
Drexl, Andreas; Jørnsten, Kurt

Working Paper — Digitized Version

Pricing the multiple-choice nested knapsack problem

Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel, No. 626

Provided in Cooperation with:
Christian-Albrechts-University of Kiel, Institute of Business Administration

Suggested Citation: Drexl, Andreas; Jørnsten, Kurt (2007) : Pricing the multiple-choice nested
knapsack problem, Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel,
No. 626, Universität Kiel, Institut für Betriebswirtschaftslehre, Kiel

This Version is available at:
https://hdl.handle.net/10419/147679

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/147679
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

Manuskripte

aus den

Instituten für Betriebswirtschaftslehre

der Universität Kiel

No. 626

Pricing the multiple-choice nested

Knapsack problem

Andreas Drexl, Kurt J0rnsten

June 2007

© Do not copy, publish or distribute without authors' permission.

Institut für Betriebswirtschaftslehre, Christian-Albrechts-Universität, Kiel, Germany,
andreas.drexl@bwl.uni-kiel.de

Norwegian School of Economics and Business Administration, Department of Finance
and Management Science, Bergen, Norway, kurt.jornsten@nhh.no

Abstract

The multiple-choice nested knapsack problem (MCKP) is a generalization of
the ordinary knapsack problem, where the set of items is partitioned into classes.
The binary choice of se lecting an item is replaced by t aking exactly one item out
of each class of items. Due to the fact that the MCKP is an NP-hard integer
program dual prices are not readily available. In t his paper we propose a family
of linear programming models the optimal Solution of which is integral for many
instances. The models are evaluated experimentally using a well-defined testbed
consisting of 9,000 instances. Overall our methodology produces an integral So­
lution for 75% of the instances considered. In particular, for two out of five
distribution types studied at least one of the models produces "almost always" an
integral Solution. Hence, in most of the cases there exists a linear price function
that supports the optimal allocation.

Keywords: Knapsack problem, multiple-choice constraints, integer programming,
duality, linear programming, pricing

1 Introduction

In o rder to define the problem formally consider k classes Ni,..., Afc of items to pack in
some knapsack of capacity c. Each item j E Ni has a profit p{j and a weight Wij. The
goal is to choose one item from each class such that the profit sum is maximized without
exceeding c. If we define the binary variables which take on value 1 if and only if
item j is chosen in class Ni the multiple-choice nested knapsack problem (MCKP) may
be formulated as the integer program (1).

k

max ^2 22 Pi3xU (la)
i= 1 j&Ni

k
S t.]C Wi3Xii - c (lb)

i=i jeiVi

^ ^ %ij — 1 i — , k
jeNi

Xij E {0,1} i = 1, • • •, k, j G Ni (ld)

In t he sequel we will assume that all coefficients p{j, w^, and c are nonnegative integers,
with class Ni having size rii for i — 1 The total number of items is n :~
Y!i=ini- Negative coefficients Pij and can be handled by adding the Constant
pi = — minjeNtPij to all the profits in class Ni, and by adding Wi = to
all the weights in class Ni as well as to the capacity c.

To avoid trivial or unsolvable cases we assume that

k k

Emin wn < c < maxu^,-.
i=i 1=1

1

Moreover we assume that every item j G Ni satisfies

wij + T min whk < c,
' . keNh h=\,...,k,h^i

because otherwise no feasible Solution exists when the item is chosen (and hence it may
be discarded).

The MCKP in its minimization form may be transformed into an equivalent maximization
problem by finding for each class the values pi = max^#. % and v)i = maXj€Ni and
be setting % := pi - % and := Wi - for j e Ni and c := ^ ~ c- Then
the maximization problem is defined in p,w and c.

If t he multiple-choice constraints (lc) are replaced by J2jeN. %ij < 1. as considered, for
instance, in Johnson and Padberg [11], then this problem can be transformed into the
equality form by adding a dummy item n* + 1 with (piini+i, wi,m+i) := (0,0) to each
class Ni.

The MCKP is NP-hard as it contains the ordinary Knapsack problem (KP) as a special
case. This can be easily shown as follows: Given an instance of KP with n profits pj,
weights Wj and capacity c, construct an instance of MCKP by introducing m := n
classes where each class i has two items (pn,wn) := (0,0) and (Pi2,wi2) := (Pj,Wj),
respectively, while the capacity of the new problem is c.

If we relax the integrality constraint (ld) on z.j we obtain the linear programming
relaxation (2), abbreviated as LMCKP (used in section 4 for benchmarking purposes).

k
max Pijxij (2a)

i=1 jeNi
k

s.t. ^ ^] WijXij fC c (2b)
»=i jeNi

%ij 1 i — 1,..., Ai (2c)
j^Ni

Xij > 0 i = 1,..., k, j € Ni (2d)

Several algorithms for solvig the MCKP have been proposed during the last decades, e.g.,
by Armstromg, Kung, Sinha and Zoltners [1], Dyer, Kayal and Walker [8], Nauss [16],
and Sinha and Zoltners [18], respectively. Most of the algorithms Start by solving LMCKP
(see, e.g., Dudziriski and Walukiewicz [5], Dyer [7] and Zemel [19]) in order to obtain an
upper bound followed by some tests to fix several variables in each class to their optimal
value. The reduced MCKP is then solved to optimality. Pisinger [17] generalized essential
results for the KP related to the so-called core (derived, among others, by Balas and
Zemel [2]) and he developed an algorithm (called mcknap.c) which essentially works as
follows: A simple algorithm is used for solving LMCKP and for deriving an initial feasible
Solution for MCKP. Starting from this initial feasible Solution dynamic programming is
used to solve MCKP, adding new classes to the core by need.

The MCKP has a wide ränge of applications: Capital budgeting and transformation of
nonlinear knapsack problems (see, e.g., Nauss [16]), menu planning (see, e.g., Sinha

2

and Zöllners [18]), MCKP as subproblem induced by Lagrangian relaxation applied to
several integer programming problems (see, e.g., Fisher [9]), MCKP used for solving the
generalized assignment problem (see, e.g., Barcia and J0rnsten [3]), MCKP used for
limiting power consumption in VLSI design (see, e.g., Mejia-Alvarez, Levner and Mosse
[15]), MCKP used for high-level synthesis of VLSI circuits (see, e.g., de Leone, Jain and
Straus [4]), and MCKP used in the auction setting (see, e.g., Kelly [13]), respectively.

Without going into details we refer the readers to the surveys Dudziriski and Walukiewicz
[6], Kellerer, Pferschy and Pisinger [12] and Martello and Toth [14], respectively.

In section 2 we present a family of linear programming models the Solution of which
is integral in many cases. An instance is used in Section 3 for illustrative purposes. In
section 4 we provide the results of a computational study. Section 5 concludes the paper.

2 Variable elimination/aggregation

The formulation of the family of linear programming models can be accomplished in
two steps. First, we solve the integer program (1). Then we eliminate all variables
Corresponding to the chosen items and introduce instead an artificional one by means of
column aggregation.

More precisely, assume that we know an optimal Solution (a^) of (1). Let

Xi = e N,: 4" = °}

denote the set of variables which have been fixed to zero for class i = 1,..., k. Likewise,

X! = {] € Ni : 411 = l}

denotes the set of variables which have been fixed to one.

The reformulation is based on the idea that we eliminate the variables contained in X*
for % — 1,..., k and that we introduce instead an artificional item. This item contributes
the amount

i=1 jexl

to the optimal objective function value and it consumes

i=i jex]

of the capacity c of the knapsack and, hence, 5 = c — c is the portion (slack) of the
knapsack capacity not used in the optimal Solution.

A linear program based on the idea of variable elimination/aggregation, that is, which
solely uses the variables Xf for i = 1 ,...,k and the variable z associated with the
artificional item, is provided in (3).

3

k
max Y2 PiiXii + P' z (3a)

i=1jexf
k

s.t. ^2 wvxv +c - Z < c (3b)
•=ijexf

^ ^ Xij ")- z — 1 i = 1, . . . , k (3c)

x. u>0 z = l,...,Ä,;e%° (3d)

z > 0 (3e)

The objective Function (3a) comprises the contribution of the variable z and of the
variables contained in X° for i = 1,..., k. Constraint (3b) assures that the capacity c
of the knapsack is not exceeded by the weights associated with Xf for i = 1,..., k and
by the weights associated with z. Constraint (3c) assures that for each class i = 1,..., k
either variables of the set X° and/or the variable z are chosen. Finally, (3d) and (3e)
define the decision variables to be nonnegative.

Apparently, in terms of the optimal Solution (xin general we have positive slack in
constraint (3b). If we reduce the right-hand-side c to c we get the linear program (4).

k
max ^2 X] +P' z (4a)

*=ijex°

k
s.t. ^2 WijXij +c-z< c (4b)

i=i jex9

^2 + z = 1 i — 1,..., k (4c)

x i] >0 2 = l,...,Ä,;g%P (4d)

z > 0 (4e)

Constraint (4b) is more tight than constraint (3b) and, hence, we can expect that model
(4) will produce an integral Solution more often than model (3). However, the dual price
then will not reflect the given right-hand-side (capacity of the knapsack) but only the
amount used in the optimal Solution.

Fortunately, we can improve model (3) by attaching the "optimum" slack to the capacity
c used in the Optimum Solution, that is, make use of the fact that c = c + 5 trivially is
valid. Döing so we get the linear program (5).

4

k
max ^2 + P- z (5a)

j=i jexP
k

s.t. £ wvxU + C-Z <c (5b)
»=l jexf

^2 + -^ = 1 i = 1,... ,k (5c)

Xij >0 i = l,...,k,j eX? (5d)

z > 0 (5e)

In section 4 we will show be means of a computational study how the models (3) to
(5) behave in terms of integrality of optimal solutions and dual degeneracy. Before we
illustrate the idea using an example.

3 Illustrative example

Consider the following instance (of the distribution type SZ generated according to the
specification given below) with k = 5 classes and rij = 5 items for each class. The
instance is characterized by the profit matrix

W

the weight matrix

{Wij)

/ 150 333 483 643 698 \
202 259 751 790 913
137 708 739 760 919
93 287 318 636 885

^ 106 210 391 404 777)

/ 179 476 708 868 874 ^
40 61 539 823 898

336 378 441 486 913
290 296 302 342 513

^ 219 255 276 513 685 ^

anc! the capacity c = 1,941.

An optimal integer Solution with objective function value 2,885 is:

(i 0 0 0 0 \

(4') =
0 0 1 0 0

(4') = 0 1 0 0 0 (4') =
0 0 0 0 1

Vo 0 1 0 0/

5

Mf) =

An optimal Solution of the linear programming relaxation with objective function value
2,937.85 is:

/ 10 0 0 0 \
0 0 1
0 1 0
0 0 0

\ 0 0 0.86 0 0.14 /

An optimal Solution of the aggregate model (3) with objective function value 2,921.29
is:

/ 0 0 0 0
0 0 0 0

0 0
0 0
0 0
0 1

Z = 0.96, (z-^) = 0 0 0.04 0

0.04 \
0.04
0

0 0 0 0.04 0
0 0.04) \ 0 0 0

The aggregate model (4) has an integral optimal primal Solution z — 1 .0 and xf) =
for all i and j with objective function value 2,885. The corresponding dual Solution is

u = 0.65

and
(vi) = (131.67,331.12,453.25,414.39,333.14)

where u is the dual variable corresponding to the knapsack constraint and Vi is the dual
variable corresponding to the zth multiple-choice constraint.

The optimal Solution of the aggregate model (5) again is z = 1.0 and x\^ = 0 for all i
and j. The corresponding dual Solution is

u = 0.68

and
{vi) = (107.26,306.04,440.93,404.84,314.01).

Using these prices in order to suggest the necessary increase of the objective function
coefficients of non-optimal variables leads to the following: For all but the variables
%2i, £22, £51 and x$2 the price increase suggested is not sufficient. The new objective
function coefficient for variable x2i determined by the prices is 333. However, raising it
to 314 is sufficient in order to let this item be included in the knapsack. For the other
variables mentioned the results are about the same, that is, 347 compared to 314, 461 to
460 and 487 to 461. Note that in order to get suggestions for the necessary increase for
all non-optimal variables one has to examine all optimal dual solutions which is beyond
the scope of this paper.

4 Computational results

In this section we provide the results of an in-depth computational study in order to
show that the models (3) to (5) in general have different optimal (primal and/or dual)

6

solutionis. Furthermore, we show that the degree of dual degeneracy associated with the
optimal primal solutionis in general also differs.

The models described earlier have been implemented in Java using the Cplex callable
library (version 9.0; all parameters with default values) on an AMD Athlon with 2 GB
RAM and 2.1 Ghz clockpulse running under the operating system Linux.

Following the lines of Pisinger [17] in what follows we will study how the models behave
for different problem sizes (k and n*), data ranges (R), and test instances. Five typ es
of randomly generated test instances are considered (given k, 7% an d R):

UC In each class i generate n* items by choosing Wjj and randomly in [1, iü]
(uncorrelated instances).

WC In each class i generate items where Wij is randomly distributed in [1, i?] and pij
is randomly distributed in [w^ — 10, Wij + 10] such that > 1 (weakly correlated

SC In e ach class i generate % items with weight w'j randomly distributed in [1, R] and
set p'j = w'j + 10. Order the items for each size n* according to nondecreasing

weights. Set w{j = £i=iw'h and ptj = J2h=iPh for 3 = 1 .-••.w» (strongly
correlated instances).

SS In e ach class i the weight of the n* items is randomly distributed in [1, R] and
Pij equals (subset-sum instances).

SZ In e ach class i generate 7% ite ms such that w'j and p'j are randomly distributed in
[1 ,R}. Order the profits and weights in nondecreasing Order. Set — w 'j and
Pij = p^ for j — 1 ,... ,rii (Sinha and Zoltners instances).

For each instance the capacity c is defined as follows:

We have generated 100 instances at random for each of the 5 problem types, 9 sizes
and 2 data ranges R = considered in what follows. Hence, Overall the testbed
consists of 100 5 9 2 = 9,000 instances. For each instance an optimal Solution of the
integer program (1) has been computed using Cplex (and not the more efficient code
mcknap.c; see [10]).

The results for the problem type UC are displayed in table 1 for different problem sizes
and data ranges. For each of the 4 considered models we present the number of times
where the Solution of the linear program tu med out to be integral (indicated by LP=IP).
For the subset of instances with integral solutions we report the percentage average
number of dual variables equal to zero (#DV0(%) used as abbreviation) in order to
give an indication of the degree of dual degeneracy observed. The last row displays
(weighted) average values for each of the columns.

For the problem types WC to SZ the results are displayed in tables 2 to 5 in the same
way.

The results can be summarized as follows:

instances).

7

model (2)
k rii LP=1P #DV0(%)

IÖ 10 34 &8
100 10 8 0.9

1,000 10 0
10,000 10 0

10 100 52 9.1
100 100 50 1.0

1,000 100 29 0.1
10 1,000 49 9.1

100 1,000 47 1.0

10 10 35 9.1
100 10 4 1.0

1,000 10 0
10,000 10 0

10 100 50 9.1
100 100 42 1.0

1,000 100 28 0.1
10 1,000 53 9.1

100 1,000 56 1.0

averages 29.8 5.0

model (3) model (4) model (5)
LP=1P #DV0(%) LP=IP #DV0(%) LP=IP #DV0(%)

100 9.1 100 3.3 100 4.9
100 1.0 100 0.2 100 0.2
100 0.1 100 0.1 100 0.1
100 0.0 100 0.1 100 0.1
100 9.1 100 6.3 100 9.1
100 1.0 100 0.8 100 1.0
100 0.1 100 0.1 100 0.1
100 9.1 100 6.8 100 9.1
100 1.0 100 0.8 100 1.0

Ri = 1,000
99 9.1 100 3.2 100 4.4

100 1.0 100 0.2 100 0.2
100 0.1 100 0.1 100 0.1
100 0.0 100 0.1 100 0.1
100 9.1 100 5.7 100 9.1
100 1.0 100 0.3 100 0.7
100 0.1 100 0.0 100 0.0
100 9.1 100 6.1 100 9.1
100 1.0 100 0.6 100 1.0

R2 = 10,000

99-9 3.4 100 1.9 100 2.8

model (2)
k n» LP=IP #DV0(%)

10 10 0 —
100 10 0 —

1,000 10 0 —
10,000 10 0 —

10 100 0 —
100 100 0 —

1,000 100 0 —
10 1,000 0 —

100 1,000 0 __

10 10 0 —
100 10 0 —

1,000 10 0 —
10,000 10 0 —

10 100 0 —
100 100 0 —

1,000 100 0 —
10 1,000 0 —

100 1,000 0 —

averages 0.0

model (3) model (4) model (5)
LP=IP #DV0(%) LP=IP #DV0(%) LP=IP #DV0(%)

46 12.1 100 11.1 100 11.0
48 25.2 100 26.3 100 26.2
65 26.5 100 26.4 100 26.4

100 26.7 100 26.7 100 26.7
27 0.0 27 0.0 27 0.0
31 0.0 70 0.0 59 0.0
94 0.0 98 0.0 98 0.0
0 - 0 - 0 —

13 0.0 28 0.0 13 0.0
Äi = 1,000

27 7.4 91 9.5 89 8.3
10 24.4 100 25.1 100 24.3
23 26.5 100 27.1 100 27.0
74 27.6 100 27.6 100 27.6
3 0.0 10 0.0 3 0.0
0 - 4 0.0 1 0.0
38 0.0 71 0.0 69 0.0
0 - 0 - 0
0 - 1 0.0 0

Ä2 = 10,000
33.3 15.4 61.1 16.3 58.8 16.7

model (2)
k rii LP=IP #DV0(%)

10 10 Ö =
100 10 0

1,000 10 0
10,000 10 0

10 100 0 —
100 100 0 —

1,000 100 0 —
10 1,000 0 _

100 1,000 0 -

10 10 0 —
100 10 0

1,000 10 0 —
10,000 10 0 __

10 100 0 —
100 100 0 —

1,000 100 0
10 1,000 0 —

100 1,000 0

averages 0.0

model (3) model (4) model (5)
LP=IP #DVQ(%) LP=IP #DV0(%) LP=IP #DV0(%)

14 ÖÖ 34 (10 29 Ö!Ö
19 0.0 100 0.0 100 0.0
13 0.0 100 0.0 100 0.0
0 ~ 100 0.0 100 0.0
0 8 0.0 o -
0 76 0.0 1 0.0
0 62 0.0 11 0.0
0 34 0.0 0
0 99 0.0 o -

Ri = 1,000

2 ÖJO 33 ÖÖ 7 ÖÖ
3 0.0 99 0.0 39 0.0
2 0.0 100 0.0 41 0.0
0 ~ 100 0.0 96 0.0
0 8 0.0 o -
0 72 0.0 o -
0 91 0.0 2 0.0
0 45 0.0 0 -
0 10 0.0 o -

R2 = 10,000

2-9 00 65.1 ÖÖ 29X2 Ö7Ö

model (2)

EU er
a>

i 3 n
s;

T3 rt>
(/)
tn

k Ui

0_ II
' Q_

1 #DV0(%)
10 10 0 —

100 10 1 99.0
1,000 10 0 —

10,000 10 0 —
10 100 5 80.0

100 100 4 99.0
1,000 100 0 —

10 1,000 1 45.5
100 1,000 0 —

10 10 0 __
100 10 0

1,000 10 0 —
10,000 10 0

10 100 2 90.9
100 100 0

1,000 100 0
10 1,000 2 90.9

100 1,000 0

model (3)
LP—IP #DV0(%y

52 87.1
56 98.8

100 99.9
10 70.4
3 51.5

100 42.5
100 1.9
1 72.7
87 2.2

Ri = 1,000
10 86.4
8 98.3
54 99.9

averages 0.8 86.9

0
2

55
0
3
26

"37X

90.9
64.1

75.8
28.6

R2 = 10,000
56.0

model (4)
LP=1P #DV0(%)

52 87.1
100 98.7
100 99.9
10 70.4
3 51.5

100 42.5
100 1.9
1 72.7
87 2.2

53 87.0
100 98.6
100 99.9

0 -
2 72.7

100 66.2
0 —
3 63.6
71 24.6

model (5)
LP=IP #DV0(%)

52 87.1
56 98.8

100 99.9
10 70.4
3 51.5

100 42.5
100 1.9
1 72.7
87 2.2

10 86.4
8 98.3
54 99.9
0 —
2 68.2
55 64.1
0 —
3 63.6
26 28.6

54.6 64.3 37.1 55.9

model (2)
k rii LP=IP #DV0(%)

10 10 0 —
100 10 0

1,000 10 0
10,000 10 0

10 100 0
100 100 0

1,000 100 0
10 1,000 0

100 1,000 2 0.0

10 10 0
100 10 0

1,000 10 0
10,000 10 0

10 100 0
100 100 0

1,000 100 0
10 1,000 0

100 1,000 0

averages 0.1 0.0

model (3)
LP=IP #DV0(%)

7 7.8
32 30.0
32 31.8
59 31.8
41 0.0
71 0.0
77 0.0
47 0.0
89 0.0

Ri = 1,000
2
8
4

19
6

15
33
19
49

"319
%

4.5
31.6
31.4
31.9
0.0
1.1
0.0
0.0
0.0

10,000
8.0

model (4)
LP=IP #DV0(%)

100 13.0
100 30.9
100 31.7
100 31.8
98 0.0

100 0.0
100 0.0
49 0.0

100 0.0

model (5)
LP=IP #DV0(%)

10Ö 129
100 30.8
100 31.7
100 31.8
98 0.0

100 0.0
100 0.0
48 0.0

100 0.0

100 11.5 100 10.0
100 31.7 100 31.7
100 31.9 100 31.9
100 31.8 100 31.8
99 0.0 99 0.0

100 0.8 100 0.7
100 0.0 100 0.0
57 0.0 53 0.0

100 0.0 100 0.0

94.6 12.6 94.3 12.0

• Pricing UC instances seems to be most easy (see table 1). Here in many cases
the linear programming relaxation (2) is integral. Moreover, model (3) orily in one
case does not yield an integral Solution while models (4) and (5) always produce
them. On average the Solution of model (3) shows larger dual degeneracy than
the other two models do.

• The picture for SZ is very much the same as for UC, except the fact that the linear
programming relaxation (2) is only in two cases integral (see table 5). Moreover,
model (3) rarely produced integral solutions which the other two reformulations
did in most of the cases considered.

• For the remaining three distribution types we do not have a unique picture (except
the fact that the linear programming relaxation (2) rarely is integral). Once more
models (4) and (5) in general are more powerful in terms of producing integral
solutions than model (3).

• Surprisingly, w.r.t. the models (4) and (5) for the distribution type SC dual degen­
eracy never appeared (see table 3), a fact for which we do not have an explanation.
For the other distribution types this phenomenon could be observed in some cases
(in particular for most of the larger SZ instances).

• Noteworthy to mention is the particular case where the linear programming relax­
ation produces an integral Solution for five instances while the other models do
achieve this only for three: see type SS, Z?i=l,000, k—10, n,-=100.

Summarizing Overall our methodology produces an integral Solution for 6,756 of the
9,000 instances considered, or in other words, in a bit more than 75% of the cases.

5 Summary and future work

In this paper we have provided a family of linear programming models for the MCKP
the Solution of which is integral very often. The models are evaluated experimentally
using a well-defined testbed consisting of 9,000 instances. Overall our methodology
produces an integral Solution in roughly 75% of the cases. In particular, for two out of
five distribution types studied at least one of the models produces "almost always" an
integral Solution. Hence, in most cases dual prices are readily available.

Subsequently we will enhance the linear programs by valid inequalities so as to get linear
prices also for the more difficult instances.

Acknowledgement

The authors are indebted to Christof Kluß for professional^ coding the algorithms.

13

References

[1] ARMSTROMG, R.D., KUNG, D.S., SINHA, P., ZOLTNERS, A.A. (1983), A
computational study of a multiple-choice knapsack algorithm, ACM Transactions
on Mathematical Software, Vol. 9, pp. 184-198

[2] BALAS, E., ZEMEL, E. (1980), An algorithm for large zero-one knapsack Prob­
lems, Operations Research, Vol. 28, pp. 1130-1154

[3] BARCIA, P., JÖRNSTEN, K. (1990), Improved Lagrangean decomposition: an
application to the generalized assignment problem, European Journal of Operational
Research, Vol. 46, pp. 84-92

[4] DE LEONE, R., JAIN, R., STRAUS, K. (1993), Solution of multiple-choice
knapsack problem encountered in high-level synthesis of VLSI circuits, Journal of
Computer Mathematics, Vol. 47, pp. 163-176

[5] DUDZINSKI, K., WALUKIEWICZ, S. (1984), A fast algorithm for the linear
multiple-choice knapsack problem, Operations Research Letters, Vol. 3, pp. 205-
209

[6] DUDZINSKI, K., WALUKIEWICZ, S. (1987), Exact methods for the knapsack
problem and its generalizations, European Journal of Operational Research, Vol. 28,
pp. 3-21

[7] DYER, M.E. (1984), An 0(n) algorithm for the multiple-choice knapsack linear
problem, Mathematical Programming, Vol. 29, pp. 57-63

[8] DYER, M.E., KAYAL, N., WALKER, J. (1984), A branch and bound algorithm
for solving the multiple-choice knapsack problem, Journal of Computational and
Applied Mathematics, Vol. 11, pp. 231-249

[9] FISHER, M.L. (1981), The Lagrangian relaxation method for solving integer pro­
gramming problems, Management Science, Vol. 27, pp. 1-18

[10] http://www.diku.dk/~pisinger/codes.html

[11] JOHNSON, E.L., PADBERG, M.W. (1981), A note on the knapsack problem with
special ordered sets, Operations Research Letters, Vol. 1, pp. 18-22

[12] KELLERER, H., PFERSCHY, U., PISINGER, D. (2004), Knapsack Problems,
Springer, Berlin

[13] KELLY, T. (2004), Generalized knapsack solvers for multi-unit combinatorial auc-
tions: analysis and application to computational resource allocation, Working Pa­
per, Hewlett-Packard Labs, Palo Alto

[14] MARTELLO, S., TOTH, P. (1990), Knapsack Problems: Algorithms and Com­
puter Implementations, Wiley, Chichester

14

[15] MEJIA-ALVAREZ, P., LEVNER, E.V., MOSSE, D. (2002), An integrated heuris-
tic approach to power-aware real-time scheduling. In International Workshop on
Power Aware Computer Systems (PACS'02), LNCS 2325, Springer

[16] NAUSS, R.M. (1978), The 0-1 knapsack problem with multiple choice constraints,
European Journal of Operational Research, Vol. 2, pp. 125-131

[17] PISINGER, D. (1995), A minimal algorithm for the multiple-choice nested knapsack
problem, European Journal of Operational Research, Vol. 83, pp. 394-410

[18] SINHA, A., ZOLTNERS, A.A. (1979), The multiple-choice knapsack problem,
Operations Research, Vol. 27, pp. 503-515

[19] ZEMEL, E. (1984), An O(n) algorithm for the linear multiple choice knapsack
problem and related problems, Information Processing Letters, Vol. 18, pp. 123-
128

15

