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Abstract 

Gerierally speaking in sports competition a number of teams play against each other 
over a period of time according to a certain scheme. The round robin sch eme is very 
populär in many t eam sports like soccer and basketball. In this paper we study several 
basic variants of round robin tournaments. Additionally, we examin e real world issues 
that have to be considered when constructing a sports league schedule. We consider 
constraints imposed by third parties such as security aspects and legal requirements. 
Moreover, we analyse constraints aiming at attractive and fair sports league schedules. 
Throughout this paper integer programming models are the means to formally define 
what the particular problem under consideration is all about. Moreover, the Standard 
solver Cplex is used in order to compute optimal solutions for small- to medium-size 
instances. Computational results indicate which particular constraint to relax in order 
to come up with acceptable schedules in r easonable time. 

Keywords: Round robin tour naments, integer programming models, real world con­
straints, computational results 

1 Introduction 

Round robin tournament (RRT) covers a huge variety of different problems arising in practica. 
The focus in this paper is on RRTs, where scheduling is temporaily constrained which means 
that a m inimum number of periods are given the matches have to be scheduled in. We consider 
a set T of n teams. If n is odd we can add a dummy team and, hence, we can assume, that 
n is even without loss of generality. 

In a r-RRT each team plays r times against each other, either at home or away. Each team 
has to play at least [|J times at home against each other team. Obviously, this implies that 
no team can play more than times at home and the resulting schedule is balanced with 
respect to the venues of the matches. Furthermore, a team i £ T has to play exactly once 
in each period and, hence, we have a set P of r(n — 1) periods altogether. For the sake of 
shortness periods are also called matchdays, abbreviated as MD, in t he following. 

In p articular we consider the special cases r = 1 and r — 2. Real world examplesfor both cases 
are: Single RRTs (r = 1) often are carried out in major sports events such as FIFA so ccer 
world cup before the play off rounds. Double RRTs (r = 2) are predominant in premium class 
soccer leagues. Illustrative examples for Single RRTs and double RRTs are given in tables 1 
and 2, respectively. 

period 1 2 3 4 5 
match 1 1-2 5-6 3-4 4-5 5-1 
match 2 5-3 1-4 2-5 3-1 4-2 
match 3 4-6 2-3 1-6 2-6 3-6 

Table 1: Single RRT for n — 6 

Models for sports league scheduling have been the topic of extensive research. A whole stream 
of papers is based on the analogy between sports league scheduling and edge coloring of 
complete graphs. Examples are de Werra [6, 7, 8, 9, 10], de Werra et al. [11], and Drexl and 
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period 1 2 3 4 5 6 7 8 9 10 
match 1 1-2 6-5 5-6 4-5 5-1 5-4 3-4 2-1 1-5 4-3 
match 2 5-3 4-1 1-4 3-1 4-2 1-3 2-5 3-5 2-4 5-2 
match 3 4-6 3-2 2-3 2-6 3-6 6-2 1-6 6-4 6-3 6-1 

Table 2: Double RRT for n = 6 

Knust [12]. Brucker and Knust [5] and Drexl a nd Knust [12] analyze the relationship between 
sports league scheduling and multi-mode resource constrained project scheduling. Bartsch [1], 
Bartsch et al. [2], and Schreuder [13, 14] examine particular formulations. 

The remainder of this paper is organized as follows. In section 2 we address structural properties 
of sports league schedules. Additionally, we provide integer programming models which will 
serve as the base for further constraints to be analyzed. Constraints proposed in section 4 
are given by the tournaments Organizers while those introduced in section 3 are influenced by 
outer league parties. The results of an extensive computational study are provided in section 
5 and, finally, section 6 contains a summary and an outlook to future work. 

2 Basic Models 

2.1 Single Round Robin Tournament 

Single RRTs are RRTs for the special case of r = 1 where each team j 6 T meets each other 
team j &T,j^ i, exactly once. Also each team i E T plays at each MD p € P exactly once. 
The cardinality of the set P is equal to n — 1. We associate "cost" c,jiP with each match of 
team i eT playing at home against team j E T, j ^ i, at MD p € P. Next, we introduce an 
integer program representing the goal of f inding the minimum cost single RRT. 

Single RRT-IP 
m^n ^, y ] y ^ cij,pxi,j,p (i) 

ieT jeT\{i} peP 

s.t. y ] (xi,j,p + xj,i,p) = 1 V i, j £ T,i < j (2) 
P€P 

X] (xij,p + xi,ij>) = 1 \fi&T,peP (3) 
jET\{i} 

E {0,1} (4) 

Binary variable XijiP is equal to 1 if an d only if t eam i plays at home against team j at MD 
p. The objective function (1) represents the goal of cost minimization. Constraint (2) assures 
that each team i meets each other team j in ex actly one out of the set P of MDs. Although 
we consider the venue of the match between i and j it does not matter at which venue it is 
carried out as far as feasibility is concerned. According to (3) each team i plays exactly once 
per period. Constraints (2) are called 1-factor constraints and constraints (3) are denoted 
all-different constraints in the literature; see for example Trick [15]. 
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The Single RRT-IP can be used to cower r -RRTs with mirrored rounds where r 6 N, r > 1, 
We say that a RRT s rounds are mirrored if a match of i against j at % s home is scheduied 
at MD p + n — 1 if and only if a match of i against j at j's home is scheduied at MD p with 
p < (r — 1 )(n — 1). Given a mirrored r-RRT with cost diip we can construct a Single RRT-IP 
by letting 

rsi ^ L§J 
°iJ,P = Ci.J.(P+2(r'-l)(n-l)) + Cj',i,(p-n+ l+2r'(n-l)) Vi, j G T, p < U - 1. 

r'—1 r'—l 

2.2 Multiple Round Robin Tournament 

In practice r-RRTs are not always restricted to mirrored rounds, a case which can be covered 
by the Single RRT-IP as outline above. These r-RRTs are studied in w hat follows. 

A round-based r-RRT consists of r(n — 1) MDs partitioned into r rounds where each round 
forms a Single RRT. The subset of periods round r' is arranged in is denoted by Pr> with 
|Pr/| = n — 1 in the following. A match between i against j is carried out at % s home in 
round r' < r if and only if t he corresponding match in round r' + 1 takes place at j's home. 
Given cost c^- for each match the minimum cost round-based multiple RRT is dis played in 
equations (5) to (9). 

Round-based multiple RRT-IP 

E E E (5) 
ier jeT\{i} r'<r p€Pri 

s.t. Y] (xi>j!P + xj<ijp) = 1 V i,j eT,i < j (6) 
pePi 

yi + xj,i,p) — 1 VieT,pePi (7) 
j€T\{i} 

^xiJ,p- 53 Hi,P = 0 Vr'<r,i,jeT (8) 
p€Pr, P€Pr' + l 
Xijj, e {0,1} Vi,j €T,i^ j,p e (Pi u P2) (9) 

Constraints (6) and (7) form a Single RRT in round 1. Equation (8) forces a single RRT in 
each round and requires the venue of a specific pair of teams i, j to alternate between the two 
opponents' stadiums. 

A general r-RRT covers a set P of r(n — 1) MDs and hosts r matches between i and j no less 
than jJJ of which are hold at each opponents venue. Given costs d(jp the integer program is 
provided in equations (10) to (14). 

Again, (10) aims at minimum cost. The number of matches between two teams i, j have to 
be equal to r due to (11). The number of those matches hold at i's home must not differ by 
more than 1 from the number of matches carried out at j's home according to (12). 

Structural properties of RRT problems are studied in Briskorn et al. [4], In particular it is 
proven that each of the models defined above belongs to the class of NP-hard optimization 
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Multiple RRT-IP 

i€T jeT\{i} peP 
(10) 

s.t. y ] (xi,j,p + xj,i,p) 
p€P 

= r Vi,; GT,%<; (11) 

y~~i xhj,p 
PEP 

> r 
.2. 

Vi,j €T,i<j (12) 

y y (xi,j,p "t" xj,i,p) 
j€T\{i} 

= 1 Vi£T,p£ P (13) 

Xi,j,P G {0,1} V i,j eT,i f j,p G P (14) 

Problems. In doin g so the case where the costs are restricted to {0,1} plays a dominant role. 
Subsequently we summarize some aspects of what the "cost" might cover. 

2.3 Objective Function Coefficients 

So far we used the abstract term "cost". In o rder to emphasize the practical relevance of the 
concept of cost minimization in this application domain we summarize some aspects of what 
the "cost" CijtP of real-world tournaments might cover: (i) Teams usually have preferences 
for playing at home at certain MDs, a fact which can easily be expressed through CijiP. (ii) 
Since a major objective of the Organizers of a tournament is t o maximize attendance we can 
represent the economic value of the estimated attendance by and tackle the maximization 
version. (iii) Often, a Stadium is o wned by s ome public agency and teams do have to pay a 
fee for each match taking place in that particular Stadium. This fee can be represented by 
Cjj,p. (iv) In te rms of more complex models the Single RRT might be used as a subproblem, 
e.g., within a Lagrangean relaxation or a column generation framework. Then, CijiP is used 
to cover dual Information also, (v) A special case of the Single R RT arises when the costs are 
restricted to {0,1}. Then CijiP — 1 denotes that team i cannot play team j in t eam i's home 
venue in period p, whereas CjJiP = 0 denotes that this is possible. What we are interested in 
is to determine whether a feasible schedule, that is, a zero-cost schedule, exists or not. 

In Briskorn et al. [4] the case when the costs are restricted to {0,1} is referred to as availability 
constrained single RRT, which is of relevance because of two reasons: (i) First, stadiums may 
not always be available (leading to CijtP = 1 for all j if te am i's home venue is not available 
in period p), or team % can, in so me period p, only play in st adiums not too far away from its 
home base. Moreover, if t eam i does not want to play away in period p then CjiiiP is set to 1 
for all j. (ii) Second and more important, the availability constrained single RRT serves as a 
means to formally State the complexity status of minimum cost RRT problems. 

3 Externally Given Constraints 

In this section, we consider several requirements of practical relevance usually given by o uter 
league parties. These constraints cannot be influenced by the league's Organizers. We represent 
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them by means of IP constraints. We choose the Single RRT-IP introduced in section 2 as 
structural core for what follows. This is justified by the fact that many professional soccer, ice 
hockey, and handball leagues compete according to mirrored double RRTs which is sh own to 
be solvable via Single RRT in sec tion 2. Consequently, we project requirements resulting from 
the second round of a mirrored double RRT to the unique round of single RRT. Furthermore, 
there are many mega events, e.g. soccer world cup, having several single RRTs followed by a 
play-off phase. However, adaptation to other RRTs presented in s ections 2 is straightforward. 

3.1 Forbidden Matches 

As outlined in section 1 matches are carried out in one of both teams' stadiums. Although 
a particular Stadium is associated to each team the Stadium might not be owned by the 
club. Often the corresponding city or some public agency is owner or co-owner of the venue. 
Hence, stadiums generally are used for hosting other events such as pop concerts, too. When 
scheduling a sports league we can not take Stadium availability for granted but have to take 
care of occupied stadiums. This means, we have to arrange a match at the opponent's venue 
for team i if i's Stadium is not available. The other way round, i has to play a t home in period 
p if i ts Stadium is not available in t he corresponding period of the second round in a mirrored 
double RRT. We introduce parameter iritjtP indicating whether a match (i,j,p) is possible 
(ftijp — 1) or not (7TijiP — 0) in period p and employ it in n(n — l)2 constraints according to 
(15). 

Hj.P < ni,j,r ViJ eT,iy£ j,pe P (15) 

Trivially, constraint (15) forces XijtP to be equal to 0 if match (i,j,p) is not possible. If i' s 
Stadium is not available in period p we set nitjtP = 0 for all j € T\ {%}. Consequently, if 
i's Stadium is not available in period p of the second round of a mirrored double RRT we set 
7Tj,i,p = 0 for all j eT\{i}. 

Furthermore, we can fix i's Stadium as the venue and p as the period where a match of team i 
at home against team j is carried out by setting 7ri:jly = 0 for all (i,j',p), (i,j,p'), (j",i,p), 
and (j,i,p") with j" 6 T, j' € T\{i}, p" € P, and p' € P\ {p}. Analogously, we c an force 
matches whose teams are supposed to be among the best ones to be carried out in a "later" 
period in o rder to create a thrilling finale phase of tournament. 

3.2 Regions' Capacity 

In real world leagues there are regions in which more than one team is l ocated. Consider, for 
instance, European professional soccer leagues where some capitals host more than one team. 
A prominent example is London where no less than 13 professional teams are located. Five of 
them played in the Premier League, England's first soccer league, in season 2005/2006. Even if 
those teams have a Stadium on their own the infrastructure of the region might be overloaded 
if too many teams play at home in period p. For example, traffic jams and overcrowded 
public transportation systems resulting from fans heading to the stadiums at the same time 
must be avoided. Furthermore, the capacity of security staff and of firemen needed in c ase of 
emergency is limited. 
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In order to model the limitation of the number of matches carried out in a specific region 
in each period we introduce the set R of regions with each R! e R being a subset of T. 
In most real world examples \R' fl R!'\ = 0 holds for all R',R" E R, R' ^ R". However, 
there is no formal need for R either to form a disjunctive or a complete partition of T. We 
associate a maximum number of matches CR< per period with each R! e R. Parameter CR> 
has to be customized for each region taking into account all individual aspects such as region's 
expansion, road network and railway system. 

Zü,, < Ca, v/f f (16) 
i€R' j€T\{i} 

< % v# f (17) 
ieR'j€T\{i} 

When scheduling a Single RRT only |ü|(n — 1) constraints according to (16) are employed. 
The number of matches in each region R! is forced to be no more than CR> in eac h period. In 
case of a mirrored double RRT we add constraint (17) in or der to limit the number of matches 
in region R' in period p of round 2 by lim iting the number of teams of region R' playing away 
in period p of the first round. Note that, obviously, CR> can not be set to a value less than 
^ for a mirrored double RRT since the left hand sides of restrictions (16) and (17) sum 

up to 

3.3 Highly Attended Matches 

Broadcasting stations grew more and more important for leagues and teams. This could be 
clearly observed when Leo Kirch, owner of german broadcasting Station "Premiere", suffered 
insolvency and as a result many german soccer clubs had a high budget deficit. 

A match's attendance depends among others on the two teams competing. Based on, e.g., 
the score in t he previous competition we can identify matches having high attractiveness for 
spectators and, hence, for broadcasting stations, too. Broadcasting stations are interested in 
presenting as many attractive matches as possible. If two matches are scheduied at the same 
time it is not possible to broadcast both of them. Therefore, the number of highly attended 
matches carried out in each period shall be kept below a c ertain threshold leading to a balanced 
distribution of attractive matches over all periods. 

We introduce parameter ai,j for all i,j e T,i ^ j, indicating whether a match (i,j,p) with 
p G P is attractive (a^- = 1) or not (a^ = 0). Obviously, in most cases = a^j holds. 
However, aitj > a,jti might make sense if i is a team having medium strength and j is a top 
level team. If j plays away it probably has an easy win but if t he match is carried out at i's 
venue it might be a close and exciting match. Furthermore, we employ the parameter amax as 
an upper bound for the number of attractive matches scheduied per period. The limitation is 
represented by n — 1 constraints (18). 

^ y ^ ^ — ® mai G P (^^) 
«6T j£T\{i} 
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4 Fairness Constraints 

In thi s section we examine constraints assuring some kind of fairness in RRTs. Such constraints 
are at the Organizers' disposal (and hence can be adopted, modified, or dropped). Again, the 
Single RRT-IP serves as starting point. 

4.1 Breaks 

4.1.1 Minimum Number of Breaks 

Team i is said to have a break in period p if i plays twice at home or away, respectively, 
in consecutive periods p — 1 and p. We distinguish between home-breaks and away-breaks 
according to the venue of both matches. The most prominent goal considering breaks is 
minimizing the number of occurence. In de Werra [6] the number of breaks is shown to 
be no less than n — 2. Note that P-2 denotes the set of periods excluding the first one. 
We represent the requirement of a minimum number of breaks by 2 n (n — 2) + 1 constraints 
employing n(n — 2) additional binary variables britP for all (i,p) G T x P-2. 

Xv (xhJ,p~i + xi,j,p) ~ britP <1 Vi G T,p G P -2 (19) 
j€T\{i} 

ixj,i,p-i + xj,i,p) ~ bri,P <1 Vi G T ,p G P -2 (20) 
jen« 

^2J2bri'P-n~2 (21) 
ieT PeP 

6n,„e{o,i} VieT.pEf^ (22) 

Constraints (19) and (20) force britP to be equal to 1 if te am i has a home-break or an away-
break in period p, respectively. Since we assure the minimum number of breaks by restriction 
(21) britP is equal to 1 if and only if i has a break in period p. 

Additionally, we consider a common requirement in r eal world leagues: no break must occur in 
the second period. The reason for this is that breaks are considered as some kind of disturbance 
in t he season's regularity. Disturbance shall be avoided at the season's beginning to guarantee 
a fair start. Breaks in t he second period can be eliminated by le tting bri:2 — 0 for each i G T . 

Note that a generation scheme is known for single RRTs having the minimum number of 
breaks, see de Werra [6]. However, single RRTs resulting from it are restricted to a specific 
class of RRTs (equivalent to a canonical oriented one-factorization) and, therefore, do not 
suffice if c ost minimization is required. 

4.1.2 One Break per Team 

Although minimizing the number of breaks is most populär it is reasonable to think about 
arranging exactly one break for each team for fairness reasons as proposed in de Werra [9]. 
This can be covered using 2n(n-2) distinct variables hbri:P and abri:P representing the 

7 



decision about a home-break and an away-break, respectively, of team i in period p G P -2 in 
n (n — 1) constraints. 

53 + xi,i,p) + hbri.p ~ abrhP VieT,pGP-2 (23) 
j€T\{i} 

53 + abrhp) Vi G T (24) 
p€P 

€{0,1} VieT,pe (25) 

ab-;,, E{0,1} (26) 

In order to illustrate constraint (23) we consider three cases. If te am i has a home-break in 
period p the term in brackets equals 0 and, therefore, hbri>p and abr^p are forced to 1 and 
0, respectively. If i has an away-break in period p the term in brackets sums up to 2 letting 
hbritP = 0 and abriiP = 1. If i has no break in period p, finally, hbriiP = abritP = 0 holds 
taking constraint (24) into account. Trivially, constraint (24) sets the number of breaks to 1 
for each team i G T. 

4.2 Opponents' Strengths 

Teams have different strengths, indicated for instance through the score obtained in the pre-
vious competition. Hence, two matches of team i G T might be distinctly exhaustive for i 
depending on the particular opponent. Assume that the teams are partitioned into a set of 
strength groups S. Each Single team is contained in ex actly one strength group S' E S. Thus 
S', S" C T, |S' n S"\ = 0, and U5'e5 S'= T with S', S" e S, S' ^ S", holds. For the sake 
of convenience we assume that |T| mod |5| = 0 and that |S"| = |S"'| for all S', S" G S. 
Furthermore, each strength group contains teams having indices + 1 to (k + 1) |̂ | for 
k e N0, k < |5|. 

In order to avoid a bürden of competition considered to be too high (and hence unfair) for 
some teams we claim that the matches of each team against teams of a specific strength group 
shall be distributed as even as possible over the tournament. In t he following we present four 
different ways to enforce some kind of fairness considering the idea of strength groups. 

An interesting question from a combinatorial point of view arises for each of these structures: 
for which numbers of strength groups |5| a given number of teams \T\ is able to carry out a 
Single RRT obeying one of the constraints concerning strength groups outlined in the following? 
This question is addressed in detail in Briskorn [3], 

4.2.1 Changing Strength Groups 

The most unpleasant case corresponds to two matches of team i G T in consecutive periods 
against teams belonging to the same strength group. See table 3 for an example considering 
team 1 in a league with 8 teams and 4 strength groups. Apparently, there is no change in the 
opponent's strength group between periods 3 and 4. 

We employ binary variables esci p to indicate the occurrence of such a case, that is, t eam i G T 
playing against teams of the same strength group in periods p— 1 and p. 
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period 1 2 3 4 5 6 7 
match 1-2 7-1 1-5 6-1 1-3 8-1 1-4 
opponent's group 1 4 3 3 2 4 2 

Table 3: Opponents' Strength Croups Not Changing 

y ] 1 1 "I" xi,j,p ~f" xj,i,p) (27) 

-es9p<i 

Z V% € T (28) 
p€P>2 

6(0,1} ViET,peP^ (29) 

Constraint (27) forces binary variable esci p to be equal to 1 if team i has two opponents of 
the same strength group in periods p — 1 and p. Inequality (28) assures that the number of 
violations of the changing strength group requirement is limited to a given parameter es^ax 

representing the maximum number of allowed occurrences. Table 4 represents a feasible 
timetable for i = 1 if we consider es°max = 0. Table 3 is feasible if and only if e scmax > 0 
holds. 

period 1 2 3 4 5 6 7 
match 3-1 1-2 4-1 5-1 1-7 6-1 1-8 
opponent's group 2 1 2 3 4 3 4 

Table 4: Opponents' Strength Croups Changing 

4.2.2 Balanced Strength Croups 

Obviously, the timetable given in t able 4 does not provide a perfect distribution of opponents' 
strength groups over the tournament. Only teams of groups 1 and 2 are opponents in periods 
1 to 3, opponents of groups 3 and 4 are restricted to periods 4 to 7. In or der to get a more 
balanced distribution we present a formulation claiming that the number of occurences of each 
group as opponent of i is restricted to 1 in a time window containing |5"| consecutive periods. 

min(p,|P|) 
YL E Vi €T,S' e S, (30) 

-|s|+.,:),esw. -«,^<1 peP*U%l{\P\+p") 

E «4Vier (31) 
p€P^lsl 

es^eNo (32) 



Constraint (30) sets es^p to the number by which the occurence of s trength group S' is h igher 
than 1 in periods p — |5| + 1 to p (the time window under consideration). Note that this 
affects es-p for more periods the closer the particular groups' appearances are. For instance 
consider tables 5 and 6. 

period 1 2 3 4 5 6 7 
match 3-1 1-5 7-1 2-1 1-8 6-1 1-4 
opponents group 2 3 4 1 4 3 2 

Table 5: Opponents' Strength Groups Not Balanced (Distance = 2) 

period 1 2 3 4 5 6 7 
match 3-1 1-5 7-1 2-1 1-4 8-1 1-6 
opponent's group 2 3 4 1 2 4 3 

Table 6: Opponents' Strength Groups Not Balanced (Distance = 3) 

In t able 5 opponent group 4 appears in periods 3 and 5. Both periods are taken into account 
in es' i 5 as well a s in e s- 6. In ta ble 6 the same group appears at periods 3 and 6 a f act which is 
taken into account only in es^6. Consequently, a closer appearance of the same group results 
in a higher value on the left hand side of (31) and, hence, is considered worse. 

Note that periods 1 and 2 as well as periods n—2 and n—1 are covered only by one time window 
of length |5|. In or der to recognize closer appearances in th ose periods, too, we establish es\p 

for 2 < p < |S| and artificial periods |P| < p < |P| + |5"| — 2. These time windows can not 
have length |5"| s ince they would reach beyond periods 1 and |P|, respectively. Instead, they 
are limited by t he first and the last period, respectively, which is f ormally represented in the 
limits of the first sum of restriction (30). Döing so we obtain a perfectly balanced distribution 
of opponents' strength groups when we set es^a2. = 0 in (31), see table 7. 

period 1 2 3 4 5 6 7 
match 3-1 1-5 7-1 2-1 1-4 6-1 1-8 
opponent's group 2 3 4 1 2 3 4 

Table 7: Opponents' Strength Groups Balanced 

4.2.3 Equally Unchanging Strength Groups 

Taking into account other constraints the formulation introduced in section 4.2.1 might turn 
out to be too restrictive. Therefore, we introduce a formulation allowing a number of violations 
of constraints (27) to (29). Due to fairness reasons the number of violations shall be identical 
for each team. We introduce integer variables es^pS, for all i G T,p G P -2,S" G S , counting 
the number of matches of i against teams of S' in periods p — 1 and p. Consequently, the 
value of variables es^pS, is restricted to the set {0,1,2}, see (37). Furthermore we employ 
binary variables ffpSi indicating if th ere is a violation of changing strength groups attributed 
to team i and strength group S' in periods p — 1 and p. 
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yi (xi,j,(p-i)+xj,i,{p~i) 

+xiJtP + xjiijP) - eslPiS, -0 Vi E T, p E P-2, S' e S (33) 

- /&S' <1 Vi E T,p E g' E g (34) 
es i,p,S> " - 2/,'p.g' >0 Vi E T,p E S' E g (35) 

E =//« ^ e T (36) 
Pep> 2 s'es 

GVi E T, p E f 2' E 2 (37) 

/,\P.S'G{0,1} ViET,pEP^,g'E5 (38) 

Equation (33) initializes es?p S,. Constraints (34) and (35) force flpS, to be equal to 1 if and 
only if i has two matches against teams of S' in periods p - 1 and p which is a violation of the 
changing strength group requirement. Constraint (36) sets the number of violations to the 
value of a given integer parameter fcfix for each team. Instead of this we can use jcfix as an 
integer variable. Then, the number of violations is n ot fixed a priori but is p art of the Solution 
of an instance. 

4.2.4 Equally Unbalanced Strength Groups 

In ana logy to section 4.2.3 we allow violations according to the balanced strength group concept 
introduced in section 4.2.2 in t he following. For the sake of convenience we introduce P' to 
cover all periods and artificial periods as outlined in sec tion 4.2.2: P' = P-2{|P| +p"}. 
Since each strength group shall appear exactly once in ea ch time window of length |5| we can 
measure violations by counting the number of groups not contained in a specific time window. 
Again, we employ variables es^pS, to count matches between i and teams of S' in the time 
window corresponding to p and variables ^ ™ to indicate violations. Violations occur as a 
strength group being multiply represented. Since a violation according to team i and period 
p d irectly correspond to a strength group not providing an opponent of i in the time window 
corresponding to p it is not possible to sum up the differences 

min(p,|P|) 
di,p,S' — y j y ] {xi,j,p' + ̂ j.i.p') — 1-

p'=max(p—|S|+1,0) j€S':j^i 

Note that differences diiPts> for all S' sum up to 0 for a team i E T and a period p E P since 
the number of matches for each time window is fixed to |6"|. Therefore, we count the number 
ditP of strength groups not appearing in a time window p — |5"| + 1 to p as an opponent of i 
as follows: 

di,p — 

min(p,|P|) 

S' E S : X Z Kj.P' + x3,i,p') = 0 

p'=max(p—ISI+1,0) jeS'- .jjti 
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min(p,|i5|) 

p'=max(p—|S|+1,1) jeS'j& 

+xi,i,p') - esi,p,S' =0 (39) 

>1 e e f, 5" 6 2 (40) 
esi,P,s> + \S\fi,P,s' VieT.pef.S'eS (41) 

151-2 
Vi ET (42) 

PeP>2 s'es k—l 

eNf' ViGT.per.g'eS (43) 

fi,p,S> €{0,1} ViET,p6f,3'ES' (44) 

Equation (39) sets es^ s, to the number of matches of team i eT against teams of strength 
group 5' in th e time window corresponding to period p. Constraints (40) and (41) force g, 
to be equal to 1 if and only if es bi<pS, = 0 holds. Note that J2s'es fi,p,s' = ^».P- Equation (42) 
assures that the number of violations are equal to fjix for each team. We have to consider 
that, obviously, in time windows corresponding to artificial periods as well as periods 1 to 
|5| — 1 there are strength groups missing. The time window corresponding to es^2S,, for 
example, can not contain more than two opponents and, therefore, strength groups. We take 
care of the number of this inherent lack of strength groups by adding Xli=72 & to the number 
of violations fjix. As mentioned in s ection 4.2.3 we can Substitute fjix by a n integer variable 
so the number of violations is not fixed but is forced to be identical for all teams. 

4.3 Teams' Preferences 

Often teams have preferences to play at home or away in specific periods. In real world 
sports leagues there are lots of reasons for that. There might be a major regional event so 
the team located in the region wants to play at home in order to attract more visitors. A 
prominent example is Bayern Munich preferring to play at home during the Octoberfest. The 
other way round teams might prefer to play away during major events in order to unload the 
infrastructure. Last but not least teams might prefer to play away due to construction works 
at the team's Stadium causing lowered seating capacity. 

In order to represent a team i's preference in period p we introduce the trivalent parameter 
pri)P. If te am i wants to play at home in period p we set prijP to 1, if i t wants to play away 
pTitP is set to —1; if te am i has no preference at all we have = 0. Obviously, we deserve a 
reasonable mechanism to handle teams having different numbers of preferences. Therefore, we 
let the number of possible preferences per team be unlimited but we construct sports league 
schedules obeying exactly the same number cp of preferences for each team. We employ the 
binary variable npiiP in order to indicate a neglected preference of team i in period p. 
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Pri,p X Xi>i,p-Pri,p X xj,i,p + 2nPi,p=\pri,p\ \/ieT,peP (45) 
j€T,j& jETJ^i 

nPi,p - max I X IPTi.pl -cp, 0 ) =0 Vi e T (46) 
peP VpeP / 

npi)Pe{0,l} Vi eT,peP (47) 

Equation (45) sets npiiP to 1 if and only if t eam i's preference in period p is neglected. In 
order to line (45) out in d etail we distinguish three cases. First, if tea m i has a preference to 
play at home in period p (pri)P = 1) the right hand side is equal to 1 and the first two terms 
of the left hand side sum up to 1 if tea m i plays at home in period p (priiP = —1, o therwise). 
Consequently, npitP — 1 if a nd only if team i's preference in period p is neglected. Second, 
if te am i has a preference to play away in period p {prifP = —1) the right hand side is equal 
to 1 and the first two terms of the left hand side sum up to 1 if te am i plays away in period 
P (Pri,P = —1, otherwise). Again, npiiP = 1 if an d only if t eam i's preference in period p is 
neglected. Third, if te am i has no preference in period p the right hand side equals 0 and the 
first two terms of the left hand side sum up to 0 no matter where i plays in period p. Hence, 
npitP = 0. Equation (46) forces the number of neglected preferences for each team i to be 
equal to the number of preferences given by i minus the number of preferences to be obeyed. 
Obviously, restriction (46) can be formulated as the number of neglected preferences for each 
team to be no more than the maximum expression in o rder to guarantee a certain number of 
obeyed preferences. 

5 Computational Study 

5.1 Generating Problem Instances 

In order to establish benchmarks for algorithms concerning various sports league scheduling 
Problems we propose an advanced instance generator covering all issues introduced in se ctions 
3 and 4. So far, the generator does not include further aspects such as, for example, travel 
distances. In the following we line out the specification of a problem instance in detail. Fur­
thermore, we define parameters enabling us to influence the problem instances' characteristics. 

Problem Size: The size of an instance is determined by the number n of teams. Recall that 
n must be even w.l.o.g. as shown in sec tion 1. 

Forbidden Matches: If th e set of possible matches is to be restricted according to section 
3.1 we need a parameter 7rijiP for each match indicating whether it is fo rbidden or not. We 
control the fraction of matches which are allowed by parameter Pn. Pv gives the probability 
for each match (i, j,p) to be possible (ITij,p = 1). When constructing an instance each %j,p 
is randomly chosen from {0,1} according to Pn. 

Stadium Availability: As described in section 3.1 Stadium unavailability can be seen as a 
set of forbidden matches. However, we decided to employ a d istinct parameter for guiding the 
number of times a S tadium is not available which is expected to have an impact on run times. 
Parameter P® gives the probability for a team i's Stadium to be available in a specific period 
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p. The availability of of the Stadium of each team in each period is chosen randomly from 
{0,1} according to Pf. 

Regions: If region s' capacities are considered we have to specify the set of regions R according 
to section 3.2. Each region is defined by bo th, the teams it contains and the maximum number 
of matches being allowed in this region per period, explicitly. 

Highly Attended Matches: In or der to study different constellations of attractive matches 
we employ two parameters in o rder to construct problem instances. First, Pa gives the proba-
bility for a match (i,j,p) to be attractive. Second, the maximum number of attractive matches 
per period amax must be given explicitly. Reasonably, values for amax are from {1,..., | — 1}. 
Parameter amax being equal to 0 does not allow any attractive match at all while amax being 
no less than | does not define any restriction at all since there are exactly | matches per 
period. When constructing the problem instance Ojj is r andomly chosen from {0,1} according 
to Pa. 

Breaks: If breaks are to be considered we distinguish four classes of instances. First, the 
overall goal is e ither to minimize the number of breaks or to arrange exactly one break per 
team. Second, we allow and forbid, respectively, breaks to occur in t he second period. Beside 
this choice there are no further parameters necessary. 

Opponents' Strengths: In orde r to consider opponents' strengths three parameters must be 
defined: the mode of consideration, the set of strength groups, and the number of violations. 
The mode of consideration can be chosen from "changing", "balanced", "equally unchanging", 
and "equally unbalanced". Following the concept outlined in s ection 4.2 the set of strength 
groups can be defined by specifying the number of strength groups. Additionally, the number 
of violations according to the changing strength groups and balanced strength groups has to 
be given explicitly. 

5.2 Computational Results 

This study was carried out employing Cplex 9.0 on a 3.8 GHz Pentium 4 personal Computer 
using 3 GBs of RAM. Cplex was executed with default parameter settings. We State average 
computation times for runs only which terminated, number of instances tested and the number 
of instances a Solution could be found for versus the number of problems having no Solution at 
all. Note that runs not leading to an optimal Solution or to the recognition of infeasibility have 
been aborted because of lack of memory. In wh at follows "i.", "s.f.", "n.s.", and "r.t." denote 
"number of instances", "number of instances solutions are found for", "number of solutions 
proven to be infeasible", and "average run times" in seconds (for the instances solved to 
optimality), respectively. 

5.2.1 Basic Problem 

First, we observe the run time behavior when solving the basic Single RRT problem without 
any additional restrictions. Results are provided in table 8. 

We clearly observe an explosion of run times as problem sizes grow. While run times for 
Problems with up to 12 teams are rarely worth mentioning they extremely raise for larger 
instances. Instances with 16 teams can be solved to optimality in 47 minutes on average but 
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n i. s.f. r.t. 
6 20 20 0.01 
8 20 20 0.05 

10 20 20 0.37 
12 20 20 2.03 
14 20 20 34.43 
16 20 20 2811.18 CO oo rH 1 74601.00 

Table 8: Computational results for basic Single RRT problem 

n 

Figure 1: Run time behavior for basic single RRT problem 

only one instance with 18 teams could be solved to optimality. This took more than 20.5 
hours. Cplex ran out of memory while solving the others. 

Figure 1 illustrates the exponential run time behavior. Note that the logarithm ln(i) of run 
time t is shown. The function progresses almost linearly. The last section is drawn as dashed 
line since there was only one instance indicating this run time. Nevertheless, this time fits into 
the linear scheme recognized for smaller instances. Those runs suffering from lack of memory 
were aborted after about 14 hours. 

5.2.2 Forbidden Matches 

As described in s ection 3.1 forbidden matches cut down Solution space since RRTs must not 
contain a forbidden match. This might lead to decreasing run times. On the other hand finding 
feasible solutions gets more difficult and cost oriented branching mechanisms might get stuck 
in infeasible paths more likely. Hence, we have two counterrotating effects influencing run 
times in c omparison to those presented in sec tion 5.2.1. In ord er to study the impact ofthose 
effects we tested' instances with 6 to 18 teams and probabilities for matches to be allowed 
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of Pv € {0.9,0.8,0.7,0.6,0.5}. Results are lined out in table 9. For each class of instances 
we give size, number of instances, number of instances solved to optimality, and number of 
infeasible instances, respectively. 

P* = 0.9 P* = =0.8 P,= =0.7 
n i./s.f./n.s. r.t. i./s.f./n.s. r.t. i./s.f./n.s. r.t. 
6 20/20/0 0.01 20/20/0 0.01 20/20/0 0.01 
8 20/20/0 0.05 20/20/0 0.03 20/20/0 0.03 

10 20/20/0 0.39 20/20/0 0.35 20/20/0 0.32 
12 20/20/0 1.84 20/20/0 2.30 20/20/0 1.80 
14 20/20/0 44.16 20/20/0 32.95 20/20/0 34.53 
16 20/20/0 2236.30 20/20/0 2252.25 20/20/0 2647.91 
18 3/0/0 3/1/0 18166.90 3/2/0 43820.15 

P,--=0.6 =0.5 
n i./s.f./n.s. r.t. i./s.f./n.s. r.t. 
6 20/19/1 0.01 20/17/3 0.01 
8 20/20/0 0.04 20/20/0 0.04 

10 20/20/0 0.42 20/20/0 0.40 
12 20/20/0 2.10 20/20/0 2.03 
14 20/20/0 41.41 20/20/0 30.15 
16 20/20/0 3898.66 20/20/0 3094.34 
18 3/1/0 27288.90 3/1/0 29698.80 

Table 9: Computational results for forbidden matches 

Up to 10 teams we observe almost equal run times for all Pn not different from those given 
for the basic problem. For larger instances run times do not provide a clear idea about the 
influence of the number of teams and probability Pn on run t imes. For example while Pn = 0.9 
leads to largest run times for instances having 14 teams it leads to the smallest run times for 
instances having 16 teams. Unfortunately, we can not observe any systematic correlation, here. 
However, characteristics of average run times' behavior for instances with forbidden matches 
do not severely differ from those presented for the basic problem shown in fi gure 1, therefore, 
we restrain to give them here explicitly. 

We emphasize that infeasibility of instances is rather odd even if 50% of matches are forbidden. 
Infeasibility was detected for only a few of the smallest of instances. 

5.2.3 Stadium Availability 

As outlined in section 3.1 we represent stadiums unavailability as forbidden matches. In 
addition to the results in section 5.2.2 we have a further look on run times when Stadium 
availability is considered because of the high relevance in real world RRTs. 

We create test instances having 6 to 18 teams and P£ £ {0.9,0.8,0.7}. Results are given in 
table 10. 

Trivially, probability of instances' infeasibility is higher if probability of Stadium availability is 
lower. This thought is confirmed by the fraction of infeasible instances of each problem class. 
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n i./s.f./n.s. r.t. i./s.f./n.s. r.t. i./s.f./n.s. r.t. 
6 10/10/0 0.01 10/10/0 0.01 10/8/2 0.01 
8 10/10/0 0.03 10/10/0 0.03 10/6/4 0.03 

10 10/10/0 0.43 10/9/1 0.36 10/5/5 0.17 
12 10/10/0 2.33 10/10/0 2.02 10/7/3 1.42 
14 10/10/0 31.31 10/10/0 27.48 10/9/1 9.71 
16 10/10/0 2100.76 10/9/1 1308.86 10/5/5 1085.94 
18 3/1/0 64987.30 3/2/0 29126.90 3/3/0 30339.27 

Table 10: Computational results for Stadium availability 

No instance having Pf — 0.9 is infeasible while for each problem size there are infeasible 
instances having Pf = 0.7. Comparing tables 9 and 10 we conclude that probability of in-
stance's infeasibility is clearly higher when considering Stadium availability instead of arbitrarily 
forbidden matches even if P f = Pv. 

By contrast decreasing probability of Stadium availability lowers run time requirements. This 
can be observed for n < 18. Note that we can think of the basic problem as a problem having 
Pf — 1 . Then, results from table 8 fit into this Observation since run times according to the 
basic problem are larger than those in table 10 for n > 12. For n = 18 run times may not 
be representative since we could only test very few instances. However, three out of three 
instances with Pf = 0.7 and n = 18 terminated. This fraction decreases with increasing Pf 
which may be an indicator for larger run time requirements. 

Furthermore, considering Stadium availability seems to lead to lower run times than general 
forbidden matches do. Note that instances with Pf can be considered as special cases of 
instances with Pf = Pf. However, run times for instances considering Stadium availability 
are significantly lower than for general forbidden matches for 12 < n < 18. Run times for 
smaller instances are almost equal. 

5.2.4 Highly Attended Matches 

When considering limitation of the number of highly attended matches per period we expect 
to experience the same two effects as lined out before: reduction of Solution space versus 
difficulty of finding feasible solutions. 

We created instances where each match has probability Pa — 0.2 to be attractive. We vary 
amax depending on the instances' sizes. Note that for n = 10 and Pa = 0.2 there can not be 
less than one attractive match per period on average. Therefore, we increase ßmax from 1 to 
2. 

Obviously, amax is differently restrictive for instances having 6 and 8 teams and having 10, 
12, 14, 16, and 18 teams, respectively. This leads to a distortion of run times. However, run 
times in table 11 are comparable to those of the basic problem in t able 8. We clearly observe 
larger run times when considering highly a ttended matches. 
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n Pa Q>max i./s.f./n.s. r.t. 
6 0.2 1 10/10/0 0.01 
8 0.2 1 10/10/0 0.09 

10 0.2 2 10/10/0 0.29 
12 0.2 2 10/10/0 2.78 
14 0.2 2 10/10/0 96.90 
16 0.2 2 10/10/0 16925.70 
18 0.2 2 3/0/0 — 

Table 11: Computational results for highly attended matches 

5.2.5 Regions' Capacity 

As outlined in section 3.2 we can think of a huge amount of constellations taking regions into 
account. For a given size of instances n there can be various numbers of regions, various sizes 
of regions, and various assignments of teams to regions (which can influence run times due to 
the different costs). 

We exemplarily create three classes R2, R3, and i?4 of instances. In each class we have a 
given num 
by CR > = 

Der of regions of similar size. The number of matches in a specific region is l imited 
|ß'l + 1. Since CR> > 

and R4 is quite restrictive. 

!£l 
2 must hold (see section 3.2) the limitation in R2, R3, 

In i?2 there are two disjoint regions of size | — 1 and | + 1, respectively. In R 3 we have three 
disjoint regions having minimum size of |_|J. n mod 3 teams have size |_|J + 1. In R4 there 
are four disjoint regions having minimum size of [|J. n mod 4 teams have size [=J + 1. 

n \R'\ CR' i./s.f. r.t. \R'\ CR' i./s.f. r.t. 
6 2/4 2/3 10/10 0.01 2/2/2 2/2/2 10/10 0.01 
8 3/5 2/3 10/10 0.09 2/3/3 2/2/2 10/10 0.08 

10 4/6 3/4 10/10 0.40 3/3/4 2/2/3 10/10 0.83 
12 5/7 3/4 10/10 3.65 4/4/4 3/3/3 10/10 4.82 
14 6/8 4/5 10/10 81.35 4/5/5 3/3/3 10/10 345.28 
16 7/9 4/5 10/10 4080.78 5/5/6 3/3/4 10/5 32663.66 
18 8/10 5/6 3/0 6/6/6 4/4/4 3/0 — 

n \R'\ CR> i./s.f. r.t. 
6 1/1/2/2 1/1/2/2 10/10 0.02 
8 2/2/2/2 2/2/2/2 10/10 0.03 

10 2/2/3/3 2/2/2/2 10/10 0.83 
12 3/3/3/3 2/2/2/2 10/10 16.21 
14 3/3/4/4 2/2/3/3 10/10 546.06 
16 4/4/4/4 3/3/3/3 10/10 20775.20 
18 4/4/5/5 3/3/3/3 3/0 

Table 12: Computational results for regions 
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Each Single class of problem instances proofed to be feasible. Almost all instances could 
be solved to optimality. Each instance having 18 teams could not be solved to optimality. 
However, for those instances not solved to optimality feasible solutions were found. 

With res pect to the run times we can conclude that mostly a larger number of regions means 
higher run times. We observe exceptions from this rule for instances having 16 teams and 
3 and 4 regions, respectively. A possible explanation for this effect is that limitation for the 
number of matches in a specific region is much more restrictive in those instances having 3 
regions. For example for instances having 16 teams and 3 regions the number of matches 
per region is restricted to about 0.62 times the number of teams in a region on average. 
This rate amounts to 0.75 for instances having 16 teams and 4 regions and is, therefore, less 
restrictive. Furthermore, this effect elucidates why only half of the instances having 16 teams 
and 3 regions could be solved to optimality. 

In com parison with the basic problem we can conclude that run times clearly rise when regions 
capacities are considered. 

5.2.6 Breaks 

We study problems incorporating requirements considering breaks as introduced in sect ion 4.1. 
In detail we solve problems requiring a minimum number of breaks (allowing and forbidding 
breaks in the second period) and having exactly one break per team. Run times are lined out 
in t able 13. 

n min no min no, not 2nd one b. per team 

6 0.23 0.21 0.25 
8 26.79 26.63 38.44 

10 — — 

Table 13: Computational results for breaks 

Clearly, allowing and forbidding breaks in t he second period has no impact on run times when 
a minimum number of breaks is required. For n = 10 Cplex aborted due to lack of memory 
after about 15 hours of run time (in most cases without even a Single f easible Solution). This, 
first of all, shows the enormous increase of run times for solving these problems to optimality. 
Second, it gives an idea of the difficulty to find feasible solutions when cost oriented branching 
is employed instead of the Standard generation scheme mentioned in se ction 4.1. 

Run times for instances requiring exactly one break per team are even higher. Again, we can 
not solve instances with more than n = 8 teams. Since problems having n = 6 teams and 
forbidding breaks in the second period have no feasible Solution at all we refuse to line out 
results according to the missing instance class. 

5.2.7 Opponents' Strengths 

In s ection 4.2 four variants to consider a team's opponents' strengths in order to establish 
fairness are proposed. We tested instances having up to n = 18 teams for all variants. The 
number of strength groups is set to 2 and ^, respectively. 
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For "changing" and "balanced" instances are fully specified by parameters given above. For 
"equally unchanging" and "equally unbalanced" we additionaliy set the number of violations 
to 1, which means each team must violate the opponent strength constraint exactly once. 

n 
|S| = 2 |S| = % 

n i./s.f./n.s. r.t. i./s.f./n.s. r.t. 
6 10/0/10 — 10/0/10 — 
8 10/10/0 0.02 10/10/0 0.34 

10 10/0/10 — 10/10/0 4.59 
12 10/10/0 0.18 10/10/0 233.64 
14 10/0/10 — 10/10/0 11559.40 
16 10/10/0 10.33 3/0/0 — 
18 10/0/10 — — — 

Table 14: Computational results for changing opponents' strength 

In tables 14 to 17 results for all classes of instances are provided. Referring to the question 
posed in sec tion 4.2 we can identify problem classes considering changing opponents' strength 
being infeasible due to values of n and |5| according to table 14. For n < 18, (n — 2) 
mod 4 = 0, and |.9| = 2 we observe infeasibility. We conjecture this to be true for n > 18. 
Furthermore, n = 6 and |5| = 3 leads to infeasibility as well 

Run times for feasible instances having |S| = 2 are significantly lower than for basic ones 
of corresponding size n. To the contrary run times are significantly higher for |5"| = | in 
comparison to both, the basic instance and instance with "changing" opponent strength and 
|5| = 2. Consequently, instances having 16 teams and more can not be solved to optimality. 

n 
|2|=2 

n i./s.f./n.s. r.t. i./s.f./n.s. r.t. 
6 10/0/10 — 10/0/10 
8 10/10/0 0.03 10/10/0 0.03 

10 10/0/10 — 10/0/10 — 
12 10/10/0 0.61 10/10/0 0.50 
14 10/0/10 — 10/0/10 — 
16 10/10/0 10.09 10/0/10 9.26 
18 10/0/10 — 10/0/10 — 

Table 15: Computational results for balanced opponents' strength 

Inspecting table 15 again we identify problem classes being infeasible. Note that balanced 
opponents' strength structure is a special case of changing opponents' strength structure. 
Therefore, it is s traightforward that n and |5| is infeasible according to balanced opponent's 
strength if n and |5| is infeasible according to changing opponent's strength. However, we 
find some instance classes being feasible according to changing opponent's strength but being 
infeasible according to balanced opponent's strength: For n < 18, (n — 2) mod 4 = 0, and 
|5| = | we observe infeasibility. Again, we conjecture this be valid for n > 18. 

Run times according to both, |5"| = 2 and |5| = are significantly lower than for the basic 
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problem. Run times for |S| - | are slightly lower than those for jS| = 2 which is in c ontrast 
to the relation observed for changing opponents' strength. 

n 
151 = 2 |S| = S 

n i./s.f./n.s. r.t. i./s.f./n.s. r.t. 
6 10/0/10 — 10/0/10 — 
8 10/10/0 0.76 10/10/0 8.26 

10 10/0/10 — 10/10/0 3116.31 
12 10/10/0 195.01 3/0/0 — 
14 3/0/0 — — — 

Table 16: Computational results for equally unchanging opponents' strength 

Run times according to equally unchanging opponents' strength are given in table 16. Here 
we observe remarkably higher run times compared with changing opponents' strength given 
in table 14. The reason for this might be the larger number of binary variables necessary 
to represent the equally unchanging opponents' strength. Furthermore, integer variables not 
restricted to binary values are incorporated. As far as table 16 provides insights into this 
topic exactly the same classes of problem instances seem to be infeasible as are for changing 
opponents' strength. 

Finally, run times according to equally unbalanced opponents' strength are given in table 17. 
Run times are clearly higher than for balanced opponents' strength and equally unchanging 

n 
|S| = 2 \s\ = l 

n i./s.f./n.s. r.t. i./s.f./n.s. r.t. 

6 10/0/10 — 10/0/10 — 
8 10/10/0 0.63 10/10/0 2.40 

10 10/0/10 — 10/0/10 
12 10/10/0 639.20 10/10/0 17290.30 
14 3/0/0 3/0/0 — 

Table 17: Computational results for equally unbalanced opponents' strength 

opponents' strength given in t ables 15 and 16, respectively. Again, results give only an slight 
idea of classes of instances being infeasible. However, as it was the case for changing and 
equally unchanging opponents' strength there seems to be no difference according to problems 
feasibility between balanced and equally unbalanced opponents strength. 

5.2.8 Teams' Preferences 

We consider six classes of instances according to section 4.3. teams specify 1-2, 1-3, and 2-4 
preferences, and exactly or at least 1, 1, and 2 preferences, respectively, have to be considered. 
Obviously, one can think of more preferences if the number of teams (and, therefore, the 
number of periods) is larger. For the sake of comparability we refuse to do so. Results are 
given in table 18. 
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n 
1-2, exactly 1 1-3, exactly 1 2-4, exactly 2 

n i./s.f./n.s. r.t. i./s.f./n.s. r.t. i./s.f./n.s. r.t. 
6 10/10/0 0.01 10/10/0 0.02 10/10/0 0.02 
8 10/10/0 0.09 10/10/0 0.14 10/10/0 0.20 

10 10/10/0 0.50 10/10/0 0.86 10/10/0 1.20 
12 10/10/0 3.14 10/10/0 4.01 10/10/0 5.84 
14 10/10/0 66.05 10/10/0 157.36 10/10/0 359.98 
16 10/10/0 6192.64 10/10/0 12223.80 10/10/0 21002.60 
18 3/1/0 156683.00 3/0/0 — 3/0/0 — 

n 
1-2, at least 1 1-3, at least 1 2-4, at least 2 

n i./s.f./n.s. r.t. i./s.f./n.s. r.t. i./s.f./n.s. r.t. 
6 10/10/0 0.01 10/10/0 0.02 10/10/0 0.01 
8 10/10/0 0.05 10/10/0 0.06 10/10/0 0.09 

10 10/10/0 0.39 10/10/0 0.48 10/10/0 0.66 
12 10/10/0 2.81 10/10/0 3.05 10/10/0 2.90 
14 10/10/0 90.45 10/10/0 67.22 10/10/0 53.91 
16 10/10/0 3596.75 10/10/0 2841.99 10/10/0 13205.00 
18 3/0/0 — 3/0/0 — 3/0/0 

Table 18: Computational results for teams' preferences 

For each single problem class and size we can conclude that run times are significantly higher 
than for the basic problem having identical size. Furthermore, run times for each problem 
class considering a given exact number of preferences to be granted are higher than for the 
corresponding class considering a given minimum number of preferences to be granted. This 
effect might result from the difficulty to find feasible solutions. Obviously, the set of solutions 
having an exact number p' of granted preferences per team is a subset of the set of solutions 
having p' as a minimum number of granted preferences. 

As we can see increasing the number of preferences and increasing the number of preferences 
to be granted leads to higher run times if an exact number of preferences to be fulfilled is 
given. Again, the reason for this probably is the difficulty to find feasible solutions: increasing 
number of preferences leads to a rising number of preferences which must be neglected. This 
effect does not come into play if we consider a minimum number of preferences to be fulfilled. 
Instead, by in creasing the number of preferences there is more freedom to choose the number 
of preferences to be fulfilled. Therefore, there is a tendency that run times are lower if 1 to 3 
preferences are given in comparison with 1 to 2 preferences. 

6 Summary and Outlook 

In this paper we pick up several prominent real world requirements in the context of RRT 
scheduling. Furthermore, we substantiate requirements related to fairness which mostly have 
been proposed in abstract terms in literature so far. We formally define the requirements by 
the means of IP modelling techniques. 
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Moreover, we studied the run time behavior resulting of the optimization models using Cplex. 
We observe exponential run time behavior for nearly all variations of the minimum cost Single 
RRT problem. Therefore, run times are exorbitant as soon as problem sizes grow relevant for 
real world problems except. We detect two exceptions from this rule: If we consider changing 
opponents' strength groups (as far as is small) and balanced opponents' strength groups, 
respectively, run time remains manageable. Hence, these variants might serve as basis for 
real world problems (mostly n < 20) although the corresponding optimization problems are 
NP-hard as shown in [ 3]. 

In t his paper we have studied many variants of RRTs having relevance for real world leagues. 
Nevertheless, there are further variants and modelling techniques to be considered. For exam­
ple, the type of variables employed in th is paper is rather straightforward. There are alternatives 
which might lead to better LP-relaxations and, therefore, to a smaller amount of CPU time 
required. 
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