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Yule’s lambdagram revisited and
reclaimed

Terence C. Mills∗

School of Business and Economics, Loughborough University, Leicestershire, UK

In this article, the lambdagram, proposed by Yule in his last time series paper published in
1945, is revisited using modern theoretical and computational developments unavailable to
him. Although it is not particularly good at identifying stationary processes, the lambdagram
is found to be much more useful for distinguishing between trend and difference stationary
processes. The lambdagram is applied to the Nelson–Plosser data and the conclusions drawn
from using it are compared with other analyses of this data set.

I. Introduction

During the 1920s, Yule published three papers (1921, 1926, 1927)
that were instrumental in laying down many of the foundations of
modern time series analysis.1 After a hiatus of almost 20 years,
Yule’s (1945) last foray into the subject – when he was well into his
seventies – was a paper published in the Journal of the Royal Sta-
tistical Society in 1945 where he studied the ‘internal correlations’
of a time series by way of a statistic, which he termed the coeffi-
cient of linkage, and a related graphical display, which he called the
lambdagram. Apart from the note published by Kendall (1945a) as
an addendum to the paper and the calculation of a lambdagram for
the sunspot index in Ghurye (1950), almost no other references to
this concept can be found until it was ‘rediscovered’by Mills (2011,
§8.8–8.9).2 The purposes of the present article are to revisit Yule’s
lambdagram from a modern perspective and to assess its useful-
ness as an essentially graphical device for distinguishing between
difference and trend stationary processes by using both theoretical
and computational developments that were unavailable to Yule and
Kendall at their time of writing. In doing so, we hope to reclaim the
lambdagram as a fitting tribute to one of Britain’s most prestigious
statisticians.

II. Yule’s Lambdagram

In a sequence of papers published during the war on the behaviour of
agricultural time series, Kendall (1941, 1943, 1944, 1945b) focused
his attention on oscillatory processes, that is, those that could

∗Email: t.c.mills@lboro.ac.uk
1 A detailed examination of Yule’s time series research is provided by Mills (2011, Chapters 5 and 6), while Aldrich (1995, 1998) discusses his work
on correlation and regression and Tabery (2004) discusses his contribution to the ‘evolutionary synthesis’ in biology and the biometric–Mendelian
debate. His textbook Introduction to the Theory of Statistics was very influential and ran to 14 editions during his lifetime, with the later editions
co-authored with his close friend Maurice Kendall. For biographical details of Yule and a full list of his publications, see Kendall (1952) and also
Williams (2004).
2 A statistic related to the lambdagram has been used to analyse counts of events from point processes (see Lewis and Govier, 1964).

be characterized by second-order autoregressions having complex
roots, examining in detail the behaviour of the serial correlations
from such processes. Yule (1945) decided to break away from the
analysis of oscillatory processes to consider an alternative way of
characterizing the properties of a time series. This approach was
based on a result reported in Yule and Kendall (1950, p. 390) con-
cerning the variance of the means of independent samples of size n
drawn from a longer time series (say of length T ) and focused on
the behaviour of the quantity

λn = 2

n
((n − 1)ρ1 + (n − 2)ρ2 + · · · + ρn−1) = 2

n−1∑
i=1

(
n − i

n

)
ρi

(1)

as n increases. As Yule showed, this can be written as

λn = 2

n
Tn

where

Tn =
n−1∑
i=1

Si Si =
i∑

j=1

ρj

so that it is the second sum of the serial correlations scaled by the
factor 2/n. If Sm has a finite value such that m and Tm become
negligible when compared with n and Tn, then the limiting value of
λn is 2Sm.

Yule termed λn the coefficient of linkage. If λn = 0, then either
all of the serial correlations are zero or any positive correlations
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Fig. 1. Lambdagram for a correlated series formed by summing
the terms of a random series in overlapping groups of 5

are balanced by negative ones. Yule showed that −1 < λn < n − 1,
and the implications of these limits are revealed when we use Yule
and Kendall’s result that the variance of the means of independent
samples of length n is (σ 2/n)(1 + λn), where σ 2 is the variance
of the series itself. The maximum value λn = n − 1 occurs when
ρi = 1 for i = 1, . . . , n − 1, so that the terms of samples of size
n are completely linked together and the means of the successive
samples have the same variance as the series itself. The minimum
value λn = −1 is achieved when the terms in the sample are as
completely negatively linked as possible (bearing in mind that not
all pairs in a sample can have a correlation of −1) and the means
of the successive samples have zero variance and hence do not vary
at all. If λn = 0, then the terms are unlinked and the means of the
successive samples behave like the means of random samples. Yule
termed a plot of λn against n a lambdagram, although for ease of
exposition we shall also refer to λn itself by this term.

If a correlated series is formed by summing a random series in
overlapping runs of k terms, that is, as vt = ∑k

j=1 ut+j , then ρi =
(k − i)/k, i = 1, . . . , k − 1, ρi = 0, i ≥ k, Sn = (1/2)(k − 1) and,
in the limit, λn = k − 1. Thus, all values of λn are positive and the
lambdagram clearly approaches a limit, as can be seen in Fig. 1,
which displays the lambdagram for k = 5.

The lambdagram is, in fact, related to the expected ‘intensity’ of
a stationary zero mean time series, defined subsequent to Yule by
Bartlett (1950, Equation 19) as

E(Ip) = 2σ 2
n−1∑

i=−n+1

(
1 − |i|

n

)
ρi cos ωi

in which p and ω are the particular period and frequency linked by
ω = 2πp/n. For ω = 0,

E(I0) = 2σ 2
n−1∑

i=−n+1

(
1 − |i|

n

)
ρi

= 2σ 2

(
1 + 2

n−1∑
i=1

(
n − i

n

)
ρi

)
= 2σ 2(1 + λn) (2)

so that λn = (E(I0) − 2σ 2)/2σ 2: that is, the lambdagram is a linear
transformation of the frequency zero spectral density, where 2σ 2 is
the expected intensity of a completely random series.

III. Yule’s Empirical Lambdagrams

Figure 2 displays calculated lambdagrams (i.e. those obtained by
replacing the ρi by the sample serial correlations ri = ∑T

t=i+1(xt −
x̄)(xt−i − x̄)/

∑T
t=1(xt − x̄)2) for a variety of series analysed by

Yule and Kendall, as well as the sunspot index observed for the
period 1700–2007 (n is generally set at the value chosen by Yule).
They display a variety of patterns, with Kendall’s agricultural series
having similar lambdagrams both between themselves and with
Beveridge’s (1921) detrended wheat price index (the ‘Index of Fluc-
tuation’). The sunspot index has a lambdagram that is generally
increasing towards a maximum that appears to be in the region of
3.75, while the lambdagram of Kendall’s Series I (given in Kendall,
1945b, Table 2) seems to be declining towards a value of around 1.2.

Since the latter series is known to be generated by the oscillatory
process

xt = axt−1 + bxt−2 + εt (3)

with a = 1.1 and b = −0.5 and with εt being independently drawn
from a rectangular distribution, Kendall (1945a) analysed the impli-
cations for the lambdagram of this generating process, showing that
the limiting value of the lambdagram of Equation 3 for large n is

λ = 2(a + b − b2)

(1 − b)(1 − a − b)
(4)

a result that could subsequently be obtained using the relationship
in Equation 2.

If b = −1, then it is easy to see that λ = −1, while using standard
results linking the autoregressive parameters to the first two serial
correlations, that is,

a = ρ1(1 − ρ2)

1 − ρ2
1

b = ρ2 − ρ2
1

1 − ρ2
1

(5)

allows λ to be written as

λ = 2

1 − a − b
(ρ1 + b)

For an oscillatory process, 1 − a − b = (1 − ρ1)/(1 − b) ≥ 0
because b < 0 and −1 ≤ ρ1 ≤ 1. Hence, λ will be positive or
negative depending on whether ρ1 is greater than or less than |b|.

Of course, the ‘true’ serial correlations are given by ρ0 = 1
and ρ1 = a/(1 − b), followed by the recursion ρi+2 = aρi+1 + bρi.
The set of theoretical serial correlations thus generated with a = 1.1
and b = −0.5 can then be used to calculate the ‘theoretical’ lambda-
gram, which is shown with the empirical lambdagram of Series I
in Fig. 2. The limiting value from Equation 4 is λ = 1.167, and by
n = 50, both the empirical and theoretical lambdagrams are con-
sistent with this and are themselves almost identical. However, as
Kendall (1945a, p. 228) remarked,

throughout the previous course of the lambdagram the
observed values are much higher than the theoretical values.

It seems clear that these differences are due to the failure of
the observed correlations to damp out according to theoretical
explanation. If this is the correct explanation I should expect
it to be equally possible on occasion for the observations to
be systematically lower than the theoretical over parts of the
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Fig. 2. Calculated lambdagrams for a variety of time series

range. Series I, it is to be remembered, is based on 480 terms
and we are entitled to expect that for shorter series observation
and theory will be less in agreement.

Values for a and b for each of the other series shown in Fig. 2
can be computed using Equation 5 and the limiting values of the
lambdagram calculated using Equation 4. This produces λ values
of −0.421, −0.394 and 0.004 for the sheep, wheat and cow series,
respectively, 0.876 for the Beveridge wheat price index and 0.935
for the sunspot index. From Fig. 2, it is clear that none of these

3 This is certainly true for the sunspot index, where at least an AR(9) process is required to adequately model the series (see Morris, 1977; Mills, 2011,
Chapter 9). Sargan (1953) actually fitted model 3 with a = 0.73 and b = −0.31 to Beveridge’s Index of Fluctuation, but Quenouille (1947), in the
first application of a goodness-of-fit test for autoregressions, found that such a model was misspecified, although his test found no evidence against
such a model for wheat prices.

limiting values seem to be very close to the values that the empir-
ical lambdagrams appear to be tending towards. While Kendall
thought that short oscillatory series would give rise to serial cor-
relations that did not damp out according to theoretical expectation,
and hence empirical lambdagrams at odds with their theoretical
counterparts, an alternative explanation for the observed dispar-
ity could also be that these series are not adequately represented
by oscillatory processes, so that more general autoregressions are
required.3
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Fig. 3. Mean and theoretical lambdagrams, along with 2.5%, 5%, 95% and 97.5% percentiles from 10,000 simulations of process 3 with
a = 1.1, b = −0.5 and εt ∼ N(0, 1) for T = 480 for n ≤ 350
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a = 1.1, b = −0.5 and εt ∼ N(0, 1) for T = 60 and T = 480 for n ≤ 45
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Notwithstanding this possibility, what sort of variation should be
expected from computing a lambdagram from process 3? Figure 3
shows the mean and theoretical lambdagrams, along with 2.5%, 5%,
95% and 97.5% percentiles, from 10,000 simulations of process 3
with a = 1.1, b = −0.5 and εt ∼ N(0, 1) for T = 480 observations,
the length of the series generated by Kendall. Values for n ≤ 350
are shown, and throughout this interval, the mean lambdagram is
consistently smaller than its theoretical value and is declining in
size as n increases, with the percentiles showing that the empirical
lambdagram is distributed across a wide range of values.

Figure 4 repeats the exercise for a smaller sample of size T = 60
and shows the resulting lambdagrams and percentiles for n ≤ 45,
along with the analogous values from the longer sample, while Fig. 5
repeats Fig. 3 for theAR(1) process defined by setting, in turn, a = 0,
0.5 and 0.95 (with b = 0), for which the theoretical lambdagrams
are such that λn = 0, λn → 2 and λn → 38, respectively. It is clear
that the findings of Fig. 3 are replicated in general detail, in that
the mean lambdagram is biased downwards from the theoretical
lambdagram and that the empirical lambdagram covers a wide range
of values. This suggests that, for stationary series, little confidence
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Fig. 5. Mean and theoretical lambdagrams, along with 2.5%, 5%, 95% and 97.5% percentiles from 10,000 simulations of process 2 with
a = 0, 0.5 and 0.95, b = 0 and εt ∼ N(0, 1) for T = 480 for n ≤ 350
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can be placed on the lambdagram for identifying the underlying
process generating the data. However, closer examination of the
a = 0.95 case reveals that, for small n, the bounds are reasonably
narrow, suggesting that the lambdagram may nevertheless be useful
for identifying highly persistent processes.

IV. The Lambdagram for a Unit Root Process

Although the lambdagram thus seems to be of only limited use for
identifying stationary processes and, as such, might be regarded sim-
ply as a historical curiosity, its behaviour for persistent processes
makes it natural, from a modern time series perspective unavail-
able to Yule and Kendall, to consider its behaviour for unit root
processes. Clearly, for a random walk, all theoretical serial correla-
tions tend to unity for large T so that, as indeed observed by Yule,
λn → n − 1, but what happens in finite samples when sample serial
correlations are used? Since λ̂2 = r1, it follows that the probability

that λ̂2 < λ2 = 1 given ρ1 = 1 approaches 0.6826 (the probability
that a χ2(1) variate is less than 1) as T gets large (Fuller, 1976, p.
370). The statistic T(λ̂2 − 1) has a known asymptotic distribution
(Phillips, 1987) and finite sample critical values, obtained by simula-
tion, that were originally tabulated by Fuller (1976, Table 8.5.1) and
improved upon by MacKinnon (1996). On denoting this asymptotic
distribution as �, Hassler (1994) showed that when xt = xt−1 + εt ,
under the set of assumptions used by Phillips (1987), the serial corre-
lation ri converges in distribution to a multiple of the � distribution,
namely

(T − i + 1)(ri − 1)
d−→ i�

that is, that

ri
d−→ 1 + i

T − i + 1
�

0
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Fig. 6. Mean and ‘theoretical’ lambdagrams, along with 2.5%, 5%, 95% and 97.5% percentiles from 10,000 simulations of the random-walk
process obtained by setting a = 1 and b = 0 in Equation 2 with εt ∼ N(0, 1) for T = 480 for n ≤ 350
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Using this result, it then follows that

λ̂n
d−→2

n

(
n−1∑
i=1

(
i + i(n − i)

T − i + 1

)
�
)

= n − 1 +
(

n−1∑
i=1

i(n − i)

T − i + 1

)
2�
n

(6)

Clearly, as T → ∞, so ri → 1 and λ̂n → n − 1. It is also clear that,
for fixed T , 1 + i�/(T − i + 1) declines almost linearly in i and at
some value of i will fall below –1, so that this result is only useful
for small i and hence small n.

Resorting to simulation for large values of n, Fig. 6 thus shows
the simulated distribution of λ̂n for n ≤ 350 and T = 480 from the
random walk obtained by setting a = 1 and b = 0 in Equation 3.
For this value of T , the statistic T(λ̂2 − 1) has 2.5% and 5% criti-
cal values of −16.74 and −13.97, implying that λ2,0.025 = 0.9651
and λ2,0.05 = 0.9709 (the simulated values of these critical val-
ues were 0.9645 and 0.9704). From Equation 6, λ5,0.05 = 4.659,
λ20,0.05 = 15.645 and λ30,0.05 = 20.394, compared with the simu-
lated values of 4.662, 15.962 and 21.552, respectively. After this,
the two begin to diverge substantially with, for example, λ100,0.05 =
−10.64 from Equation 6 compared with a simulated value of 32.48
(the value at which ri becomes less than −1 using Equation 6 is
n = 60).

The ‘theoretical’ lambdagram shown in Fig. 6 is that obtained
using the result of Wichern (1973), who derived the ratio of the
expectation of the lag-i sample autocovariance, ci, to the expectation
of the sample variance, c0, for a random walk as

E(ci)

E(c0)
= (T − i)(T2 + 2i2 − 4iT − 1)

T(T2 − 1)
= 1 − 5i

T
+ O(T−2)

Although this ratio is clearly not E(ri), it should provide some
insight into the behaviour that could be expected from the lambda-
gram of a random walk. Some limited simulation evidence provided
by Wichern suggests that this formula over-estimates the average
value of ri, and this is confirmed in Fig. 6, with this ‘theoreti-
cal’ lambdagram being larger than the mean lambdagram and the
difference increasing with n.

Indeed, as n increases, the spread of the distribution increases,
no doubt because of the imprecision with which higher order serial
correlations are estimated. Nevertheless, for small n, the bounds
remain quite precise, giving some hope that the lambdagram may
be a useful discriminatory device for unit root processes.

Figure 7 investigates the power, using 5% level tests, of the
lambdagram for stationary alternatives to the driftless random walk
xt = xt−1 + εt for a = 0.9, 0.95, 0.975 and 0.99. This confirms the
conjecture made from Fig. 6: for n ≤ 50, the power is reasonably
good for a ≤ 0.975, and suggests that the lambdagram might be a
useful graphical device for helping to distinguish alternative forms
of nonstationarity in the observed time series.

V. Lambdagrams for the Nelson–Plosser
Data Set

To investigate this possibility further, lambdagrams were calculated
(for n ≤ 50) for the 14 series analysed in Nelson and Plosser’s
(1982) seminal article on distinguishing between difference and

Table 1. Nelson–Plosser data set: tc=0 denotes the t-ratio testing
c = 0

Series Sample T ĉ[tc=0]
Bond yields 1900–70 71 0.0614[1.71]
Consumer prices 1860–1970 111 0.0133[2.43]
Employment 1890–1970 81 0.0161[3.76]
Nominal GNP 1909–70 62 0.0553[4.40]
Industrial production 1860–1970 111 0.0434[4.50]
Money stock 1889–1970 82 0.0582[8.46]
Real per capita GNP 1909–70 62 0.0164[1.96]
GNP deflator 1889–1970 82 0.0204[3.52]
Real GNP 1909–70 62 0.0298[3.60]
Real wages 1900–70 71 0.0183[4.14]
Stock prices 1871–1970 100 0.0291[1.80]
Unemployment 1890–1970 81 0.0025[0.05]
Velocity 1869–1970 102 –0.012[1.71]
Wages 1900–70 71 0.0402[4.95]

Note: Logarithms were used for all series except for the bond yield.

-1

0

1

2

3

4

5

5 10 15 20 25 30 35 40 45 50 n

lambda

.050

.025

ln

Fig. 8. Lambdagram for unemployment



8 T. C. Mills

trend stationary processes, which have since been used many times
to illustrate new techniques and tests in time series econometrics,
with a notable recent and relevant example being Andreou and
Spanos (2003). Table 1 reports the estimates of the drift parameter

c from fitting the model xt = c + xt−1 + εt to each of the series,
along with additional details. Since most of the series exhibit some
form of drift, they were detrended by extracting a linear trend prior
to the lambdagrams being calculated.
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The lambdagram for unemployment, shown in Fig. 8, clearly
identifies the series as being stationary, which is consistent with all
other analyses of this variable. The series is, in fact, well fitted

by the oscillatory process xt = 0.52 + 0.94xt−1 − 0.24xt−2 + εt ,
having complex characteristic roots of 0.47 ± 0.15i and a limiting
lambdagram value of λ = 3.4, which the empirical lambdagram
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is still some way below by n = 50, consistent with our earlier
results.

The lambdagrams for bond yields, stock prices and velocity are
shown in Fig. 9. For all three series, there is some uncertainty as
to whether they have significant drifts, but all are clearly seen to be
nonstationary from their lambdagrams. Since it is difficult to argue

that bond yields should have a drift in either direction over long peri-
ods of time, it appears sensible to conclude that they are difference
stationary without a drift. Stock prices and velocity are clearly dif-
ference stationary irrespective of whether a drift is assumed or not.

Figure 10 shows lambdagrams for consumer prices, real per
capita Gross National Product (GNP) and real GNP, and all three
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Fig. 11. Lambdagrams for nominal GNP and real and nominal wages
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Fig. 12. Lambdagrams for industrial production, employment, money stock and the GNP deflator

series are found to be nonstationary. Given that all appear to have
significant drifts, we thus conclude that all are difference stationary.
The lambdagrams for nominal GNP and real and nominal wages are
shown in Fig. 11 and demonstrate that all series are clearly difference
stationary as well.

The lambdagrams for the remaining four series, employment, the
money stock, the GNP deflator and industrial production, are shown
in Fig. 12. Employment seems to be trend stationary, whereas there is
some ambiguity concerning industrial production, money stock and
the GNP deflator: if the behaviour of the lambdagram for lower val-
ues of n is considered to be the best indication of the form of nonsta-
tionarity, then industrial production is signalled to be trend stationary
and money stock and the GNP deflator difference stationary.

It is interesting to compare these results with those originally
obtained by Nelson and Plosser (1982) and subsequently refined
by Perron (1989, 1997) and Andreou and Spanos (2003). Nelson
and Plosser concluded that all variables, apart from the station-
ary unemployment series, were difference stationary. Perron (1989)
included a break at 1929 and found that only three series, bond
yields, consumer prices and velocity, continued to exhibit difference
stationarity. Perron (1997) chose the break dates endogenously and,
with certain other refinements concerning lag length selection, found
that the GNP deflator was also difference stationary. Andreou and
Spanos widened the model specification further and found that these
four series remained difference stationary, although bond yields and
stock prices exhibited other forms of (covariance) nonstationarity.

The purely ‘nonparametric’ lambdagrams reported here are con-
sistent with the general finding that bond yields, stock prices and
velocity are difference stationary and that unemployment is station-
ary. For the other series, they tend to be consistent with the original
findings of Nelson and Plosser, and not with those from the more

refined later analyses, which is hardly surprising given the simplicity
of this graphical approach.

VI. Conclusions

After its publication in 1945, Yule’s lambdagram appears to have
been quickly forgotten, presumably because it did not seem to be a
very useful device for identifying the underlying models generating
stationary time series. Nonstationary time series were simply unable
to be considered at this stage in the development of time series anal-
ysis, with Beveridge (1921) detrending his wheat price series by
dividing it by a 31-year moving average to obtain his Index of Fluc-
tuation and Kendall detrending all his agricultural series by 9-year
moving averages prior to analysing them as oscillatory processes
(1941). The distinctive features of the lambdagram only appear,
however, for unit root processes, but this was simply beyond the
theoretical and computational abilities of the time series community
in the mid-1940s.

While it is delightful to be able to reclaim this idea from one of
the seminal figures in the history of time series analysis, the lambda-
gram certainly cannot, or indeed should not, replace any of the now
standard approaches to discriminating between different forms of
stationary and nonstationary processes. However, with the statistical
community recognizing more than ever the potential importance of
graphical displays for providing evidence additional to that obtained
from formal statistical modelling and testing, Yule’s lambdagram
may yet prove to be a useful auxiliary graphical device for dis-
criminating between these different processes. Indeed, for someone
who, according to Kendall (1952, p. 158), had ‘the legitimate
scepticism of a practical statistician for the monstrous regiment of
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mathematicians’, this may well be a fitting tribute to such a great
statistician.
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