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Abstract 

A single round robin tournament (RRT) consists of a set T of n teams (n even) 
and a set P of n - 1 periods. The teams have to be scheduied such that each team 
plays exactly o nce against each other team and such that each team plays exactly once 
per period. In order to establish fairness among teams we consider a partition of teams 
into strength groups. Then, the goal is to avoid a team playing against extremely weak 
or extremely strong teams in co nsecutive periods. We propose two concepts ensuring 
different degrees of fairne ss. One question arising here is whe ther a Single RRT exists 
for a given number of t eams n and a given partition of the set of t eams into strength 
groups or not. In this paper we examine this question. Furthermore, we analyse the 
computational complexity of cost minimization problems in the presense of strength 
group requirements. 

Keywords: Round robin tournaments, fairness, partition of tea ms, strength groups 

1 Introduction 

A s ingle round robin tournament (RRT) based on a set T (|T| — n , n even) of teams is a 
schedule of matches where a match is a competition between two teams such that 

- each team i £ T plays against each other team j 6 T, j ^ i, exactly once and such 
that 

- each team plays exactly once per period. 

This structure results in a set P (|F| = n — 1) of periods and can be arranged for each even 
number of teams. In a ddition to other issues fairness according to the strength of opponents 
played by a specific team in consecutive periods is one of the major requirements in real world 
sports leagues as outlined in [2 ]. As proposed in [ 1] we consider the set S of strength groups 
as a partition S = {So, • • •, i} of T. We restrict ourselves to the case that all strength 
groups having identical size, hence |5ä| = s 6 {0,..., |S| — 1}. Without lost of generality 

we let Ss = + k \ k € ^0,. — 1 ^ ^ for each s £ {0, ...,1s1) — 1}. 
In the following we introduce two concepts establishing different degrees of fairness among 
all teams. Obviously, a team playing twice against teams of the same strength group in two 
consecutive periods is unfair, especially when both are extremely strong or extremely weak, 
respectively. Therefore, we propose a class of single RRTs being fair according to the strength 
of opponents in c onsecutive periods. 

Definition 1. A single RRT where no team plays against teams of the same strength group 
in two consecutive periods is called group-changing. 

Although group-changing single RRTs guarantee a certain degree of fairness we can reasonably 
strengthen it. Note that in group-changing single RRTs with |5| = 4 it is possible that a 
specific team exclusively plays against teams of two strength groups (in alternating order) in 
the first half of the tournament and against teams of the remaining two strength groups (in 
alternating order) in t he second half. This can be prevented by considering the class of single 
RRTs defined in t he following. 

Definition 2. A single RRT where no team plays more than once against teams ofthe same 
strength group within |5| consecutive periods is called group-balanced. 
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A natural question arising here is whether a group-changing Single RRT and a group-balanced 
Single RRT, respectively, can be arranged for each n and |S| where is i nteger. 
Establishing fairness in RRTs has been the topic of several papers. Strength groups are 
introduced in [1] and [2], Carry-over effects among teams are considered in [12] and [13]. 
Another major concern when considering fairness relates to breaks - a topic which has been 
analysed in [7], [9], [10], and [11], for example. 
Before we address in s ections 3 and 4 the question given above we introduce several aspects 
concerning 1-factorization of complete graphs in s ection 2. In s ection 5 we introduce two op-
timization problems and proof their complexity, respectively. Finally, s ome conclusive remarks 
and an outlook to further research are given in s ection 6. 

2 Factorizations 

First, for the sake of convenience we introduce some short notations. We denote the strength 
group of team i by S (i). The opponent of team i in period p is denoted by Oj iP. 
Next, we focus on graph theoretical aspects. A 1-factor of a graph G := (V,E) is a set of 
edges E' C E such that each node i 6 V is incident to exactly one e E E'. A 1 -factorization 
of G is a partition of its edges into 1-factors. For details we refer the reader to [14], for 
example. 
A near-1-factor of G is a set of edges E' C E such that each node but one is incident to 
exactly one e E E'. This node is incident to no e € E'. A near-l-factorization of G is a 
partition of its edges into near-1-factors. 
An ordered 1-factorization is a 1-factorization where the 1-factors are ordered. An ordered 
near-l-factorization is defined analogously. 

2.1 Ordered 1-Factorization of Kk,k 

The complete balanced bipartite graph Kkik, k E N, is well known to have an ordered 1-
factorization Fbip, as proposed for example in [5]. Let Vo := {i | i E {0,..., k — 1}} and 
Vi := {i | iE {k,... ,2k — 1}} be the partition of V under consideration. Then 

= where 

F^p = {[m,k + (m + i)mod k] \ m E {0,..., k — 1}} Vi 6 {0,..., fc — 1} . 

Here, [i,j], i,j 6 V, denotes the edge incident to i and j. Note that differences i j and 
j — i are not equal to 1 in F^p unless k ~ 1. An example with k — 4 is given in fig ure 1. We 
emphasize that in F?p no edge [m,k + n], m,n < |, and no edge [m,k + n], m,n > |, is 

contained if k is even. 

2.2 Ordered 1-Factorizations of Kk 

It is well known that there is an ordered 1-factorization consisting of k — 1 1-factors of each 
Kk, k even. The most populär ordered 1-factorization of Kk, k even, might be the canonical 
one as defined in the following (all indices being taken modulo k — 1): 

where 

Fi = [l,k — 1] U / [i — 77i, i + m] | 77%. E il,..., — — •)[ ^ ̂  ^ {0; • • • ,k — 2}. 
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pbip rQ Fl 
tbip 

Figure 1: 1-Factorization of K4,4 

If not stated otherwise we refer to F° as 1-factorization of Kk in t he remainder. Note that we 
can force Fk_x to contain each edge of form [i, 2 + 1], i even, by a simple mapping o : V —> V. 
An Illustration of the canonical 1-factorization of K6 is given in f igure 2. 

FZ Fr FZ n 

Figure 2: 1-Factorization of K6 

If k is odd we can construct a near-l-factorization consisting of k near-l-factors by simply 
letting the node matched with k in Fc of Kk+i be unmatched in ea ch Ff, l E {0,..., k — 1}. 

nFc 

nF? 

{aF£,... ,aF^_i} , w here 

|[Z — m, Z + m] j m € |l, 
k 

— 1 > > V Z 6 {0,,k — 1}. 

Since Fc and nFc are so called started induced 1-factorization and near-l-factorization, re-
spectively, each number in {1,... ,2k — 2} can be found as a difference i — j or j — i of an 
edge [i,j] in each 1-factor in F c. Next, we introduce 1-factorizations and near-l-factorizations 
for Kk, k > 3, where not each of those numbers is contained in e ach 1-factor. 
The binary 1-factorization as proposed in [5] can be constructed for K2k if k even. Let 
V0 '•= | i € {0,..., k — 1}} and V\ := {i j i € {k,..., 2k — 1}} be a partition of V. Then, 
1-factor Ff'e is set to F}"p as introduced in s ection 2.1 for each l £ {0,..., k — 1}. Hence, 
each edge between V0 and V\ is contained in 1-factors F^e to F^. Additionally, 1-factors 
F%'e to F%£_2 are constructed as 1-factorization according to Vo and Vi, respectively. Then, 
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1-factorization Fb'e is defined as follows: 

where 

Fi'e — {[m,k + (m + Z)mod k\ | m G {0,..., k — 1}} VJ G {0,...,k - 1} , 

Fi'e = [l,k-l](j[l + k,2k-l]U 
{[(i — k — m)mod k,(l — k + m)mod k\ \ m G {0,..., k — 1}} U 
{[k + (l — k — m)mod k,k + (l — k + m)mod k] | m G {0,..., k — 1}} 

Vi G {k,..., 2k — 2} . 

Since F^e is b ased on FQP none of the differences i — j o r j — i is equal to 1 if k > 1. Figure 
3 represents the binary 1-factorization of K8. 

0 

1 

2 

3 

0 

1 

pb,e pb,e pb,e 
5 r6 

Figure 3: Binary 1-Factorization of Ks 

We extend the binary 1-factorization of K2k to the case where k is odd. 1-factors FQ'° to 
F%'°2 are defined as 1-factors FQP to F^2 according to V0 and Vi. 1-factors F^'°t to F%£_2 

are composed of near-l-factors according to Vo a nd Vi. Note that one node of both, Vo an d 
Vi, is unmatched. Those nodes are matched and form the edges between Vo and Vi missing 
from to 

= {^,...,^2}. where 

rf'0 = {[m) k + {m + £)mod k] \ m G {0,..., k — 1}} VI G {0,..., k — 2} 

Fi'0 = [l — k + l,k + (l — &)mod k] U 
{[(l — k + 1 — m)mod k, (l — k + 1 + m)mod k] | m G {0,..., k — 1}} U 
{[k + (l — k — m)mod k,k + (l — k + m)mod k] | m G {0,..., k — 1}} 

V l € {k — 1,... ,2k — 2} 

Theorem 1. Fb'° is a 1 -factorization of K2k, k odd. 
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Proof. We show that i7]6'0 is a 1-factor for each l E {0,..., 2k — 2} and that Fb,° is a partition 
of edges of K2k-
Obviously, F^'° is a 1-factor for l e {0,..., k — 2} since it is defined by 1-factors of a partition 
of the set of edges. Ff'°, iE {0,..., k — 2}, is defined by near-l-factors of both, Vo a nd V\. 
Therefore all but nodes l — k + 1 and k + (l — k)mod(k — 1) are matched implicitly. These 
two nodes are matched explicitly. 
Each edge between Vo and Vi but \m,(m — 1) mod (k — 1) ], m E {0, ...,k — 1} 
is contained exactly once in 1-factors Ft'°, l E {0,..., k — 2}. Edges [m,(m — 1) 
mod (k — 1)], m £ {0,..., k — 1} are added to both near-l-factors of VQ and Vi in F^'0, 
l E {k — 1 ,... ,2k — 2} . Edges within V0 and Vi, respectively, are contained exactly once in 
Fi'°, l E {k — 1,...,2k — 2} by definition of near-l-factors. 

• 

Again, FQ° is based on F^p and, therefore, none of the differences i — j or j — i is equal to 
1 if k > 1. Figure 4 illustrates the binary 1-factorization with k = 5. 

0 

Fo,b F o.b ?o,b 

9 1 9 1 

Fl 
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We can construct near-l-factorizations according to Fb'e and Fb<° of KAk-i and Kik+i by 
simply adding a dummy node, constructing the corresponding 1-factorization of K4k and 
Kik+2, and considering each node matched with the dummy node as unmatched. Again, no 
difference in the first near-l-factor is equal to 1 if and only if k > 3. 

2.3 Ordered Symmetrie 2-Factorization of 2K2k+i 

A 2-factor of a graph G := (V, E) is a set of edges E' C E such that each node i e V is 
incident to exactly two e, e' G E', e ^ e'. A 2-factorization of G is a partition of its edges 
into 2-factors (see [8] for details). An ordered 2-factorization is a 2-factorization having its 
2-factors ordered. 
The complete multi-graph 2Kn is a graph on |V| = n nodes having exactly two edges incident 
with each pair of edges. Kn, n odd, is known to have a 2-factorization as outlined in [4]. 
Hence, 2Kn, n odd, has one, as well. An oriented 2-factorization is a 2-factorization where 
each edge e E E is giv en an orientation. 

Definition 3. A Symmetrie 2-factorization of2Kk, k odd, is an oriented 2-factorization where 
edges corresponding to the same pair of nodes are given opposite orientations. 

We can construct a Symmetrie 2-factorization of 2Kk, k odd, as follows: 

2 F = {2 F0,..., 2 Fk-2} , where 

2 Fi = {[m,(m+ 1 + Z)mod k]0}V/ g |o, ~ 1 j g {0,... ,k — 1} , 

2Fl+k=i = {[(m + 1 + /)mod k, m]x} VZ e |o,..., € {0,..., k — 1} . 

Here, [i,j]k, i, j E V, k 6 {0,1}, identifies the edge between nodes i and j and having index 
k being oriented i —> j . 

Theorem 2. 2F is a Symmetrie 2-factorization of2Kk, k odd. 

Proof. We show that |2Fn 2Fk-\ % j forms a 2-factorization of G' := 

Obviously, each node has degree equal to two in 2-factor 2Fi unless 

k 
(m + 1 + Z)mod k — (m — l — l )mod k o l = — — 1 

holds which is impossible since k is odd and l is integer. 
For each pair i,j e V, i < j, either [i,j}0 is contained in 2FJ-_j_1 if j - i < ^ or \j,i}0 is 
contained in 2FA_1_y_i) if j — i > 

Consequently, ^2Fk-i 2Fh-o^ forms a 2-factorization of G' := 
(K {\hj}i I h j € V, i < j}). Obviously, both edges incident to a pair i,j G V have 
opposite orientations by def inition. 

• 

Note that each pair i,j € V being matched in 2F0 has difference |i — j \ = 1 as can be 
observed in figure 5. Furthermore, note that each node i is incident to exactly one ingoing 
edge [j, i]k, j GV,k € {0,1}, and to exactly one outgoing edge [i,j]k, j EV,k € {0,1}, in 
each 2-factor 2Fi, l S {0,..., k — 2}. Hence, each 2-factor consists of oriented circles. 
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Figure 5: Symmetrie 2-factorization of 2K$ 

3 Group-Balanced Single Round Robin Tournaments 

In the following we provide several characteristics of group-balanced Single RRTs. Additionally, 
we give a necessary and sufficient condition for n and |S| such that a corresponding group-
balanced single RRT exists. 

Observation 1. The set of group-balanced Single RRTs having n teams and |5| strength 
groups is a subset of the set of group-changing single RRTs having n teams and |6"| strength 
groups. Hence, given n and |6"| such that there is no corresponding group-changing single 
RRT then there neither is a corresponding group-balanced single RRT. 

Theorem 3. In a group-balanced single RRT the difference of two periods pj and % where 
team i plays against teams j and j with S(j) = S(f), respectively, is \pj — Pj\ = k\S\ with 
0 - k < ft\-

Proof. Suppose team i plays against teams j and j with S(j) = S(j) in periods Pj and pj 
with pj < pj and pj — pj = A;|5j + l with 0 < k < and 0 < / < I^J. Then one of the 
following two cases holds. 

I There are less than — 1 matches of team i against teams of SSQ) in periods p 
with pj < p < pj. Then, there is a t least one pair (p,p) with Pj < p < p < P] suc h 
that team i plays against teams in S(j) in p and p, team i does not play against any 
team in S(j) in any period p' with p<p'<p, and p — p > |5|. Hence, team i plays 
more than once against teams of at least one strength group S*, k ^ S(j), in periods 
p" with p + 1 < p" < p + |S| < p. 

II There are more than — 1 matches of team i against teams of SSQ^ in periods p 
with pj < p < pj. Then, there is at least one pair (p,p) with Pj < p < p < pj such 
that team i plays against teams in S (j) in p and p and p — p < |6"|. 

• 

Theorem 4. In a group-balanced single RRT each match of team i against team j with 
S(i) = S(j) is carried out in periodp = kjSj — 1, 0 < k < j^. 
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Proof. According to theorem 3 the first period p containing a match between team i and 
an other team of strength group Ss(i) determines the set of periods containing all matches 
between team i and teams of strength group Ss(i). lf p — 1 then one of the following 
two cases holds. 

I If p > |5| - 1 then team i plays twice against a team of at least one strength group Sk, 
k ^ S(i), in periods p' with 0 < p' < |5| — 1. 

II If p < |S| - 1 then team i plays twice against a team of at least one strength group Sk, 
k ^ S(i), in periods p' with n - \S\ — 1 < p' < n — 2. 

• 

Theorem 5. There is no group-balanced single RRT where is odd. 

Proof. According to theorem 4 in periods p with p = — 1, 0 < k < only matches 
between teams i and j with S(i) ^ S(j) are carried out. If the number of teams in a 
strength group Sk is odd then no more than ifi — 1 teams can play in those periods. 

• 

Theorem 6. In a group-balanced single RRT S(oi}P) — S( oJtP) holds for each period p and 
for each pair of teams (i,j) with S(i) ~ S(j). 

Proof. Assume there are teams i and j, S(i) = S(j), and a period p such that S(oiiP) ^ 
S(ojiP). Then, exactly one team of Ss(oitP) plays against team j in period p' with max(0,p — 
l^l + 1) < p' < P + max(0, |5| — p — 1) , p' ^ p, according to theorem 3. Obviously, 
jp' — p\ < IS'I and, hence, |p" — p\ ^ Ä|6"|, k € N, holds for each period p" where j plays 
against a team of Ss(0itP) according to theorem 3. Then, oi<p plays against i and j in two 
periods having distance not equal to A:|5| for any k E N which is infeasible since S(i) = S(j). 

O 

Definition 4. A pairing of strength groups is a mapping er : S —> S such that cr(a(Sk)) = Sk 

for eac h k e {0,..., |5| - 1}. 

Theorem 7. There is no group-balanced single RRT where |5| is odd. 

Proof. According to theorem 6 there is a pairing crp in ea ch period p such that for two strength 
groups Sk,Si, <7p{Sk) = S[, each team in Sk plays against a team in Si in p. According to 

theorem 4 crp(Sk) ^ Sk in period p ^ A|5| — 1, k € |l,..., ̂  — l|. Then, no op exists if 

|5| is odd. 
• 

In order to construct a single RRT we have to arrange matches between each pair of teams 
and, therefore, pairings of strength groups such that each strength group is paired with each 
other strength group. This can be represented as 1-factorization of the complete graph K\s\ 
where nodes correspond to strength groups and a 1-factor corresponds to a pairing. 
Two strength groups Sk,Si, k ^ l, have to be paired exactly the amount of times needed 
to let each team of Sk play against each team of 5;. This number is known to be 
from the cardinality of a 1-factorization of the complete bipartite graph ifintroduced 

in section 2.1. Furthermore, up(Si) — 5 ; for each p = k\S\ — 1, k <E jl,..., ̂  — lj, 
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iE {0,..., |S| - 1} (since only matches between teams of identical strength groups can be 
carried out in these periods). 
Accordirigly, the construction scheme proposed in the following has two stages. In the first 
stage a schedule is constructed which prescribes teams of a specific strength Sk group to play 
against teams of an other strength group Si, l ^ k, or to play against teams of the same 
strength group Sk, respectively. The result is exemplarily represented in t able 1. 

k 0 1 2 3 4 5 6 7 

00 

9 10 1 11 1 12 13 14 

0 3 2 1 0 3 2 1 0 3 2 1 1 0 1 3 2 1 
1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 
2 1 0 3 2 1 0 3 2 1 0 3 2 1 0 3 
3 0 1 2 3 0 1 2 3 o 1 2 1 3 | 0 1 2 

Table 1: Strength group schedule for n — 16, |S| = 4 

Line 2 to 5 correspond to strength groups SQ to S3. For each strength group Sk, k E {0,..., 3}, 
the strength group Si, l E {0,... ,3}, being paired with Sk in period p is given in the Iine 
corresponding to Sk and in the column corresponding to p. In the second stage we arrange 
matches between teams according to 1-factorizations introduced in s ection 2. 

Theorem 8. A group-balanced single RRT can be arranged if and only /YjSj is even and ^ 
is even. 

Proof. We show that a group-balanced single RRT can be arranged if |S | is even and if ß j is 
even. Then, using theorems 5 and 7 theorem 8 follows. 
We first construct the pairing crp of strength groups for each period p. According to theorem 

4 &p(Si) = Si for each p — & |S| — 1, k E jl,..., — 1^, iE {0,..., JS) — 1}. 

Additionally, we arrange a 1-factorization of K\s\ in periods 0 to JS| — 2. This is possible if 
and only if |S| is even. Naturally, the 1-factorization structure means each strength group 
being paired with each other strength group exactly once and each strength group being 
contained in each pairing op, p E {0,..., |S| — 2} exactly once. Next, we set crp+fc|S| := crp, 

for each p E {0,..., [S| — 2} and k E jl,..., jfj — 1 j. Hence, we obtain exactly pairings 
containing a specific pair Sk, Si, k ^ l, of s trength groups. 
For each pair of strength groups Sk,Si, k ^ l, we arrange all matches between teams of Sk 

and Si in a way representable as a 1-factorization of as shown in s ection 2.1. 
Next, we arrange all group inherent matches in periods p with p = Äjä"! — 1 ,k E 
jl, • • •; — l| by arranging 1-factorization for the complete graph Kcorresponding to 

each strength group Sk where nodes represent teams of Sk- This is possible if and only if ßj-
is even (see section 2.2 for details). 
The result is a group-balanced single RRT since: 

- Each strength group is contained in each crp, p E {0, —2}. Due to the 1-
factorization structure according to teams of one strength group and teams of two 
paired strength groups, respectively, each team plays exactly once per period. 

- Each pair of teams meets exactly once due to the 1-factorization structure according to 
teams of one strength groups and teams of two paired strength groups, respectively. 
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- No team plays more than once against teams of the same strength group within |5| 

consecutive periods since identical pairings have distance of k\S|, k E jo, • • • > jfj — l| 
periods by construction. 

• 

4 Group-Changing Single Round Robin Tournaments 

In th is section we d iscuss cases of n and |5| where no group-balanced single RRTs exists and 
give construction schemes for other cases. We adopt the basic idea of pairings of strength 
groups from section 3. However, we have to extend the concept in order to allow fairness 
according to strength groups for more than those cases given in s ection 3. 

Observation 2. If |5| is even and -ßj is even a group-changing single RRT can be arranged 
by construction proposed for group-balanced single RRTs. 

Observation 3. If \S\ — 2 a group-changing single RRT is group-balanced as well and, 
therefore, no group-changing single RRT with |5| = 2 exists if | is odd. 

Theorem 9. lf\S\ = 4k + 3, k E N+, a group-changing single RRT can be arranged. 

Proof. We construct a group-changing single RRT given n and |5| — 4A: + 3, k £ N+. First, 
we construct a binary near-l-factorization according to Fb'e as introduced in section 2.2 on 
the complete graph K\S\. 
We Interpret each near-l-factor as a pairing a of strength groups (see definition 4). Addition-
ally, we define cr(Sfc) = Sk if the node not matched in the near-l-factor corresponds to 
The pairing resulting from F,6'6 is assigned to period p = ft|5| — 1 — l, k € jl,..., ̂  — 1 j. 

Thus, periods 0 to n — |5| — 1 are assigned to pairings containing each pair (Si,Sj) exactly 
jfj — 1 times. 
We arrange matches in periods 0 to n — |5| — 1 according to the pairing ap assigned to p, i.e. 
a match of i against j can not be carried out in period p if S(i) is not paired with S(j) in p. 
We arrange matches according to the 1-factorization of as given in s ection 2.1. Since 

we can arrange only & — 1 1-factors we leave Fbln out for each pair of s trength groups. 
I ' 2|S| 

Furthermore, each strength group is paired with itself exactly ^ — 1 times. Hence, we can 
arrange all matches of teams of the same strength group according to a 1-factorization of 
(see section 2.2). 
Finally, all matches contained in 1-factors FUn of KJTL. _ a_ corresponding to each pair of 2iSl (S|'|S| 
strength groups have to be arranged in periods n — |5"| t o n — 2. We construct a Symmetrie 
2-factorization of 2K\s\ according to section 2.3 and assign factor 2Fv to period n — |5| +p, 
p € {0,..., l^l — 2}. If [i, j]k is contained in 2-factor 2Fp, p e {0,..., |5| - 2}, we arrange 
matches between the first ^ teams of $ and the last ^ teams of Sj in period n — j5"| -fp. 
Note that ^ is even since is odd while n is even. Now, we have a single RRT with 
changing opponent strength: 

- Each team plays exactly once per period. For period p, p € {0,..., n — )5| — 1}, this 
is obvious due to the 1-factor strueture within pairs of strength groups. In periods p, 
p E {n — 151,..., n — 2}, each team plays exactly once since each 2-factor is composed 
of oriented circles (see section 2.3). Hence, for each strength group the outgoing arc 
Covers the first half of teams while the ingoing arc covers the second half. 
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- Each pair of teams meets exactly once. Obviously, no pair of teams plays twice in p eriods 
p, p < n - \S\ — 1, due to the 1-factorization structure between each pair of strength 
groups and within single strength groups, respectively. The 1-factors F^f between each 

pair of strength groups missing from periods 0 to n — |5| — 1 are exactly covered by 
both arcs between a pair of strength groups in 2K\s\-

- No team plays against teams of the same strength group in two consecutive periods. 
In each time window \p,p + |S| — 1], 0 < p < n — 2|S|, each team plays exactly 
once against each strength group due to repeating sequence of pairings. In periods p, 
p G {n — l^l,... ,n — 2}, each strength group is paired twice with each other strength 
group. However, corresponding arcs have opposite orientation and, hence, the set of 
teams involved in both pairs are disjoint. 

Therefore, in periods p, p G {n — |5|,... ,n — 2} each team plays exactly once against 
each other strength group and, hence, there is no violation of changing opponent strength 
in periods p and p + 1, p G {0,..., n — — 2} and p G { n — [Sj,..., n — 2}, respec
tively. 

Note that 1-factor FQ'6 chosen for p = n — |5 | — 1 does not contain any pair 
(Si,S(i+i) mod |s|) (see section 2.2) if |S| > 3. 2F0 chosen for period p — n ~ \S\ 
exclusively contains pairs of this form. Therefore, no team can play against the same 
strength group in periods n — |S| — 1 and n — |S |. 

• 

Theorem 10. lf\S| = Ak + 1, k G N + a group-changing single RRT can be arranged. 

Proof. The proof is analogous to the proof of theorem 9. The only difference is employing 
the binary 1-factorization of K2k, k odd, Fb,° given in section 2.2 instead of the binary 1-
factorization in ord er to establish pairings for periods 0 to n — |S| — 1. Each conclusion follows 
as above. 

• 

Observation 4. According to theorems 9 and 10 a group-changing single RRT can be arranged 
if I6"! > 3 and odd. 

Theorem 11. If ~ is odd and ]S'j > 2 a group-changing single RRT can be arranged. 

Proof. Given n and |S| > 2 with ^ odd we construct a group-changing single RRT. First, we 
construct an ordered 1-factorization of /sTj^j a nd associate 1-factors with pairings such that we 

obtain pairing als1_1 having Sk paired with Sk+1 for each k G ^21 \ l G jo,..., ̂  j j. Then 

we assign ap to periods p + -I-1 for k G jo,..., |fj - 2 j, p G {0,..., |Sj - 2}. 

Additionally, we assign ov to period p + - 1^ |5| + 1 for each p G jo,..., ̂  - 2 j and 

we assign oy to period p' + ^ - l) |S| for each p' G ,..., l^l - 2|. Hence, each 
pair of strength groups except those contained in <7|si_1 is arranged exactly ^ times. We 

can construct 1-factorization FUp according to section 2.1 for the teams contained in ea ch of 
those pairs of strength groups. Pairing is contained exactly J~J - 1 times. Therefore, 

we can arrange all 1-factors of FHp but F^ . Consequently, all matches between pairs of 
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strength groups are arranged except between teams i (i = S(i)j§j + k, k G jo,..., ̂  j) and 

3 Ü = ßi + Ü ~ l)mod j=j) with S(i) even. 

To the remaining periods p, p — k G jo,..., — l|, we assign the pairing having each 
strength group paired with itself. Since ^ is odd we can construct a near-l-factorization with 
1^1 1- factors for the set of teams in e ach strength group according to section 2.2. Naturally, in 
each strength group each team is not contained in a near-l-factor exactly once. Team i G Sk , 
k even, not contained in t he near-l-factor assigned to period p — IjSj, l G jo,..., ̂  — 1 j is 
arranged to play against team j G <5 fc+i not contained in the near-l-factor assigned to period 
p. Formally, we arrange 1-factors i^'0, / G {& — 1,..., 2k — 2}, according to section 2.2 for 
each pair (5m,5m+1), m even. 
This resuIts in a group-changing single RRT: 

- Each team plays exactly once per period. For period p, p ^ Ä|5|, k G jo,..., J^J - 1 j, 
this is obvious due to the 1-factor structure within pairs of strength groups. In periods 
p, p = Äj5|, k G jo,..., |̂ j — 1 j, each team but one per strength group plays exactly 
once due to the near-l-factor structure within each strength group. The team not playing 
against teams of the same strength group in periods p,p = Ä|5|, k G jo,..., ßj - 1 j, 

plays against each other. Since j5| is even (n even, ^ odd) each of them plays exactly 
once. 

- Each pair of teams meets exactly once. This is obvious for matches between teams 
i and j, S(i) < S(j), (S(i) odd V S (i) + 1 ^ S(j)), of different strength groups 
due to the 1-factorization structure between each pair of strength groups. Further-
more, matches between teams i and j, S(i) = S(j), are carried out exactly once 
due to the 1-factorization structure within strength groups. Matches of teams i and 
j (S(i) even A S(i) + 1 = S(j)) are composed of F^p, k ^ — 1, in periods 

P, P G | l G jo,..., ßj — 2 j j, and ^ arranged between pairs of un-

matched nodes in near-l-factors in periods p, p G j/|£| 11 G jo,..., ̂  — 1 j j. 

- No team plays against teams of the same strength group in two corisecutive periods. 
This is obvious for pairs Sk,Si, k < l, (k odd V k + 1 ^ Z) of strength groups since 
those are arranged in periods having distance no less than |5| — 1 by construction. 
|5| — 1 > 1 for |5"| > 2. Matches within pairs Sk,Si, k < l (k even A k + 1 = l), 
of strength groups are arranged in periods p G j^ + l\S\ \ l G jo,..., jfj — 2 j j U 

j/|i>| | l G jo,..., j^| — l|| = j/^ | / G jo,..., - 2 j j. Obviously, pairwise dis
tance is no less than 2 if jSI > 2. 

• 

Observation 5. By enumeration: lfn = 6 and = 3 no group-changing single RRT exists 
but if n G {12,18} and |5'| — 3 a group-changing single RRT can be arranged. 

We conjecture that a group-changing single RRT exists for |5| = 3 and each n = 6(k + 1), 
k G N+. 
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5 Complexity 

As outlined in [3] there are several applications for associating cost c^v with each match of 
team i at home against team j in period p. The minimum cost single RRT problem is defined 
as follows. 

Definition 5. Given a set T, |T| even, of teams, a set of periods P, |P| = |T| — 1, and cost 
Qjp associated with each match ofteam i eT at home against team j eT, j i, in period 
p e P, the minimum cost single RRT problem is to find the single RRT having the minimum 
sum of arranged matches cost. 

The minimum cost single RRT problem has been proven to be NP-hard independently in [6] 
and [3]. In the following we introduce two minimum cost problems corresponding to strength 
group requirements as introduced in s ection 1. 

Definition 6. Given a set T, |T| even, of teams, a set of periods P, \P\ = \T\ — 1, a number 
|S| of strength groups and cost CjiJiP associated with each match ofteam i e T at home 
against team j eT, j ^ i, in period p e P the group-balanced single RRT problem is to find 
the group-balanced single RRT having the minimum sum of arranged matches cost. 

Definition 7. Given a setT, \T\ even, of teams, a set of periods P, \P\ = | T\ — 1, a n umber 
1511 of strength groups and cost citjtP associated with each match of team i e T at home 
against team j eT, j ^ i in period p £ P the group-changing single RRT problem is to find 
the group-changing single RRT having the minimum sum of arranged matches cost. 

Theorem 12. The group-balanced single RRT problem is NP-hard even if |i>| is fixed. 

We proof theorem 12 by re duction from minimum cost single RRT problem. 

Proof. Given a minimum cost single RRT problem by a set of teams T", |T"| = n', a set of 
periods P', and cost i',j' e T',i' ^ j',p' € P', we construct a group-balanced single 
RRT problem with n teams and |5"| strength groups as follows. Let n = We follow the 
idea of pairings of strength groups in each period given in s ection 3. We set cost 

= | 2W = SÜ) = 0,p ^ E f 

[ 0 otherwise 

with M = YlveT' Hj'eT'j'fti' Ylj/eP' 
Obviously, a group-changing single RRT having cost less than M is provided by t he construc-
tion scheme given in t he proof of theorem 8. Each Solution having cost less than M provides 
a single RRT s of teams of S0 in periods p with p = Ä|5|, k € jl,..., — 11. 
Next, it can be easily seen that s is optimal for the original minimum cost single RRT problem 
by contradiction. If the re is a single RRT s' having less cost than s according to the minimum 
cost single RRT problem we can exchange s by s' in the group-balanced single RRT. Trivially, 
this leads to a group-balanced single RRT having less cost. 

• 

Theorem 13. The group-changing single RRT problem is NP-hard even if\S\ >3 is odd and 
fixed. 
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Again, we give a reduction from minimum cost single RRT problem. The idea is quite the 
same as for theorem 12. Hence, a sketch of the proof suffices. 

Proof. Given a minimum cost single RRT problem we construct a group-changing single RRT 
problem with n teams and |5| > 3, |5| odd, strength groups as follows. Let n = n'|5|. We 
follow the idea of pairings of strength groups by near-l-factorizations according to Fe<b and 
F°'b (depending on the number of strength groups |5|). 
We set cost 

M for 5(i) = 5(j) = 0,p f (p' + 1)|5| - l,p' <5 {0,..., - 2} , 

for 5(i) = 5(j) = 0,p = (p' + l)|5|-l,ye {o,...,j%-2}, CM,P' 
otherwise 

with M — Y^i'eT' Ylp'eP' 
Obviously, a group-balanced single RRT having cost less than M is provided by the construction 
scheme given in the proof of theorems 9 and 10, respectively. Each Solution having cost 
less than M provides a single RRT s of teams of SQ in periods p = (p' + 1)|5| — 1 with 

p' e jo,..., jfj - 2}. 
Obviously, s is optimal for the original minimum cost single RRT problem. 

• 

Theorem 14. The group-changing single RRT problem is NP-hard even if |5| is even and 
fixed. 

Again, we give a reduction from minimum cost single RRT problem. The idea is quite the 
same as for theorem 12. 

Proof. Given a minimum cost single RRT problem we construct a group-changing single RRT 
problem with n teams and |5|, |5| odd, strength groups as follows. Let n = n'\S\. We follow 
the idea of pairings of strength groups by 1-factorizations according to F°. 
We set cost 

M for o-p(5(i)) ^ 5(;), 

ci,j,p 
0 for crp{S(i)) = S(j),p ^ fc|S|,A; G jl,..., jfy - 1J 

0 for ^ l,p = A|5|, Ä e {l,..., - l} 

for 5(0 = S{j) = l,p = p'|5| 

with M = Yli>£T' Sp'gP' 
Obviously, a group-balanced single RRT having cost less than M is provided by the construction 
scheme given in t he proof of theorems 9 and 10, respectively. Note that each group-balanced 
single RRT is group-changing. Each single RRT which is group-changing but not group-
balanced has cost no less than M. Therefore, the optimal Solution to the group-changing 
single RRT problem provides a single RRT s of teams of So in periods p with p = &|5|, 

k e jl,..., - lj. 
Obviously, s is optimal for the original minimum cost single RRT problem. 

• 

Observation 6. According to theorems 13 and 14 the group-changing single RRT problem is 
NP-hard even if\S\ ^ 3 is fixed. 
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6 Conclusions and Outlook 

In this paper we pick up a common idea to achieve fairness among teams competing in a 
single RRT. Although strength groups have already been proposed in se veral works there is no 
answer to the question for which values of n and (Sj fair schedules can be constructed. We 
investigate two degrees of fairness: group-changing single RRTs and group-balanced single 
RRTs. 
We proof a necessary and sufficient condition for n and |£>| t o allow a group-balanced single 
RRT. Furthermore, we show how to decide for almost all cases whether a group-changing 
single RRT is possible or not. The remaining cases are n = 6k, k € N, and |£| = 3 and we 
strongly conjecture a group-changing RRT to be possible if a nd only if k > 1. 
In this paper we have analysed almost all cases covered by the considered structure. Nev-
ertheless, several generalizations and variations of the strength group concept might be of 
interest: 

- We assume all strength groups to have identical sizes. This assumption can be relaxed 
and arbitrary sizes can be considered. In fact, this make sense in terms of real world 
tournaments if th ere are both only a few excellent teams and few weak teams while the 
remaining teams can be considered middle level. 

- We suppose the number of teams to be even. Clearly, if n is odd not each team can 
play in each period. Moreover, if all strength groups have identical sizes |S| as well a s 
i§i have to odd. This case is not considered in the paper at hand. 

- If we consider RRTs having more than one round, double RRTs for example, the as
sumption that each team plays against a team of the same strength group in periods 

k\S\ — 1, k € jl,..., y|j — 1 j is no longer valid. 
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