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Abstract 

The 0-1 Knapsack problem with a Single continuous variable (KFC) is a natural 
extension of the binary Knapsack problem (KP), where the capacity is not any longer 
fixed but can be extended which is expressed by a continuous variable. This variable 
might be unbounded or restricted by a lower or upper bound, respectively. This paper 
concerns techniques in order to reduce several variants of KPC to KP which enables 
us to employ approaches for KP. We propose both, an equivalent reformulation and 
a heuristic one bringing along less computational effort. We show that the heuristic 
reformulation can be customized in order to provide solutions having an objective value 
arbitrarily close to the one of the original problem. 

Keywords: 0-1 knapsack problem with a single continuous variable, binary Knapsack 
problem, mixed integer programming, reformulation, lower bound, binary representation 

1 Introduction 

The 0-1 knapsack problem with a Single continuous variable, KPC for short, is a natural 
extension of the binary knapsack problem (KP), a well-known combinatorial optimization 
problem with applications in production, logistics, and distribution planning. The KP is to 
choose items in order to maximize profit without exceeding a given capacity. While the 
capacity can not be influenced according to the KP the KPC considers the opportunity to 
extend or reduce, respectively, the available capacity. Extending capacity reduces the profit 
while reducing capacity increases the profit. The KP is well-known to be NP-hard in the weak 
sense, meaning that it can be solved in pseudo-polynomial time, see Garey and Johnson [1] 
and Pisinger [9]. NP-hardness of KPC follows straightforwardly. 

Of course, there is a huge amount of real life applications for the KP, e.g. the optimization 
of inventory policies, see Gorman and Ahire [2], But the main importance is the use as a 
"building block", occurring as a subproblem of a more complex problem. The same yields for 
the KPC as well. In addition, a direct application for the KPC is the determination of the 
optimal choice of Investment projects with a given budget, where the budget can be widened 
on credit. 

The KP has been studied by numerous researchers during the last decades, see Kellerer et al. 
[3] for example. Martello et al. [5] develop an approach called combo, based on a combination 
of dynamic programming with tight bounds. Although published in 1999 it still seems to be the 
state-of-the-art, see Martello et al. [6] and Pisinger [9]. Contrarily, very few papers concerning 
the KPC can befound. One proposaI has been presented recently in Nauss [8], which presents 
a branch&bound approach adopted from the KP. Another work is stated in Marchand and 
Wolsey [4] along with Wolsey [10] based on branch&cut: The linear programming relaxation 
of KPC is strengthened by adding additional constraints. The resulting upper bound is then 
used in a branch&bound procedure. However, a major drawback is the exponential number of 
cuts. 

The purpose ofour work is to reduce the KPC to the KP which enables us to solve it employing 
the algorithm combo. The exposition of our work is as follows: In section 2 we present the 
mixed integer formulation and develop several properties of solutions. The approaches for 
the one-sided and two-sided limitation of the capacity are given in section 3 and section 4, 
respectively. In section 5 we provide some computational results and section 6 finally concludes 
the paper. 
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2 Model Formulation and First Insights 

Given a set N = {1,... , n} of items with profit Pj and weight Wj for each item j E N, the 
objective is to maximize the profit sum of the chosen items regarding the capacity b, b > 0, 
of the Knapsack. To this end, binary decision variable Xj, j 6 N, is used. 

Xj 
1 if item j is chosen 

0 otherwise 

We reasonably restrict the parameters: pj > 0 and wj > 0, j G N. Moreover, in order to 
avoid trivial cases we assume YljeNwj > According to the KPC the original capacity b, can 
be adjusted. Continuous variable s represents the amount of capacity which is added (s > 0) 
or removed (s < 0), respectively. The value per unit of flexible capacity is c, c > 0. Now, the 
problem can be stated mathematically as follows: 

max Y^pjXj — c • s (1) 
j'eJV 

s.t. WjXj < b + s (2) 
jeN 

Z;G{0,1} (3) 
l <s <u (4) 

The objective function (1) is twofold. The first part represents the sum of chosen items' 
profits. The second part considers cost and sales when additional capacity is bought and 
superfluous capacity is sold, respectively. Constraint (2) ensures that the (modified) capacity 
limit of the knapsack is not exceeded. For short, a Solution of the KPC can be expressed by 
the tuple (x, s), where x is the binary vector containing the values of Xj, j 6 N, and s is the 
value of the corresponding capacity modification. 

Before presenting reductions of KPC to KP for most cases, we introduce some definitions and 
line out basic properties of solutions to the KPC, first. 

We define the following sets of items: 

N+ := {j 6 N 
N= := {j G N 

N~ := {j e N 

Obviously, N+, N~, and N form a partition of N. Accordingly, we define W+ := X^ejv+ wi< 
W= := wi< W~ := HjeN- wi< and W :=W+ + W~ + W= = J2jeN wi-

Based on the sets defined above we present several properties of solutions to the KPC in the 
following. 

Lemma 1. Given an optimal Solution (x, s) with YljeN wjxj >b + l constraint (2) is fulfilled 
with equality. 

Proof. Suppose b + l < J^jeN woxj <b + s. Then, (x, s') with s' = YljeN wixi ~b < s is 
feasible and has objective value Y2jeN Pixi ~ c' s' > J2jeNPjxj ~ c' s- Therefore, (x, s) can 
not be optimal. • 
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Thus, if the condition for lemma 1 is fulfilled, we can replace s by J2jeNwjxj — 6 in (1) and 
(4) and drop (2). After regrouping the objective and Splitting (4) into two constraints, the 
problem can be stated as follows: 

c-b + max '^(Pj ~ c' wj)xj (5) 
jeN 

s.t. WjXj > b + l (6) 
jeN 

J2wjXj < b + u (7) 
jeN 

2,6 {0,1} Vje# (8) 

This problem, the KPCeg for Short, will be used as a building block in the following sections. 

Lemma 2. Given a Solution (x, s) with J2jeNwjxj > b + l any Solution (x',s') with 
Y^jeN wjx'j - & + l where Xj = x'j, j G N~ U N+, has the same objective value. 

Proof. Since x and x' contain identical items out of N~ U N+ the following holds using 
lemma 1 and the corresponding KPCeg: 

c-b + - c • Wj)xj - (c-b + J2(Pj ~ c • wj)x'j) 
jeN jeN 

= - c ' wi)xi ~ " c ' w^x'j 
jeN= jeN= 

= 0—0=0 

• 

Lemma 3. If the optimal Solution (x, s) contains at least one item out of N~ then s — l < 
minjeAr- wj holds where N~ = {j e N~ \ xj = 1}. 

Proof. Suppose there is an item with Wj < s - l, j G N~. Then, removing j from (x,s) 
yields a Solution with s > l. Thus the condition for lemma 1 is still satisfied and the resulting 
objective value surpasses the one of (x, s) by c • Wj — pj >0. • 

Before dealing with the one-sided and the two-sided limitation of the capacity adjustment in 
the two following sections, we first highlight the special case, where s is not limited by any 
effective bound, e.g. I < -b and u > W — b. Obviously, for each Solution constraint (2) is 
tight and the KPCeg can be applied. As both bounds are not restrictive, we can drop (6) and 
(7). Now, one optimal Solution is obtained in 0{n) by setting Xj = 1 for all items j € N+ and 
Xj = 0 for all items j ^ iV+. Adding an arbitrary subset of items out of N= generates an other 
optimal Solution, see lemma 2. An item of N~ will never be part of an optimal Solution, since 
its objective coefficient is always smaller than zero. Hence, the number of optimal solutions 
equals 
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3 Capacity Adjustment with a Single Bound 

3.1 Capacity Adjustment with an Upper Bound 

For this case the upper bound is restrictive while the lower bound is not: l < —b a nd u < 
W — b. We apply KPCe9 according to lemma 1 and drop (6). Thus, the KPCeg is a Standard 
KP: 

c-b + max (pj - cwj)Xj (9) 
j€N 

s.t. < b + u (10) 
jeN 

T,e{o,i} (Ii) 

Obviously, regarding (9), only items of N+ and N~ will be in an optimal Solution. 

Lemma 4. Each optimal Solution has Xj = 0 for each j E N~ and there is at least one 
optimal Solution where Xj = 0 for each j E N=. 

Proof. First, suppose an optimal Solution (x, s) where Xj = 1 for any j E N~. Then, Solution 
(x', s') with x'j = 0, x'j, = Xj' for each j' E N, j' ^ j, and s' — wix'j - ̂ has a larger 
objective value than (x, s) has. 

Second, suppose an optimal Solution (x, s) where Xj = 1 for any j E N=. Then, Solution 
(x',sf) with x'j = 0, x'j, = Xj> for each j' E N, j' ^ j, and s' = Y^j'eNwixj ~ & must 'iave 

the same objective value as (x, s) has, according to lemma 2. • 

Note that according to lemma 4 we can fix Xj = 0 for each j E N= U N~ before solving (9) 
to (11). 

3.2 Capacity Adjustment with a Lower Bound 

Here, s is only limited by a lower bound: l > —b and u > W ~ b and s > l replaces (4). In 
the following, we first show how to reduce the number of variables. Afterwards, the optimal 
Solution might be found. Otherwise, we reduce the KPC for this case to KP. 

Lemma 5. Each optimal Solution has Xj = 1 for e ach j E N+ and there is at least one 
optimal Solution where Xj = 1 for each j E Ar=. 

Proof. First, suppose an optimal Solution (z, s) where Xj = 0 for any j E N+. Then, Solution 
(,x',s') with x'j = 1, x'j, = Xj' for each / E N, j' ^ j, and s' = max-{l,Y!j>eNwjxj ~ 
must have a larger objective value than Solution (x, s). Therefore, (%, a) can not be optimal. 

Second, suppose an optimal Solution (x, s) where Xj = 0 for any j E iV=. Then, Solution 
(x', s') with x'j = 1, x'j, = Xj' for each j' E N, j' ^ j, must have the same objective value as 
(x, s) has according to lemma 2. • 
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According to lemma 5 we first fix Xj = 1 for each j G N+ U N=, which leads to an objective 
value of P+= = J2jeN+uN= Pj- Then, if W+ + W~ — b = s > l, an optimal Solution can be 
constructed by additionally letting Xj ~ 0 for each j G N~. Otherwise, we solve the problem 
represented by the following mixed integer program where b' = b — W+ — W=, named reduced 
KPC, rKPC for short: 

P+= + max pjXj -c-s (12) 
j&N~ 

s.t. WjXj <b'+s (13) 
jeN-

xj G {0,1} V j G N~ (14) 

a > l (15) 

Regarding the structure of rKPC, the Solution space can be split into two subsets Sl and S+ 

of solutions: 

• Sl contains all solutions where an capacity adjustment equaling the lower bound l suf-
fices. Hence, Sl = {(x, s) | s = /} and, obviously, YljeNwixj <b + l for each Solution 
(x, s) G Sl. 

• S+ contains all solutions where the used capacity is not lower than b + l. Hence, 

S+ = | (x, s) | wjxj ^ b + z|. 

Note that Sl and S+ do not form a complete neither a disjunct partition of the feasible solutions 
to rKPC: Sl U S+ does not contain each Single Solution (x, s) where Y2jeN wjxJ < ^ + s anc' 
s > l. Obviously, for each of these solutions a better Solution (x, s') exists which justifies the 
reduction of Solution space to Sl U S+. Moreover, solutions having YhjeNwjxi = b + l are 
contained in both parts due to formal reasons when constructing Standard KPs below. Next, 
we propose how to find an optimal Solution for both subsets by solving KPs. Choosing the 
better Solution leads to the optimal Solution of the KPC. 

First, restricting solutions to Sl, we fix s = l and trivially, terms (16) to (18) form a Standard 
KP. 

P+= — c-l + max Pjxj (16) 
jeN-

s.t. ^2 wjxj < b' +1 (17) 
jeN-

xj G {o, 1} vjcr (is) 

Next, restricting the underlying rKPC to S+, we can use the KPCe5 according to lemma 1. 
Regrouping the objective function we yield: 

P+= - c • b' + max V] (pj - cwj) Xj (19) 
j€iV-

s.t. ^2 wjxj ^ b' +1 (20) 
jeN-

<={0,1} V j G N~ (21) 
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Then, we introduce binary variable Xj = 1 — Xj and replace Xj by 1 — x'y 

P+ — c-b' + ^2 (Pj ~ MVj) + max Xw — Pj)x'j (22) 

s.t. ^2 < W —b'—l (23) 
jeN-

x'i ^ j € N~ (24) 

Obviously, this reformulation is a Standard KP. It can be interpreted as a problem complemen-
tary to the original one. Based on a knapsack containing all items, binary variable x'j = 1 — Xj 
is equal to 1 if and only if item j is removed from the knapsack. A knapsack containing all 
items corresponds to a feasible Solution in S+ having objective value c-6+^ -eiV (pj — c • Wj). 
The optimization problem is to remove items from the knapsack such that capacity of at least 
b + l is used and profit is maximized. 

Summarizing, given a lower bound for s we first check in 0(n) time whether an optimal 
Solution in line with lemma 5 exists. If not, then we reduce the KPC to rKPC, which can be 
optimized by solving two Standard KPs: After obtaining optimal solutions of Sl and S+ we 
identify the better one as the optimal Solution to rKPC and adding N= U N+ we obtain an 
optimal Solution to KPC. 

4 Capacity Adjustment with Lower and Upper Bound 

Assume, that the possible capacity adjustment s is now limited in both directions. 

Note that a feasible Solution can still have a capacity consumption, which is less than b + l. In 
general our Solution approaches introduced in section 3 can not be used directly. Therefore, 
we first propose an approach to use the techniques presented in section 3 for two special 
cases. Second, we reformulate the problem as a Single Standard KP accepting a reduction of 
the Solution space. 

4.1 Employing Relaxations 

We propose to solve two relaxations of (1) to (4) which correspond to the problems treated 
in section 3.1 and 3.2. First, we drop the capacity adjustment's lower bound and obtain the 
KPC where s is only limited by u, namely KPCup. If the optimal Solution has s > l the optimal 
Solution to the original problem is reached. Otherwise we can vary the optimal Solution to 
the relaxation without changing its objective value by adding items out of iV= according to 
lemma 2 as long as s does not overshoot u. If no feasible Solution can be reached we solve 
the relaxation where the capacity adjustment's upper bound is dropped, namely KPQ0. If i ts 
Solution implies s < u we have found an optimal Solution to the original problem. Again, we 
can modify an optimal Solution by removing items out of N= without changing the objective 
value, as long as s does not undershoot l. 

—b<l<s<u<W — b 
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Theorem 1. If 

Ii b + l < W+ < b + u or 

Iii W+ <b + l and b + l < W+ + W= < b + u or 

liii W+ < b + l, W+ + W= >b + u, and maXjeN= Wj <u — l 

an optimal Solution to KPC can be found in 0(n) time. 

Proof. 

Ii Setting Xj = 1 for j G N+ yieids an optimal Solution to KPCup due to lemma 4. 
Obviously, it is feasible and, therefore, optimal to the KPC at hand, as well. 

Iii Here, by setting Xj = 1 for j E N+UN= an optimal Solution to KPCup is obtained due 
to lemmas 2 and 4. Obviously, it is feasible and, therefore, optimal to the KPC under 
consideration, as well. 

liii By setting Xj = 1 for j € N+ an optimal Solution (x,s) to KPCup is found due to 
lemma 4. Note, that s < l and, therefore, (x, s) is not feasible to the KPC at hand. 
Adding items belonging to set N= in arbitrary order we preserve optimality of (x,s) 
according to KPCup, see lemma 2. Since maxjejv= Wj < u — l we reach at least one 
Solution (x',s') to KPCup with s' > l. Solution is optimal to KPCup and feasible 
to KPC. 

• 

Theorem 2. If 

2i W+ > b + u and maxje^+ Wj < u — l or 

2ii W+ + W= <b + l and maxje^- Wj <u — l 

an optimal Solution to KPC can be found by solving one or two Standard KPs, respectively. 

Proof. 

2i The optimal Solution (x, s) to KPCup has s > l. Suppose s < l, then, there is an item 
j e N+ with Xj = 0. Since Wj < u — l adding j to (x, s) yieids a better Solution. 
Hence, solving KPCup according to section 3.1 yieids an optimal Solution to the KPC at 
hand. 

2ii The optimal Solution (x, s) to KPQ0 has s <u. Suppose s > u, then, there is an item 
j G N~ with Xj = 1. Since Wj <u — l removing j from (x, s) yieids a better Solution. 
Hence, we solve KPQ0 according to section 3.2 and obtain an optimal Solution to the 
KPC at hand. 

• 

Figure 1 illustrates the cases considered in theorems 1 and 2. 

Summarizing, we identify three cases Ii to liii where solving KPC with effective lower and 
upper bounds for s can be done in linear time. Given cases 2i or 2ii we can reduce KPC to 
KP using the ideas presented in section 3. 
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Figure 1: Illustration of cases of theorems 1 and 2 

4.2 Binary Coding of the Adjustment 

Since the technique presented in section 4.1 can not be applied in general we develop a 
reformulation of the underlying problem where the adjustment is represented by discrete values. 
Naturally, this means a restriction of Solution space. Therefore, a proof of the solution's quality 
is presented. 

First, we replace the capacity adjustment s by s = u — s , see Nauss [8]. The new variable 
3 represents the unused capacity adjustment and, thus, it is bounded by 0 < s < u — l. For 
Illustration one can imagine, that in advance the capacity is extended at cost c • u and then, 
during the optimization, the superfluous capacity can be sold which would be represented by 
s > 0. Now, the continuous variable s is substituted by binary code s = with 
M = {1,, m}. Here, binary variable % equals one if and only if a* contributes to the sold 
capacity. The reformulation, namely KPC&j„, can be represented as follows: 

-c-u + max Pjxj + c " ^2 aiVi (25) 
jeN ieM 

s.t. ^2 W3X3 + üiVi < b + u (26) 
jeN ieM 

Xj € {0,1} VjeN (27) 

Di E {0,1} VieM (28) 

Obviously, terms (25) to (28) form a Standard KP. A major drawback regarding this reformu
lation is that 5 can not represent each value in [0,u — Z ] being the domain of s. Hence, we 
focus on the choice of m and dj, i € M, in the following. 

First, we detail our requirements regarding m and ait ieM: 

i Values of s must not undershoot 0 or exceed u — l, respectively, that is 0 < YieM S: 
u — l for each binary vector y = {yI, • • •, ym}-
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ii Given a precision p E N for each value v G [0, u — l ] there must be a binary vector y 
such that \v - I - 10_P-

iii Regarding i an d ii the number of additional binary variables m should be chosen as small 
as possible. 

In the following we present an approach in Order to ensure fulfillment of each condition. The 
idea is closely related to Standard binary encoding. First, we focus on pure integer values of s 
and, therefore, p = 0. If u — l = 2k — 1 with k G N then m = log2 (u — l + 1) and a* = 2!_1 

for each i G M is the obvious choice. In general, if u — l ^ 2k — 1 for all k 6 N we choose 
m = ["logg (u — l + 1)], üi = 21-1 for each i € {1,... ,m — 1} and am — u — l — 2 m~1 + 1. 
Condition i is fulfilled since Yl%eMai ' 0 — 0 and • 1 = u - l. It is well-known, that 
any integer value can be stated by a binary representation. Thus, every integer up to 2m_1 — 1 
can be expressed by a vector y' = {yx,..., ym-i}- Since am < + 1, we can express 
any integer v £ [0, u — /J and condition ii is satisfied. Moreover, we obtain the minimum 
possible value for m since we can not have m < j"log2 (u — l + 1)] if we aim at binary codes. 
Therefore, condition iii is fulfilled as well. 

Now, we turn to the representation of real numbers. Regarding the required precision peN 
we apply the procedure described above to the value [KF • (u — /) J. After obtaining values 
öj, i G M, we divide them by 1(F. Obviously, these transformed values suffice condition ii, see 
Müller-Bungart [7]. The number of additional variables is now m = flog2 ([1(F (u — Z)J + 1)]. 

In order to illustrate the choice of m and ait i G M, consider the following example: u — l = 
8.35 and p = 1 and, hence, [10p • ( u — /) J = 83. Consequently, m — flog2 (83 + 1)] = 7 and 
cij = for i e {1,..., 6}. Now, for each v 6 [0,6.3] we can represent a value v' = o# 

with \v — v'\ < 10_1. Adding a7 = 83~12Q6+1 = 2 we cover [0,8.35] with binary codes and given 
precision p = 1. Note that we create a certain degree of redundancy since specific values 
of s can be expressed by several binary codes, for example 3.1 can be represented either by 
(Vi = 2/2 = 2/3 = 2/4 = 2/5 = 1,2/6=2/7 = 0) or by [yx = 2/2=2/4 = 2/7 = 1,2/3 = 2/5 = 2/6 = 0). 

Note, if s is just limited by an effective lower bound, see section 3.2, our reformulation KPCwn 

can be used as well by setting u > W — b. The advantage in comparison to the proposed 
algorithm in section 3.2 is, that always only one knapsack problem has to be solved instead of 
two. 

Since we reduce the Solution Space to discrete values of s within [0, u — l], where the domain of 
s is a subset of the domain of s, the Solution obtained via KPC&j„ is a feasible Solution for the 
original model KPC, too. Thus, the Solution to KPC&n is a lower bound for the optimal Solution 
to KPC. Given an optimal Solution (x, s) to KPCw?» t he lower bound can be strengthened if 
b+l < J2jeNwixJ < b+u — s. Then, s can be increased to s = b+u-^2jeNWjXj, denoted 
by |"s]=, according to lemma 1. In the following we analyze the gap between the lower bound 
by KPCbin and the optimal Solution to KPC. 

Theorem 3. The gap A between the lower bound obtained by KPC^n and the optimal 
objective value according to KPC can not be larger than c • 1 0~p. 

Proof. Let [sj- denote the binary code which is dosest to but not larger than s. Then, given 
the optimal Solution (x, s) to KPC and the optimal Solution (x',s) to KPC^ the following 
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holds. 

jeN 
j^PjXj+c • s > J2pix'j+c • r^i 
jeN jeN 

(29) 

> ^Vjx'j + c-s (30) 
jeN 

> ^ + c.LJj, (31) 
jeN 

where the constant —c • u has been left out for simplification. 

Relation (29) expresses that the improved optimal Solution to KPCis a lower bound to 
the optimal Solution of KPC. Obviously, this improved Solution has no smaller value than the 
optimal Solution to KPC^n itself, giving (30). Representation of (x, s) in terms of KPC^n can 
not have a Iarger value than (x',s), as otherwise this Solution would have been found with 
KPC bin a s well, therefore (31) is valid. 

Apparently, regarding requirement ii 

As we can see from theorem 3 we can always obtain a lower bound (and a corresponding 
heuristic Solution) which is arbitrarily close to the optimal objective value by increasing p. 
This leads to the question whether we can choose p such that we obtain an optimal Solution 
by solving KPC%%. 

5 Computational results 

After giving the theoretical background in the previous sections, we now present some com
putational results to show the efficiency of the developed algorithms. The algorithms for all 
presented models, the KPC, the KPQ& and the KPC^n, are coded in C++ and executed on 
an Intel Pentium D processor with 1GB RAM and 2.80 GHz clockpulse using the operating 
system Windows XP. 

We employ the test instance generator designed by Martello et al. [5] in order to generate 
KPs with 1000 items according to three ofthose classes evaluated as hard in Pisinger [9]: in 
instance class Isc items' profit and capacity consumption are strongly correlated, in instance 
class ISiC items' profit and capacity consumption are strongly inverse correlated, and in instance 
class Iasc items' profit and capacity consumption are almost strongly correlated. Note, that 
all generated coefficients are integer numbers. 

As shown in the previous sections there are two crucial factors for the usage of additional 
capacity: capacity b determining how many and which items can be chosen without using 
additional capacity and cost c determining W+, W=, and W~. Therefore, we focus on 
Variation of both factors for the three classes mentioned above. We successively increase the 
capacity given from to W by steps amounting to jjW. As outlined in sections 3 and 4, 

A < ^PjXj +c-s- Y,PjXj + c• [s\3 = c(s - |sjs-) < c• 10 p. 
jeN jeN 

• 
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if c is quite large or quite small KPC is equivalent to KP or trivial to solve, respectively. Both 
cases are not interesting for our study. Let e = £ ^ be the average items' efficiency. 

Then, we vary c from to e by steps of and restrict s to be at least 0. 

In order to show efficiency of our approaches we solve these instances using the commercial 
solver ILOG CPLEX 10.1, where the Solution process is aborted if optimality is not proven 
within 600 seconds. Using the reduction to the Standard KP and the binary coding enables us 
to use combo. 

First of all, we observe that in analogy to the Standard KP, see Pisinger [9] for example, most 
instances are easy to solve resulting in an optimal Solution. However, depending on capacity 
b and cost c there are instances leading to enormous run times. For Isc, instances are hard if 
c is close to e which means that for many items it is not obvious whether to choose them or 
not and if additional capacity is needed. We observe the same effect for Iasc but for c being 
wider spread around e. Instead, for Isic, hard instances seem not to obey this pattern but 
to exist for arbitrary c. For about 10% (84 out of 870) of all instances CPLEX reached the 
run time limit of 600 sec. For about 3% (27 out of 870) of the instances CPLEX proofed 
optimality within 600 sec. but needed more than 1 sec. The remaining instances were solved 
in less than 1 sec. Both of our approaches always solved each Single instance in less than 1 
sec. Clearly, the approach using binary coding needs approximately half of the time needed 
by the approach solving two Standard KPs to the cost of obtaining a heuristic Solution, where 
the quality depends on the coefficients, see section 4.2. In this study, as all coefficients are 
integers, the obtained Solution is always optimal. 

Summarizing, as known for the Standard KP there are few hard instances for KPC. Both of our 
approaches allow to carry the efficiency of algorithm combo over from KP to KPC. Impressively, 
each single instance was solved within seconds. 

6 Conclusions and Outlook 

In our work, we examine the KPC with all possible limitations of capacity adjustment s. For 
each case we present at least one Solution approach. The underlying idea is to reduce the 
problem at hand to the well-known Standard KP, for which the algorithm combo is known to 
be very efFicient. We employ two ideas to do so: Splitting Solution space where exploration 
of each part is equivalent to a Standard KP and replacing the continuous variable by a binary 
code where each flag can be seen as an item. 

Considering the four possible restrictions to s we can conclude the following: 

• If s is not restricted at all KPC is solvable in linear time. 

• If s is restricted only from above KPC can be reduced to KP and Solution of KPC 
requires solving a single KP. 

• If s is restricted only from below KPC can be reduced to KP by Splitting Solution space 
and, then, Solution of KPC requires solving two KPs. Furthermore, a heuristic Solution 
can be obtained via binary coding which requires solving a single KP. 
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• If s is restricted from below as well as from above KPC we identify several cases where 
solving KPC can be done in linear time. Furthermore, we provide sufficient conditions 
allowing solving the KPC by Splitting Solution space and solving no more than two KPs. 
Our heuristic approach of binary coding can be employed unconditionally and requires 
solving a Single KP. 

As for KP most instances of KPC are solved within seconds by means of Standard commercial 
solver CPLEX. For those we cannot provide any progress. However, depending ort the combi-
nation of scarceness of capacity b and cost c of additional capacity there are instances which 
cannot be solvfed by CPLEX in short time. Therefore, in line with the reasoning for employing 
combo to solve KP our approach enables us to solve KPC by using combo and avoid high run 
times for specific instances. 

For future research we can think of two branches: First, the question is whether combo can be 
adapted to solve KPC itself without loosing its high efficiency. Second, whether the concept 
of replacing a continuous variable by a binary representation can be transferred e.g. to the 
elastic generalized assignment problem, see Nauss [8]. 

References 

[1] M. R. Garey and D. S. Johnson. Computers and Intractability - A Guide to the Theory 
of NP-Compteteness. W. H. Freeman and Company, 1979. 

[2] M. F. Gorman and S. Ahire. A major appliance manufacturer rethinks its inventory policies 
for service vehicles. Interfaces, 36(5):407-419, 2006. 

[3] H. Kellerer, U. Pferschy, and D. Pisinger. Knapsack Problems. Springer Berlin, 2004. 

[4] H. Marchand and A. Wolsey. The 0-1 knapsack problem with a Single continuous variable. 
Mathematical Programming, 85:15-33, 1997. 

[5] S. Martello, D. Pisinger, and P. Toth. Dynamic programming and strong bounds for the 
0-1 knapsack problem. Management Science, 45(3):414-424, March 1999. 

[6] S. Martello, D. Pisinger, and P. Toth. New trends in exact algorithms for the 0-1 knapsack 
problem. European Journal of Operational Research, 123:325-332, 2000. 

[7] M. Müller-Bungart. Revenue management with flexible products. Lecture Notes in Eco-
nomics and Mathematical Systems. Springer Berlin, 2007. 

[8] R. M. Nauss. The elastic generalized assignment problem. Journal of the Operational 
Research Society, 55:1333-1341, 2004. 

[9] D. Pisinger. Where are the hard knapsack problems? Computers ii Operations Research, 
32(9):2271-2284, 2005. 

[10] L. A. Wolsey. Strong formulations for mixed integer programs: valid inequalities and 
extended formulations. Mathematical Programming, 97(1-2):423-447, 2003. 

12 


