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Abstract 

The generalized assignment problem (GAP) examines the maximum profit 
assignment of jobs to processors such that each job is assigned to precisely one 
processor subject to capacity restrictions on the processors. Due to the fact that 
the GAP is an NP-hard integer program dual prices are not readily available. 
In this paper we propose a family of linear programming models the optimal 
Solution of which is in tegral "almost always". We provide a computational proof 
of this conjecture by an in-depth experimental study of 1500 instances generated 
according to the Standard procedure adopted in literature. Summarizing this 
analysis we have linear prices for all but 17 of the whole bunch of instances and, 
hence, there exists a linear price function that supports the optimal assignment 
of jobs to processors. 

Keywords: Generalized assignment problem, integer programming, duality, linear 
programming, pricing 

1 Introduction 

Given a set of m jobs and a set of n processors, the generalized assignment problem 
(GAP) consists of finding the most profitable assignment of each job to a Single processor 
that respects the capacity constraints on the processors. Although interesting in its own 
right, its main importance stems from the fact that it appears as a substructure in many 
models developed to solve real-world problems in different applications such as facility 
location (see, e.g., [10, 15]), flexible manufacturing (see, e.g., [11, 12]), and vehicle 
routing (see, e.g., [1]). 

In literature the GAP is defined in s everal ways. Here we adopt the following Convention: 
Let M — {1,..., m} denote the set of processors and N = {1,..., n} the set of jobs. 
Given i e M and j G iV, «j E Z+ denotes the capacity of processor i, Wij 6 Z+ the 
claim on the capacity of processor i by job j, and £ Z+ the profit of assigning job 
j to processor i. Using the 0-1 variable x^ = 1 indicating whether job j is assigned to 
processor i (= 1) or not (x^ = 0) we get the linear integer program (1). 

max (la) 
i=i j=I 

>.t. ^2 Xij = 1 for j = 1, . . . , 77, (lb) 
1=1 

n 
^^WijXij < Ki for i = 1,..., m (lc) 
i=l 

e {0,1} for i = 1,... ,m,j = 1,... ,n (ld) 

The objective function (la) is to maximize profit. Constraints (lb) assure that each job 
is assigned to exactly one processor. Constraints (lc) ensure that the capacity of each 
processor is respected. 
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If we relax the integrality constraint (ld) on z# we obtain the linear programming 
relaxation (2), used in section 4 for benchmarking purposes. 

m n 
max (2a) 

i=1 r=l 
m 

,,^> = 1 forj = l,...,n (2b) 

n 
y: WijXij < Ki for i = 1,..., m (2c) 
J=I 

Xy > 0 for i = 1,... ,m,j — 1,..., n (2d) 

The GAP is easily shown to be NP-hard and a considerable body of literature exists 
on the search for effective exact (see, e.g., [5, 8, 9, 13, 16]) and heuristic (see, e.g., 
[3, 14, 17]) algorithms. Polyhedral results have been presented in [2, 4, 6, 7]. 

The outline of the paper is as follows: In section 2 we present a family of linear pro
gramming models the Solution of which is integral "almost always". An instance is used 
in Section 3 for illustrative purposes. In section 4 we provide a computational proof of 
the "almost always" conjecture. Section 5 concludes the paper. 

2 Variable elimination/aggregation 

The formulation of the family of linear programming models can be accomplished in two 
steps. First, we solve the integer program (1). Then we eliminate all variables corre-
sponding to the chosen job-processor assignments and introduce instead an artificional 
assignment of all the Jobs to a fictitional processor by means of column aggregation. 

More precisely, assume that we know an optimal Solution (x^) of (1). Let 

^o= {(%,;) 

denote the set of variables which have been fixed to zero. Likewise, 

Xi = {(W)EMx#:%|)> = l} 

denotes the set of variables which have been fixed to one. 

The reformulation is based on the idea that we eliminate the variables (jobs) contained 
in X\ and that we introduce instead an additional variable. This variable contributes the 
amount 

P= % 

to the optimal objective function value and it needs 

Ki= J2 Wv 
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of the capacity of processor i G M and, hence, 5* = — «j is the portion (slack) of 
the capacity of processor i G M not used in the optimal Solution. 

A linear program based on the idea of variable elimination/aggregation, that is, which 
solely uses the variables X0 and the variable z, is provided in (3). 

max ^2 PijXij+p-z (3a) 
(i,j)ex o 

s.t. ^ Xij + z = 1 V j G N (3b) 
i:(W)GXo 

y; WijXij + RiZ < m Vi G M (3c) 

Xij> o \/{i,j)eXo (3d) 

z > 0 (3e) 

The objective function (3a) comprises the contribution of the variable z and of the 
variables contained in X0. Constraint (3b) assures that each Job is either assigned to z 
or to one of the processors which has not been chosen in the optimal Solution. Constraint 
(3c) assures that the capacity of processor i G M is not exceeded by the weights 
associated with the jobs covered by X0 and z. Finally, (3d) and (3e) define the decision 
variables to be nonnegative. 

Apparently, in terms of the optimal Solution (x\^) in general we have positive slack in 
constraint (3c). If w e reduce the right-hand-side «j to Ri we get the linear program (4). 

max ^ Pijxij + P ' z (4a) 
(i,j)ex o 

s.t. ^2 xij +2 = 1 V j £ N • (4 b) 

y: WijXij + KiZ < Ri Vz G M (4c) 
j-.(i,j)ex0 

Zü>0 V(z,;)GXo (4d) 

z > 0 (4e) 

Constraint (4c) is more tight than constraint (3c) and, hence, we can expect that model 
(4) will produce an integral Solution more often than model (3). However, the dual prices 
then will not reflect the given right-hand-side of each processor but only the amount 
used in the optimal Solution. 

Fortunately, we can improve model (3) by attaching the "optimum" slack 5i to the 
capacity Ri used in the optimum Solution, that is, make use of the fact that = Ri+Si 
for all i G M trivially is valid. Döing so we get the linear program (5). 
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max PijXij + p- z (5a) 
(W)6*0 

s.t. Xij + z = 1 Vj G iV (5b) 
*:(i,j)(=Xo 

y: WijXij + KiZ < Ki Vi G M (5c) 
j:(iJ)£Xo 

> o v(2,j)<sXo (5d) 

z >0 (5e) 

In section 4 we will show be means of a computational study how the models (3) to 
(5) behave in terms of integrality of optimal solutions and dual degeneracy. Before we 
illustrate the idea using an example. 

3 Illustrative example 

Consider the following instance (of the type D generated according to the specification 
given in section 4) with three processors and eight jobs: 

52 15 15 24 47 77 79 108 
(py) = [ 34 39 31 12 106 81 1 68 

95 67 78 29 101 28 94 63 

49 16 20 34 56 72 80 99 
(w^) = | 28 38 22 16 100 75 11 73 ) , (/*) = 

90 70 82 23 95 23 85 62 

An optimal Solution of the integer program (1) with objective function value 309 is: 

/ 1 1 1 0 0 0 0 0 
(arg») = 0 0 0 0 0 0 1 1 

\ 0 0 0 1 1 1 0 0 

An optimal Solution of the linear programming relaxation (2) with objective function 
value 387.99 is: 

/ 0 1 0 0 0 0 0 0.98 
(arg») = 1 0 1 0 0.40 0 0.57 0 

\ 0 0 0 1 0.60 1 0.43 0.02 

An optimal Solution of the aggregate model (3) with objective function value 359.93 is 
2=0.45 and: 

Mf) = 
( 0 0 0 0 0.53 0.54 0 0.05 

0.54 0.54 0.54 0.54 0.01 0 0 0 
\ 0 0 0 0 0 0 0.54 0.49 

4 



An optimal primal Solution of the aggregate model (4) is z—1 and 3^=0 for all (i,j) € 
XQ with objective function value 309. 

An optimal dual Solution of (4) is 

(uj) = (-5.45, -14.54, -0, -10.54, -21.80, -11.46, -5.02, -9.23) 

and 
(Vi) = (1.23,1.41,1.16) 

where Uj is the dual variable corresponding to the jth job completion constraint and Vi 
is the dual variable corresponding to the zth Knapsack constraint. 

The optimal Solution of (5) equals the one for (4). An optimal dual Solution of (5) is 

(uj) = (-56.03, -83.18, -39.74, -39.44, -137.45, -160.15, -88.36, -70.02) 

and 
(%) = (3.29,3.22,2.15). 

The first price vector (uj) contains one dual variable with value 0 while the second price 
vector (iij) contains none. Contrary to this particular Observation the computational 
results presented below will show that dual degeneracy of model (5) in general is larher 
than that of model (4). Of course, the dual Solution chosen depends on the particular 
solver used (in our case Cplex). 

The dual variables can be used for economic reasoning in many ways. One important 
question in t he presence of scarce processor resources is whether to increase it or not and 
to what extent. The dual prices (vi) = (3.29,3.22,2.15) suggest to proceed as follows: 
First of all, we can compare the price of each processor with the particular (overtime) 
cost per unit of expanding the capacity. If w e tentatively expand K\ to 114, the optimal 
Solution does not change, but if we increase it to 115 we get a new Solution worth 366. 
Döing the same for processor 2 we have to increase K2 by 3 units to 99 in order to get 
a new optimal Solution with value 371. For processor 3 we have to increase K3 to 155 
units in order to get a new optimal Solution with value 337. 

Recall that the prices (vi) — (1.23,1.41,1.16) produced by model (4) reflect the used 
capacity, that is, (/?*) = (85,84,141), while the prices (1%) = (3.29,3.22,2.15) produced 
by model (5) reflect (/%) = (113,96,141). In this sense i>2 > V\ indicated by model 
(4) might falsely signal that it is more profitable to expand the capacity of processor 2 
compared to processor 1. However, if model (5) perhaps does not yield an integral 
Solution it might be the only choice to use the the prices produced by model (4). The 
computational study presented in the following section is going to address the question 
which model is best in terms of producing integral solutions. 

4 Computational results 

In this section we provide the results of an in-depth computational study in order to 
show that the models (3) to (5) in general have different optimal (primal and/or dual) 
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solutionis. Furthermore, we show that the degree of dual degeneracy associated with the 
optimal primal solutions in general also differs. 

The models described earlier have been imlemented in Java using the Cplex callable 
library (version 9.0; all parameters with default values) on an AMD Athlon with 2 GB 
RAM and 2.1 Ghz clockpulse running under the operating system Linux. 

In literature, algorithms usually are tested on four classes of random problems, usually 
referred to as A, B, C, and D, generated according to the following scheme (see for 
instance [16]): 

A. Pij and w^ are integer from a uniform distribution between 10 and 25 and between 

where N£ = 9(n/m) + 0.4 max^M m ij 5 and 25, respectively. = 

{j e N : h = argminreiVprj}. 

B. Same as A for % and w^. K* e quals 0.7 of «j in A. 

C. Same as A for and w^. = 0.8/m 

D. Same as C for K. is integer from a uniform distribution between 1 and 100. 
Pij = 100 — Wij -fl where l is integer from a uniform distribution between 1 and 
21. 

This scheme produces instances for the minimization variant of the GAP. Since our 
algorithm handles the maximization variant of the GAP, all instances are converted to 
the maximization form by the following transformation: Let t = maxieMPij +1 .We 
replace % by t — % for all i € M and j e N. 

We have generated 100 instances at random for each of the four types. For each instance 
an optimal Solution of the integer program (1) has been computed using Cplex. Note 
that while in gerenal instances of type A, B and C can be solved very quickly to optimality 
one Single instance of type D can take hours or even days of computation. 

The results for the problem type A are displayed in table 1 for different problem sizes 
m and n. For each of the 4 considered models we present the average number of times 
where the Solution of the linear program turned out to be integral (indicated by LP=IP). 
For the subset of instances with integral solutions we report the percentage average 
number of dual variables equal to zero (#DV0(%) used as abbreviation) in Order to give 
an indication of the degree of dual degeneracy observed. The last row displays average 
values for each of the columns. For the problem types B and C the results are displayed 
in tables 2 to 3 in the same way. 

The results can be summarized as follows: 

• Pricing A instances seems to be most easy (see table 1). Here in a couple of cases 
the linear programming relaxation (2) is integral. Moreover, all the three model 
reformulations yield in all cases an integral Solution. The Solution of the models 
(3) and (5) show much larger dual degeneracy than model (4). 

• The picture for B is very much the same as for A, except the fact that the linear 
programming relaxation (2) is integral only once (see table 2). 
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model (2) model (3) model (4) model (5) 
m n LP=IP #DV0 (%) LP=IP #DV0 (%) LP=IP #DV0 (%) LP=IP #DV0 (%) 
5 30 3 13.3 100 13.7 100 7.4 100 12.9 

50 1 9.1 100 8.7 100 3.3 100 8.3 
70 2 6.7 100 6.5 100 1.6 100 5.8 
90 1 5.3 100 5.1 100 2.1 100 4.5 

10 30 0 - 100 24.5 100 0.4 100 25.0 
50 0 - 100 16.3 100 0.1 100 16.5 
70 0 - 100 12.2 100 0.1 100 12.4 
90 0 - 100 9.8 100 0.1 100 9.8 

20 30 0 - 100 39.4 100 0.6 100 40.0 
50 0 - 100 28.2 100 0.3 100 28.6 
70 0 - 100 21.9 100 0.4 100 22.2 
90 0 - 100 18.0 100 0.2 100 18.2 

averages 0.6 8.9 100 16.0 100 1.0 100 16.0 



model (2) model (3) model (4) model (5) 
m n LP=IP #DV0 (%) LP=IP #DV0 (%) LP=IP #DV0 (%) LP=IP #DV0(%) 
5 30 1 14.3 100 12.8 100 7.6 100 9.8 

50 0 - 100 7.8 100 5.4 100 3.9 
70 0 - 100 5.6 100 3.6 100 5.1 
90 0 - 100 4.1 100 2.5 100 3.3 

10 30 0 — 100 23.8 100 0.5 100 21.3 
50 0 - 100 15.9 100 0.1 100 10.5 
70 0 - 100 11.7 100 0.1 100 6.8 
90 0 - 100 9.5 100 0.1 100 5.3 

20 30 0 - 100 39.2 100 0.3 100 40.0 
50 0 - 100 28.0 100 0.4 100 28.6 
70 0 - 100 21.7 100 0.4 100 22.0 
90 0 - 100 17.8 100 0.3 100 17.8 

averages 0.1 14.3 100 15.5 100 1.4 100 13.6 



m n 
model (2) 
LP=IP #DV0 (%) 

model (3) 
LP=IP #DV0 (%) 

model (4) 
LP=IP #DV0 (%) 

model (5) 
LP=IP #DV0 (%) 

5 30 0 97 10.4 100 33.7 100 26.5 
50 0 100 5.8 100 24.0 100 22.7 

er 
a> 70 0 100 4.0 100 17.3 100 15.7 
CO 90 0 100 3.3 100 15.9 100 14.5 

C* 10 30 0 56 20.5 100 8.6 100 2.3 
-o fD 50 0 98 12.4 100 2.3 100 1.0 
n 70 0 100 9.1 100 1.4 100 0.8 
3 
& 90 0 100 6.4 100 0.8 100 0.6 
CD 3 20 30 0 0 - 100 4.5 75 0.0 
n 

50 0 23 23.4 100 0.1 100 0.0 
70 0 83 18.2 100 0.0 100 0.0 
90 0 99 14.4 100 0.0 100 0.0 

averages 0.0 79.7 9.3 100 7.1 97.9 6.0 



model (2) model (3) model (4) model (5) 
m n LP=IP #DV0 (%) LP=IP #DV0 (%) LP=IP #DV0 (%) LP=IP #DV0 (%) 
5 30 0 0 - 100 3.5 100 2.7 

50 0 1 0.0 100 2.9 100 3.2 
70 0 12 0.4 83 1.8 83 2.0 

averages 0.0 4.3 0.3 94.3 2.8 94.3 3.2 



• For the instance type C (see table 3) we do not have a unique picture (except 
the fact that the linear programming relaxation (2) is never integral). Once more 
models (4) and (5) in general are more powerful in terms of producing integral 
solutions than model (3); additionally model (4) is slightly superior to model (5), 
Comparing (4) and (5) in terms of dual degeneracy model (5) is slightly superior 
to model (4). Interestingly, dual degeneracy decreases with increasing problem 
size. 

• For the problem type D we aborted computation prematurely after some hours of 
CPU-time per instance. Unfortunately, instances with 5 processors and 90 jobs 
or with 10 processors and 30 jobs or more cannot be solved to optimality in a 
reasonable amount of time. Fortunately, only for 17 of the 300 optimally solved 
integer programs the aggregated models (4) and (5) do not provide an integral 
Solution. 

Summarizing, our linear programs have provided integral solutions for 1483 of the 1500 
(= 3 1200 + 300) instances studied. Hence, we have given a computational proof of 
the "almost always" conjecture. 

5 Summary and future work 

In this paper we have provided a family of linear programming models for the GAP the 
Solution ofwhich is "almost always" integral. In particular, for three out of four instance 
types usually studied in literature at least one of the models produces an integral Solution. 
Hence, for these instances dual prices are readily available. 

Subsequently we will enhance the linear programs by valid inequalities so as to get linear 
prices also for the difficult instances of the type D. 
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