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Abstract 

In combinatorial auctions the pricing problem is of main concern since it is the 
means by which the auctioneer signals the result of the auction to the participants. In 
order for the auction to be regarded as fair among the various participants the price 
signals should be such that a participant that has won a subset of items knows why 
his bid was a winning bid and that agents that have not acquired any item easily can 
detect why they lost. The problem in th e combinatorial auction setting is that the winner 
determination problem is a hard integer programming problem and hence a linear pricing 
scheme supporting the optimal allocation might not exist. 

From integer programming duality theory we know that there exist non-linear anony-
mous price functions that Support the optimal allocation. In this paper we will provide 
a means to obtain a simple form of a non-linear anonymous price system that supports 
the optimal allocation. Our method relies on the fact that we separate the Solution 
of the winner determination problem and the pricing problem. This Separation yields a 
non-linear price function of a much simpler form compared to when the two problems 
are solved simultaneously. The pure pricing problem is formulated as a mixed-integer 
program. 

The procedure is computationally tested using difficult instances of the combina
torial auctions test suite [16]. The results indicate that the number of extreme prices 
forming the non-linear anonymous price system is small. 

Keywords: Combinatorial auctions, set packing, strong duality theory, non-linear anony
mous pricing 

1 Introduction 

Auctions have been used for a long term to generate an efficient market mechanism to trade 
goods and services. The most common auction format is a Single unit auction in which the 
goods are auctioned off in some predetermined sequence using either an English or a Dutch 
type auction (see, e.g., Klemperer [18], McAfee and McMillan [21], Milgrom [24]). However, 
in many auctions/markets a participants valuation of an object depends significantly on which 
other objects the participant acquires. Objects can be Substitutes or complements and the 
valuation of a particular bündle of items may not equal the sum of the individual items in 
the bündle. In order to design an efficient auction in such situations a non sequential auction 
format is required. Auctions in which agents are allowed to bid on bundles of items and the 
auctioneer sells the whole set of items in one single auction are named combinatorial auctions. 

Recently, the interest in the design of combinatorial auction mechanisms has been booming. 
The design of such mechanisms requires among others to address a couple of issues: (a) 
settlement of the auction rules and who is in charge of Controlling them, (b) which agents 
are allowed to take part in the auction, (c) which bidding formats are allowed, (d) how are 
the winners to be determined, (e) how much are the winners to be charged, (f) how much 
Information is provided to the participants, (g) is the auction format of a single round or an 
iterative, multiple round type? In this paper we will focus on issue (f), that is, on the price 
Information given by the auctioneer to the participating agents. 

The pricing problem in combinatorial auctions has two important aspects: (i) In an iterative 
combinatorial auction the prices presented to the agents should provide means for an agent to 
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revise his bid properly knowing that the price information given by the auctiorieer in each round 
contains information on the potential winner valuation in the current round and information 
that the agent can use in order to decide whether to rise/lower his bid on a certain bündle 
or withdraw from the auction. (ii) After each Iteration the prices provided by the auctioneer 
should be such that it is easy for the agents having obtained winning bids to understand why 
their bid won and how much they will be charged. For the losers in the auction the prices 
provided should be such that it is easy to detect why the bid was not high enough to obtain 
the particular bündle and provide means for the agents to determine that the auction was fair. 

Since the winner determination problem in a combinatorial auction is an integer program we 
know that in general there do not exist linear prices on the Single items that clear the market, 
i.e. support the optimal allocation of bundles to winning agents. In the literature this problem 
of non-existence of linear market Clearing prices has been resolved in various ways. The most 
common Solution is to generate so-called pseudo-dual prices which are in some sense a best 
possible approximation to linear prices that can be obtained. Other means of tackling the 
pricing problem in combinatorial auctions are to use non-anonymous/discriminatory prices or 
non-linear anonymous prices. 

Subsequently we will present a way to generate a non-linear extension of linear prices for 
combinatorial auctions that makes it easy for the agents to analyse their current bids and to 
understand why they have won or why they have lost in the auction. The way that the mixed-
integer pricing program is solved can be interpreted as constructing sets of restricted auctions 
from the original auction each of which has the integrality property. Since the algorithm is 
constructing linear prices such that the union of these sets of restricted auctions spans the 
original auction we have constructed a set of extreme linear prices and each agent should be 
capable of handling all prices that can be generated as a convex combination of the extreme 
prices. These prices are compatible with integer programming duality theory; they truly signal 
the bidders how to bid in subsequent rounds as opposed to an approximate linear price system 
generated from using a pseudo-dual approach. Since our computational experience shows that 
the complexity of the price system does not grow with problem size it is not too complicated 
for bidders to adjust bids according to our price system as shown by means of an instance 
below. 

The paper is organized as follows: In section 2 we present the mathematical programming 
formulation of the winner determination problem and discuss the pricing problem briefly. A 
review of related work is given in s ection 3. Section 4 is dedicated to the new pricing model. In 
section 5 we present computational results based on auctions generated from the combinatorial 
auctions test suite [16]. Section 6 concludes the paper. 

2 Winner determination 

2.1 Model 

Let us assume for simplicity that only one unit of each item is available. Let I = {1,... ,m} 
denote the set of items, and let J = {1,... , n} be the set of bids. Then the model reads as 
follows: 

2 



z — m ax Yl, bjxj 
jeJ 

s.t. aiix3 < 1 V? e / > (1) 
jeJ 
xj G {0,1} Vi e J ) 

The parameter bj is the bid price for bündle j. The binary parameter ay equals 1, if item i is 
contained in bid j (0, otherwise). The variable xj indicates whether bid j is accepted (xj — 1 ) 
or not (xj = 0). 

The winner determination problem (1) is an integer programming problem. In general solving 
the linear programming relaxation of the winner determination problem will result in a Solution 
in which some of the variables have non-integral values. In such cases where the integer 
programming problem has an integrality gap which is strictly greater than zero, we know from 
theory (see, e.g., Nemhauser and Wolsey [25]) that there does not exist a linear price function 
that supports the optimal allocation of winning bundles. 

It is obvious that if bidders submit their true values on the various bundles, the Solution to the 
winner determination problem gives an efficient allocation of indivisible objects in an exchange 
economy. The formulation above is valid for the winner determination problem in the case of 
subadditive and superadditive bids, however, in t he latter case it is of special interest. If i tems 
are Substitutes a more general winner determination problem based on so-called XOR bids is 
needed (see, e.g., Xia et al. [32]). 

Model (1) is the most widely studied single-unit (each item is unique and there is only one 
unit for sale each), single-sided (one seller and multiple buyers) case. It is the set packing 
problem, a well-known NP-complete optimization problem (Garey and Johnson [12]). Exact 
and heuristic algorithms for solving the set packing problem have been developed by, e.g., 
Borndörfer [3], Delorme et al. [7], Günlük et al. [14] and Sandholm et al. [29]. Special cases 
of the set packing problem, which can be solved in polynomial time, have been studied in, 
e.g., Rothkopf et al. [28] and van Hoesel and Müller [15]. 

A recent survey of combinatorial auctions is provided by de Vries and Vohra [9]. Combinatorial 
auctions can be useful in many environments and have been considered for problems including 
selling spectrum rights (McMillan [22], Milgrom [24]), airport take-off & landing time slot 
allocation (Rassenti et al. [27]), railroad segments (Brewer [4]), and delivery routes (Caplice 
and Sheffi [5]). Other applications are surveyed in, for instance, Kwon et al. [20]; see also 
Part V of the book edited by Cramton et al. [6]. 

If the linear programming relaxation of the winner determination problem has variables that 
are fractional in the optimal Solution the dual prices, if used as Information, will Overcharge the 
agents and hence might lead to that some agents withdraw from the auction too early leading 
to an inferior outcome. In accordance with this Observation several authors, starting from 
the seminal work of Rassenti et al. [27], have suggested the use of approximate pseudo-dual 
prices which can be thought of as prices that are approximately fulfilling the requirements of 
dual feasibility, primaI complementary slackness and dual complementary slackness given the 
optimal, and thus feasible, Solution to the winner determination problem. The pseudo-dual 
prices are anonymous but do not fulfill the requirement that the bid on a non-winning bündle is 
less than the sum of the prices of the individual items in the bündle. In t he following subsection 
we will define these requirements formally. 
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2.2 Basic properties and definitions 

First, we define the linear programming relaxation of (1), that is, the problem 

z — m ax bjXj 
j eJ 

s.t. aijxi < 1 Vz e / ^ (2) 
3 ZJ 
xj > 0 

and the corresponding dual 

z = min Ylui 
iei 

S.t. Ylaijui V j e J ^ (3) 
»6/ 
Ui > 0 

where u = (ui) is the vector of dual variables. 

For the linear programming relaxation of (1) we know that an optimal primal Solution x* = (xj) 
of (2) and the corresponding optimal dual Solution u* = (u*) of (3) have some fundamental 
properties.1 

Apparently, an optimal primal Solution is primal feasible and an optimal dual Solution is dual 
feasible. If an optimal primal Solution and the corresponding optimal dual Solution satisfy 

the constraints u* ~ *) = 0 Vi € I, then primal complementary slackness is 

assured. If a n optimal primal Solution and the corresponding optimal dual Solution satisfy the 
constraints x* (J2ieiaijui ~~ fy) = 0 Vj G J, then dual complementary slackness is assured. 

Finally, we define the meaning of anonymous vs. non-anonymous prices. 

Definition 1 (anonymous/non-anonymous prices) 

A price is called anonymous if all agents face the same price. Ifagents face different prices we 
have a non-anonymous price system. 

3 Related work 

Over time several suggestions have been made to address the problem of finding interpretable 
dual prices for integer and mixed-integer programming problems. Two streams of research 
can be distinguished. First, research related to duality theory for general purpose integer 
programming problems. Second, work specifically dedicated to the set packing problem. 

1Throughout this paper * alway s denotes an optimal Solution. 
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3.1 Integer programming duality theory 

We review this branch of research too, because our approach in some sense relies on integer 
programming duality theory. 

For a primal integer programming problem 
n 

Z = max J2 cjxj 
3=1 

n 
s.t. J2 a3x3 - b aJ; b<5 

j=i 
Xj > 0 and integer j = 1,..., n 

(4) 

where we assume that {aj}"=1 and b are integer vectors, there exists a dual 

W = min F( b) "j 

s.t. Fiaj) > Cj j = 1,... ,n > (5) 

Fe F J 

where F = {F e F™ : F is superadditive and F(0) > 0} and F™ denotes the set of 
nondecreasing functions F : = {—oo, +00}. The set F is the set of dual price 
functions. We adopt the Standard Convention that Z = —00 if (4) is infeasible and Z = +00 
if (4) has feasible solutions of arbitrarily large value and a similar Convention for (5). 

The primal dual pair (4) and (5) have the same properties as in Standard linear programming 
duality, hence given an optimal primal dual pair (x*, F*) the solutions are primal and dual 
feasible, respectively, and primal complementary slackness is satisfied. 

In the decisive work of Gomory and Baumol [13] dual prices and their relationship to the 
marginal values of scarce resources have been discussed. Alcaly and Klevorick [1] address the 
problem encountered with the approach of Gomory and Baumol that "free goods" might have 
nonzero prices. Wolsey [30] gives a concise description of this theory, and shows that in the 
integer programming case we need to expand our view of prices to price-functions in order to 
achieve interpretable and computable duals. 

In particular Wolsey [30] shows that different algorithmic approaches for solving the primal 
integer program lead to different characterisations of the optimal price functions. Specifically 
if a linear programming based branch and bound algorithm terminates on problem (4), and 
(4) has a finite optimal value, then (5) has an optimal Solution of the form 

F*( b) = max [a(t) + u*b] (6) £=1 

with u* = (u[,..., > 0, t = 1,..., r, where t Indexes the terminal fathomed nodes for 
some finite value of r. (u^u^ü4) > 0 is the dual feasible Solution associated with node t 
and a,(t) = —utgt -f ö4h1 reflects the bounds gj < Xj < hon variables xj obtained through 
branching. 

In order to calculate reduced cost we only have to evaluate each column F*(a.j) — Cj > 0. 

Apparently, the dual price function given in the dual above yields a non-linear anonymous 
price function for every combinatorial auction with the winner determination problem (1). 
Obviously, the problem with this approach is that the derivation of the price function is very 
complicated. Recently, Klabjan [17] has developed an algorithm for Computing the subadditive 
dual function which seems to be practical for the set partitioning problem. 
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3.2 Set packing 

Another stream of research frequently used in the combinatorial auction setting is to impute 
pseudo-dual prices, that is, prices that are in some sense dose to the prices obtained for a pure 
linear program. The way these pseudo-dual prices are constructed is based on the following 
ideas: (i) The winning bundles should have reduced cost equal to zero. A Standard requirement 
for a linear program based on linear programming duality theory is that a basic variables reduced 
cost should be equal to zero. (ii) For the non-winning bids the item prices should ideally have 
the property that all non-winning bids are priced out, i.e. the reduced costs for these bids 
should be non-negative. However, in the general case when the linear programming relaxation 
does not yield an integral Solution this is unachievable. The approximation made in these 
cases in order to obtain an approximate linear price function is to require that as many as 
possible of the non-winning bids are priced out or, alternatively, that the maximum deviation 
for a linear price to price out the non-winning bids is minimal, (iii) As in linear programming 
it is often required that prices for constraints that have slack in the optimal Solution yield an 
item price of zero. All these requirements can be interpreted as requiring primal feasibility, 
primal complementary slackness, dual feasibility, and dual complementary slackness. 

In a combinatorial auction the auctioneer is trying to get a good and hopefully optimal Solution 
to the winner determination problem. Assume that the optimal integer Solution x* = (xj) 
to the winner determination problem (1) has been found and that the linear programming 
relaxation (2) does not have the integrality property. Then we know that there does not exist 
a linear price system that can be interpreted as an equilibrium market Clearing mechanism. 

The underlying assumptions made when constructing a set of approximate pseudo-dual prices 
are: (a) The Solution x* = (x*) is primal feasible. (b) At least one of the properties dual 
feasibility, primal complementary slackness or dual complementary slackness must be relaxed. 

The 'normal' approach taken in the procedures that have been developed to construct pseudo
dual prices is that: (i) Primal complementary slackness should be required. This means that 
we make sure that the winning bids for the different bundles of items all have reduced cost 
equal to zero. (ii) Dual complementary slackness should be required. This means that the 
price for an unsold item should be equal to zero. 

Hence the 'normal' relaxation used is to relax the requirement of dual feasibility leading to 
the fact that some of the losing bids will have a negative reduced cost when faced with the 
pseudo-dual price system making the agents that have submitted these bids suspicious and 
wondering why their bid has not been successful. This is the approach taken by Rassenti et 
al. [27] and by DeMartini et al. [8], among others. 

In the following first we sketch the approach by DeMartini et al. [8] and Kwasnica et al. [19] 
which is one of the most recent models stipulating the use of pseudo-dual prices (see also 
Bikhchandani and Ostroy [2], Drexl and J0rnsten [10], Parkes [26], Wurmann and Wellman 
[31] and Xia et al. [32]). Second we outline a recently developed linear programming model 
the Solution of which is "almost always" integral. 

Let J0 := {j G J : x* — 0} and J\ := {j G J : Xj = 1} denote the set of losing and winning 
bids, respectively. The main component of the approach by DeMartini et al. [8] and Kwasnica 
et al. [19] is to solve the linear program (7). 
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w (7a) 

^ ] o^ijUi + Uj ^ bj V j G JQ (7b) 
jeJ 

^ ^ &ij Ui bj V; € (7c) 
jeJ 

w > % V; e Jo (7d) 

e
 

IV
 

o
 

Vis/ (7e) 

% > 0 V; e Jo (7f) 

At the prices (u<) there may be some losing bids for which YljeJaioUi — ^a'se'y signaling 
a possible winner, which is by virtue the nature of package bidding. Of course, such bids can 

be resubmitted if (bj — is 'large enough'. The objective (7a) has been designed 

to minimize the largest violation. If "ideal" prices exist, they will be the Solution with yj — 0 
for all j G JQ a nd, hence w will be equal to zero. If the prices from (7a) are not unique a 
sequence of iterations each of which requires to solve the linear program (7) is performed (for 
details see DeMartini et al. [8] and Kwasnica et al. [19]). 

Recently, Drexl, J0rnsten and Knof [11] developed linear programming models the Solution of 
which is "almost always" is integral. The formulation of the models can be accomplished in 
two steps. First, again we assume that the integer program (1) has been solved. Then we 
eliminate all variables corresponding to the chosen items and introduce instead an artificional 
bid by means of column aggregation. This bid contributes the amount b = ^2j€Jl bj to the 
optimal objective function value and it contains item i if the parameter äj = % equals 
1; otherwise if ä j = 0 it is not contained. For the sake of notational brevity we denote the set 
of items not contained in the aggregated bid with /<, that is, 

/< = < i G I : fljj < 1 > . 
l jeJi ) 

A linear program following the idea of variable elimination/aggregation, that is, which solely 
uses the losing bids J0 and the aggregated bid, is provided in (8). 

max ^ bjXj + b- z (8a) 
j&Jo 

s.t. a^Xj + diZ = 1 Vi G / \ /< (8b) 
jeJ0 

a^Xj = 0 V i G /< (8c) 
jeJ0 

Xj> 0 V j G JQ (8d) 

z > 0 (8e) 

The objective function (8a) counts the contribution of the variables contained in J0 and of the 
variable z associated with the aggregated bid. Constraint (8b) assures that items i G I \ /< 
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are contained in a winning bündle exactly once. To the contrary, constraint (8c) assures that 
items i G /< are never contained. Finally, (8d) and (8e) define the decision variables to be 
nonnegative. 

In an in-depth computational study model (8) has been shown to very effective in producing 
integral solutions. For those instances where the outcome is fractional we propose in the 
following a non-linear pricing scheme. 

4 Non-linear pricing 

In th is section first we provide a mixed-integer programming formulation of the pricing problem. 
Then we present an algorithm for the computation of a non-linear price function, supported 
by a small example. Subsequently, we show by means of a tiny example that a non-linear price 
system does not always exist. 

4.1 Model 

Since we have separated the Solution of the winner determination problem and the pricing 
problem we know the optimal primal Solution (x*j) and, hence, the sets J0 and J\. In the 
following model we try to find a dual Solution that fulfills both kinds of complementarities and 
as many of the dual feasibility constraints as possible by fixing variable = 1 with j £ JQ 
if and only if dual feasibility constraint number j is fulfilled. The constraints of the pricing 
problem are provided in (9). 

Y ~ i (y> u) ^ R|Jo|xm : aijui - bjVj >0 Vj <E JQ (9a) 
l i€l 

Y,aijUi = bj V; € J\ (9b) 
iei 

Uj € {0,1} V j € JQ (9C) 

Vi 6/ > (9d) 
Ui = 0, if i € /< 
Ui > 0, otherwise 

Constraints (9a) in conjunction with the second branch of (9d) address dual feasibility. Con
straints (9b) assure dual complementary slackness. Constraint (9c) requires the variables 
corresponding to the losing bids to be binary. Finally, the first branch of (9d) addresses primal 
complementary slackness. Hence, overall the constraints assure that any feasible Solution of 
the mixed-integer pricing model has the properties defined in section 2.2. 

Note that both constraints (9a) and (9b) originate from the same (in-)equality. In particular, 
(9b) is the result of fixing y* to 1 for all bids j E J with x* = 1, that is, the original winning 
bids are also winning bids in the pricing problem. The equality sign assures that these bids 
have reduced cost of zero. 

Now we are ready to formulate the pricing model as follows: 

max i ^2 Vi • ( y, u) G y > 
b eJ0 J 

(10) 
<j£Jo 
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The objective function of (10) aims at maximizing the number of losing bids being covered in 
the optimal Solution. We will show now that this objective is the primary choice. An important 
property of dual prices is to assure that as many losing bids j G J0 as possible are priced out, 
that is, have non-positive reduced cost bj := bj — YlieiaiiUi — 0- The following proposition 
states that the objective of our pricing model takes care of this characteristic. 

Proposition 1 The mixed-integer pricing model prices out as many losing bids as possible. 

Remark 1 The objective of (10) guarantees that in the case that the winner determination 
problem has the integrality property only one price will be generated, that is optimal linear 
programming shadow prices. 

4.2 Algorithms 

Solving model (10) produces one price vector that assures that the prices for the winning 
bids are equal to the prices bid by those bidders. We will provide a means to compute an 
alternative price vector that maximizes the number of losing bids that satisfy dual feasibility, 
and primal complementary slackness. This process of calculating price vectors that maximize 
the number of losing bids not yet satisfied in previous iterations will be continued until we 
have a complete set of price vectors that price out correctly (i.e. satisfy both dual feasibility 
and primal complementary slackness) of all non-losing bids. Two algorithms which serve this 
purpose will be described in the sequel. 

First, other prices can be computed by adding cover cuts. Assume we know the optimal binary 
variables (yj). Let K0 := {j G JQ : y*j — 0 } denote the subset of losing bids. If w e define 

Y' = | (y> u) G Y : ^2 Vi > 11 
l jeK0 J 

and solve max{£V€Jo % : (y, u) G Y'} instead of (10) we get another vector y (because the 
cut YljeKo % — 1 excludes the previous one) and another price vector u. Afterwards we update 
the sets K0 and Y' := {(y, u) G Y' : J2jeK0 % ^ 1} and reoptimize max{^67o Vj • ( y, u) G 
y) (taking the new set Y') accordingly, and again get some other vectors (y, u). Apparently, 
iterating this way produces a sequence of up to p prices, where p may be exponentially large. 

The following proposition defines equation (6) for the special case considered here highlighting 
the fact that the procedure generates a non-linear anonymous price system. 

Proposition 2 The price system has the form 

F*( d) = max [u*d]. 

In case of d = 1 we get the optimal objective function value, in case of d = aj we get the 
reduced cost for column j by evaluating F*(a;) — bj > 0. 
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In practica agents will only be able to handle a small number of prices and, hence, we propose 
a second algorithm which iterates as follows. Let t = 2, 3,... denote the Iteration counter. 
Initialize sets K% = {j e JQ • v] = 0} and K\ = {j G JQ : y* = 1} in t = 1. Now the update 

K •= K~' \ {i e • v' j = i} 

K\ := K'f1 :»•=!} 

performed in iteration t indicates that we move bids that are priced out in Iteration t — 1 from 
the set K^1 to the set K\. In iteration t we solve the optimization problem 

max \e % + E %: (y>u)G Y [ (ii) 
{ jeK* jeK* ) 

where e must be "small", that is, e.g., ^. The objective function of (11) lexicographically 
searches for alternative optimal solutions in which bids losing in the previous iteration become 
winning bids in the current one. The iteration terminates once we have \K[\ = 

We will explain the algorithm, in particular the objective of (11), in more detail. Let denote 
d := 6^2j&Kt~1 Vi the first part and ß := YljeK^Vj the second part of the objective, 
respectively. By definition the cardinality of Kl initially is less than or equal to the cardinality 
of JQ. Moreover, we transfer winning bids from the set KQ~1 to the set K\. While bids covered 
by K\~l are weighted with e bids contained in K^1 are weighted with 1. Hence, a is always 
less than or equal to ß and a tends to increase during the course of the algorithm but it never 
exceeds 1 due to the fact that e is chosen small enough. The following proposition sheds light 
on the convergence properties of the algorithm. 

Proposition 3 The algorithm generates a finite number q < | JQ\ + 1 of prices. 

Proof. Without loss of generality consider iteration t. First, we analyze the two extreme cases 
that either (a) y*j — 1 for all j 6 K^~l or that (b) y] = 0 for all j € KQ-1. In c ase (a) all bids 
j € K^1 are transferred to K\ and, hence, the algorithm terminates in iteration t+ 1 due to 
K\ = K\+1 = 0. In case (b) the algorithm terminates immediately due to = \K\\. In 
intermediate cases at least one bid j e Kl"1 is selected, transferred to K[ and, hence, the 
cardinality of K\ increases. Apparently, the transfer of bids from KQ to K\ can be achieved 
at most | J0| times and, hence, q < [ JQ\ + 1 prices will be generated including the initial price 
generated when solving (10). O 

The proposition verifies that the algorithm does not cycle, although variables at 1 are not forced 
to stay 1 in the next iteration. Moreover, the number of prices does not grow exponentially. 
More important from a practica! point of view, we will show by means of a computational 
study in section 5 that the price system is fairly small, that is, q <C |Jo|-

4.3 Example 

An example with 6 items and 21 bids taken from Parkes [26] illustrates the idea. Obviously, 
here we have a case with three agents each of which bids on every combination of items. The 
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j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 
bj 60 50 50 5200 100 110 250 50 60 50 110 200 100 255 50 50 75 100 125 200 250 

CLij 1 1 1 1 1 1 1 1 1 1 1 1 
02j 1 1 1 1 1 1 1 1 1 1 1 1 
°3j 1 1 1 1 1 1 1 1 1 1 1 1 
fl4j 1 1 1 1 1 1 1 
ß5 j 1 1 1 1 1 1 1 
a6j 1111 1 1 1 

Table 1: Instance- Parkes [26] 

integer program (1) linear program (2) t y* U* 
x*4 = x*17 = l 
OPV = 275 

= 5*2 = % = 0.5 
OFV = 300 

o
 o

 
II 

II 

1—
1 

C\1 (60, 140, 75, 0, 0, 0) 
(140, 60, 75, 0, 0, 0) 

Table 2: Instance - results Table 3: Bids selected and price system 

bid prices (bj) and the coefficient matrix (a^) are provided in Table 1. Note that the bids 4, 
12, 14 and 20 are superadditive. 

Table 2 provides the Solution (Xj) of the integer program (1) and the Solution (xj) of the linear 
programming relaxation (2). Variables not given there have value 0. OPV abbreviates optimal 
objective function value. Our pricing model generates the q = 2 vectors y4 and u' (t = 1,2) 
displayed in table 3 (variables not given explicitely have value 1). 

The calculation of the reduced cost for the bids 4, 12 and 20 is displayed in table 4, indicating 
that for bids 12 and 20 a rise of more than 15 in bid price must be done by the agents in order 
to let these bids potentially win in the next round of an iterative combinatorial auction. 

bid reduced cost 
4 max (200, 200) - 200 = 0 

12 max (215, 135) - 200 = 15 
20 max (135, 215) - 200 = 15 

Table 4: Reduced cost 

The reduced cost obtained for bids 12 and 20 show the amount that these bidders have to raise 
their bids in order to generate alternative optimal solutions. This means that if w e increase bX2 

to 215 + e then we get the optimal Solution Xi = xx2 = 1 with OPV 275 + e. Alternatively 
if we instead increase 62o to 215 + e we get Xg = x2o = 1 with the same OPV. This result is 
due to the fact that our price system is based on integer programming duality theory and it 
could never have been achieved by using approximate linear prices such as the ones generated 
by using pseudo-duals. 

4.4 Does a non-linear price system always exist? 

In section 5 we will show by means of a computational study that our algorithm is effective and 
efficient in Computing a non-linear price system. From a theoretical point of view, however, the 
question is whether a non-linear price system does always exist or not. A tiny counterexample 
with 3 items and 5 bids provided in table 5 sheds light on this issue. 
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max 10 Xi + 10 Zg + 10 X3 + 25 xA + 25 x5 

S.t. Xi + X4 < 1 

%2 + X4 + £5 < 1 

23 + x$ < 1 
Xi,..., x§ e {0,1} 

Table 5: Counterexample 

The optimal integer Solution is (xj) = (1,1,1,0,0) with OPV 30. The optimal Solution of the 
linear programming relaxation is (xj) = (|>0, with OPV 35. Now in order to have 
dual complementary slackness the price vector must be (Ui) = (10,10,10) and the variables 
£4 and x5 can not be priced out. 

The instance shows that there is no guarantee that a non-linear price system always exists. 
The computational results presented in the following section, however, will show that Iarger 
more realistic instances do have enough dual degeneracy such that a non-linear price system 
exists. 

5 Computational results 

The methods described earlier have been imlemented using the Cplex callable library (version 
9.0) on an AMD Athlon with 1 GB RAM and 2.1 Ghz clockpulse running under the operating 
system Linux. 

The primary purpose of the computational experiments is to show that the price system Covers 
all loosing bids. The numerical results presented have been obtained for a set of randomly 
generated instances. We decided to use the well motivated and universally accepted combi
natorial auction generator CATS (combinatorial auction test suite; see [16]) which provides 
a set of distributions for modeling realistic bidding behavior. In particular, we have gener
ated instances using the built-in distributions arbitrary, matching, paths, regions, and 
scheduling, respectively. 

We present numerical results only for the subset of instances which have recently been shown to 
be intractable by the linear pricing model (8); see Drexl, J0rnsten and Knof [11]. Fortunately, 
for all instances of the distributions types arbitrary, matching, paths and regions the 
linear pricing model (8) produced an integral Solution. Although we let run our non-linear 
pricing algorithms also on these instances we restrain from detailling the results here. For the 
sake of shortness detailled results are shown only for those difficult instances of the distribution 
type scheduling, for which model (8) did not produce an integral Solution. 

The computational results are displayed in table 6. Column 1 shows the number of items m, 
column 2 the number of bids n and column 3 the unique identifier "id" of the 5 particular 
difficult pricing instances examined.2 Column 4 provides the number of prices q calculated. 
Column 5 shows the CPU time in milliseconds required for solving the mixed-integer programs 
(10) and (II).3 The last column shows whether all losing bids are covered in at least one of 
the price vectors ("Y") or not ("IM"). 

2The instances and the corresponding so lutions of the pricing model can be obtained from the authors 
upon request. 

3The time needed in order to solve the original combinatorial au ction (1) is not included. 
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m n id Q msec all losing bids covered 

30 120 034 3 100 Y 
40 200 001 2 40 Y 
40 200 007 2 40 Y 
40 200 052 2 40 Y 
60 240 038 3 3790 Y 

Table 6: Results 

The results show that all losing bids contribute to the computation of the price system. 
Furthermore, CPU times are very small. 

The results obtained for all the instances of the various distribution typ es can be summarized 
as follows:4 

• The instances of the distribution type arbitrary are hard in the sense that the mixed-
integer pricing problems are difficult to solve. The minimum number of prices is 3 and 
the maximum numer of prices is 5. 

• Instances of the distribution type matching are easy because the mixed-integer pricing 
problems can be solved quickly. More important, the number of prices generated upon 
termination of our algorithm never exceeds three. 

• Instances of the distribution type paths are also easily accessible by our methodology. 
The number of prices which have to be generated is very small, too. 

• For the distribution type regions there is greater variety. Some mixed-integer programs 
are challenging from a computational point of view. Fortunately, however, the number 
of prices generated remains small. 

• For the distribution type scheduling the picture is very much the same as for the 
previous type. Again, one instance requires excessive CPU time. 

Summarizing, the computational tests show that the number of prices needed does not grow 
with increasing problem size. 

6 Conclusions 

In this paper we have provided a means to obtain a simple form of a non-linear anonymous price 
system that supports the optimal allocation of bids to bidders in a combinatorial auction. By 
separating the pricing problem from the winner determination problem we are able to generate 
a fairly simple non-linear anonymous price system compatible with integer programming duality 
theory. The computational tests show that the number of prices needed does not grow with 
increasing problem size. Our method essentially requires to solve a sequence of mixed-integer 
programming formulations of the pricing problem. 

4Detailled results can be obtained from the authors upon request, too. 
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