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Abstract 

Combinatoria! auctions permitting bids on bundles of items have been devel-
oped to remedy the exposure problem associated with single-item auctions. Given 
winning bündle prices a set of item prices is cal led market Clearing or equilibrium if 
all t he winning bids are greater than or equal and if all the losing bids are less than 
or equal to the total price of the bündle items. However, the prices for individual 
items are not readily computed once the winner determination problem is solved. 
This is due to the duality gap of integer programming caused by the indivisibility 
of the items. In this paper we propose a family of linear programming models 
the optimal Solution of w hich is integral "almost always", producing linear prices 
at the expense of having reduced cost zero for the aggregate winning bids only. 
We provide a computational proof of this conjecture by an in-depth experimental 
study of 18,000 instances from the combinatoriaI auction test suite (CATS; see 
[13]). Summarizing this analysis we have linear prices for all but five of the whole 
bunch of instances and, hence, there exists a linear price function that supports 
the optimal allocation of w inning bundles. 

Keywords: Combinatoria! auctions, set packing, dual prices, linear programming 

1 Introduction 

Combinatorial auctions are auctions where Single bids on multiple distinct items are 
allowed. Single item auctions have been the topic of intensive research for many years 
and particular incentive compatible efficient auctions have been developed. In some 
markets, however, a participant's valuation of an item depends significantly on which 
other items the participant acquires. Items can be Substitutes or complements, and the 
valuation of a particular bündle of items may not be equal to the sum of the valuations 
of the individual items, that is, valuations are not additive. In this setting, economic 
efficiency is increased by allowing bidders to bid on combinations of items, which is 
exactly what a combinatorial auction does. Due to this increased economic efficiency 
combinatorial auctions have become the focus of extensive research in recent years. 

One major obstacle in the design of combinatorial auctions is the Solution of the winner 
determination problem. Winner determination is equivalent to the weighted set packing 
problem which belongs to the class of NP-hard integer programs (for a detailed expo-
sition of this issue see Rothkopf, Pekec and Harstad [21]). In practice combinatorial 
auctions usually are applied in a multi-round setting; see, e.g., Parkes [18]. Düring each 
round, bidders submit bids on packages and then the auctioneer determines a provisional 
allocation of bundles to bidders. In this case dual Information may be useful for bidders 
as marginal values that enable bidders to bid more efficiently in subsequent rounds. 

When the linear programming relaxation of the winner determination problem for a 
combinatorial auction does not possess an integer Solution so far it is not possible to 
achieve a linear price function that supports the optimal allocation of winning bundles. 
In this paper, however, we propose a family of linear programming models the optimal 
Solution of which is "almost always" integral and, hence, there exists a linear price 
function that supports the optimal allocation of winning bundles. These linear prices are 
derived at the expense of having reduced cost zero for the aggregate winning bids only. 
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This means that some of the winning bids might have positive, others negative reduced 
cost using these prices. However, it is questionable whether this is problematic because 
it gives new Information to the winning agents since a winning agent with a negative 
reduced cost knows that there must exist complementary agents with positive reduced 
cost that sum up to the same amount. 

The exposition of our work is as follows: In s ection 2 we introduce the winner determi-
nation problem. A review of related work is given in section 3. In section 4 we present 
some linear programming models the Solution of which is "almost always" integral. Sec
tion 5 contains an illustrative instance. In section 6 we provide a computational proof 
of the "almost always" conjecture. In section 7 we briefly discuss our pricing scheme in 
an iterative setting. Section 8 concludes the paper. 

One of the most important challanges with combinatorial auctions is solving the winner 
determination problem, a topic which has received most attention from researchers. 

Let us assume for simplicity that only one unit of each item is available. Two general 
models for winner determination in combinatorial auctions are known from the literature. 
The first one (see Wurmann and Wellman [23]) assumes that every bidder submits a 
bid on every subset of items. Furthermore, the number of bundles a winner may win 
is limited to at most one. The second model (see, e.g., DeMartini, Kwasnica, Ledyard 
and Porter [6] and Kwasnica, Ledyard, Porter and DeMartini [14]) includes the first 
as a special case; it allows multiple bundles per winner. For notational simplicity let 
I = {1,..., m} denote the set of items, and let J = {1,..., n} be the set of (bundles) 
bids. Then the second model reads as shown in the set of equations (1). 

2 = max ^ bjXj (la) 

Here bj is the bid price for bündle j. If several bidders bid for the same bündle bj is 
the maximum bid for that bündle, taken over all bidders. Xj indicates whether bid j 
is accepted (Xj — 1) or not (xj — 0). The parameter Oy is equal to 1, if item i is 
contained in bid j or not (a# = 0). 

Model (1) is the most widely studied single-unit (each item is unique and there is only 
one unit for sale of each item), single-sided (one seller and multiple buyers) case and we 
will s tudy it subsequently, too. It is the set packing problem, a well-known NP-complete 
optimization problem (Garey and Johnson [11]). Exact and heuristic algorithms for 
solving the set packing problem have been developed by, e.g., Borndörfer [2], Delorme, 
Gandibleux and Rodriguez [5], Günlük, Ladänyi, de Vries [12] and Sandholm, Suri, Gilpin, 
Levine [22]). 

2 Winner determination 

(ib) 

Xj 6 {0,1} V;eJ (!c) 
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A recent survey of combinatorial auctions is provided by de Vries and Vohra [7]. Com
binatorial auctions can be useful in many environments and have been considered for 
Problems including selling spectrum rights (McMillan [16], Milgrom [17]), airport take-
off & landing time slot allocation (Rassenti, Smith and Bulfin [20]), railroad segments 
(Brewer [3]), and delivery routes (Caplice and Sheffi [4]). Other applications are surveyed 
in, for instance, Kwon, Anandalingam and Ungar [15]. 

3 Related work 

Over time several suggestions have been made to address the problem of finding in-
terpretable dual prices for the set packing problem (1). Most of this work uses linear 
programming duality theory. 

If we relax the integrality constraint (lc) on Xj we obtain the linear programming relax-
ation (2) which will be used in section 6 for benchmarking purposes, too. 

z = max bjxj 
jeJ 

s t. aijxj < 1 

jeJ 
xj > 0 

The corresponding dual is 

Vie/ 

VjeJ J 

(2) 

z — m in ui 
iei 

S.t. 22aijUi^-bj Vj G J 
iei 
Ui ^ 0 V % G / 

(3) 

where u = (ui) is the vector uf dual variables. 

For the linear programming relaxation (2) we know that an optimal primal Solution 
x* = (x^) and the corresponding optimal dual Solution u* = (it*) have some fundamental 
properties. 

Apparently, an optimal primal Solution is primal feasible and an optimal dual Solution is 
dual feasible. If a n optimal primal Solution and the corresponding optimal dual Solution 

satisfy the constraints u* (j2j€j aijüj — l) = 0 Viel, then primal complementary 

slackness is assured. If a n optimal primal Solution and the corresponding optimal dual 
Solution satisfy the constraints Xj (%2i€iaüui ~ &?) = 0 V j G J, then dual complemen
tary slackness is assured. 

One stream of research frequently used in the combinatorial auction setting is to impute 
pseudo-dual prices, that is, prices that are in s ome sense close to the prices obtained for 
a pure linear program. The way these pseudo-dual prices are constructed is based on 
the following ideas: (i) The winning bundles should have reduced cost equal to zero. A 
Standard requirement for a linear program based on linear programming duality theory is 
that a basic variables reduced cost should be equal to zero. (ii) For the non-winning bids 
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the item prices should ideally have the property that all non-winning bids are priced out, 
i.e. the reduced costs for these bids should be non-negative. However, in the general 
case when the linear programming relaxation does not yield an integral Solution this is 
unachievable. The approximation made in these cases in Order to obtain an approximate 
linear price function is to require that as many as possible of the non-winning bids are 
priced out or, alternatively, that the maximum deviation for a linear price to price out 
the non-winning bids is minimal, (iii) As in linear programming it is often required 
that prices for constraints that have slack in the optimal Solution yield an item price 
of zero. All these requirements can be interpreted as requiring primal feasibility, primal 
complementary slackness, dual feasibility, and dual complementary slackness. 

In a combinatorial auction the auctioneer is trying to get a good and hopefully optimal 
Solution to the winner determination problem. Assume that we know an optimal integer 
Solution to the winner determination problem (1) and that the linear programming re
laxation (2) does not have the integrality property. Then we do not have a linear price 
system that can be interpreted as an equilibrium market Clearing mechanism. 

The underlying assumptions made when constructing a set of approximate pseudo-dual 
prices are: (a) The optimal Solution (x^) of (1) is primal feasible. (b) At least one of 
the properties dual feasibility, primal complementary slackness or dual complementary 
slackness must be relaxed. 

The 'normal' approach taken in the procedures that have been developed to construct 
pseudo-dual prices is that: (i) Dual complementary slackness should be required. This 
means that we make sure that the winning bids for the different bundles of items all 
have reduced cost equal to zero. (ii) Primal complementary slackness should be required. 
This means that the price for an unsold item should be equal to zero. 

Hence the 'normal' relaxation used is to relax the requirement of dual feasibility leading 
to the fact that some of the losing bids will have a negative reduced cost when faced 
with the pseudo-dual price system making the agents that have submitted these bids 
suspicious and wondering why their bid has not been successful. This is the approach 
taken by Rassenti, Smith and Bulfin [20] and DeMartini, Kwasnica, Ledyard, Porter [6], 
among others. 

In the following we sketch the approach by DeMartini, Kwasnica, Ledyard, Porter [6] 
and Kwasnica, Ledyard, Porter, DeMartini [14] which is one of the most recent models 
stipulating the use of pseudo-dual prices; other approaches can be found in, e.g., Parkes 
[18], Bikhchandani and Ostroy [1] and Xia, Koehler and Whinston [24]. 

Let J0 {j e J : Xj = 0} and Jx := {j e J : Xj = l} denote the set of losing and 
winning bids, respectively. Apparently, we have JQHJI = 0 and JQUJ\ = J. The main 
component is to solve the linear program (4). 
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min w 

S.t. ^2 aijui + Vj > bj V; E Jo 

(4a) 

(4b) 
je J 

aijUi = bj 
jeJ 

w > % 

Ui > 0 

% > 0 

V; E Jo 

V; E Jo 

V; E Ji 

(4d) 

(4e) 

(4f) 

(4c) 

At the prices (u^ there may be some losing bids for which YhjeJaiiUi — fa'se'y 
signaling a possible winner, which is by virtue the nature of package bidding. Of course, 

such bids can be resubmitted if (bj — 22jeJaijuij 's ''arge enough'. The objective (4a) 

has been designed to minimize the largest violation. If "ideal" prices exist, they will be 
the Solution with %)j = 0 for all j E J0 and, hence w will be equal to zero. If t he prices 
from (4a) are not unique a sequence of iterations each of which requires to solve the 
linear program (4) is performed (for details see DeMartini, Kwasnica, Ledyard, Porter 
[6] and Kwasnica, Ledyard, Porter, DeMartini [14]). 

In the following section we will present some linear programs which do not require one 
of the relaxations described above in order to achieve interpretable prices. 

The formulation of the family of linear programming models is accomplished in two steps. 
First, we solve the integer program (1) and, hence, we know the sets J0 and Ji. Then 
we eliminate all variables corresponding to the chosen items and introduce instead an 
artificional one by means of column aggregation. 

More precisely, in step two we eliminate the bids (variables) contained in J\ and introduce 
an aggregated bid instead. This bid contributes the amount 

4 Variable elimination/aggregation 

to the optimal objective function value and it contains item i if 

jzJi 

equals 1; if äj = 0, item i is not included. For the sake of notational brevity 

denotes the set of items not contained in the aggregated bid. 
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A linear program following the idea of variable elimination/aggregation, that is, which 
solely uses the losing bids J0 and the aggregated bid, is provided in (5). 

max bjXj + b- z (5a) 
j€Jo 

s.t. ^ ciijXj + äiZ < 1 V i E / (5b) 
jeJo 

Xj >0 VjE Jo (5c) 

z > 0 (5d) 

The objective function (5a) counts the contribution of the variables contained in J0 and 
of the variable z associated with the aggregated bid. Constraint (5b) assures that item 
i E I is at most once contained in a winning bündle. Finally, (5c) and (5d) define the 
decision variables to be nonnegative. 

Apparently, in terms of the optimal Solution (x^) in general we have positive slack in 
some of the constraints (5b). If we consider the constraints associated with the items 
i 6 I< separately, we get the linear program (6). 

max bjXj + b- z (6a) 
jeJo 

s.t. ^2 aijxj + äiZ <1 Vi E I\Ic (6b) 
jeJo 

üijXj = 0 Vi E /< (6c) 
jeJ0 

Xj >0 Vj E Jo (6d) 

z > 0 (6e) 

Finally, if we replace the inequality (6b) through an equality we get the linear program 
(7). 

max ^2 bjXj + b- z (7a) 
j'eJo 

s.t. ^2 aijx3 +äiZ =1 Vi E / \ /< (7b) 
j£j0 

y] üijXj = 0 Vi E /< (7c) 
j€«/o 
z,>0 V;eJo (7d) 

z>0 (7e) 

Note that while in model (6) only the dual variables associated with equation (6c) are 
unrestricted in sign this is the case in model (7) for all the dual variables. 

The linear program (5) has first been proposed by Drexl and J0rnsten [8]. There it has 
been shown by means of a small instance that aggregation might pay-off in order to get 
linear prices. 

In section 6 we will show be means of a computational study how the models (5) to 
(7) behave in terms of integrality of optimal solutions and dual degeneracy. Before we 
illustrate the idea using an example. 
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5 Illustrative instance 

An example with 8 items and 20 bids taken from the combinatorial auction test suite 
(CATS; see [13]) illustrates the models presented above. The bid prices (bj) and the 
coefficient matrix (a^) of this instance are provided in Table 1. 

Solution of integer program (1) 

XQ — X g = X^g — 1 
OPV = 6,469 

Solution of linear program (2) 
x\ = x\=x\ = x*n = x*19 = 0.33, x*4=x*6 = 0.67 
OPV = 7,203 

Table 3: Results - Part 1 

Solution of linear program (5) 
x2^ = = 0.4, = X^ =-- X ^f = = Xy) = z^ = 0.2 
OPV = 7,093.6 

Solution of linear programs (6) and (7) 
z{6) = 1 z(7) = 1 

OPV = 6,469 

Table 4: Results - Part 2 

Table 3 detailles the results of the Solution of the integer program (1) and of the linear 
programming relaxation (2) of this instance. Variables not given explicitely have value 
0. OPV abbreviates optimal objective function value. 

If we apply the variable elimination/column aggregation technique described above we 
get the modified instance shown in Table 2, where column j — 21 corresponds to the 
aggregated bid. 

Table 4 provides the results of the Solution of the aggregate models (5), (6) and (7) for 
the instance; a superscript refers to each of the models. As can be seen model (5) does 
not have an integral Solution which is the case both for model (6) and for model (7). 

One set of dual prices associated with the integer Solution of model (6) is 

(u\6)) = (2,014; 420; 693; 81; 2,838; 0; 2,560; 701) 

white one set of prices of model (7) is 

047)) = (0; 2,446; 693; 2,806; 3,707; -177; 0; 701). 

The first price vector contains one dual variable with value 0 while the second contains 
two. Contrary to this particular Observation the computational results presented below 
will show that dual degeneracy of model (7) in general is a bit less than that of model 
(6). Of course, the dual Solution provided depends on the particular solver used (in our 
case Cplex). 
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3 12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

bi 693 4,924 81 420 2,791 761 2,806 858 2,763 4,040 3,876 5,852 3,147 2,279 5,158 1,598 4,798 701 4,850 2,788 

CL\j 1 1 1 1 1 1 1 1 1 1 
°2j 1 1 1 1 1 1 1 1 1 

^3 j 1 1 1 1 1 1 1 1 1 
a4j 1 1 1 1 1 1 1 1 1 1 
a5j 1 1 1 1 1 1 1 

j 1 1 1 1 1 1 1 1 
a7j 1 1 1 1 1 1 1 1 
a8j 1 1 1 1 1 1 1 1 1 1 1 

j 1 2 3 4 5 7 9 10 11 12 13 14 15 16 17 18 20 21 

bj 693 4,924 81 420 2,791 2,806 2,763 4,040 3,876 5,852 3,147 2,279 5,158 1,598 4,798 701 2,788 6,469 

aij 1 1 1 111 1 1 1 1 
a2j 1 1 1 1 1 1 1 1 1 
a3j 1 1 1 1 1 1 1 1 1 
Q4j 1 1 1 1 1 1 1 1 1 1 
a5j 1 1 1 1 1 1 1 
a6j 1 1 1 1 1 1 1 1 
a7j 1 1 1 1 1 1 1 1 
aSj 1 1 1 1 1 1 1 1 1 1 1 



6 Computational results 

The purpose of the computational experiments is to show that the Solution of the Ag
gregate linear programs is "almost always" integral. The numerical results presented 
have been obtained for a set of randomly generated instances. We decided to use the 
well motivated and universally accepted combinatorial auction generator CATS (combi
natorial auction test suite; see [13]) which provides a set of distributions for modeling 
realistic bidding behavior. In particular, we have generated instances using the built-in 
distributions arbitrary, paths, regions, scheduling, and matching respectively. 

The models described earlier have been imlemented using the Cplex callable library 
(version 10.0.1; all parameters with default values) on an AMD Athlon(tm) XP 3000+ 
with 512 MB RAM and 2.1 Ghz clockpulse running under the operating system Linux. 

The results of the numerical experiments for the distribution types arbitrary, paths, 
regions, scheduling and matching are given in tables 5 to 9, respectively. Each table 
is structured as follows: Column 1 displays the number of items m.1 In column 2 the 
number of bids n = m- p with p € {2, 3,4,5} is given. For each combination of m and 
n we have generated 100 instances.2 The next eight columns provide for each of the 
four models (including the linear programming relaxation (2) of the set packing problem) 
first how often we observe on average the case that the Solution of the aggregate linear 
program is integral (displayed in column LP=IP). Second, the column #DV0(%) displays 
the average number of dual variables equal to "0" in percent for the cases where LP=IP 
in order to have an indication of the degree of dual degeneracy. The last row provides 
for each of the models considered the average number of cases where we had LP—IP 
and the average dual degeneracy. 

The results presented in tables 5 to 9 indicate the following: 

• For the distribution types arbitrary and regions the linear programming re
laxation (2) is integral rarely, if so in particular for smaller instances. For the 
distribution types paths, scheduling and matching solving the ordinary linear 
programming relaxation is a viable approach in many cases. 

• For the distribution type arbitrary the aggregate model (5) is only slightly better 
than model (2) in terms of having LP=IP. The same holds true for the distribution 
type scheduling (where model (2) did already a pretty good Job). For the 
distribution type regions the aggregate model (5) produces on average for every 
second instance an integral Solution. For the other two distribution types the 
aggregate model (5) produces an integral Solution in most cases. 

• If w e consider models (6) and (7) instead of model (5) the whole picture changes 
drastically, that is, both models produce almost always integer solutions. Model (6) 
is a bit weaker in this regard only for a few particular instances of the distribution 
types arbitrary and scheduling. 

1For the distribution type matching due to some reasons for m 6 {30,50,70,90} no instan ce can 
be generated at all. 

2Hence, overall we have 4 4 10 100 + 4-5-100 = 18,000 instances. 
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m n 
10 20 

30 
40 
50 

20 40 
60 
80 

100 

30 60 
90 

120 
150 

40 80 
120 
160 
200 

50 100 
150 
200 
250 

60 120 
180 
240 
300 

70 140 
210 
280 
350 

80 160 
240 
320 
400 

90 180 
270 
360 
450 

100 200 
300 
400 
500 

average 

model (2) model (5) model (6) model (7) 
LP—IP #DV0(%7~ LP=IP #DV0(%) LP=IP #DV0(%) LP=IP #DV0(%) 

60 59.4 65 62.6 100 66.0 100 60.6 
44 56.4 54 59.9 100 60.5 100 52.9 
47 55.5 59 58.2 100 55.2 100 49.9 
30 59.4 47 61.3 99 54.7 100 47.2 

20 58.7 24 60.2 100 71.9 100 68.5 
1 51.7 3 49.4 100 66.2 100 62.2 
5 55.6 12 58.7 100 62.4 100 56.8 
3 56.0 4 56.7 100 60.3 100 53.9 

0 — 1 60.0 100 72.4 100 71.1 

0 — 3 55.2 100 69.1 100 64.9 
0 — 0 - 100 64.4 100 59.2 

0 - 0 - 100 61.8 100 55.9 

0 __ 0 — 100 72.5 100 70.9 

0 — 0 — 100 69.8 100 66.9 

0 — 0 - 100 66.8 100 62.4 

0 - 0 - 100 65.3 100 59.3 

0 0 _ 100 73.1 100 71.3 

0 __ 0 — 100 69.9 100 66.6 

0 __ 0 - 100 67.7 100 62.6 

0 - 0 - 100 63.8 100 58.3 

0 0 _ 100 72.8 100 71.2 

0 _ 0 - 100 69.8 100 66.6 

0 _ 0 - 100 68.4 100 63.7 

0 - 0 - 100 65.2 100 59.2 

0 0 _ 100 73.0 100 71.6 

0 0 - 100 70.7 100 68.5 

0 0 •— 100 68.0 100 63.4 

0 0 — 100 64.5 100 58.7 

0 _ 0 — 100 73.5 100 72.0 

0 _ 0 — 100 70.2 100 68.1 

0 _ 0 — 100 68.5 100 63.5 

0 - 0 - 100 64.1 100 58.5 

0 0 — 100 73.6 100 72.3 

0 _ 0 - 100 70.4 100 68.1 

0 _ 0 - 100 67.9 100 63.7 

0 - 0 - 100 64.1 100 58.4 

0 0 — 100 73.5 100 71.9 

0 _ 0 - 100 70.2 100 68.2 

0 — 0 - 100 67.4 100 63.1 

0 - 0 - 100 63.9 100 57.8 

5.2 56.6 6.8 58.2 99.9 67.3 100.0 63.2 

Table 5: Distribution type arbitrary 
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model (2) model (5) model (6) model (7) 

m n LP=IP #DV0(%) LP=IP #DV0(%) LP=IP #DV0(%) LP=IP #DV0(%) 

10 20 96 63.4 99 76.7 100 75.2 100 69.7 

30 97 67.1 100 76.2 100 73.2 100 70.0 

40 100 73.8 100 80.2 100 74.9 100 72.3 

50 99 77.9 100 81.8 100 74.4 100 72.4 

20 40 95 50.7 100 69.0 100 64.6 100 62.6 

60 94 46.1 100 66.0 100 60.3 100 59.3 

80 96 51.0 100 65.2 100 56.2 100 58.3 

100 99 56.9 100 66.7 100 53.5 100 57.5 

30 60 89 55.0 100 72.1 100 66.8 100 66.1 

90 88 50.8 100 69.8 100 62.5 100 65.5 

120 93 52.6 100 69.1 100 59.2 100 64.3 

150 95 57.2 100 68.9 100 56.1 100 62.4 

40 80 84 57.9 100 74.5 100 68.4 100 68.9 

120 72 55.1 100 72.7 100 65.3 100 69.3 

160 81 57.8 100 72.0 100 62.4 100 69.6 

200 85 61.7 100 73.0 100 60.1 100 68.4 

50 100 68 60.2 100 76.4 100 70.5 100 71.8 

150 72 60.3 100 75.9 100 67.9 100 72.3 

200 69 60.2 100 75.1 100 65.4 100 73.4 

250 72 64.3 100 76.0 100 63.9 100 72.3 

60 120 70 62.6 100 77.6 100 71.7 100 73.0 

180 61 62.6 100 77.6 100 70.0 100 75.4 

240 60 63.6 100 77.2 100 67.1 100 74.4 

300 69 66.6 100 77.8 100 66.9 100 75.2 

70 140 60 64.8 100 79.8 100 72.5 100 74.9 

210 41 63.9 100 78.3 100 70.8 100 76.1 

280 44 65.8 100 78.4 100 69.2 100 77.2 

350 54 67.4 100 79.0 100 68.2 100 76.6 

80 160 41 66.7 100 79.8 100 73.6 100 75.7 

240 52 66.6 100 79.8 100 72.1 100 77.9 

320 43 68.4 100 80.2 100 70.7 100 79.2 

400 37 69.9 100 79.8 100 69.7 100 78.1 

90 180 42 67.7 100 80.9 100 73.8 100 76.9 

270 36 67.5 100 80.3 100 72.5 100 78.5 

360 28 69.2 100 80.6 100 71.5 100 79.0 

450 36 70.7 100 81.2 100 70.8 100 80.2 

100 200 41 68.6 100 81.0 100 75.2 100 77.4 

300 29 68.4 100 80.8 100 73.3 100 79.6 

400 22 69.3 100 80.8 100 72.7 100 79.7 

500 30 71.4 100 81.4 100 71.4 100 79.0 

average 66.0 63.0 99.9 76.2 100.0 68.1 100.0 72.3 

Table 6: Distribution type paths 
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model (2) model (5) model (6) model (7) 

m n LP=IP #DV0(%) LP=IP #DV0(%) LP=IP #DV0(%) |_P=IP #DV0(%) 

10 20 79 68.1 87 73.8 100 67.8 100 59.2 

30 73 67.8 89 73.4 100 64.4 100 54.8 

40 71 66.7 86 73.3 100 62.0 100 51.5 

50 79 68.5 92 74.6 100 59.4 100 52.2 

20 40 67 73.4 85 77.9 100 72.2 100 67.8 

60 64 69.4 93 75.4 100 71.2 100 64.9 

80 53 67.6 93 75.7 100 67.8 100 60.4 

100 47 67.1 94 75.5 100 63.6 100 55.3 

30 60 42 67.0 72 72.6 100 74.5 100 69.7 

90 27 65.2 82 70.5 100 69.2 100 64.0 

120 27 64.6 86 71.2 100 68.9 100 60.0 

150 17 64.2 91 72.1 100 66.5 100 56.3 

40 80 22 61.5 54 67.8 100 75.0 100 71.0 

120 14 61.8 53 66.4 100 69.6 100 63.6 

160 5 59.8 60 67.2 100 69.1 100 62.0 

200 9 60.4 69 68.0 100 64.1 100 55.9 

50 100 8 60.4 19 65.1 100 74.5 100 70.8 

150 2 67.5 17 60.7 100 70.9 100 65.0 

200 1 59.3 13 61.9 100 67.7 100 60.5 

250 3 55.9 22 63.0 100 63.3 100 56.2 

60 120 6 60.9 63 69.3 100 75.1 100 72.4 

180 1 62.6 79 66.9 100 71.1 100 67.6 

240 1 61.3 83 67.0 100 68.4 100 61.4 

300 1 65.2 91 68.1 100 63.2 100 56.1 

70 140 4 56.2 22 63.2 100 74.8 100 71.5 

210 0 __ 26 63.6 100 70.1 100 65.3 

280 0 __ 36 63.2 100 66.7 100 61.2 

350 0 - 52 63.3 100 63.7 100 57.1 

80 160 3 60.4 58 66.8 100 75.6 100 72.6 

240 0 __ 77 65.7 100 70.7 100 68.4 

320 0 89 67.0 100 66.4 100 63.4 

400 0 - 93 67.9 100 63.2 100 59.1 

90 180 1 56.8 15 62.4 100 74.8 100 71.4 

270 0 25 62.5 100 70.2 100 66.0 

360 0 34 61.7 100 66.6 100 61.8 

450 0 - 51 64.1 100 62.6 100 57.6 

100 200 0 1 58.3 100 74.8 100 71.6 

300 0 __ 3 57.9 100 70.8 100 66.0 

400 0 _ 2 62.0 100 65.6 100 59.5 

500 0 — 1 60.4 100 62.5 100 55.2 

average 18.1 63.7 56.4 67.2 100.0 68.5 100.0 62.7 

Table 7: Distribution type regions 
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model (2) model (5) model (6) model (7) 

m n LP=IP #DV0(%) LP=IP #DV0(%) LP=IP #DV0(%) LP=IP #DV0(%) 

10 20 83 65.3 86 66.9 100 70.4 100 59.6 

30 91 59.0 94 60.3 100 66.3 100 56.7 

40 88 57.0 91 58.5 100 62.5 100 52.4 

50 84 63.8 92 63.9 100 60.1 100 50.0 

20 40 84 71.2 88 75.3 100 75.1 100 54.5 

60 66 57.1 76 60.3 100 68.8 100 55.1 

80 49 43.5 66 46.6 100 65.1 100 55.6 

100 51 40.0 65 45.4 99 56.9 100 50.4 

30 60 88 85.9 89 86.3 100 74.5 100 57.4 

90 74 70.0 83 69.3 99 68.8 100 52.2 

120 51 53.1 67 54.1 99 58.7 99 53.0 

150 45 34.8 66 37.6 99 47.7 100 40.2 

40 80 97 91.9 97 91.9 100 73.4 100 52.6 

120 85 86.6 87 87.0 99 70.4 100 50.9 

160 72 77.2 78 75.8 100 62.9 100 48.3 

200 53 65.1 67 64.4 95 53.6 97 36.6 

50 100 100 93.3 100 93.3 100 73.9 100 54.0 

150 91 90.1 93 89.6 100 69.6 100 51.2 

200 87 81.5 93 81.9 100 66.9 100 49.4 

250 77 80.7 84 80.9 99 61.0 100 46.6 

60 120 98 94.6 98 94.6 100 71.0 100 48.6 

180 90 92.1 92 92.1 100 73.7 100 48.8 

240 86 89.5 89 89.2 98 68.7 99 49.3 

300 84 86.4 90 86.8 100 67.1 100 42.3 

70 140 99 95.2 99 95.4 100 72.9 100 55.9 

210 97 93.6 98 93.6 100 68.3 100 47.7 

280 93 91.6 97 91.3 100 70.4 100 42.9 

350 91 89.3 95 89.6 100 68.6 100 45.2 

80 160 100 95.8 100 95.9 100 70.1 100 53.4 

240 100 94.4 100 94.4 100 69.1 100 47.1 

320 98 92.0 99 92.3 100 69.4 100 47.6 

400 91 90.9 93 91.2 99 65.3 100 42.7 

90 180 99 96.3 99 96.3 100 71.2 100 44.7 

270 99 94.8 99 94.9 99 68.5 100 48.1 

360 97 93.3 99 93.3 100 71.5 100 49.7 

450 97 92.1 98 92.2 99 67.0 100 41.9 

100 200 100 96.7 100 96.7 100 72.2 100 48.0 

300 100 95.5 100 95.5 100 67.2 100 46.0 

400 98 94.3 98 94.4 100 70.0 100 46.3 

500 96 93.1 97 93.1 100 69.8 100 42.3 

average 85.7 80.7 90.0 81.3 99.6 67.5 99.8 49.1 

Table 8: Distribution type scheduling 
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m n 
model (2) 
LP=IP #DV0(%) 

model (5) 
|_P=IP #DV0(%) 

model (6) 
LP=IP #DV0(%) 

model (7) 
LP=IP #DV0(%) 

20 40 88 69.7 100 80.8 100 73.0 100 65.9 

60 94 73.8 100 83.1 100 71.0 100 65.3 

80 89 77.2 100 85.0 100 68.7 100 65.7 

100 90 79.6 99 86.5 100 68.0 100 68.3 

40 80 99 69.6 100 80.1 100 72.6 100 65.1 

120 94 73.0 100 818 100 69.8 100 66.3 

160 97 75.8 100 84.1 100 70.1 100 67.7 

200 99 77.7 100 85.9 100 67.6 100 67.7 

60 120 100 68.8 100 77.1 100 63.3 100 57.9 

180 92 58.3 100 71.1 100 63.0 100 55.2 

240 91 53.8 100 69.9 100 62.3 100 53.5 

300 81 54.0 100 69.3 100 61.5 100 52.8 

80 160 98 70.7 100 77.2 100 60.5 100 56.8 

240 93 54.6 100 67.4 100 60.5 100 54.1 

320 73 47.5 100 62.2 100 59.2 100 52.7 

400 69 45.5 100 61.7 100 58.4 100 51.7 

100 200 97 70.3 100 77.7 100 60.4 100 57.2 

300 89 56.4 100 69.4 100 60.1 100 53.9 

400 74 47.3 100 63.1 100 58.8 100 52.5 

500 58 44.3 100 59.9 100 56.8 100 52.2 

average 88.2 63.4 99.9 74.7 100.0 64.3 100.0 59.1 

Table 9: Distribution type matching 

# Comparing models (6) and (7) in terms of dual degeneracy the first interesting 
Observation is that dual degeneracy of model (7) is on average for all distribution 
typ es but paths smaller than that produced by model (6). At first glance this 
is surprising because dual solutions being feasible and optimal for (6) are feasible 
and optimal for (7) as well. But due to the fact that for model (7) all variables 
can take also negative values there is much greater variety in fixing dual variables 
so as to comply with the primal Solution and, hence, an entry of "0" appears less 

often. 

• On average integral solutions produced for the distribution type scheduling by 
means of model (7) show by far lower dual degeneracy than that of the intergral 
solutions produced by the other models, also for the other distribution types except 
paths. On the other hand dual degeneracy is rather high for the distribution type 
path, irrespective of the model which produced an integral Solution. 

Summarizing, our linear programming models yield optimal integer solutions for all but 
five instances of the distribution type scheduling and, hence, we have computationally 
proven the "almost always1 conjecture. 
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7 Discussion 

Iterative combinatorial auctions are predominant in e-business. An iterative format allows 
bidders to learn about their rivals' valuations through the bidding process, allowing them 
to adjust their own valuations. On the downside, iterative procedures open up space for 
Strategie and collusive behaviour. Furthermore, all of the pathologies from single-round 
formats get magnified in an iterative setting. Moreover, iterative formats have difficult 
design issues. 

In t he following we address some particular multi-round design issues arising of our linear 
pricing scheme: The aggregate linear pricing scheme prices out all losing bids almost 
always. Hence, for the agents with losing bids the prices can be used in the Standard 
way to determine how much they have to increase their bid in Order to be competitve. 
For the agents whose bids have been selected, i.e. the winning bids, the Situation is a bit 
more complicated, since some of the winning bids might have positive, others negative 
reduced cost using these prices. However, it is questionable whether this is a problematic 
because it gives new Information to the winning agents since a winning agent with a 
negative reduced cost knows that there must exist complementary agents with positive 
reduced cost that sum up to the same amount. It is assumed that winning agents pay 
as bid. In general this is not a good mechanism in iterative auctions. However, with 
the Information produced by the aggregate prices agents know that their win depends 
on complementary bids. This might reduce the potential for Strategie bidding. To 
investigate the incentive effects of using aggregate linear prices in an iterative auction is 
a research issue in its own right. 

Other design issues are discussed in Pekec and Rothkopf [19]; to mention a few: Dealing 
with the exposure problem and the expressiveness of the bidding language; the threshold 
problem and procedures for keeping the bidding moving; avoiding and resolving ties. 

8 Summary 

In th is paper we have presented a family of linear programming models for the set packing 
problem the Solution of which is "almost always" integral. Hence, in general dual prices 
for the set packing problem now are readily available. For the few more difficult instances 
we are going to develop non-linear pricing algorithms; see Drexl, J0rnsten and Knof [9], 

Recently, Dunford, Hoffmann, Menon, Suitana and Wilson [10] have shown that pseudo
dual, linear pricing algorithms produce non-monotonity between rounds, something that 
is expected to disturb bidders in iterative combinatorial auctions. The fact that now 
interpretable prices are available in most cases could help to avoid such effects. 
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