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H – 1093 Budapest, Hungary, dburka001@gmail.com

(2) Department of Economics and Management, Karlsruhe Institute of Technology,
D – 76131 Karlsruhe, Germany, clemens.puppe@kit.edu

(3) Department of Operations Research and Actuarial Sciences, Corvinus University
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Abstract Can neural networks learn to select an alternative based on a systematic
aggregation of conflicting individual preferences (i.e. a ‘voting rule’)? And if so, which
voting rule best describes their behavior? We show that a prominent neural network
can be trained to respect two fundamental principles of voting theory, the unanimity
principle and the Pareto property. Building on this positive result, we train the neural
network on profiles of ballots possessing a Condorcet winner, a unique Borda winner,
and a unique plurality winner, respectively. We investigate which social outcome the
trained neural network chooses, and find that among a number of popular voting rules
its behavior mimics most closely the Borda rule. Indeed, the neural network chooses
the Borda winner most often, no matter on which voting rule it was trained. Neural
networks thus seem to give a surprisingly clear-cut answer to one of the most fun-
damental and controversial problems in voting theory: the determination of the most
salient election method.
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1 Introduction

Is there an optimal voting rule? This question has occupied a central role in political
and social theory for a long time, its origins can be traced back (at least) to the writings
of Ramón Llull and Nikolaus of Kues.1 The issue at hand found a particularly clear
expression in the debate between the Marquis de Condorcet and Jean-Charles de Borda
about the appropriate method to elect new members to the French Academy of Sciences
in the late 18th century. The Chevalier de Borda recognized the serious shortcomings of
the simple plurality rule used at that time by the Academy and suggested an alternative
method based on the aggregation of scores received by each candidate from the voters
– the method nowadays known as the Borda rule. Nicolas de Condorcet, then secretary
of the Academy, criticized Borda’s method by noticing that it sometimes fails to elect
a candidate that would receive majority support in a pairwise comparison against all
other candidates, a so-called Condorcet winner.2 However, an evident disadvantage of
pairwise majority comparisons of candidates is that they sometimes result in cyclic col-
lective preferences, a phenomenon already noticed by Condorcet himself. In particular,
in some voting constellations, a Condorcet winner does not exist. On the other hand,
the (perhaps less obvious) disadvantage of Borda’s rule is that the social evaluation
of two candidates not only depends on their relative position in the voters’ rankings
but on their cardinal scores, i.e. on their evaluation vis-á-vis other candidates. Borda’s
method thus violates a condition known as ‘independence of irrelevant alternatives,’
henceforth simply, binary independence.

The controversy about the ‘best’ voting rule culminated in Arrow’s famous impos-
sibility theorem (1951/63) which states that the only aggregation methods that always
produce consistent (i.e. transitive) social evaluations, respect unanimous consent in
pairwise comparisons of candidates and satisfy binary independence are the dictatorial
ones. Arrow’s theorem thus shows that every democratic (i.e. non-dictatorial) election
method suffers from some shortcomings, or even ‘paradoxes.’ But this insight has, of
course, not ended the search for the optimal election method. By contrast, it has made
the underlying problem even more urgent.

The predominant method of arguing for, or against, a particular voting method is
axiomatic. In this spirit, axiomatic characterizations have been put forward for the
Borda rule (Smith, 1973; Young, 1974; Saari, 2000), for general scoring rules (Young,
1975) and for voting methods that always choose the Condorcet winner if it exists, for
instance, the Copeland method (Henriet, 1985) and the Kemény-Young method (Young
and Levenglick, 1978).3 These and many other contributions in the same spirit have
certainly deepened our understanding of the structure of the voting problem. However,
by lifting the controversy about different methods to an analogous discussion of their

1An introduction to the history of social choice theory with reprints of classic contributions can be
found in the volume edited by McLean and Urken (1995). For an illuminating account especially of
the role of Llull and Nikolaus (Cusanus) in this context, see also the Web edition of Llull’s writings on
electoral systems (Drton et. al., 2004) and the article Hägele and Pukelsheim (2008) on the relevant
parts in Nikolaus’ work De concordantia catholica.

2The election procedure that Llull describes in his De arte eleccionis (1299) is indeed based on
pairwise majority comparisons in the spirit of Condorcet, while the method suggested by Nikolaus of
Kues in the year 1433 for the election of the emperor of the Holy Roman Empire is the scoring method
suggested more than three centuries later by Borda (cf. McLean and Urken, 1995; Pukelsheim, 2003).

3Axiomatizations of other voting rules and related aggregation procedures include approval voting
(Fishburn, 1978), plurality rule (Goodin and List, 2006) and majority judgement (Balinski and Laraki,
2016).
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respective properties (‘axioms’), the axiomatic approach has not been able to settle the
issue. And indeed, a consensus on the original question seems just as far as ever (as
argued, for instance, by Risse, 2005).

As a possible route, an ‘operations research approach’ has been proposed that tries
to single out particular election methods as solutions to appropriately defined distance
minimization problems. However, as shown by Elkind, Faliszewski and Slinko (2015),
a very large class of voting rules can be obtained in this way, and the problem is then
lifted to the issue of selecting the appropriate distance metric.4

Another approach is motivated by the empirical method so successful in many
other branches of science. Couldn’t one simply argue that the election methods that
are predominant in real life reveal their superiority due to the very fact that they are
widely used for deciding real issues? Doubts about the validity of this claim are in
order. Indeed, on the count of empirical success, plurality rule (i.e. the election of the
candidate who receives the greatest number of first votes) would fare particularly well.
But, if there is one thing on which the experts in voting theory agree, it is the ineptness
of that particular voting method in many contexts (see the article ‘And the looser is
... plurality voting,’ Laslier, 2011).5

In this paper, we consider a different, ‘quasi-empirical’ approach. We investigate
which election method best describes the behavior of a sophisticated machine learning
method that operates in a voting environment. More specifically, we ask which vot-
ing rule corresponds to the implicit selection mechanism employed by a trained neural
network. By answering this question we hope to shed light on the salience of different
voting rules. Concretely, we trained the Multi-Layer Perceptron, henceforth MLP, by
Rumelhart et al. (1986) on the set of profiles of ballots having a Condorcet winner,
a unique Borda winner, and a unique plurality winner, respectively, and statistically
compare the chosen outcomes by the trained MLP. Our empirical results are clear-cut:
The implicit voting rule employed by the MLP is closest to the Borda rule and signifi-
cantly differs from plurality rule; the Condorcet consistent methods such as Copeland
and Kemény-Young lie in between. Perhaps surprisingly, this result holds independently
of whether the MLP was trained on the choice of the Condorcet, Borda, or plurality
winner.

The MLP has been very successfully employed in pattern recognition and a great
number of related problems (Haykin, 1999).6 More generally, neural networks have
been used by econometricians for forecasting and classification tasks (McNelis, 2005);
in economic theory, they have been applied to bidding behavior (Dorsey, Johnson and
van Boening, 1994), market entry (Leshno, Moller and Ein-Dor, 2002) and boundedly
rational behavior in games (Sgroi and Zizzo, 2009). To the best of our knowledge, the
present application to the assessment of voting rules is novel. The paper closest in
the literature to our approach is Procaccia et al. (2009). The goal of these authors,

4A noteworthy alternative approach is taken by Nehring and Pivato (2011) who argue for a gen-
eralization of the Kemény-Young method on the ground of its superior properties in the general
‘judgement aggregation’ framework in which the preference aggregation problem occurs only as one
particular special case among many others.

5There are also experimental studies with non-expert subjects on the question of the public opinion
about the ‘best’ voting method, see, e.g., Giritligil Kara and Sertel (2005). However, the problem of
these studies is that it is not clear how to incentivize subjects to give meaningful answers. Moreover,
the underlying motives of subjects seem to be particularly hard to identify in this context.

6Recently, a combination of neural networks has been successfully employed by Silver et al. (2016)
to defeat one of the world leading human Go champions.
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however, is not to use neural networks for assessing voting rules, but to demonstrate the
(PAC-)learnability of specific classes of voting rules and to apply this to the automated
design of voting rules. It is also worth mentioning that Richards, Seung and Pickard
(2006), in a converse manner, employed specific voting rules in the construction of new
learning algorithms for ‘winner-takes-all’ neural networks.

The remainder of the paper is organized as follows. Section 2 introduces our frame-
work, formally defines a number of prominent voting rules and provides a brief overview
of the structure of the MLP. Section 3 describes the data generation process. Section 4
investigates whether the neural network is able to ‘learn’ two basic properties of voting
rules: the unanimity principle and the Pareto property. This serves as a basic test
whether the use of neural networks is reasonable at all in the present voting context.
The MLP clearly passes this test. The main results are gathered in Section 5 which
statistically compares the responses of the trained neural network with our selection of
voting rules. Section 6 concludes.

2 Framework

2.1 Voting rules

Let X be a finite set of alternatives with cardinality q. By P, we denote the set of all
linear orderings (irreflexive, transitive and total binary relations) on X. Let rk[x,�]
denote the rank of alternative x in the ordering � ∈ P (i.e. rk[x,�] = 1 if x is the top
alternative in �, rk[x,�] = 2 if x is second-best in �, and so on). The set of voters
is denoted by N = {1, . . . , n}. In all what follows, we will assume that n is odd. A
vector (�1, ...,�n) ∈ Pn is referred to as a profile of ballots.

Definition 1. A mapping F : Pn → 2X \{∅} that selects a (non-empty) set of winning
alternatives for all profiles of ballots is called a voting rule.

Note that this definition allows for ties among the winners. The following two prop-
erties are fundamental. The first, the unanimity condition, requires that an alternative
that is ranked on top in every voters preference is the unique winner. The second
condition, the Pareto property, requires that all winners must be Pareto optimal.

Definition 2. A voting rule F is unanimous if for all (�1, . . . ,�n) ∈ Pn,

rk[x,�i] = 1 for some x ∈ X and all i ∈ N =⇒ F (�1, . . . ,�n) = {x}.

Definition 3. A voting rule F satisfies the Pareto property if for all (�1, . . . ,�n) ∈ Pn
and all x, y ∈ X,

x �i y for all i ∈ N =⇒ y /∈ F (�1, . . . ,�n).

We now turn to the definition of the six voting rules that we will investigate below.
Denote the Borda score of x ∈ X in the ordering � by bs [x,�] := q − rk[x,�].

Definition 4. The Borda count is defined by

Borda (�1, ...,�n) := arg max
x∈X

n∑
i=1

bs[x,�i].
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For a given profile (�1, ... �n) ∈ Pn, denote by v(x, y, (�i)ni=1) the number of
voters who prefer x to y, and say that alternative x ∈ X beats alternative y ∈ X
if v(x, y, (�i)ni=1) > v(y, x, (�i)ni=1), i.e. if x wins against y in pairwise comparison.
Moreover, denote by l[x, (�i)ni=1] the number of alternatives beaten by x ∈ X for a
given profile (�1, ...,�n).

Definition 5. The Copeland method is defined by

Cop (�1, ...,�n) := arg max
x∈X

l[x, (�i)ni=1].

In order to define the next voting rule, let

DKY (�1, ...,�n) := arg max
�∈P

∑
{x,y∈X, x�y}

v(x, y, (�i)ni=1)).

Definition 6. The Kemény-Young method chooses the top ranked alternative(s) from
the set of linear orderings in DKY , i.e.,

x ∈ Kem−Y ou (�1, ...,�n) :⇐⇒ {rk[x,�] = 1 for some � ∈ DKY (�1, ...,�n)} .

Definition 7. The plurality rule is defined by

Plu (�1, ...,�n) := arg max
x∈X

# {i ∈ N | rk[x,�i] = 1} .

Definition 8. The k-approval voting rule is defined by

k−AV (�1, ...,�n) := arg max
x∈X

# {i ∈ N | rk[x,�i] ≤ k} .

Finally, we consider the following variant of plurality rule, known as ‘plurality with
runoff.’

Definition 9. The voting rule plurality with runoff is defined as follows. In a first
round, the alternatives are ordered according to the number of first ranks they receive
from voters. If there are ties, we consider lower ranks in a lexicographic way. The two
top alternatives proceed to a second ‘runoff’ round in which a simple majority of votes
decides between the two remaining alternatives.7

Definition 10. A Condorcet winner is an alternative that beats every other alternative
in a pairwise majority comparison.

Note that, if a Condorcet winner exists given a profile of ballots, it must neces-
sarily be unique. It is well-known (and easy to verify) that both the Copeland and
Kemény-Young methods are Condorcet consistent in the sense that they select the Con-
dorcet winner whenever it exists. None of the other methods listed above is Condorcet
consistent.

2.2 Brief description of the Multi-Layer Perceptron

While we considered a priori the more general case, it turned out that for our purposes
an MLP with only two layers is sufficient. We shall denote by m, p and r the number
of inputs, hidden neurons and output neurons, respectively. Figure 1 illustrates the
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Figure 1: Structure of the MLP

general structure of a two-layered perceptron. The weight matrices V ∈ R(m+1)×p and
W ∈ R(p+1)×r are determined by the backpropagation algorithm of Rumelhart et al.
(1986). The trained two-layered perceptron gathers its knowledge in V and W from
the training set, which in our case are various sets of profiles of ballots with prespecified
winners. For profiles without specification of a winner we then obtain the ‘choice’ of
the trained neural network by determining first the activation level

hj :=

m∑
i=0

vijxi , aj := g(hj) =
1

1 + e−βhj
, (2.1)

for each hidden neuron, and subsequently the activation level

ok :=

p∑
j=0

wjkaj , yk := g(hk) =
1

1 + e−βhk
, (2.2)

for each output neuron. For more detailed description and analysis of neural networks,
see, e.g., Haykin (1999) and Marshland (2009).

3 Data generation

We considered cases with 7, 9 or 11 voters and 3, 4 or 5 alternatives. For instance, in
the case of three alternatives each voter can have one of six different linear orderings,
resulting in 67 = 279936 profiles for seven voters (if we neglect symmetries). In the
case of three alternatives 1000 profiles and five neurons proved to be sufficient for the
learning phase. These parameter values were also sufficient for verifying the unanimity
principle with four and five alternatives. With four alternatives and eleven voters, the
number of possible profiles increases to 2411 = 1521681143169024 ≈ 1.52 ∗ 1015. In
order to keep the problem computationally tractable we took 3000 profiles with five

7If ties between two or more alternatives remain after the first round, they are broken according
to some fixed exogenous tie breaking rule. For our purposes, a specification of such tie breaking rule
is not necessary because we consider only small numbers of alternatives here. Note that due to our
assumption of an odd number of voters, tie breaking is never an issue in the second round.
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neurons and 10000 profiles with 15 neurons for the cases of four and five alternatives,
respectively, in the training phase. For verifying the Pareto property, we took 10000
profiles with 15 neurons in case of four alternatives and 20000 profiles with 30 neurons
in case of five alternatives.

We encoded preference orderings in the following way. Let X = {x1, x2, . . . , xq}.
If xi1 � xi2 � · · · � xiq , where (i1, . . . , iq) is a permutation of (1, . . . , q), we store
the respective pairwise comparisons in a vector corresponding to the upper triangular
matrix (ajk)

q,q
j=1,k=j+1 with ajk = 1 if xj � xk and ajk = 0 otherwise. For example,

the ordering x1 � x4 � x2 � x3 is coded by (1, 1, 1, 1, 0, 0) corresponding to the binary
comparisons x1 � x2, x1 � x3, x1 � x4, x2 � x3, x2 � x4, x3 � x4. A profile is then
given by a row vector with n · q(q − 1)/2 entries.

To generate a preference profile, we alternatively invoked the impartial culture
(IC) and the anonymous impartial culture (AIC) assumption. In the former case,
the selection of each preference profile is equally like, while in the latter case each
anonymous preference profile is equally likely (for a detailed discussion of the IC vs. AIC
assumptions, see Eǧecioǧlu and Giritligil, 2013).8

To complete an input of a training set we also specified a target alternative, the
‘winner’ of the respective voting rule. For this we used the so-called ‘1-of-N encoding,’
i.e. alternative xi is represented by the indicator vector (0, . . . , 0, 1, 0, . . . , 0), in which
the ith coordinate equals 1 and all other entries are set to zero.

When testing unanimity we picked an alternative which served as the top alternative
in each voter’s preference ordering. We then randomly ordered the other alternatives
at the lower ranks in each voter’s ordering. The target value for a profile was its
unanimous ‘top alternative.’ In case of the Pareto property we picked two alternatives
x and y and randomly assigned them ranks in the voters’ orderings, making sure that
y is below x in each voter’s ordering. The other alternatives were randomly assigned.
We then took y as the target value for the corresponding profile.9

When training for a winner or a set of winners, we considered five scenarios. First,
we trained on the subset of profiles with a (necessarily unique) Condorcet winner from
the randomly generated 1000, 3000, and 10000 profiles in case of three, four, and five
alternatives, respectively; second, we trained on the subset of profiles with a unique
Borda winner; third we trained on the subset of profiles with a unique plurality winner;
fourth, we trained on the subset of profiles on which the Condorcet winner was equal
to the unique Borda winner; and fifth, we trained on the subset of profiles on which
the Condorcet winner, the unique Borda winner and the unique plurality winner all
coincided.

The generation of profiles and the training set was written in C#. We then employed
Marshland’s (2009) MLP Python class to train the neural network and, subsequently,
to ‘predict’ the winning alternative without specified target value. The prediction was
carried out on an independent new random sample of 1000 profiles. The statistical
evaluation was carried out in Excel. All program codes are available from the authors
upon request.

8For both the IC and AIC cases, we also carried out the training based only on the ‘pairwise
majority margin’ associated with profiles of ballots, i.e. for each pair of alternatives, the MLP was
only given the information of how many voters preferred either alternative. While this generally leads
to a loss of information it also yields a substantial reduction in the dimension of the input. The
different representation of the input had no effect on the results.

9Since other dominance relationships could emerge in the profile, we made sure that y was declared
as target value only if it was the unique alternative that did not itself dominate another alternative.
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For each combination of alternatives and voters, as well as for the five investigated
sets of training profiles (altogether 45 cases), we generated five random training seeds
in order to generate the training samples, and we took five random network seeds
for the training procedure of the MLP. An alternative for a profile was counted as
being selected by the five MLPs trained on the same sample (i.e. generated by the
same training seed) if the same alternative was chosen by at least three out of the
five possible network seeds (i.e. selected by the majority of trained MLPs on the same
training seed). In case of non-existence of such an alternative the respective five MLPs
failed to determine a winner and were counted as ‘indecisive.’ Only a low number of
MLPs were indecisive in this sense (see Table 8 in Appendix A below). The learning
rates for the five training seeds were thus determined, resulting in average learning
rates for any combination of alternatives, voters, and set of winners. Altogether we
have thus evaluated and aggregated 25 results for each of the 45 cases.

4 Testing unanimity and the Pareto property

The results for the unanimity principle are very straightforward. For all combinations
of number of alternatives and number of voters, the trained neural network selected
the unanimous top alternative with 100% accuracy, both for the IC and AIC cases.

Continuing with the impartial culture assumption (IC), in the case of three alter-
natives the trained MLPs learned the Pareto dominated alternative on average with
99.54%, 99.66%, and 99.56% accuracy for 7, 9, and 11 voters, respectively. In case of
four alternatives the Pareto dominated alternative was learned with 93.90%, 95.10%,
and 95.68% accuracy for 7, 9, and 11 voters, respectively. However, to achieve this
result we had to increase the training sample to 10000 and the number of hidden neu-
rons to 15. The results became less satisfactory for the case of five alternatives for
which we obtained respective learning ratios of 61.74%, 68.18%, and 73.24% even for
training samples of size 20000 and 15 hidden neurons. By further increasing the num-
ber of hidden neurons to 30 we could increase the respective learning rates to 67.60%,
79.20%, and 84.68%. However, the long training time (even on fast computers) makes
it difficult to experiment with different numbers of hidden neurons and larger samples.
Evidently, the training sample size of 20000 profiles is extremely small compared to
the huge number of possible profiles having a Pareto dominated alternative in the case
of five alternatives (about 55.99 millions, 2.02 billions, 72.56 billions for 7, 9, and 11
voters, respectively). Using almost one week of computation time, we determined the
learning rates for five training sets of size 50000 associated with the same training seed
and five network seeds. We found that the average learning rate increased to 88.78%
(with five alternatives, 11 voters and 30 hidden neurons). Therefore, we conjecture that
the Pareto property can be accurately learned by the MLP also for five alternatives,
but a more precise verification of this claim lies beyond our computational capacities.

Turning to the anonymous impartial culture (AIC), we found that with three al-
ternatives the MLP could learn the Pareto dominated alternative based on a training
sample size of 1000 profiles and employing five hidden neurons with 99.38%, 97.80%,
and 96.78% accuracy for 7, 9, and 11 voters, respectively. The corresponding values
for the case of four alternatives and 15 hidden neurons were 89.94%, 91.70%, and
93.14%, respectively. Since we obtained similar (if a bit lower) values as under the IC
hypothesis, we did not investigate the case of five alternatives for the AIC.

7



Summarizing, the MLP passed the unanimity test with perfect accuracy and the
Pareto dominance test with a very high level of accuracy for three and four alternatives.
Furthermore, our results lend support to the conjecture that the Pareto property can
also be learned at a high level of accuracy for five alternatives if the training sample
size is sufficiently large.

5 Results: The social choices by the neural network

In this section, we present our results in detail for the IC case with binary encoding
of preference profiles. The corresponding results for the AIC case as well as for the
representation of the input in terms of pairwise majority margins can be found in
Appendices B, C and D. While the precise values differ slightly, the general conclusion
is that all results are robust with respect to the way the training samples are generated.

First, we consider the case in which we took profiles with a Condorcet winner
as training sample and the Condorcet winner as target value. Table 1 shows the
corresponding results for the cases of three, four, and five alternatives and 7, 9, and
11 voters, respectively. The table entries give the average percentages of those cases in
which a trained MLP selects a winner of the method appearing in the respective column
heading.10 As can be seen, the Borda count performs best with the only exception in
the case of three alternatives and 7 voters. It is particularly remarkable that the Borda
count outperforms both the Copeland and the Kemény-Young method even though
these are Condorcet consistent while the Borda is not.

Method Cop Kem-You Borda Plu 2-AV Plu-run
q=3, n=7 98.42% 98.42% 98.19% 90.03% 83.61% 92.38%
q=3, n=9 96.34% 96.24% 97.56% 89.16% 81.17% 89.84%
q=3, n=11 91.36% 91.08% 96.81% 87.08% 81.99% 84.08%
q=4, n=7 91.83% 89.24% 96.96% 82.18% 87.32% 80.24%
q=4, n=9 90.30% 87.17% 96.01% 79.08% 85.46% 78.85%
q=4, n=11 88.49% 85.57% 93.62% 78.27% 84.32% 77.60%
q=5, n=7 88.73% 84.84% 97.18% 76.28% 85.75% 71.43%
q=5, n=9 88.03% 83.32% 95.10% 70.46% 82.58% 69.79%
q=5, n=11 87.62% 83.30% 93.69% 69.44% 81.11% 70.35%

Table 1: Trained on Condorcet winners

While the two Condorcet consistent methods are also not far from MLPs choices
(with a slight advantage of the Copeland method as compared to the Kemény-Young
method), the other methods differ significantly, in particular for more alternatives.
Interestingly, and in contrast to the two versions of plurality rule, coincidence of MLPs
choice with the 2-approval voting winner is larger for four and five alternatives than
for three.11

10The separating line between the cases of three, four, and five alternatives is to emphasize that the
training set size is increasing in the number of alternatives.

11In evaluating the differences in percentages one should keep in mind that on many profiles different
methods agree, so that even small differences in percentage points may hint at significant underlying
differences in learning performance.
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We obtain essentially the same ordering of methods in terms of coincidence with
MLPs choices if we train the neural network either (i) on a unique Borda winner (see
Table 2), or (ii) on a unique plurality winner (see Table 3). The Borda count still
performs best among all voting methods. Not surprisingly, MLPs choice behavior
comes even closer to the Borda count if trained to choose the Borda winner. On the
other hand, it is remarkable that in the case of three alternatives plurality rule does not
seem to perform better even when the MLP is trained to choose the plurality winner
(compare the first three entries in the column for plurality rule across Tables 1-3).

Method Cop Kem-You Borda Plu 2-AV Plu-run
q = 3, n = 7 92.60% 92.60% 99.49% 87.56% 86.52% 86.10%
q = 3, n = 9 91.96% 91.92% 99.17% 87.74% 83.60% 84.73%
q = 3, n = 11 91.38% 91.22% 98.32% 87.79% 81.92% 83.89%
q = 4, n = 7 90.03% 86.94% 98.75% 81.40% 88.24% 78.08%
q = 4, n = 9 88.81% 85.65% 97.92% 78.28% 86.73% 76.75%
q = 4, n = 11 89.15% 86.03% 96.92% 78.18% 84.92% 77.63%
q = 5, n = 7 88.55% 84.44% 98.39% 75.10% 85.74% 70.50%
q = 5, n = 9 88.28% 83.48% 97.15% 70.41% 82.93% 69.43%
q = 5, n = 11 87.08% 82.65% 95.69% 68.62% 81.66% 69.62%

Table 2: Trained on Borda winners

Method Cop Kem-You Borda Plu 2-AV Plu-run
q = 3, n = 7 91.80% 91.78% 97.35% 87.38% 86.13% 85.98%
q = 3, n = 9 90.08% 89.92% 95.96% 87.33% 83.29% 84.25%
q = 3, n = 11 88.88% 88.32% 93.28% 85.76% 81.19% 82.15%
q = 4, n = 7 89.93% 87.67% 96.41% 82.31% 88.55% 79.53%
q = 4, n = 9 87.73% 85.11% 93.31% 79.32% 85.98% 77.96%
q = 4, n = 11 86.73% 84.12% 91.12% 78.89% 84.57% 77.75%
q = 5, n = 7 89.42% 86.17% 97.06% 78.52% 87.30% 74.22%
q = 5, n = 9 89.75% 86.22% 95.81% 75.17% 86.81% 75.51%
q = 5, n = 11 89.32% 85.94% 94.44% 72.29% 85.40% 74.10%

Table 3: Trained on plurality winners

In order to give the Condorcet consistent methods (Copeland and Kemény-Young)
and the Borda count exactly the same a priori condition in the learning phase, we also
took as the training sample the subset of those profiles with identical Condorcet and
(unique) Borda winner. The results are shown in Table 4. As can be inferred from the
numbers, the main conclusions drawn above do not change. In particular, the behavior
of the trained MLP still mimics most closely that of the Borda count.

Taking the analysis one step further, we finally trained the MLP on the subset of
those profiles on which the Condorcet winner, the unique Borda winner and the unique
plurality winner all coincided. The results, shown in Table 5, confirm all conclusions
from above. In particular, both plurality and plurality with runoff still perform signifi-
cantly worse than either the Condorcet consistent methods and the Borda count, with
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Method Cop Kem-You Borda Plu 2-AV Plu-run
q = 3, n = 7 93.04% 92.98% 98.02% 86.92% 85.28% 86.00%
q = 3, n = 9 92.19% 91.89% 97.20% 86.63% 82.73% 85.26%
q = 3, n = 11 90.97% 90.39% 95.67% 86.52% 81.42% 83.60%
q = 4, n = 7 90.21% 87.33% 97.27% 81.12% 87.89% 78.53%
q = 4, n = 9 88.17% 84.84% 95.26% 78.15% 85.46% 76.53%
q = 4, n = 11 87.52% 84.34% 92.82% 77.63% 83.45% 76.41%
q = 5, n = 7 87.09% 83.12% 95.62% 74.66% 84.81% 69.65%
q = 5, n = 9 87.26% 82.56% 94.20% 69.83% 81.69% 68.89%
q = 5, n = 11 85.77% 81.41% 92.49% 68.51% 80.55% 68.89%

Table 4: Trained on joint Borda and Condorcet winners

the latter taking the clear lead again.

Method Cop Kem-You Borda Plu 2-AV Plu-run
q = 3, n = 7 92.61% 92.49% 97.32% 86.71% 85.26% 85.49%
q = 3, n = 9 91.37% 91.01% 96.15% 86.62% 82.39% 84.65%
q = 3, n = 11 88.80% 87.82% 92.60% 85.26% 79.99% 81.91%
q = 4, n = 7 88.59% 85.68% 94.78% 80.35% 87.26% 77.63%
q = 4, n = 9 86.36% 83.24% 91.72% 76.89% 84.18% 74.82%
q = 4, n = 11 84.90% 81.56% 88.98% 76.55% 82.31% 74.43%
q = 5, n = 7 86.14% 82.27% 93.03% 74.19% 83.93% 69.40%
q = 5, n = 9 85.76% 81.12% 92.01% 69.35% 81.10% 68.04%
q = 5, n = 11 84.48% 80.27% 90.08% 67.95% 80.04% 68.30%

Table 5: Trained on joint Borda, Condorcet and plurality winners

It is worth mentioning that the great majority of percentages in Tables 1-5 is de-
creasing both in the number of alternatives and in the number of voters for all inves-
tigated voting rules. However, this does not necessarily mean that the MLP learns
these rules with lower accuracy for higher number of alternatives and voters. Indeed,
the increase in the size and dimension of the potential input data has not been ac-
counted for when we increased the number of voters, and only partially offset by the
increase in the training sample size when we increased the number of alternatives. For
instance, for q = 3 and n = 7 the dimension of the input (under binary encoding) is
n · q(q − 1)/2 = 21 while it grows to 66 as we move to the case q = 4 and n = 11. We
decided to use fixed sample sizes for more voters in order to reduce computing time.
As can be seen from the figures in the tables, the qualitative results are not affected.

6 Concluding remarks

Our results show that – in one sense – Borda’s count is the most salient of a number
of popular voting methods: it is the voting rule that best describes the behavior of
a trained neural network in a voting environment. One should be careful, however,
in using this finding as an argument for the general superiority of the Borda count
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vis-à-vis other voting rules, even the ones tested here. Indeed, our results may ‘only’
show that the internal topology of the employed MLP is best adapted to the ‘linear’
mathematical structure underlying the Borda rule. But then again, if this common
underlying structure is successful in a number of different application areas, the Borda
count must at least be considered as a serious contender in the competition for ‘optimal’
voting rule.

One may interpret learning by neural networks also as a device to select a ‘suitable’
degree of complexity. On such an account, plurality rule and its variants (plurality with
runoff and 2-approval) turn out to be too simple while the two investigated Condorcet
consistent methods seem to be too sophisticated. When choosing a winner, the MLP
obviously uses more information than only the top ranked alternatives in each ballot.
On the other hand, it does also not seem to make the pairwise comparisons necessary
in order to determine the Copeland or Kemény-Young winners. The comparison of the
learning rates of the Copeland method vis--vis the Kemény-Young method is well in
line with this interpretation: the computationally more complex of these two methods,
the Kemény-Young rule, performs consistently worse.

Based on our analysis one might conjecture that the intuitive choices of humans not
trained in social choice theory would also be more in line with Borda’s count than with
any other voting method. However, this has to be confirmed by further well-designed
experiments with human subjects.
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Appendix: Robustness

In this appendix, we check our results for robustness. In Appendix A, we report
additional results for the IC case with binary encoding of the input profiles. The
subsequent appendices then contain results for the AIC case and/or the case in which
training was carried out with a representation of the input in terms of majority margins.

Appendix A. Additional results for IC with binary encoding

In those cases in which we trained the MLP on the set of profiles having a Condorcet
winner or a unique Borda winner, we also separately investigated the trained MLPs’
choices on the subset of those profiles on which the Condorcet winner differed from the
unique Borda winner. Out of the 1000 profiles we had about 20 to 60 profiles of this
kind, depending on the values of q and n. Although the number of such profiles is small,
our results are meaningful because we have investigated all the 25 generated input files
with 1000 profiles for each q ∈ {3, 4} and n ∈ {7, 9, 11}. The second and third columns
of Table 6 show the percentages of cases in which the Copeland winner and the Borda
winner was chosen, respectively, when the MLP was trained on the set of profiles with
Condorcet winners. We see that even for these profiles the Borda winner was chosen
more frequently, with the exception of the cases q = 3 and n ∈ {7, 9}; and even for
these two cases the percentages for the Borda winner is significant. In the fourth and
fifth columns we see the same percentages when the MLP was trained on the set of
profiles with unique Borda winners. In the latter case the MLP unambiguously favors
the Borda winner (however, the advantage in favor of the Borda count is decreasing in
the number of voters and alternatives).

Method Cop Borda Cop Borda
Trained on: Condorcet winner Borda winner
q = 3, n = 7 76.76% 23.24% 1.18% 98.82%
q = 3, n = 9 51.06% 48.94% 5.17% 94.83%
q = 3, n = 11 18.71% 81.29% 5.37% 94.63%
q = 4, n = 7 22.75% 77.25% 13.32% 86.68%
q = 4, n = 9 22.40% 76.08% 18.76% 80.89%
q = 4, n = 11 28.83% 67.74% 26.27% 71.68%

Table 6: Results only on profiles with Condorcet winner 6= unique Borda winner

The investigated voting methods differ in how often they select a unique winner
which might cause a bias in the results. In Table 7 we gathered the averages on how
frequently a method does not have a unique winner. We can observe that for more
alternatives and also for more voters the Borda count becomes relatively more decisive
in the sense that it specifies a unique winner more often than the other rules (with
the exception of plurality with runoff). In principle, this could affect the learning
ratios. However, the results reported in Section 5 do not display significant differences
in the comparison of voting rules across different numbers of alternatives. This can
be interpreted as evidence that our results are robust to the way ties are treated.12

12It is worth mentioning that plurality rule does not benefit in terms of learning ratios from its
significantly high percentage of ties (cf. the results in Tables 1-5).
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Nevertheless, below in Tables 9 and 10 we analyze the performance of the different
voting rules on the subset of those profiles on which no ties occur.

Method Cop Kem-You Borda Plu 2-AV Plu-run
q = 3, n = 7 7.20% 6.84% 13.44% 18.84% 35.26% 1.96%
q = 3, n = 9 8.24% 7.32% 12.76% 18.12% 21.44% 7.72%
q = 3, n = 11 8.26% 6.84% 10.82% 24.52% 19.18% 0.88%
q = 4, n = 7 14.08% 14.38% 14.36% 24.96% 31.48% 9.82%
q = 4, n = 9 14.74% 13.90% 13.02% 27.38% 27.92% 2.74%
q = 4, n = 11 15.32% 14.72% 10.92% 22.30% 25.00% 6.42%
q = 5, n = 7 18.10% 22.42% 12.12% 37.78% 30.98% 10.14%
q = 5, n = 9 19.70% 22.82% 11.44% 27.30% 27.68% 5.80%
q = 5, n = 11 19.18% 21.10% 10.50% 32,08% 26.16% 6.60%

Table 7: How frequently does a method not have a unique winner?

It is important to note that the MLP itself does not always give us an answer,
i.e. for some profiles the trained MLP is indecisive and does not specify an alternative
as target value. This is not surprising since the rules used to train the MLP themselves
do not always give a unique answer. Comparing Table 7 and Table 8, we see that the
trained MLP in fact gives an (unique) answer for far more profiles than the respective
voting rules (CW, BW and PL stand for Condorcet winner, Borda winner, and plurality
winner, respectively).

Trained on: CW BW PL CW = BW CW = BC = PL
q = 3, n = 7 1.52% 1.34% 4.16% 0.28% 0.68%
q = 3, n = 9 1,52% 0.98% 4.60% 0.66% 1.22%
q = 3, n = 11 2.06% 0.88% 3.92% 1.18% 2.16%
q = 4, n = 7 3.36% 2.72% 11.44% 2.74% 3.90%
q = 4, n = 9 4.28% 3.12% 14.52% 3.42% 4.28%
q = 4, n = 11 4.12% 2.56% 16.86% 3.08% 4.92%
q = 5, n = 7 5.52% 3.22% 17.60% 3.64% 4.46%
q = 5, n = 9 5.28% 3.74% 26.84% 3.80% 4.66%
q = 5, n = 11 5.52% 3.06% 26.98% 3.58% 5.40%

Table 8: How frequently does MLP not give us an answer?

In Tables 9 and 10 we restrict ourselves to those cases in which (i) the trained
MLP was decisive and (ii) the respective voting rule displays no ties (in any rank).
We determined how frequently the MLP chose the first-ranked alternative, the second-
ranked alternative, and so on, according to the method appearing in the tables’ column
headings, respectively. In Table 9, we consider again the case in which the MLP was
trained on the Condorcet winner. With the exception of the case of three alternatives
and 7 voters the first-ranked alternative according to the Borda count was chosen most
frequently by the trained MLP. Lower ranked alternatives are rarely chosen by the
MLP.13 When training on the unique Borda winner, the performance of the Borda
count increases while the other qualitative results remain in tact (see Table 10).

13Remarkably, among the losers of the respective rules the plurality looser is chosen more frequently
than the losers of other methods.
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Rank Cop Kem-You Borda Plu 2-AV Plu-run
1st 98.32% 98.33% 97.94% 88.15% 78.70% 93.38%

q=3, n=7 2nd 1.68 % 1.67% 2.06% 11.80% 21.30% 4.28%
3rd 0.00% 0.00% 0.00% 0.05% 0.00% 3.35%
1st 96.07% 96.00% 97.23% 86.86% 76.07% 89.84%

q=3, n=9 2nd 3.93% 4.00% 2.77% 10.32% 21.97% 6.59%
3rd 0.00% 0.00% 0.00% 2.82% 1.96% 3.38%
1st 90.68% 90.52% 96.45% 86.39% 77.99% 84.08%

q=3, n=11 2nd 9.28% 9.37% 3.43% 12.81% 21.53% 11.37%
3rd 0.04% 0.11% 0.11% 0.80% 0.48% 4.55%
1st 91.06% 87.73% 96.66% 78.47% 84.58% 80.24%

q=4, n=7 2nd 8.76% 11.89% 3.34% 16.77% 14.82% 10.86%
3rd 0.19% 0.33% 0.00% 4.52% 0.59% 8.90%
4th 0.00% 0.05% 0.00% 0.25% 0.00%
1st 89.35% 85.58% 95.64% 77.51% 82.93% 78.85%

q=4, n=9 2nd 10.41% 13.92% 4.32% 20.55% 15.70% 12.19%
3rd 0.24% 0.50% 0.05% 1.43% 1.34% 8.96%
4th 0.00% 0.00% 0.00% 0.52% 0.03%
1st 87.43% 83.84% 93.24% 74.56% 81.84% 77.60%

q=4, n=11 2nd 12.19% 15.10% 6.55% 19.48% 16.70% 13.24%
3rd 0.39% 0.90% 0.18% 5.37% 1.14% 9.16%
4th 0.10% 0.17% 0.02% 0.59% 0.22%
1st 87.37% 82.20% 97.02% 74.60% 82.17% 71.43%
2nd 12.25% 16.50% 2.98% 18.44% 16.55% 12.23%

q=5, n=7 3rd 0.38% 1.05% 0.00% 5.93% 0.18% 16.35%
4th 0.00% 0.24% 0.00% 0.30% 1.09%
5th 0.00% 0.00% 0.00% 0.73% 0.00%
1st 86.44% 80.94% 94.81% 65.49% 78.87% 69.79%
2nd 12.48% 17.01% 5.07% 26.47% 18.73% 13.56%

q=5, n=9 3rd 1.08% 1.95% 0.12% 2.83% 1.53% 16.65%
4th 0.00% 0.11% 0.00% 4.83% 0.70%
5th 0.00% 0.00% 0.00% 0.37% 0.17%
1st 86.17% 81.35% 93.40% 65.51% 77.98% 70.35%
2nd 12.81% 16.57% 6.15% 26.48% 18.24% 13.08%

q=5, n=11 3rd 0.92% 1.79% 0.39% 5.16% 3.01% 16.57%
4th 0.03% 0.27% 0.02% 2.32% 0.51%
5th 0.04% 0.03% 0.02% 0.53% 0.25%

Table 9: Rank of MLP’s choice according to different rules if trained on CW
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Rank Cop Kem-You Borda Plu 2-AV Plu-run
1st 92.13% 92.16% 99.42% 85.24% 83.13% 86.10%

q = 3, n = 7 2nd 7.87 % 7.84% 0.58% 14.66% 16.87% 10.12%
3rd 0.00% 0.00% 0.00% 0.10% 0.00% 3.77%
1st 91.32% 91.36% 99.06% 85.10% 79.11% 84.73%

q = 3, n = 9 2nd 8.68% 8.64% 0.94% 11.75% 19.26% 11.41%
3rd 0.00% 0.00% 0.00% 3.16% 1.62% 3.87%
1st 90.66% 90.63% 98.14% 87.19% 78.00% 83.89%

q = 3, n = 11 2nd 9.34% 9.37% 1.86% 12.23% 21.58% 11.99%
3rd 0.00% 0.00% 0.00% 0.58% 0.42% 4.11%
1st 88.82% 85.01% 98.59% 77.17% 85.58% 78.08%

q = 4, n = 7 2nd 10.95% 14.72% 1.41% 18.24% 13.82% 13.18%
3rd 0.24% 0.24% 0.00% 4.37% 0.60% 8.74%
4th 0.00% 0.02% 0.00% 0.22% 0.00%
1st 87.55% 83.66% 97.74% 76.48% 84.41% 76.75%

q = 4, n = 9 2nd 12.09% 15.75% 2.22% 21.28% 14.30% 13.87%
3rd 0.36% 0.55% 0.05% 1.75% 1.27% 9.38%
4th 0.00% 0.05% 0.00% 0.48% 0.03%
1st 87.74% 83.98% 96.61% 74.38% 82.34% 77.63%

q = 4, n = 11 2nd 11.86% 15.40% 3.39% 19.70% 16.19% 13.34%
3rd 0.41% 0.60% 0.00% 5.32% 1.39% 9.03%
4th 0.00% 0.02% 0.00% 0.61% 0.08%
1st 87.23% 81.55% 98.25% 73.00% 81.91% 70.50%
2nd 12.14% 16.91% 1.71% 19.42% 16.64% 12.50%

q = 5, n = 7 3rd 0.63% 1.33% 0.05% 6.32% 0.33% 17.00%
4th 0.00% 0.21% 0.00% 0.39% 1.13%
5th 0.00% 0.00% 0.00% 0.86% 0.00%
1st 86.59% 81.29% 96.96% 65.62% 79.24% 69.43%
2nd 12.64% 16.94% 2.92% 26.33% 18.39% 13.64%

q = 5, n = 9 3rd 0.77% 1.61% 0.11% 2.87% 1.57% 16.93%
4th 0.00% 0.16% 0.00% 4.75% 0.69%
5th 0.00% 0.00% 0.00% 0.42% 0.11%
1st 85.49% 80.30% 95.44% 64.61% 78.86% 69.62%
2nd 13.45% 17.38% 4.27% 27.31% 17.87% 13.65%

q = 5, n = 11 3rd 1.04% 2.14% 0.27% 5.35% 2.66% 16.74%
4th 0.00% 0.16% 0.00% 2.15% 0.47%
5th 0.02% 0.03% 0.02% 0.58% 0.14%

Table 10: Rank of MLP’s choice according to different rules if trained on BW
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Appendix B. Results under AIC with binary encoding

To confirm that our results are robust with respect to the distributional assumption
underlying our sampling of preference profiles, we carried out (most of) the calculations
described in the main part of the paper also for the anonymous impartial culture
(AIC) hypothesis described in Section 3. Because of the large running time we limited
ourselves to the cases of three and four alternatives. For q = 3 and q = 4 we again
used a training set consisting of 1000 and 3000 profiles, respectively. If we compare
Tables 1-5 of Section 5 with the corresponding Tables 11-15 below, we can observe
the same qualitative results in terms of the ranking of voting rules. The percentages
by which a neural network chooses an outcome according to a specific voting rule are
almost identical for the IC and AIC cases even if they are on average slightly lower by
approximately 0.13% points for the AIC cases.

Method Cop Kem-You Borda Plu 2-AV Plu-run
q=3, n=7 96.42% 96.42% 98.82% 88.14% 84.88% 89.07%
q=3, n=9 93.73% 93.69% 97.97% 87.30% 83.30% 86.99%
q=3, n=11 91.82% 91.63% 96.59% 87.40% 81.99% 84.57%
q=4, n=7 91.54% 88.78% 97.53% 81.07% 87.32% 78.44%
q=4, n=9 90.48% 87.77% 95.61% 79.26% 85.76% 77.96%
q=4, n=11 89.25% 85.89% 93.74% 78.06% 84.40% 76.82%

Table 11: Trained on Condorcet winners (AIC)

Method Cop Kem-You Borda Plu 2-AV Plu-run
q = 3, n = 7 92.71% 92.71% 99.76% 86.90% 86.48% 85.44%
q = 3, n = 9 92.06% 92.00% 99.15% 86.85% 84.40% 84.98%
q = 3, n = 11 91.59% 91.40% 98.14% 87.29% 82.38% 84.16%
q = 4, n = 7 89.98% 87.01% 98.48% 80.32% 87.47% 76.96%
q = 4, n = 9 89.47% 86.78% 97.41% 78.76% 86.76% 77.09%
q = 4, n = 11 89.15% 85.89% 96.80% 77.77% 85.46% 75.92%

Table 12: Trained on Borda winners (AIC)

Method Cop Kem-You Borda Plu 2-AV Plu-run
q = 3, n = 7 92.31% 92.29% 97.17% 87.57% 85.15% 85.92%
q = 3, n = 9 89.26% 89.15% 95.24% 86.92% 83.03% 83.55%
q = 3, n = 11 89.18% 88.74% 93.54% 86.21% 81.10% 82.95%
q = 4, n = 7 89.03% 86.72% 95.78% 81.88% 87.56% 78.77%
q = 4, n = 9 88.13% 85.91% 93.54% 79.73% 86.90% 77.48%
q = 4, n = 11 87.30% 84.49% 91.42% 79.30% 84.11% 76.94%

Table 13: Trained on plurality winners (AIC)
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Method Cop Kem-You Borda Plu 2-AV Plu-run
q = 3, n = 7 93.05% 92.93% 98.12% 86.38% 85.04% 85.36%
q = 3, n = 9 92.16% 91.84% 97.16% 86.47% 83.38% 85.36%
q = 3, n = 11 91.86% 91.23% 96.33% 86.63% 81.93% 84.28%
q = 4, n = 7 89.57% 86.58% 96.52% 80.13% 87.06% 76.93%
q = 4, n = 9 88.53% 85.61% 95.51% 78.47% 85.73% 76.18%
q = 4, n = 11 87.85% 84.31% 92.98% 77.15% 84.12% 75.37%

Table 14: Trained on joint Borda and Condorcet winners (AIC)

Method Cop Kem-You Borda Plu 2-AV Plu-run
q = 3, n = 7 92.65% 92.51% 97.76% 86.51% 85.37% 85.03%
q = 3, n = 9 90.98% 90.58% 95.94% 85.81% 83.16% 84.37%
q = 3, n = 11 90.00% 89.43% 93.75% 85.87% 80.93% 82.72%
q = 4, n = 7 88.03% 85.05% 94.16% 79.67% 85.79% 75.80%
q = 4, n = 9 86.60% 83.72% 92.34% 77.68% 84.52% 75.06%
q = 4, n = 11 85.18% 81.81% 89.04% 76.29% 81.95% 73.39%

Table 15: Trained on joint Borda, Condorcet and plurality winners (AIC)

Appendix C. Results under IC using the majority margin rep-
resentation of profiles of ballots

The results of this appendix show that the way how profiles of ballots were represented
does not affect our main conclusions. As described in the main text, we determined
the pairwise majority margins corresponding to the generated preference profiles and
used them as inputs to train the MLP. We carried out the calculations described in the
main text using this representation of ballot profiles under the IC hypothesis. In order
to check the robustness of our main results we limited ourselves to the cases of three
and four alternatives using a training set consisting of 1000 profiles for both cases. If
we compare the Tables 1-5 of Section 5 with the corresponding Tables 16-20, we again
observe qualitatively the same results. In fact, the results under the majority margin
representation favor the Borda rule even more strongly; in some cases we even obtained
learning rates of 100%, i.e. perfect coincidence of MLP’s choices with the Borda count.
On average, the learning rates were by about 2.3% points higher than with binary
encoding.

Appendix D. Results under AIC the majority margin represen-
tation of profiles of ballots

This appendix shows the same results as the previous appendix for the AIC sampling
(see Tables 21-25). Again, all qualitative conclusion remain valid.
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Method Cop Kem-You Borda Plu 2-AV Plu-run
q=3, n=7 97.55% 97.55% 99.81% 90.57% 85.28% 91.88%
q=3, n=9 95.43% 95.33% 99.69% 89.56% 82.94% 88.90%
q=3, n=11 93.98% 93.87% 99.98% 89.14% 82.62% 86.99%
q=4, n=7 92.34% 89.40% 99.38% 81.97% 89.15% 80.02%
q=4, n=9 90.50% 87.29% 99.44% 79.11% 87.87% 78.80%
q=4, n=11 91.20% 88.57% 99.62% 79.68% 86.40% 79.39%

Table 16: Trained on Condorcet winners (IC and majority margins)

Method Cop Kem-You Borda Plu 2-AV Plu-run
q = 3, n = 7 93.71% 93.71% 100.00% 89.23% 87.00% 88.74%
q = 3, n = 9 92.56% 92.52% 100.00% 89.08% 83.88% 86.34%
q = 3, n = 11 92.73% 92.61% 99.98% 88.88% 83.05% 86.00%
q = 4, n = 7 91.10% 88.01% 99.90% 81.60% 89.04% 78.94%
q = 4, n = 9 90.05% 86.81% 99.88% 79.14% 87.51% 78.58%
q = 4, n = 11 90.41% 87.53% 99.69% 79.16% 86.01% 78.34%

Table 17: Trained on Borda winners (IC and majority margins)

Method Cop Kem-You Borda Plu 2-AV Plu-run
q = 3, n = 7 93.90% 93.90% 99.92% 89.48% 87.21% 89.00%
q = 3, n = 9 93.85% 93.83% 99.94% 89.47% 84.24% 87.48%
q = 3, n = 11 92.49% 92.32% 99.98% 89.31% 83.25% 85.78%
q = 4, n = 7 92.58% 90.28% 99.47% 83.67% 90.88% 81.99%
q = 4, n = 9 91.13% 88.90% 99.44% 81.33% 89.65% 81.49%
q = 4, n = 11 91.70% 89.49% 99.62% 81.20% 88.75% 82.11%

Table 18: Trained on plurality winners (IC and majority margins)

Method Cop Kem-You Borda Plu 2-AV Plu-run
q = 3, n = 7 93.78% 93.78% 100.00% 89.32% 86.91% 88.60%
q = 3, n = 9 92.87% 92.85% 100.00% 88.86% 84.02% 86.42%
q = 3, n = 11 92.34% 92.22% 100.00% 89.00% 83.04% 85.94%
q = 4, n = 7 91.67% 88.68% 99.86% 82.26% 88.93% 79.55%
q = 4, n = 9 90.47% 87.14% 99.75% 79.05% 87.78% 77.94%
q = 4, n = 11 90.60% 87.75% 99.77% 78.80% 86.32% 78.68%

Table 19: Trained on joint Borda and Condorcet winners (IC and majority margins)
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Method Cop Kem-You Borda Plu 2-AV Plu-run
q = 3, n = 7 92.97% 92.97% 100.00% 89.21% 87.02% 87.99%
q = 3, n = 9 93.10% 93.06% 99.98% 88.59% 84.22% 86.69%
q = 3, n = 11 92.89% 92.77% 99.96% 89.03% 82.88% 86.29%
q = 4, n = 7 91.62% 88.86% 99.85% 81.93% 88.79% 79.54%
q = 4, n = 9 90.04% 86.79% 99.60% 79.12% 87.24% 78.08%
q = 4, n = 11 90.87% 87.89% 99.71% 79.67% 86.01% 79.13%

Table 20: Trained on joint Borda, Condorcet and plurality winners (IC and majority
margins)

Method Cop Kem-You Borda Plu 2-AV Plu-run
q=3, n=7 97.22% 97.22% 99.73% 89.34% 85.66% 90.69%
q=3, n=9 95.49% 95.49% 99.98% 88.74% 83.91% 89.31%
q=3, n=11 94.65% 94.59% 99.69% 88.56% 83.15% 87.70%
q=4, n=7 92.07% 89.34% 99.52% 81.51% 88.27% 79.03%
q=4, n=9 91.46% 89.03% 99.54% 80.50% 87.40% 79.88%
q=4, n=11 90.95% 87.68% 99.66% 79.07% 86.96% 78.13%

Table 21: Trained on Condorcet winners (AIC and majority margins)

Method Cop Kem-You Borda Plu 2-AV Plu-run
q = 3, n = 7 92.99% 92.99% 100.00% 88.27% 87.04% 87.32%
q = 3, n = 9 92.19% 92.13% 99.96% 87.62% 85.06% 86.08%
q = 3, n = 11 92.32% 92.19% 99.98% 88.32% 83.64% 85.77%
q = 4, n = 7 91.35% 88.45% 99.92% 81.27% 88.40% 77.71%
q = 4, n = 9 90.89% 88.05% 99.75% 79.60% 87.74% 78.40%
q = 4, n = 11 90.62% 87.03% 99.75% 78.73% 86.37% 77.16%

Table 22: Trained on Borda winners (AIC and majority margins)

Method Cop Kem-You Borda Plu 2-AV Plu-run
q = 3, n = 7 94.73% 94.73% 99.96% 88.88% 87.06% 88.80%
q = 3, n = 9 92.85% 92.81% 100.00% 87.88% 85.65% 86.55%
q = 3, n = 11 92.81% 92.73% 100.00% 88.58% 83.59% 86.38%
q = 4, n = 7 91.83% 89.73% 99.39% 83.34% 90.14% 81.13%
q = 4, n = 9 91.88% 89.95% 99.56% 81.93% 89.69% 81.48%
q = 4, n = 11 91.97% 89.51% 99.46% 81.27% 89.27% 80.58%

Table 23: Trained on plurality winners (AIC and majority margins)
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Method Cop Kem-You Borda Plu 2-AV Plu-run
q = 3, n = 7 94.05% 94.05% 100.00% 88.27% 87.04% 87.72%
q = 3, n = 9 93.23% 93.21% 100.00% 87.91% 84.91% 86.93%
q = 3, n = 11 92.67% 92.57% 99.96% 88.39% 83.51% 86.03%
q = 4, n = 7 91.12% 88.23% 99.67% 81.09% 88.34% 77.55%
q = 4, n = 9 91.12% 88.45% 99.83% 79.95% 87.56% 78.71%
q = 4, n = 11 90.58% 87.15% 99.77% 78.81% 86.36% 77.28%

Table 24: Trained on joint Borda and Condorcet winners (AIC and majority margins)

Method Cop Kem-You Borda Plu 2-AV Plu-run
q = 3, n = 7 93.82% 93.82% 100.00% 88.62% 86.69% 88.16%
q = 3, n = 9 93.03% 93.03% 99.96% 87.88% 85.03% 86.80%
q = 3, n = 11 92.34% 92.30% 99.98% 88.56% 83.49% 85.79%
q = 4, n = 7 91.33% 88.50% 99.73% 81.09% 88.41% 77.80%
q = 4, n = 9 90.48% 87.80% 99.48% 79.82% 87.38% 78.46%
q = 4, n = 11 90.72% 87.30% 99.67% 78.79% 86.61% 77.63%

Table 25: Trained on joint Borda, Condorcet and plurality winners (AIC and majority
margins)
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