, it follows immediately that A∪ {Q′} is a direct path connecting
Q and Q′, as desired.

2

Proposition A.1. Let D ⊆ P(X) be semi-connected. If D is a closed Condorcet domain,
then D is directly connected.

Proof. By Lemma A.1, it suffices to show that all D-neighbors are P(X)-neighbors. By
contradiction, suppose that P, P ′ ∈ D are distinct orders with [P, P ′] ∩ D = {P, P ′} that
differ in the ranking of more than one pair of alternatives, say aPb and cPd while bP ′a

23Sato [2013] uses the term ‘connected without restoration’ for what is called ‘directly connected’ here;
for the relation to Sato’s work see the remark at the end of Subsection A.2 below.
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and dP ′c (note that it is not assumed that {a, b} ∩ {c, d} = ∅). Observe that since P and
P ′ are D-neighbors, one has Pmed(P, P ′, Q) ⊆ {P, P ′} for all Q ∈ D.

Now, by the semi-connectedness, let P1, Pm ∈ D be two completely reversed orders
and let {P1, . . . , Pm} ⊆ D be a path connecting them. Without loss of generality, let aP1b.
Then, since Pm is completely reversed, bPma. Thus, there exist (at least) two neighbors
Pk, Pk+1 ∈ {P1, . . . , Pm} such that aPkb and bPk+1a. There are two cases, either (i) cPkd
and cPk+1d, or (ii) dPkc and dPk+1c. In case (i), the triple P, P ′, Pk+1 ∈ D does not
admit a median order (since neither P ∈ [P ′, Pk+1], nor P ′ ∈ [P, Pk+1]); in case (ii),
the triple P, P ′, Pk ∈ D does not admit a median order (since neither P ∈ [P ′, Pk], nor
P ′ ∈ [P, Pk]). Thus, in each case we obtain a contradiction to the assumption that D is
a closed Condorcet domain using Fact A.1.

2

A.2 The case of weak orders

Recall that in the case of weak orders the appropriate notion of ‘betweenness’ is formalized
by definition (3.1) (which coincides with the one given above in the case of linear orders).
As in Section 3 above, two weak orders R,R′ are R(X)-neighbors if [R,R′] = {R,R′},24

and as in the previous subsection two weak orders R,R′ ∈ D ⊆ R(X) are D-neighbors if
[R,R′] ∩ D = {R,R′}. The notion of direct connectedness is defined analogously to the
case of linear orders, and by exactly the same argument as the one given in the proof of
Lemma A.1 above, we obtain that a domain D ⊆ R(X) is directly connected if and only
if all D-neighbors are also R(X)-neighbors.

The following simple observation is useful (and straightforward to verify).

Fact A.2. Two distinct orders R,R′ are neighbors if and only if either (i) R ⊆ R′ and,
for all Q ∈ R(X) with R ⊆ Q ⊆ R′, we have Q = R or Q = R′, or (ii) R′ ⊆ R and, for
all Q ∈ R(X) with R′ ⊆ Q ⊆ R, we have Q = R′ or Q = R.

Proposition A.2. Let D ⊆ R(X) be semi-connected. If D is a closed Condorcet domain,
then D is directly connected.

Proof. As in the proof of Proposition A.1 above, it suffices to show that all D-neighbors
are R(X)-neighbors. By contradiction, suppose that R,R′ ∈ D are distinct orders with
[R,R′]∩D = {R,R′} that are not R(X)-neighbors. Observe first that since R and R′ are
D-neighbors and since D is a closed Condorcet domain, one has Rmed(R,R′, Q) ⊆ {R,R′}
for all Q ∈ D.

Since R,R′ are not R(X)-neighbors, there exists Q ∈ [R,R′] but Q 6∈ D, and we may
assume without loss of generality that Q is a R(X)-neighbor of R. By Fact A.2, we have
either (a) R ( Q and, for all Q′ ∈ R(X) with R ⊆ Q′ ⊆ Q, Q′ = R or Q′ = Q, or (b)
Q ( R and, for all Q′ ∈ R(X) with Q ⊆ Q′ ⊆ R, Q′ = Q or Q′ = R.

Consider case (a) first. In this case, there exists a, b ∈ X such that bQa but b¬Ra,
hence by completeness aRb, and therefore also aQb and bR′a. There are two subcases, ei-
ther (i) aR′b or (ii) a¬R′b. Suppose first the latter, i.e. a¬R′b. By the semi-connectedness,

24In Section 3 above, we referred to R(X)-neighbors simply as ‘neighbors’ since no confusion could
arise; in the present context, we have to be more specific.
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let R1, Rm ∈ D be two completely reversed (linear) orders and let {R1, . . . , Rm} ⊆ D be
a path connecting them. Without loss of generality, let aR1b and b¬R1a. Then, since
Rm is completely reversed, we have bRma and a¬Rmb. Thus, there exist (at least) two
R(X)-neighbors Rk, Rk+1 ∈ {R1, . . . , Rm} such that aRkb, b¬Rka, aRk+1b and bRk+1a.
But in this case, the triple {R,R′, Rk+1} ⊆ D does not admit a median order, since neither
R ∈ [R′, Rk+1] nor R′ ∈ [R,Rk+1] (recall that the median order of any triple containing R
and R′ must coincide either with R or R′). This shows that subcase (ii) is not possible.
Thus, we must have aR′b as asserted in case (i), thus a and b are indifferent with respect
to both orders R′ and Q. Since Q differs from R′, there must exist at least one ordered
pair (c, d) of alternatives distinct from (a, b) such that R′ and Q differ in their ranking
of c versus d. Since R and Q are R(X)-neighbors, R′ and R must differ in their ranking
of c versus d as well. Moreover, since Rk and Rk+1 are R(X)-neighbors which differ in
the ranking of a versus b, they must agree in their ranking of c versus d. If this common
ranking of c versus d coincides with that of R, then the triple {R,R′, Rk+1} ⊆ D does
not admit a median; on the other hand, if the common ranking of Rk and Rk+1 vis-á-vis
(c, d) coincides with that of R′, then the triple {R,R′, Rk} ⊆ D does not admit a median
order. In either case, we obtain a contradiction, which completes the proof of case (a).

The argument in case (b) is similar, but even simpler because there are no further
subcases to consider. Indeed, suppose that Q ∈ [R,R′] is a R(X)-neighbor of R with
Q ( R. Then, there exist a and b such that bRa but b¬Qa. By completeness of Q, we
must have aQb and hence also aRb. Since Q ∈ [R,R′], we must also have aR′b and b¬R′a.
Since Q and R′ are distinct they must differ in their ranking of some ordered pair (c, d)
distinct from (a, b); and since Q and R are neighbors, they must coincide in their ranking
vis-á-vis (c, d). Let Rk and Rk+1 be as in case (a); if their common ranking vis-á-vis (c, d)
coincides with that of R, the triple {R,R′, Rk} ⊆ D does not admit a median order; on
the other hand, if their common ranking vis-á-vis (c, d) coincides with that of R′, the
triple {R,R′, Rk+1} ⊆ D does not admit a median order. Thus, also in case (b) we obtain
a contradiction to the assumption that D is a closed Condorcet domain. This completes
the proof of Proposition A.2.

2

Remark. In a recent paper, Sato [2013] introduced the notion of connectedness without
restoration for domains of linear orders that coincides with our notion of direct connect-
edness. He demonstrates the usefulness of this concept for describing domains on which
strategy-proofness is equivalent to ‘local’ strategy-proofness. Among other things, he
shows that the domain of all single-peaked linear preferences with respect to some fixed
spectrum is connected without restoration. Proposition A.1 generalizes this to all semi-
connected and closed Condorcet domains of linear orders, and Proposition A.2 further to
the case of weak orders. The notions of semi-connectedness and direct connectedness as
defined here readily generalize to corresponding conditions on subspaces of abstract ag-
gregation spaces within the general judgement aggregation framework (cf. List and Puppe
[2009]). The same arguments as employed here can be used to prove in general that any
semi-connected median stable subspace of any aggregation space is directly connected.
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