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RESEARCH ARTICLE

Volterra equation for pricing and hedging  
in a regime switching market
Anindya Goswami1* and Ravi Kant Saini2

Abstract: It is known that the risk minimizing price of European options in Markov-
modulated market satisfies a system of coupled PDE, known as generalized B–S–M 
PDE. In this paper, another system of equations, which can be categorized as a 
Volterra integral equations of second kind, are considered. It is shown that this 
system of integral equations has smooth solution and the solution solves the 
generalized B–S–M PDE. Apart from showing existence and uniqueness of the PDE, 
this IE representation helps to develop a new computational method. It enables to 
compute the European option price and corresponding optimal hedging strategy by 
using quadrature method.

Keywords: Markov modulated market, locally risk minimizing option price, Black–Scholes–
Merton equations, Volterra equation, quadrature method

1. Introduction
In recent years, a large amount of research is being done in the field of derivative pricing in Markov-
modulated market. In such a market, floating rate of interest of a money market account, growth 
rates, and volatility coefficients of stock prices are taken as functions of an observable finite state 
continuous time Markov chain. The stock price processes are modeled as Markov-modulated geo-
metric Brownian motions. Due to the presence of additional randomness, such regime switching 
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model leads to an incomplete market. Therefore, the option pricing is rather involved. Indeed, there 
are contingent claims which are not attainable by self-financing strategies. Furthermore, existence 
of multiple equivalent martingale measures leads to multiple no-arbitrage prices of the same con-
tingent claim. To address this difficulty, option pricing in an incomplete market is studied by several 
approaches Basak, Ghosh, and Goswami (2011), Buffington and Elliott (2002), Deshpande and Ghosh 
(2008), DiMasi, Kabanov, and Runggaldier (1994), Guo (2002), Guo and Zhang (2004), Heath, Platen, 
and Schweizer (2001), Jobert and Rogers (2006), Mamon and Rodrigo (2005), Schweizer (2001), Tsoi, 
Yang, and Yeung (2000), etc.

To price and hedge a claim of European type in the above incomplete market, we would consider 
the locally risk minimizing pricing approach by Föllmer and Schweizer (1991). It is shown in 
Deshpande and Ghosh (2008) that the locally risk minimizing price of an option of European type can 
be derived from the unique solution of a Cauchy problem, where the PDE is a generalization of Black–
Scholes–Merton PDE (see Deshpande & Ghosh, 2008 for details). In a recent paper by (Basak et al., 
2011), an implicit stable Crank–Nicholson (C–N) scheme is developed to solve that Cauchy problem 
numerically. The present paper also deals with numerical computation of locally risk minimizing 
price but it adopts a completely different approach. In this paper, we study a system of equations 
which can be categorized as Volterra integral equations of second kind. It is shown that this system 
of integral equations has unique smooth solution and the solution solves the generalized B–S–M PDE 
given in Basak et al. (2011). Or in other words, the risk minimizing option price is characterized as 
unique solution of a system of Volterra equations. Finally, we develop a stable scheme to solve this 
system numerically. This finding resolves various computational challenges. First of all, it enables 
development of an alternative numerical approach to find the option price by using quadrature 
method. In principle, C–N scheme (to solve B–S–M type PDE) involves inversion and N times multipli-
cation of a matrix of order M, where M is proportional to the space discretization (Basak et al. 2011). 
Therefore, TPDE(N, M), the corresponding computational complexity to solve the PDE is O(NM3). Here, 
N is the number of equi-spaced points on time horizon [0, T]. On the other hand, we have the follow-
ing result. Let TIE(N, M) denote the computational complexity to solve the IE with above grid, using 
step-by-step quadrature method. Then, we have

Secondly, we are also able to find a Volterra equation for optimal hedging strategy. Needless to men-
tion, this equation can also be solved by a similar numerical method. Therefore, calculating hedging 
strategy becomes as easy as calculating option price. Needless to mention, solving the PDE for hedg-
ing strategy is generally much harder than solving the PDE for option price. We also study one typical 
example of a regime switching market and carry out computation for solving the PDE as well as the 
IE. The computational elapsed times are recorded for both the cases with varying M for the purpose 
of comparison. The elapsed time data collated in a single plot clearly shows how the proposed 
scheme outperforms the C–N scheme for large values of M.

This paper is organized in the following way. The Markov-modulated market model is presented in 
Section 2 along with the main results of the paper. We present the proofs of Theorems 2.1 and 2.2 in 
Section 3. In Section 4, a step-by-step quadrature method is developed to solve the IE for option 
price. This section also contains the proof of stability of the scheme and a detailed calculation of 
computational complexity. Section 5 includes performance comparison of the scheme with that in 
Basak et al. (2011) by considering a typical numerical example. Finally, some remarks about immedi-
ate generalization of the present work are given in Section 6.

2. Model and main result
Let (Ω, , P) be the underlying complete probability space. Let � ={1, 2,… , k} be the state space of 
an irreducible Markov chain {Xt, t ≥ 0} with transition rule

TIE(N,M)=O(N
2M2)

P(Xt+�t = j|Xt = i)=�ij�t+o(�t), i≠ j
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where λij  ≥  0 for i ≠ j; and �ii =−
∑k

j≠i �ij. Thus Λ = [λij] denotes the generating Q-matrix of the chain and 
pij :=

�ij

|�ii |
 are the transition probabilities from state i to state j. We consider a market where the finan-

cial parameters, namely interest rate, drift coefficient, volatility coefficient are functions of the  
observed Markov chain Xt. Let {Bt, t ≥ 0} be the price of money market account at time t where, spot 
interest rate is r(Xt) and B0 = 1. We have

We consider a market consisting only one stock as tradable risky asset. The stock price process St 
solves

where {Wt, t ≥ 0} is a standard Wiener process independent of {Xt, t ≥ 0}. Let t be a filtration of  
satisfying usual hypothesis and right continuous version of the filtration generated by Xt and St. 
Clearly, the solution of above SDE is an t semimartingale with almost sure continuous paths. To 
price a claim H of European type in the above incomplete market, we would consider the locally risk 
minimizing pricing approach by Föllmer and Schweizer (see Föllmer & Schweizer, 1991; Heath et al., 
2001). A hedging strategy is defined as a predictable process �={�t =(�t, �t), 0≤ t≤T} which 
satisfies

 

The components ξt and εt denote the amounts invested in St and Bt, respectively, at time t. An optimal 
strategy is the one for which the quadratic residual risk (see Föllmer & Schweizer, 1991 for details) is 
minimized subject to a certain constraint. It is shown in Föllmer and Schweizer (1991) that the exist-
ence of an optimal strategy for hedging an t measurable claim H is equivalent to the existence of 
Föllmer–Schweizer decomposition of discounted claim H∗

:=B−1
T
H in the form

where H0∈L
2(Ω,0, P), LH∗

={LH
∗

t }0≤t≤T is a square integrable martingale orthogonal to the martin-
gale part of St, S

∗

t :=B
−1
t St, and �H

∗

={�H
∗

t } satisfies (1). Further, �H
∗

 appeared in the decomposition 
constitutes the optimal strategy. Indeed, the optimal strategy �=(�t, �t) is given by

and BtV
∗

t  represents the locally risk minimizing price at t of the claim H. Hence, the Föllmer–Schweizer 
decomposition is the key thing to verify.

Now onward we consider a particular claim i.e. a European call option on {St} with strike price K and 
maturity time T. In this case, the t measurable contingent claim H is given by

 

Before stating the main results we recall that in the Black–Scholes–Merton model (Black & Scholes, 
1973) the t measurable claim H is attainable and the price η(t, St) at time t ∈ [0, T] is given by

Bt=e
∫ t0 r(Xu)du

dSt=St(𝜇(Xt−)dt+𝜎(Xt−)dWt), S0>0

(1)

E
[∫ T
0
𝜉
2

t 𝜎
2(Xt)S

2

t dt+
(∫ T
0
|𝜉t||𝜇(Xt)|dt

)2]
<∞

and

E
[
𝜀
2

t

]
<∞

H∗ =H0+∫
T

0

�
H∗

u dS
∗

u+L
H∗

T

�t := �
H∗

t

V∗

t := H0+ ∫ t
0
�
H∗

u dS
∗

u+L
H∗

t

�t := V
∗

t −�tS
∗

t

(2)H=(ST−K)
+
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where r and σ are constants denoting fixed bank rate and fixed volatility coefficients, respectively; 
Φ(x) is the CDF of standard normal distribution, K* = e−rtK. The Black–Scholes hedging strategy, called 
Delta hedging is given by

where Δ(t, s) is the number of shares invested in stock. Now the main results are given below.

Theorem 2.1.  The following integral equation has a unique solution in the class of functions belong-
ing to C([0, T]×ℝ

+
×�)

⋂
C1,2((0, T)×ℝ

+
×�) having at most linear growth. 

 

with

where λi  := −λii and ηi(t, s) is the standard Black–Scholes price of European call option with fixed interest 
rate r(i) and volatility σ(i).

Moreover, the solution φ(t, s, i) of (4) and (5) is the locally risk minimizing price of H (as in (2)) at time 
t with St = s, Xt = i.

Theorem 2.2.  Consider a function � ∈C([0, T]×ℝ
+
×�)

⋂
C1,1((0, T)×ℝ

+
×�) which is given in 

terms of the unique solution of (4)–(5) in the following way 

and 

The processes �t :=�(t, St,Xt−) and �t :=B
−1

t (�(t, St,Xt−)−�tSt) comprise the optimal hedging strat-
egy for the claim H in (2).

Theorem 2.3.  Given a finite grid of the domain [0, T]×ℝ
+

, let N and M be the number of discrete 
points on [0, T] and ℝ

+
, respectively. Let T(N, M) denote the computational complexity to solve (4) and 

(5) with above grid using step by step quadrature method. Then we have 

(3)�(t, St)=StΦ

⎛
⎜⎜⎜⎝

log
�
St

K

�
+ r(T− t)

�
√
T− t

+
1

2
�
√
T− t

⎞
⎟⎟⎟⎠
−ertK∗Φ

⎛
⎜⎜⎜⎝

log
�
St

K

�
+ r(T− t)

�
√
T− t

−
1

2
�
√
T− t

⎞
⎟⎟⎟⎠

Δ(t, s)=
��(t, s)

�s

(4)

�(t, s, i)=e−�i (T−t)�i(t, s)+ ∫ T−t
0

�ie
−(�i+r(i))v

×
∑
j

pij ∫∞0 �(t+v, x, j) e
−
1
2

��
ln( xs )−

�
r(i)−

�
2
(i)
2

�
v

�
1

�(i)
√
v

�2

√
2��(i)

√
vx

dxdv

(5)�(T, s, i)= (s−K)+, �(t, 0, i)=0∀t∈[0, T], i∈�

(6)

�(t, s, i)=e−�i (T−t)
��i (t, s)

�s
+ ∫ T−t

0
�ie

−(�i+r(i))v
∑
j

pij ∫∞0 �(t+v, x, j)

×
e
−
1
2

��
ln( xs )−

�
r(i)−

�
2
(i)
2

�
v

�
1

�(i)
√
v

�2

√
2��(i)

3
v3∕2xs

�
ln

�
x

s

�
−
�
r(i)− �

2(i)

2

�
v
�
dxdv

for t∈[0, T), s>0

(7)�(T, s, i)=1
(K,∞)

(s)∀s≥0; �(t, 0, i)=0∀t∈[0, T], i∈�

(8)T(N,M)=O(N2M2)
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Remark 2.1.  It is interesting to note that both of the integral equations in Theorems 2.1 and 2.2, 
have two additive terms on right side where first terms involve functions, coming from Black–
Scholes–Merton model. In particular, if the Markov chain Xt does not transit almost surely, i.e. Λ, a 
null matrix, then (4) and (6) give �(t, s, i)= �i(t, s) and �(t, s, i)=

��i (t, s)

�s
 respectively. Hence the 

B–S–M price and hedging can be recovered from Equations 4–5 and 6–7, respectively.

3. Equations of pricing and hedging
Consider the following system of partial differential equations
 

for t < T, s > 0 and i = 1, 2, … , k with the boundary condition

 

where φ is of polynomial growth. Note that if Λ is a null matrix i.e. the case when the Markov chain 
Xt does not transit almost surely, the Equation 9 coincides with that of standard B–S–M model. In 
view of this, the above system can be considered as a generalization of Black–Scholes equation for a 
Markov-modulated market where the extra coupling term represents the correction term arising due 
to the regime switching. Nevertheless, the fact, the solution of above problem gives locally risk mini-
mizing price, needs a proof. To this end, we quote the following theorem from Deshpande and Ghosh 
(2008).

Theorem 3.4.  If {�c(t, s, i), i=1, 2,… , k} denotes the unique classical solution of the Cauchy prob-
lem (9)–(10), then

(i) �c(t, St,Xt) is the locally risk minimizing price of the option H (as in (2)) at time t;

(ii)  An optimal strategy �=(�t, �t), is given by

where

Proof of Theorem 2.1.  We prove the first part of Theorem 2.1 primarily by constructing a smooth 
solution of (4)–(5). In order to do that let (Ω̃, ̃ , P̃) be a complete probability space which holds a 
standard Brownian motion W̃ and a Markov process X̃ independent of W̃ such that the rate matrix 
of X̃ is the same as that of X. Let S̃t be given by

 

and ̃t be the underlying filtration satisfying usual hypothesis. Thus, P̃ is risk-neutral measure for the 
risky asset S̃ given by (11). Let Yt represent holding time i.e. the amount of time the process X̃t is at 
the current state after the last jump. Let the consecutive jump times be 0=T0<T1<T2<⋯ and 
n(t) :=max{n≥0|Tn≤ t}. Hence, Tn(t) = t−Yt. Clearly, f (y|i) :=�ie

−�i y is the conditional probability 
density function of holding time and F(y|i)=1−e−�i y is the corresponding CDF where �i =−�ii. Here, 
we recall the following obvious relation

(9)��(t, s, i)

�t
+
1

2
�(i)2s2

�
2
�(t, s, i)

�s2
+ r(i)s

��(t, s, i)

�s
+

k∑
j=1

�ij�(t, s, j)= r(i)�(t, s, i)

(10)�(T, s, i)= (s−K)+, s≥0, �(t, 0, i)=0∀t∈[0, T], i∈�

�t =
��c(t, St,Xt−)

�s
, �t=V

∗

t−−�tS
∗

t

V∗

t =e
− ∫ t0 r(Xu)du�c(t, St,Xt)

(11)dS̃t= S̃t(r(X̃t)dt+𝜎(X̃t)dW̃t), S̃0>0

f (y|i)
1−F(y|i) =�i
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Because of Markovity of (S̃t, X̃t), we know that there is a measurable function �: [0, T]×[0,∞)×�→ℝ 
such that �(t, 0, i)=0 and

 

holds for all t∈[0, T] where Ẽ is expectation under P̃. Due to irreducibility of X̃t, for any fixed X̃0, S̃0, 
the map φ (as in (12)) is defined uniquely almost everywhere on [0, T]×[0,∞)×�. Now by condi-
tioning at transition times and using the conditional lognormal distribution of stock price process, 
we have

where �i(t, s) is the standard Black–Scholes price of European call option with fixed interest rate r(i) 
and volatility σ(i). Again using irreducibility of Markov chain, we can replace (S̃t, X̃t) by generic variable 
(s, x) in the above relation and thus conclude that φ is a solution of (4)–(5). The first term on the right-
hand side is clearly in C1,2((0, T)×ℝ

+
×�). The continuous differentiability in t of the second term 

follows from the fact that the term �(t+v, x, j) is multiplied by C1((0,∞)) function in v and then inte-
grated over v∈(0, T− t). Now twice continuous differentiability in s of the second term follows from 
direct calculation. Thus �(t, s, i) is in C1,2((0, T)×ℝ

+
×�). Finally, the continuity of φ on [0, T]×ℝ

+
 

follows trivially. We note that the right side of (4) can be considered as the image of φ under a con-
traction on a suitable Banach space. Hence, uniqueness follows from Banach fixed point theorem.

In view of Theorem 3.4.(i), the proof follows if φ, as above, is the unique classical solution of  
(9)–(10). Note that (S̃t, X̃t) is jointly Markov with infinitesimal generator ̃ given by 

Therefore, (9) can be rewritten as 
𝜕𝜑

𝜕t
(t, s, i)+̃𝜑(t, s, i)= r(i)𝜑(t, s, i). Hence using Feynman–Kac 

formula, φ as in (12) is a mild solution of (9) with terminal condition (10). It is also shown above that 
φ is in C([0, T]×ℝ

+
)
⋂
C1,2((0, T)×ℝ

+
). Hence φ is a classical solution of (9)–(10) (see Proposition 

3.1.2; Arendt, Batty, Hieber, & Neubrander, 2001). Uniqueness of the Cauchy problem is asserted 
from the stochastic representation of its solution. Hence the result follows.			     □

(12)𝜑(t, S̃t, X̃t)= Ẽ[e
− � T

t
r(X̃u)du(S̃T−K)

+|̃t]

𝜑(t, S̃t, X̃t)= Ẽ
�
e− ∫ Tt r(X̃u)du�S̃T−K

�+�S̃t, X̃t
�

= Ẽ
�
Ẽ
�
e− ∫ Tt r(X̃u)du�S̃T−K

�+�S̃t, X̃t, Tn(t)+1
�
�S̃t, X̃t

�

= P̃
�
Tn(t)+1<T�X̃t

�
Ẽ
�
e− ∫ Tt r(X̃u)du�S̃T−K

�+�S̃t, X̃t, {Tn(t)+1<T}
�

+∫
T−t

0

Ẽ
�
e− ∫ Tt r(X̃u)du �S̃T−K

�+ �S̃t, X̃t, Tn(t)+1= t+v
� f �t+v−Tn(t)�X̃t

�

1−F
�
t−Tn(t)�X̃t

�dv

=e
−𝜆x̃

t
(T−t)

𝜂X̃t

�
t, S̃t

�
+∫

T−t

0

𝜆X̃t
e
−
�
𝜆X̃

t
+r(X̃t)

�
v
�
j

pX̃t j ∫
∞

0

Ẽ
�
e− ∫ Tt+v r(X̃u)du �S̃T−K

�+ �S̃t+v =x,

X̃t+v = j, T̃n(t)+1= t+v
�
e
−
1

2

��
ln

�
x

S̃
t

�
−

�
r(X̃t)−

𝜎
2(X̃t)
2

�
v

�
1

𝜎(X̃t)
√
v

�2

√
2𝜋𝜎(X̃t)

√
vx

dxdv

=e
−𝜆X̃

t
(T−t)

𝜂X̃t

�
t, S̃t

�
+∫

T−t

0

𝜆X̃t
e
−
�
𝜆X̃
t
+r(X̃t)

�
v

×
�
j

pX̃t j ∫
∞

0

𝜑(t+v, x, j)
e
−
1

2

��
ln

�
x

S̃
t

�
−

�
r(X̃t)−

𝜎
2(X̃t)
2

�
v

�
1

𝜎(X̃t)
√
v

�2

√
2𝜋𝜎(X̃t)

√
vx

dxdv

̃𝜑(t, s, i)=
1

2
𝜎(i)2s2

𝜕
2
𝜑(t, s, i)

𝜕s2
+ r(i)s

𝜕𝜑(t, s, i)

𝜕s
+

k∑
j=1

𝜆ij𝜑(t, s, i)
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Proof of Theorem 2.2.  Let us define

where φ solves (4)–(5). Using both Theorems 3.4 and 2.1 we get, � :=(�, �) is an optimal strategy. 
The proof follows by differentiating both sides of (4) with respect to s.			       □

4. Numerical method
To solve (4)–(5), we use the step-by-step quadrature method. Let Δt and Δs be the time step and 
stock price step sizes, respectively. For m, m′, l positive integers and i∈�, set

Now we use the following quadrature rule over successive intervals [0,nΔt] for a function � on this 
interval, we use

where ωn(l) are weights to be chosen appropriately. Applying the above procedure in (4), we obtain 
the following set of equations

 

with

 

We choose a repeated trapezium rule by which the weights ωn are given by

Convergence of the above scheme is obvious, the issue of stability is addressed below.

Theorem 4.5.  Let a :=max
�
�ie

−(�i+r(i)). For 

 

the scheme (13) is strictly stable with respect to an isolated perturbation. Moreover, the scheme  
displays uniformly bounded error propagation.

�t :=
��(t, St,Xt−)

�s
and�t :=e

− ∫ t
0
r(Xu)du(�(t, St,Xt−)−�tSt)

(m,m�
, l, i) :=

e
−
1

2

��
ln

�
m
�

m

�
−

�
r(i)− �

2
(i)

2

�
lΔt

�
1

�(i)
√
lΔt

�2

√
2��(i)m�Δs

√
lΔt

�
n
m(i)≈�(T−nΔt,mΔs, i), �

n
0
(i)=0, n=0, 1,… ,N :=⌊ T

Δt
⌋

∫
nΔt

0

�(v)dv≈Δt

n∑
l=0

�n(l)�(lΔt)

(13)

�
n
m(i)=e

−�inΔt�i(T−nΔt,mΔs)+�iΔt
n∑
l=1

�n(l)e
−lΔt(r(i)+�i )

∑
j

pijΔs
∑
m�

�
n−l
m� ( j)(m,m�

, l, i)

+Δt�n(0)�i
∑
pij�

n
m( j)

(14)�
0
m(i)= (mΔs−K)+

�n(l)=

{
1, for l=1, 2,… ,n−1
1

2
, for l=0,n

(15)Δt≤ e−aT
a
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Proof.  We first note that (m,m�, l, i) corresponds to a lognormal density and the holding time 
densities f(·|·) are bounded. Let δn be an additive error in �nm(i) ∀m and i. Now it is easy to show that 
the effect of the isolated perturbation δn in �Nm(i)(N :=⌊ T

Δt
⌋) is additive and given by

If Δt is sufficiently small and satisfies (15), we get �n < δn, i.e. the scheme is strictly stable with respect 
to an isolated perturbation. Let δn be bounded by a fixed constant δ. Now the total effect � of the 
perturbation in the value �Nm(i) is given by

Hence the result follows.								           □

Now we are ready to prove Theorem 2.3.

Proof of Theorem 2.3.  To organize better, before computation of (13), we evaluate and store the 
values of known functions on the entire grid, so that those values can directly be used at later 
stages. Let C be the number of operations, required to accomplish that. We first estimate C. Let the 
constant cη be the number of elementary operations required to evaluate η at a single entry. Similarly, 
let c and cexp be the constants corresponding to the functions  and exponential respectively. Hence 
in view of (13), we obtain directly

Let C(i)
m (n) denote the number of additional computational operations which are required to obtain 

�
n
m(i) from (13) for fixed n(≥1), m and i assuming that values of �n−1m (i) are known for all m and i. We 

allow C(i)
m (0) to represent the computational complexity of initial data at each entry. Hence, 

C(n,M) :=
∑

i∈� ,m≤M C
(i)
m (n) represents the total complexity at nth stage for each n ≤  N.

It is evident from (14) that C(i)
m (0) is independent of i and similarly complex(c0 say) for all m. Hence, 

C(0,M)=Mc0.

From (13), it is not difficult to get C(i)
m (n)=2n(k(M+1)+1)+2. Hence, 

for all n=1,… ,N. Therefore, total number of operations i.e. T(N, M) is given by 

Remark 4.2.  In this section, we have developed a numerical scheme to compute option price using 
a quadrature method. It is natural to ask if this has any advantage over the one based on solving the 
PDE (9)–(10) using Crank–Nicholson implicit scheme. In order to compare the computational com-
plexities, we present a brief description of the corresponding Crank–Nicholson scheme below.

�n=aΔt(1+aΔt)
N−n−1

�n

𝜖 :=

N−1∑
n=0

𝜖n< (eaT−1)𝛿

C=kN(cexp+1)+kN(cexp+3)+kNMc�+kNM
2c=O(NM

2)

C(n,M)=2[n(k(M+1)+1)+1]kM

T(N,M)=C+
N∑
n=0

C(n,M)

=C+C(0,M)+
N∑
n=1

2[n(k(M+1)+1)+1]kM

=O(N2M2
)
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To solve (9)–(10), we transform by replacing t = T − v and s = ez and get a new system of PDEs

 

on the domain (0, T)×ℝ with

 

Let Δt be the time mesh length and Δz be the stock mesh length in logarithmic scale. Let N :=
[
T

Δt

]
, 

z0 a large negative number and M a large positive integer. For n≤N,m=0, 1,… ,M

The terminal condition (17) gives

Let �n :=[�n
0
(1),… ,�

n
0
(k),�n

1
(1),… ,�

n
M(1),… ,�

n
M(k)]∈ℝ

k(M+1). If �nkm+i denotes the km + ith 
component of φn, then �nkm+i =�

n
m(i). Now the Crank–Nicholson discretization of (16) gives 

 

where A is an appropriate block diagonal real matrix of size k(M+1)×k(M+1) (see Basak et al., 
2011 for details). By repeated use of (18), the numerical solution of (16)–(17) is given by

Above scheme essentially involves inversion and multiplication of matrices of order k(M + 1). It is 
known that the computational complexity of such operation is O(k3M3). Hence, the computational 
complexity of computing φn is O(nk3M3). If T(n, M) is the complexity of computing φn for n ≤ N. Then we 
have

 

5. Numerical example and comparison
In this section, we consider an example of a Markov-modulated market with three regimes. The 
state space is  = {1, 2, 3}. The drift coefficient, volatility, and interest rate at each regime are chosen 
as follows 

The transition rate matrix Λ = (λij) is assumed to be given by 

For this case, we compute the price of a European call option where the strike price K = 1 and  
maturity T = 1. In order to compute numerically, we need to choose space-time discretization. For 
the above market, the restriction suggested by (15) is Δt ≤ 2.45. We consider, in particular

(16)−
��(v, z, i)

�v
+

(
r(i)−

1

2
�(i)2

)
��(v, z, i)

�z
+
1

2
�(i)2

�
2
�(v, z, i)

�z2
+

k∑
j=1

�ij�(v, z, j)= r(i)�(v, z, i)

(17)�(0, z, i)= (ez−K)+

�
n
m(i) :=�(nΔt, z

0
+mΔz, i)

�
0
m(i)= (ez0+mΔz−K)+

(18)A�n+1=(−2I−A)�n

�
n=(−2A−1−I)n�0

(19)T(N,M)=O(NM3)

(�(i), �(i), r(i)) :=

⎧
⎪⎨⎪⎩

(0.2, 0.2, 0.2) if i=1

(0.6, 0.4, 0.5) if i=2

(0.8, 0.3, 0.7) if i=3

(�ij)=

⎛⎜⎜⎝

−1 2∕3 1∕3

1 −2 1

1∕3 2∕3 −1

⎞⎟⎟⎠
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where M is a large positive integer. We carry out computation for solving (9)–(10) as well as (4)–(5) 
for many different large values of M. For each M, the computational elapsed times are recorded for 
both the cases. In Figure 1, the elapsed time data are collated in a single plot where values of M are 
taken along horizontal axis and elapsed time in second is plotted along vertical axis. It shows that 
for a particular computing facility the proposed scheme outperforms the Crank–Nicholson scheme 
for large values of M ≥ 1,500.

6. Conclusion
This work comprises theoretical derivations as well as numerical experiments. It also presents a self-
contained proof of existence and uniqueness of generalized B–S–M PDE while proving the Theorem 
2.1. It seems that the Volterra equation of optimal hedging has been studied for the first time in this 
paper. This paper makes it clear that such equation for hedging can also be obtained for more gen-
eral semi-Markov-modulated market in the exactly similar manner. Needless to mention that this 
observation opens up an opportunity of practical application.

Δt=1∕8,Δs=10∕M

Figure 1. Run time (≈T(N,M)) are 
plotted for both of solving PDE 
and IE.
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