
Büther, Marcel; Briskorn, Dirk

Working Paper — Digitized Version

Reducing the 0-1 knapsack problem with a single
continuous variable to the standard 0-1 knapsack problem

Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel, No. 629

Provided in Cooperation with:
Christian-Albrechts-University of Kiel, Institute of Business Administration

Suggested Citation: Büther, Marcel; Briskorn, Dirk (2007) : Reducing the 0-1 knapsack problem
with a single continuous variable to the standard 0-1 knapsack problem, Manuskripte aus den
Instituten für Betriebswirtschaftslehre der Universität Kiel, No. 629, Universität Kiel, Institut für
Betriebswirtschaftslehre, Kiel

This Version is available at:
https://hdl.handle.net/10419/147682

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/147682
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

Manuskripte

aus den

Instituten für Betriebswirtschaftslehre

der Universität Kiel

No. 629

Reducing the 0-1 Knapsack Problem with a Single Continuous Variable
to the Standard 0-1 Knapsack Problem

Marcel Büther, Dirk Briskorn

September 2007

Marcel Büther, Dirk Briskorn
Christian-Albrechts-Universität zu Kiel,

Institut für Betriebswirtschaftslehre,
Olshausenstr. 40, 24098 Kiel, Germany,

http://www.bwl.uni-kiel.de/bwlinstitute/Prod
buether@bwl.uni-kiel.de, briskom@bwl.uni-kiel.de

mailto:buether@bwl.uni-kiel.de

Abstract

The 0-1 Knapsack problem with a Single continuous variable (KFC) is a natural
extension of the binary Knapsack problem (KP), where the capacity is not any longer
fixed but can be extended which is expressed by a continuous variable. This variable
might be unbounded or restricted by a lower or upper bound, respectively. This paper
concerns techniques in order to reduce several variants of KPC to KP which enables
us to employ approaches for KP. We propose both, an equivalent reformulation and
a heuristic one bringing along less computational effort. We show that the heuristic
reformulation can be customized in order to provide solutions having an objective value
arbitrarily close to the one of the original problem.

Keywords: 0-1 knapsack problem with a single continuous variable, binary Knapsack
problem, mixed integer programming, reformulation, lower bound, binary representation

1 Introduction

The 0-1 knapsack problem with a Single continuous variable, KPC for short, is a natural
extension of the binary knapsack problem (KP), a well-known combinatorial optimization
problem with applications in production, logistics, and distribution planning. The KP is to
choose items in order to maximize profit without exceeding a given capacity. While the
capacity can not be influenced according to the KP the KPC considers the opportunity to
extend or reduce, respectively, the available capacity. Extending capacity reduces the profit
while reducing capacity increases the profit. The KP is well-known to be NP-hard in the weak
sense, meaning that it can be solved in pseudo-polynomial time, see Garey and Johnson [1]
and Pisinger [9]. NP-hardness of KPC follows straightforwardly.

Of course, there is a huge amount of real life applications for the KP, e.g. the optimization
of inventory policies, see Gorman and Ahire [2], But the main importance is the use as a
"building block", occurring as a subproblem of a more complex problem. The same yields for
the KPC as well. In addition, a direct application for the KPC is the determination of the
optimal choice of Investment projects with a given budget, where the budget can be widened
on credit.

The KP has been studied by numerous researchers during the last decades, see Kellerer et al.
[3] for example. Martello et al. [5] develop an approach called combo, based on a combination
of dynamic programming with tight bounds. Although published in 1999 it still seems to be the
state-of-the-art, see Martello et al. [6] and Pisinger [9]. Contrarily, very few papers concerning
the KPC can befound. One proposaI has been presented recently in Nauss [8], which presents
a branch&bound approach adopted from the KP. Another work is stated in Marchand and
Wolsey [4] along with Wolsey [10] based on branch&cut: The linear programming relaxation
of KPC is strengthened by adding additional constraints. The resulting upper bound is then
used in a branch&bound procedure. However, a major drawback is the exponential number of
cuts.

The purpose ofour work is to reduce the KPC to the KP which enables us to solve it employing
the algorithm combo. The exposition of our work is as follows: In section 2 we present the
mixed integer formulation and develop several properties of solutions. The approaches for
the one-sided and two-sided limitation of the capacity are given in section 3 and section 4,
respectively. In section 5 we provide some computational results and section 6 finally concludes
the paper.

1

2 Model Formulation and First Insights

Given a set N = {1,... , n} of items with profit Pj and weight Wj for each item j E N, the
objective is to maximize the profit sum of the chosen items regarding the capacity b, b > 0,
of the Knapsack. To this end, binary decision variable Xj, j 6 N, is used.

Xj
1 if item j is chosen

0 otherwise

We reasonably restrict the parameters: pj > 0 and wj > 0, j G N. Moreover, in order to
avoid trivial cases we assume YljeNwj > According to the KPC the original capacity b, can
be adjusted. Continuous variable s represents the amount of capacity which is added (s > 0)
or removed (s < 0), respectively. The value per unit of flexible capacity is c, c > 0. Now, the
problem can be stated mathematically as follows:

max Y^pjXj — c • s (1)
j'eJV

s.t. WjXj < b + s (2)
jeN

Z;G{0,1} (3)
l <s <u (4)

The objective function (1) is twofold. The first part represents the sum of chosen items'
profits. The second part considers cost and sales when additional capacity is bought and
superfluous capacity is sold, respectively. Constraint (2) ensures that the (modified) capacity
limit of the knapsack is not exceeded. For short, a Solution of the KPC can be expressed by
the tuple (x, s), where x is the binary vector containing the values of Xj, j 6 N, and s is the
value of the corresponding capacity modification.

Before presenting reductions of KPC to KP for most cases, we introduce some definitions and
line out basic properties of solutions to the KPC, first.

We define the following sets of items:

N+ := {j 6 N
N= := {j G N

N~ := {j e N

Obviously, N+, N~, and N form a partition of N. Accordingly, we define W+ := X^ejv+ wi<
W= := wi< W~ := HjeN- wi< and W :=W+ + W~ + W= = J2jeN wi-

Based on the sets defined above we present several properties of solutions to the KPC in the
following.

Lemma 1. Given an optimal Solution (x, s) with YljeN wjxj >b + l constraint (2) is fulfilled
with equality.

Proof. Suppose b + l < J^jeN woxj <b + s. Then, (x, s') with s' = YljeN wixi ~b < s is
feasible and has objective value Y2jeN Pixi ~ c' s' > J2jeNPjxj ~ c' s- Therefore, (x, s) can
not be optimal. •

2

Thus, if the condition for lemma 1 is fulfilled, we can replace s by J2jeNwjxj — 6 in (1) and
(4) and drop (2). After regrouping the objective and Splitting (4) into two constraints, the
problem can be stated as follows:

c-b + max '^(Pj ~ c' wj)xj (5)
jeN

s.t. WjXj > b + l (6)
jeN

J2wjXj < b + u (7)
jeN

2,6 {0,1} Vje# (8)

This problem, the KPCeg for Short, will be used as a building block in the following sections.

Lemma 2. Given a Solution (x, s) with J2jeNwjxj > b + l any Solution (x',s') with
Y^jeN wjx'j - & + l where Xj = x'j, j G N~ U N+, has the same objective value.

Proof. Since x and x' contain identical items out of N~ U N+ the following holds using
lemma 1 and the corresponding KPCeg:

c-b + - c • Wj)xj - (c-b + J2(Pj ~ c • wj)x'j)
jeN jeN

= - c ' wi)xi ~ " c ' w^x'j
jeN= jeN=

= 0—0=0

•

Lemma 3. If the optimal Solution (x, s) contains at least one item out of N~ then s — l <
minjeAr- wj holds where N~ = {j e N~ \ xj = 1}.

Proof. Suppose there is an item with Wj < s - l, j G N~. Then, removing j from (x,s)
yields a Solution with s > l. Thus the condition for lemma 1 is still satisfied and the resulting
objective value surpasses the one of (x, s) by c • Wj — pj >0. •

Before dealing with the one-sided and the two-sided limitation of the capacity adjustment in
the two following sections, we first highlight the special case, where s is not limited by any
effective bound, e.g. I < -b and u > W — b. Obviously, for each Solution constraint (2) is
tight and the KPCeg can be applied. As both bounds are not restrictive, we can drop (6) and
(7). Now, one optimal Solution is obtained in 0{n) by setting Xj = 1 for all items j € N+ and
Xj = 0 for all items j ^ iV+. Adding an arbitrary subset of items out of N= generates an other
optimal Solution, see lemma 2. An item of N~ will never be part of an optimal Solution, since
its objective coefficient is always smaller than zero. Hence, the number of optimal solutions
equals

3

3 Capacity Adjustment with a Single Bound

3.1 Capacity Adjustment with an Upper Bound

For this case the upper bound is restrictive while the lower bound is not: l < —b a nd u <
W — b. We apply KPCe9 according to lemma 1 and drop (6). Thus, the KPCeg is a Standard
KP:

c-b + max (pj - cwj)Xj (9)
j€N

s.t. < b + u (10)
jeN

T,e{o,i} (Ii)

Obviously, regarding (9), only items of N+ and N~ will be in an optimal Solution.

Lemma 4. Each optimal Solution has Xj = 0 for each j E N~ and there is at least one
optimal Solution where Xj = 0 for each j E N=.

Proof. First, suppose an optimal Solution (x, s) where Xj = 1 for any j E N~. Then, Solution
(x', s') with x'j = 0, x'j, = Xj' for each j' E N, j' ^ j, and s' — wix'j - ̂ has a larger
objective value than (x, s) has.

Second, suppose an optimal Solution (x, s) where Xj = 1 for any j E N=. Then, Solution
(x',sf) with x'j = 0, x'j, = Xj> for each j' E N, j' ^ j, and s' = Y^j'eNwixj ~ & must 'iave

the same objective value as (x, s) has, according to lemma 2. •

Note that according to lemma 4 we can fix Xj = 0 for each j E N= U N~ before solving (9)
to (11).

3.2 Capacity Adjustment with a Lower Bound

Here, s is only limited by a lower bound: l > —b and u > W ~ b and s > l replaces (4). In
the following, we first show how to reduce the number of variables. Afterwards, the optimal
Solution might be found. Otherwise, we reduce the KPC for this case to KP.

Lemma 5. Each optimal Solution has Xj = 1 for e ach j E N+ and there is at least one
optimal Solution where Xj = 1 for each j E Ar=.

Proof. First, suppose an optimal Solution (z, s) where Xj = 0 for any j E N+. Then, Solution
(,x',s') with x'j = 1, x'j, = Xj' for each / E N, j' ^ j, and s' = max-{l,Y!j>eNwjxj ~
must have a larger objective value than Solution (x, s). Therefore, (%, a) can not be optimal.

Second, suppose an optimal Solution (x, s) where Xj = 0 for any j E iV=. Then, Solution
(x', s') with x'j = 1, x'j, = Xj' for each j' E N, j' ^ j, must have the same objective value as
(x, s) has according to lemma 2. •

4

According to lemma 5 we first fix Xj = 1 for each j G N+ U N=, which leads to an objective
value of P+= = J2jeN+uN= Pj- Then, if W+ + W~ — b = s > l, an optimal Solution can be
constructed by additionally letting Xj ~ 0 for each j G N~. Otherwise, we solve the problem
represented by the following mixed integer program where b' = b — W+ — W=, named reduced
KPC, rKPC for short:

P+= + max pjXj -c-s (12)
j&N~

s.t. WjXj <b'+s (13)
jeN-

xj G {0,1} V j G N~ (14)

a > l (15)

Regarding the structure of rKPC, the Solution space can be split into two subsets Sl and S+

of solutions:

• Sl contains all solutions where an capacity adjustment equaling the lower bound l suf-
fices. Hence, Sl = {(x, s) | s = /} and, obviously, YljeNwixj <b + l for each Solution
(x, s) G Sl.

• S+ contains all solutions where the used capacity is not lower than b + l. Hence,

S+ = | (x, s) | wjxj ^ b + z|.

Note that Sl and S+ do not form a complete neither a disjunct partition of the feasible solutions
to rKPC: Sl U S+ does not contain each Single Solution (x, s) where Y2jeN wjxJ < ^ + s anc'
s > l. Obviously, for each of these solutions a better Solution (x, s') exists which justifies the
reduction of Solution space to Sl U S+. Moreover, solutions having YhjeNwjxi = b + l are
contained in both parts due to formal reasons when constructing Standard KPs below. Next,
we propose how to find an optimal Solution for both subsets by solving KPs. Choosing the
better Solution leads to the optimal Solution of the KPC.

First, restricting solutions to Sl, we fix s = l and trivially, terms (16) to (18) form a Standard
KP.

P+= — c-l + max Pjxj (16)
jeN-

s.t. ^2 wjxj < b' +1 (17)
jeN-

xj G {o, 1} vjcr (is)

Next, restricting the underlying rKPC to S+, we can use the KPCe5 according to lemma 1.
Regrouping the objective function we yield:

P+= - c • b' + max V] (pj - cwj) Xj (19)
j€iV-

s.t. ^2 wjxj ^ b' +1 (20)
jeN-

<={0,1} V j G N~ (21)

5

Then, we introduce binary variable Xj = 1 — Xj and replace Xj by 1 — x'y

P+ — c-b' + ^2 (Pj ~ MVj) + max Xw — Pj)x'j (22)

s.t. ^2 < W —b'—l (23)
jeN-

x'i ^ j € N~ (24)

Obviously, this reformulation is a Standard KP. It can be interpreted as a problem complemen-
tary to the original one. Based on a knapsack containing all items, binary variable x'j = 1 — Xj
is equal to 1 if and only if item j is removed from the knapsack. A knapsack containing all
items corresponds to a feasible Solution in S+ having objective value c-6+^ -eiV (pj — c • Wj).
The optimization problem is to remove items from the knapsack such that capacity of at least
b + l is used and profit is maximized.

Summarizing, given a lower bound for s we first check in 0(n) time whether an optimal
Solution in line with lemma 5 exists. If not, then we reduce the KPC to rKPC, which can be
optimized by solving two Standard KPs: After obtaining optimal solutions of Sl and S+ we
identify the better one as the optimal Solution to rKPC and adding N= U N+ we obtain an
optimal Solution to KPC.

4 Capacity Adjustment with Lower and Upper Bound

Assume, that the possible capacity adjustment s is now limited in both directions.

Note that a feasible Solution can still have a capacity consumption, which is less than b + l. In
general our Solution approaches introduced in section 3 can not be used directly. Therefore,
we first propose an approach to use the techniques presented in section 3 for two special
cases. Second, we reformulate the problem as a Single Standard KP accepting a reduction of
the Solution space.

4.1 Employing Relaxations

We propose to solve two relaxations of (1) to (4) which correspond to the problems treated
in section 3.1 and 3.2. First, we drop the capacity adjustment's lower bound and obtain the
KPC where s is only limited by u, namely KPCup. If the optimal Solution has s > l the optimal
Solution to the original problem is reached. Otherwise we can vary the optimal Solution to
the relaxation without changing its objective value by adding items out of iV= according to
lemma 2 as long as s does not overshoot u. If no feasible Solution can be reached we solve
the relaxation where the capacity adjustment's upper bound is dropped, namely KPQ0. If i ts
Solution implies s < u we have found an optimal Solution to the original problem. Again, we
can modify an optimal Solution by removing items out of N= without changing the objective
value, as long as s does not undershoot l.

—b<l<s<u<W — b

6

Theorem 1. If

Ii b + l < W+ < b + u or

Iii W+ <b + l and b + l < W+ + W= < b + u or

liii W+ < b + l, W+ + W= >b + u, and maXjeN= Wj <u — l

an optimal Solution to KPC can be found in 0(n) time.

Proof.

Ii Setting Xj = 1 for j G N+ yieids an optimal Solution to KPCup due to lemma 4.
Obviously, it is feasible and, therefore, optimal to the KPC at hand, as well.

Iii Here, by setting Xj = 1 for j E N+UN= an optimal Solution to KPCup is obtained due
to lemmas 2 and 4. Obviously, it is feasible and, therefore, optimal to the KPC under
consideration, as well.

liii By setting Xj = 1 for j € N+ an optimal Solution (x,s) to KPCup is found due to
lemma 4. Note, that s < l and, therefore, (x, s) is not feasible to the KPC at hand.
Adding items belonging to set N= in arbitrary order we preserve optimality of (x,s)
according to KPCup, see lemma 2. Since maxjejv= Wj < u — l we reach at least one
Solution (x',s') to KPCup with s' > l. Solution is optimal to KPCup and feasible
to KPC.

•

Theorem 2. If

2i W+ > b + u and maxje^+ Wj < u — l or

2ii W+ + W= <b + l and maxje^- Wj <u — l

an optimal Solution to KPC can be found by solving one or two Standard KPs, respectively.

Proof.

2i The optimal Solution (x, s) to KPCup has s > l. Suppose s < l, then, there is an item
j e N+ with Xj = 0. Since Wj < u — l adding j to (x, s) yieids a better Solution.
Hence, solving KPCup according to section 3.1 yieids an optimal Solution to the KPC at
hand.

2ii The optimal Solution (x, s) to KPQ0 has s <u. Suppose s > u, then, there is an item
j G N~ with Xj = 1. Since Wj <u — l removing j from (x, s) yieids a better Solution.
Hence, we solve KPQ0 according to section 3.2 and obtain an optimal Solution to the
KPC at hand.

•

Figure 1 illustrates the cases considered in theorems 1 and 2.

Summarizing, we identify three cases Ii to liii where solving KPC with effective lower and
upper bounds for s can be done in linear time. Given cases 2i or 2ii we can reduce KPC to
KP using the ideas presented in section 3.

7

I u

1

L\\\N Y/~7/. y//y/S7~Ä bXivs] V///

X / / / A N\\\l X///A

1

—V.

E3 W+ BW= ZW- • W=öW~

Figure 1: Illustration of cases of theorems 1 and 2

4.2 Binary Coding of the Adjustment

Since the technique presented in section 4.1 can not be applied in general we develop a
reformulation of the underlying problem where the adjustment is represented by discrete values.
Naturally, this means a restriction of Solution space. Therefore, a proof of the solution's quality
is presented.

First, we replace the capacity adjustment s by s = u — s , see Nauss [8]. The new variable
3 represents the unused capacity adjustment and, thus, it is bounded by 0 < s < u — l. For
Illustration one can imagine, that in advance the capacity is extended at cost c • u and then,
during the optimization, the superfluous capacity can be sold which would be represented by
s > 0. Now, the continuous variable s is substituted by binary code s = with
M = {1,, m}. Here, binary variable % equals one if and only if a* contributes to the sold
capacity. The reformulation, namely KPC&j„, can be represented as follows:

-c-u + max Pjxj + c " ^2 aiVi (25)
jeN ieM

s.t. ^2 W3X3 + üiVi < b + u (26)
jeN ieM

Xj € {0,1} VjeN (27)

Di E {0,1} VieM (28)

Obviously, terms (25) to (28) form a Standard KP. A major drawback regarding this reformu
lation is that 5 can not represent each value in [0,u — Z] being the domain of s. Hence, we
focus on the choice of m and dj, i € M, in the following.

First, we detail our requirements regarding m and ait ieM:

i Values of s must not undershoot 0 or exceed u — l, respectively, that is 0 < YieM S:
u — l for each binary vector y = {yI, • • •, ym}-

8

ii Given a precision p E N for each value v G [0, u — l] there must be a binary vector y
such that \v - I - 10_P-

iii Regarding i an d ii the number of additional binary variables m should be chosen as small
as possible.

In the following we present an approach in Order to ensure fulfillment of each condition. The
idea is closely related to Standard binary encoding. First, we focus on pure integer values of s
and, therefore, p = 0. If u — l = 2k — 1 with k G N then m = log2 (u — l + 1) and a* = 2!_1

for each i G M is the obvious choice. In general, if u — l ^ 2k — 1 for all k 6 N we choose
m = ["logg (u — l + 1)], üi = 21-1 for each i € {1,... ,m — 1} and am — u — l — 2 m~1 + 1.
Condition i is fulfilled since Yl%eMai ' 0 — 0 and • 1 = u - l. It is well-known, that
any integer value can be stated by a binary representation. Thus, every integer up to 2m_1 — 1
can be expressed by a vector y' = {yx,..., ym-i}- Since am < + 1, we can express
any integer v £ [0, u — /J and condition ii is satisfied. Moreover, we obtain the minimum
possible value for m since we can not have m < j"log2 (u — l + 1)] if we aim at binary codes.
Therefore, condition iii is fulfilled as well.

Now, we turn to the representation of real numbers. Regarding the required precision peN
we apply the procedure described above to the value [KF • (u — /) J. After obtaining values
öj, i G M, we divide them by 1(F. Obviously, these transformed values suffice condition ii, see
Müller-Bungart [7]. The number of additional variables is now m = flog2 ([1(F (u — Z)J + 1)].

In order to illustrate the choice of m and ait i G M, consider the following example: u — l =
8.35 and p = 1 and, hence, [10p • (u — /) J = 83. Consequently, m — flog2 (83 + 1)] = 7 and
cij = for i e {1,..., 6}. Now, for each v 6 [0,6.3] we can represent a value v' = o#

with \v — v'\ < 10_1. Adding a7 = 83~12Q6+1 = 2 we cover [0,8.35] with binary codes and given
precision p = 1. Note that we create a certain degree of redundancy since specific values
of s can be expressed by several binary codes, for example 3.1 can be represented either by
(Vi = 2/2 = 2/3 = 2/4 = 2/5 = 1,2/6=2/7 = 0) or by [yx = 2/2=2/4 = 2/7 = 1,2/3 = 2/5 = 2/6 = 0).

Note, if s is just limited by an effective lower bound, see section 3.2, our reformulation KPCwn

can be used as well by setting u > W — b. The advantage in comparison to the proposed
algorithm in section 3.2 is, that always only one knapsack problem has to be solved instead of
two.

Since we reduce the Solution Space to discrete values of s within [0, u — l], where the domain of
s is a subset of the domain of s, the Solution obtained via KPC&j„ is a feasible Solution for the
original model KPC, too. Thus, the Solution to KPC&n is a lower bound for the optimal Solution
to KPC. Given an optimal Solution (x, s) to KPCw?» t he lower bound can be strengthened if
b+l < J2jeNwixJ < b+u — s. Then, s can be increased to s = b+u-^2jeNWjXj, denoted
by |"s]=, according to lemma 1. In the following we analyze the gap between the lower bound
by KPCbin and the optimal Solution to KPC.

Theorem 3. The gap A between the lower bound obtained by KPC^n and the optimal
objective value according to KPC can not be larger than c • 1 0~p.

Proof. Let [sj- denote the binary code which is dosest to but not larger than s. Then, given
the optimal Solution (x, s) to KPC and the optimal Solution (x',s) to KPC^ the following

9

holds.

jeN
j^PjXj+c • s > J2pix'j+c • r^i
jeN jeN

(29)

> ^Vjx'j + c-s (30)
jeN

> ^ + c.LJj, (31)
jeN

where the constant —c • u has been left out for simplification.

Relation (29) expresses that the improved optimal Solution to KPCis a lower bound to
the optimal Solution of KPC. Obviously, this improved Solution has no smaller value than the
optimal Solution to KPC^n itself, giving (30). Representation of (x, s) in terms of KPC^n can
not have a Iarger value than (x',s), as otherwise this Solution would have been found with
KPC bin a s well, therefore (31) is valid.

Apparently, regarding requirement ii

As we can see from theorem 3 we can always obtain a lower bound (and a corresponding
heuristic Solution) which is arbitrarily close to the optimal objective value by increasing p.
This leads to the question whether we can choose p such that we obtain an optimal Solution
by solving KPC%%.

5 Computational results

After giving the theoretical background in the previous sections, we now present some com
putational results to show the efficiency of the developed algorithms. The algorithms for all
presented models, the KPC, the KPQ& and the KPC^n, are coded in C++ and executed on
an Intel Pentium D processor with 1GB RAM and 2.80 GHz clockpulse using the operating
system Windows XP.

We employ the test instance generator designed by Martello et al. [5] in order to generate
KPs with 1000 items according to three ofthose classes evaluated as hard in Pisinger [9]: in
instance class Isc items' profit and capacity consumption are strongly correlated, in instance
class ISiC items' profit and capacity consumption are strongly inverse correlated, and in instance
class Iasc items' profit and capacity consumption are almost strongly correlated. Note, that
all generated coefficients are integer numbers.

As shown in the previous sections there are two crucial factors for the usage of additional
capacity: capacity b determining how many and which items can be chosen without using
additional capacity and cost c determining W+, W=, and W~. Therefore, we focus on
Variation of both factors for the three classes mentioned above. We successively increase the
capacity given from to W by steps amounting to jjW. As outlined in sections 3 and 4,

A < ^PjXj +c-s- Y,PjXj + c• [s\3 = c(s - |sjs-) < c• 10 p.
jeN jeN

•

10

if c is quite large or quite small KPC is equivalent to KP or trivial to solve, respectively. Both
cases are not interesting for our study. Let e = £ ^ be the average items' efficiency.

Then, we vary c from to e by steps of and restrict s to be at least 0.

In order to show efficiency of our approaches we solve these instances using the commercial
solver ILOG CPLEX 10.1, where the Solution process is aborted if optimality is not proven
within 600 seconds. Using the reduction to the Standard KP and the binary coding enables us
to use combo.

First of all, we observe that in analogy to the Standard KP, see Pisinger [9] for example, most
instances are easy to solve resulting in an optimal Solution. However, depending on capacity
b and cost c there are instances leading to enormous run times. For Isc, instances are hard if
c is close to e which means that for many items it is not obvious whether to choose them or
not and if additional capacity is needed. We observe the same effect for Iasc but for c being
wider spread around e. Instead, for Isic, hard instances seem not to obey this pattern but
to exist for arbitrary c. For about 10% (84 out of 870) of all instances CPLEX reached the
run time limit of 600 sec. For about 3% (27 out of 870) of the instances CPLEX proofed
optimality within 600 sec. but needed more than 1 sec. The remaining instances were solved
in less than 1 sec. Both of our approaches always solved each Single instance in less than 1
sec. Clearly, the approach using binary coding needs approximately half of the time needed
by the approach solving two Standard KPs to the cost of obtaining a heuristic Solution, where
the quality depends on the coefficients, see section 4.2. In this study, as all coefficients are
integers, the obtained Solution is always optimal.

Summarizing, as known for the Standard KP there are few hard instances for KPC. Both of our
approaches allow to carry the efficiency of algorithm combo over from KP to KPC. Impressively,
each single instance was solved within seconds.

6 Conclusions and Outlook

In our work, we examine the KPC with all possible limitations of capacity adjustment s. For
each case we present at least one Solution approach. The underlying idea is to reduce the
problem at hand to the well-known Standard KP, for which the algorithm combo is known to
be very efFicient. We employ two ideas to do so: Splitting Solution space where exploration
of each part is equivalent to a Standard KP and replacing the continuous variable by a binary
code where each flag can be seen as an item.

Considering the four possible restrictions to s we can conclude the following:

• If s is not restricted at all KPC is solvable in linear time.

• If s is restricted only from above KPC can be reduced to KP and Solution of KPC
requires solving a single KP.

• If s is restricted only from below KPC can be reduced to KP by Splitting Solution space
and, then, Solution of KPC requires solving two KPs. Furthermore, a heuristic Solution
can be obtained via binary coding which requires solving a single KP.

11

• If s is restricted from below as well as from above KPC we identify several cases where
solving KPC can be done in linear time. Furthermore, we provide sufficient conditions
allowing solving the KPC by Splitting Solution space and solving no more than two KPs.
Our heuristic approach of binary coding can be employed unconditionally and requires
solving a Single KP.

As for KP most instances of KPC are solved within seconds by means of Standard commercial
solver CPLEX. For those we cannot provide any progress. However, depending ort the combi-
nation of scarceness of capacity b and cost c of additional capacity there are instances which
cannot be solvfed by CPLEX in short time. Therefore, in line with the reasoning for employing
combo to solve KP our approach enables us to solve KPC by using combo and avoid high run
times for specific instances.

For future research we can think of two branches: First, the question is whether combo can be
adapted to solve KPC itself without loosing its high efficiency. Second, whether the concept
of replacing a continuous variable by a binary representation can be transferred e.g. to the
elastic generalized assignment problem, see Nauss [8].

References

[1] M. R. Garey and D. S. Johnson. Computers and Intractability - A Guide to the Theory
of NP-Compteteness. W. H. Freeman and Company, 1979.

[2] M. F. Gorman and S. Ahire. A major appliance manufacturer rethinks its inventory policies
for service vehicles. Interfaces, 36(5):407-419, 2006.

[3] H. Kellerer, U. Pferschy, and D. Pisinger. Knapsack Problems. Springer Berlin, 2004.

[4] H. Marchand and A. Wolsey. The 0-1 knapsack problem with a Single continuous variable.
Mathematical Programming, 85:15-33, 1997.

[5] S. Martello, D. Pisinger, and P. Toth. Dynamic programming and strong bounds for the
0-1 knapsack problem. Management Science, 45(3):414-424, March 1999.

[6] S. Martello, D. Pisinger, and P. Toth. New trends in exact algorithms for the 0-1 knapsack
problem. European Journal of Operational Research, 123:325-332, 2000.

[7] M. Müller-Bungart. Revenue management with flexible products. Lecture Notes in Eco-
nomics and Mathematical Systems. Springer Berlin, 2007.

[8] R. M. Nauss. The elastic generalized assignment problem. Journal of the Operational
Research Society, 55:1333-1341, 2004.

[9] D. Pisinger. Where are the hard knapsack problems? Computers ii Operations Research,
32(9):2271-2284, 2005.

[10] L. A. Wolsey. Strong formulations for mixed integer programs: valid inequalities and
extended formulations. Mathematical Programming, 97(1-2):423-447, 2003.

12

