
Briskorn, Dirk; Drexl, Andreas

Working Paper — Digitized Version

Scheduling sports leagues using branch- and price

Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel, No. 609

Provided in Cooperation with:
Christian-Albrechts-University of Kiel, Institute of Business Administration

Suggested Citation: Briskorn, Dirk; Drexl, Andreas (2006) : Scheduling sports leagues using branch-
and price, Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel, No. 609,
Universität Kiel, Institut für Betriebswirtschaftslehre, Kiel

This Version is available at:
https://hdl.handle.net/10419/147666

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/147666
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

Manuskripte

aus den

Instituten für Betriebswirtschaftslehre

der Universität Kiel

No. 609

Scheduling Sports Leagues Using Branch-And-Price

Dirk Briskorn, Andreas Drexl

October 2006

Dirk Briskorn, Andreas Drexl
Christian-Albrechts-Universität zu Kiel,

Institut für Betriebswirtschaftslehre,
Olshausenstr. 40, 24098 Kiel, Germany,

http://www. bwl.uni-kiel.de/bwlinstitute/Prod
briskorn @bwl.uni-kiel .de, andreas .drexl @ bwl. uni-kiel .de

http://www

Abstract

A Single roun d robin tournament can be described as a league of a set T of n teams
(n even) to be scheduled such that each team plays exactly once against each other
team and such that each team plays exactly once per period resulting in a set P of n — 1
periods. Matches are carried out at one of both opponents' stadiums. A tea m playing
twice at home or twice away in two consecutive periods is said to have a break in the
latter of both periods. There is a vast field of requests arising in real world problems.
For example, the number of breaks is to be minimized due to fairness reasons. It is
well known that at least n — 2 breaks must occur. We focus on schedules having the
minimum number of breaks. Costs corresponding to each possible match are given and
the objective is to minimize t he sum of arranged matches' cost. Then, sports league
scheduling can be seen as a hard combinatorial optimization problem. We develop a
branch & price approach in ord er to find o ptimal solutions.

Keywords: Sports league scheduling, round robin tournaments, break, branch&
price

1 Introduction

Round robin tournaments (RRT) covers a huge variety of different types of sports league
schedules arising in practica. The focus in this paper is on Single RRTs where scheduling is
temporally constrained which means that a minimum number of periods are given the matches
have to be scheduled in. We consider a set T of n teams. If n is odd we easily can add a
dummy team and, hence, we can assume, that n is even without loss of generality.
In a single RRT each team plays exactly once against each other team, either at home or away.
Furthermore, a team i £ T has to play exactly once in each period and, hence, we have a set
P of n — 1 periods altogether.
Note that special types of RRTs where a pair of teams meets more than once can be covered
by single RRTs as outlined in [5]. Such RRTs are called mirrored if they are divided into rounds
where each round forms a single RRT and, furthermore, team i plays at home against team j
in the p^ period of round r with r > 2 if a nd only if te am j plays at home against team i in
the p period of round r — 1. Hence, there are several real world examples of tournaments
we can consider by all what follows:

- Single RRTs often are carried out in major sports events such as FIFA soccer world cup
before the play off rounds start.

- Mirrored double RRTs (which can be covered by single RRT) are predominant in pro
fessional soccer leagues.

Illustrative examples for single RRTs and mirrored double RRTs are given in tables 1 and 2,
respectively. Here i-j denotes that team i plays at home against team j.
Since each match has to be carried out at one of the both opponents' venues breaks come
into play. We say team i has a break in period p if and only if i plays twice at home or away,
respectively, in periods p— 1 and p. For the sake of fairness among teams the most common
goal concerning breaks is to minimize the number of their occurences. It is well known from
[8] that the number of breaks can be no less than n — 2 in a single RRT. The single RRT
provided in table 1 has 4 breaks for 6 teams and, therefore, has a minimum number of breaks.

1

period 1 2 3 4 5
match 1 3-4 4-5 2-4 4-6 6-5
match 2 5-2 1-3 5-1 3-5 4-1
match 3 6-1 2-6 6-3 1-2 2-3

Table 1: Single RRT for n = 6

period 1 2 3 4 5 6 7 8 9 10
match 1 1-2 5-6 3-4 4-5 5-1 2-1 6-5 4-3 5-4 1-5
match 2 5-3 1-4 2-5 3-1 4-2 3-5 4-1 5-2 1-3 2-4
match 3 4-6 2-3 1-6 2-6 3-6 6-4 3-2 6-1 6-2 6-3

Table 2: Mirrored double RRT for n = 6

Models for sports league scheduling have been the topic of extensive research. A whole stream
of papers is based on the analogy between sports league scheduling and edge coloring of
complete graphs. Examples are [8], [9], [10], [11], [12], [13], and [14]. [6] and [14] analyze the
relationship between sports league scheduling and multi-mode resource constrained project
scheduling. [5] line out the similarity of structures of Single RRTs and planar three index
assignments. [2], [3], and [25], [26] examine particular formulations.
The remainder of this paper is organized as follows. In section 2 we motivate a sports league
scheduling problem and develop two model formulations. Based on one of these models we
propose a branch-and-price (B&P) approach in order to obtain sports leagues schedules having
a minimum number of breaks in section 3. In se ction 4 we line out computational results and,
finally, section 5 contains conclusions.

2 Problem Setting And Models

2.1 Problem Definition

In m ost approaches in o rder to schedule sports leagues the goal is to find an arbitrary schedule
obeying given structural requirements such as providing a minimum number of breaks. Con-
sequently, there is no difference in Solution quality depending on the period a pair of teams
meets as long as the Solution is feasible according to the structural requirements. In fact, there
are several aspects arising in real world sports leagues as well as in scheduling theory leading
to a pair of teams to meet more favorable in period p e P than in period p' G P\ {p}:

- Teams usually have preferences for playing at home in certain periods.

- Pairs of teams might have preferences for playing against each other in a specific period.

- Since a major objective of the Organizers of a tournament is to maximize attendance
it is straightforward to consider the economic value of the estimated attendance of the
Single RRT.

- Often, a Stadium is owned by some public agency and teams do have to pay a fee
for each match taking place in that particular Stadium. This fee might depend on the
specific period.

2

- In terms of more complex models the Single RRT might be used as a subproblem,
e.g., within a Lagrangean relaxation or a column generation framework. Then, dual
Information have to be considered.

In order to cover those aspects mentioned above we associate cost c,J)P with each possible
match of team i playing at home against team j in period p. We define the cost of a Single
RRT as the sum of arranged matches' costs. Then, we can State problem "MinCostMin-
BreakScheduleProblem" in Definition 1.

Definition 1 Given a set of teams T, a set of periods P with \P\ = |T| — 1, and cost
ci,j,P,i 6 T,j € T\ {i},p 6 P the "MinCostMinBreakScheduleProblem" is to find the
minimum cost tournament among all single RRT having a minimum number of breaks.

There are generation schemes for single RRTs having the minimum number of breaks, see [2]
for example. However, to the best of our knowledge each generation scheme will fail if cost
cost minimization is a goal to be considered.

2.2 Basic Integer Programming Model

We employ two types of binary variables xiijtV Vi, j eT,i ^ j,p G P and bri)PVi GT,p € P.
Variables XijtP represent matches: is equal to 1 if and only if team i plays at home
against team j in period p. Variables briyP represent breaks: britP is equal to 1 if and only if
team i has a break in period p. Hence, we have an overall number of n((n — l)2 -fn — 2)
binary variables.
We construct model "IP" in o rder to represent problem "MinCostMinBreakScheduleProblem"
by means of Integer Programming.

IP
min y] y ^)] ci,j,pxi,j,p (-0

ier j&T\{i} PeP

s t. (xiJ,p + x3,i,p) = 1 V i, j eT,i<j (2)
peP

=1 VieT.pe P (3)
jST\{i}

{xi,j,p-1 + xij,p) ~ bri,P <1 V i e T,p € P-2 (4)

53 + xj,hp) ~~ b ri,P <1 V i GT,p € P-2 (5)

^ <n-2 (6)
»eT

xi,j,P e {o, 1} Vi,j eT,i^j,pe p (7)

Kp G{0,1} (8)

Objective function (1) represents the goal of cost minimization. Restrictions (2) and (3) form
a Single RRT by letting each pair of teams meet exactly once and forcing each team to play

3

exactly once per period. Restrictions (4) and (5) set binary variable brijP to 1 if t eam i plays
twice at home or twice away in periods p — 1 and p. Term (6) assures that no more than
n — 2 breaks are arranged. Since this is the minimum possible number britP is set to 1 if and
only if t eam i has a break in period p. The overall number of restrictions given in (2) to (6)

isn^Z£Ü + 2(n-2)) + 1.

2.3 Column Generation Model

When tackling the problem defined in section 2.1 represented by the model proposed in section
2.2 we suffer from several difficulties.

- The problem size is determined by O (n3) variables and O (n2) constraints.

- The Solution of the LP relaxation in general is highly fractional and the value of the LP
relaxation is poor.

- Cost oriented node order strategies are difficult to implement since fixing variables has
intractable consequences for other variables due to compact structure of single RRTs
with the minimum number of breaks.

In order to improve the model's provided lower bound and create more meaningful variables we
propose a column generation (CG) model in the following. We define a matchday (MD) as a
set of matches where each team contributes exactly once and a scheduled MD as a MD being
assigned to a specific period. Furthermore, we consider the set of scheduled MDs PM and
associate a binary variable ym with each scheduled MD m E PM. Therefore, the number of
variables is given as \PM\ = (n - 1) £7 = (n - 1) n"=f+1 ̂ The period m E PM is assigned
to is denoted by p(m). We say a pair (i,j) of teams is contained in m E PM (denoted by
(i,j) Em) if a match between teams i and j is part of m. Additionally, an ordered pair (i,j)
is contained in m E PM (denoted by (i,j) Em) if a match of team i at home against team
j is part of m. Cost of scheduled MD m E PM is defined by cm = cw(m)- The
CG Masterproblem is given by (9) to (16).
Objective function (9) represents the goal of finding the minimum cost tournament. Constraint
(10) forces each pair of teams to meet at most once. As far as single RRTs are concerned
constraint (10) is equivalent to (2). Equality (11) assures exactly one MD being arranged in
each period of the tournament and it corresponds to (3) since each team i E T participates in
each scheduled MD m E PM exactly once. Constraints (12), (13), and (14) are equivalent
to (4), (5), and (6).
Note that constraints (10) and (11) are of the set packing and of the set partitioning type,
respectively. This Observation is picked up in s ection 3.1.
Since the number of variables is exponential in the number of teams it is straightforward to
reduce the number of variables and initialize (9) to (16) with a subset PM' C PM as a
restricted master problem of a CG process. Then, we obtain the subproblem to find scheduled
MDs which can improve the current restricted master's optimal Solution. According to the
fundamental work of [16] this means finding the scheduled MD having minimum reduced cost
(or, at least, negative reduced cost). Let aitj, ßp, 7ip, 5itP, and e be dual variables according
to (10), (11), (12), (13), and (14), respectively. Therefore, we first State reduced cost cm of
MD m E PM.

4

CG Masterproblem

min y ^ c-mljm
m€PM

< 1 V i,j € Ts,i < j

— i V p e P

Um — br itP < 1 VieT,peP-2

s.t. ym

yi ym

mePM,p(m)=p

E, _£
mePiW,(i,j)Sm,p-l<p(m)<p

E]C ym-britP < 1 Vi(=T,peP-2

jGTj¥=i m£PM,(j,i)€m,p-l<p(m)<p

J2J2bri* ^ n~2

»er PeP

Um
br. t,p

€ {0,1}V m E FM

e {0,i}Vi eT,pe p^2

(9)

(10)

(11)

(12)

(13)

(14)

(15)

(16)

- £ a ßp(m)

y] I 7i,p(m) ~ t~ ^?,p(m) +7i,p(m)+l ~t~ ^',p(m)+l^
(ij')en if p(m)>2 if p(m)<jP 1-1

(17)

Note that we consider dual variables according to (12) and (13) with p(m) only if p(m) > 1
(since there is no restriction (12) or (13) for p = 1). Analogously, dual variables according
to (12) and (13) with p(m) + 1 are taken into account only if p(m) < |P| (since there is no
restriction (12) or (13) for p = jPj + 1).
We can break equation (17) down to the contribution Ci,j,p of each match of team i at home
against team j in period p to the reduced cost ofscheduled MD m € PM as outlined in (18).

ci,j,p — Ci,j,p ai,j %,P 7i,p+1 "j,P+1 (18)

if p>2 if p< |P|-i

Consequently, the problem to find the minimum reduced cost scheduled MD can be represented
by means of IP modelling as model MDP.
Objective function (19) is to minimize arranged matches' cost according to cost Qj. Con-
straint (20) assures that each team participates in exactly once. Restrictions (21) and (22)
set cost Cij to reduced cost according to the chosen period p with yp = 1. M is set to
maxjjeT,i#i,peP \ci,j,p\- Equation (23) assures that the MD is assigned to exactly one period.
MDP is a quadratic mixed IP. In order to reduce computational effort we decompose MDP
into |P| subproblems MDp,p E P, representing the objective to find the minimum reduced

5

CG Subproblem MDP

min^ Y1 (19)
ieT j€T\{i}

St. (Zij + %() = 1 Vi ET (20)
jeT-.j^i

(1 - yp)M + ci)jtP > Cij \/i,j ET : j =£i,pE P (21)

(VP ~ 1)M + Cijf < C(j Vi, j E T : j =£i,p EP (22)

=1 (23)
p€P

E{0,1} (24)

yp E {0,1} VpE P (25)

Cij Gl Vi,jET:j^i (26)

cost MD assigned to p. MDP is equivalent to MD if yp = 1 holds. Therefore, MD can be
represented as MDP'.

CG Subproblem MDP

min ^2 Y1 (27)
ier jer\{i}

s.t. ^2 (xiJ + xj,i) = 1 Vi ET (28)

xid E {0,1} Vi, j : j / i (29)

CG Subproblem MDP'
min M Dp (30)
peP

Clearly, MDP is a minimum cost perfect matching problem which is known to be solvable in
polynomial time, see [15] and [7].

3 Branch-And-Price Approach

Since solving the LP relaxation of (9) to (16) to optimality does not necessarily lead to integer
solutions we propose a branching scheme in the following. Furthermore we line out details
of the CG process and provide a lower bound in order to stop the column generation process
before optimality for the current node's problem is reached.

6

3.1 Branching Strategy

We propose a branching scheme being divided into two layers. In t he first stage we fix branch
variables according to characteristics of single RRTs having a minimum number of breaks.
These characteristics are well studied in [11] and [22], for example. [4] develop a static
branching scheme based on these characteristics. For nodes of the search tree having depth
d lower than n branching is carried out by creating a single child node for each possible break
for team d + 1. Obviously, at depth d we have to consider those breaks already set for teams
1 to d on the path from the root node to the current node. The following rules for deciding
whether to create a child node corresponding to a specific break (defined by p eriod and venue)
are taken from [4] and repeated here for the sake of completeness:

I A home-break (away-break) at period 1 is possible if no home-break (away-break) has
been set for period 1 on the path from the root node to the current node.

II If ex actly one break is already set in period p we can set a home-break (away-break) at
MD p if t he existing one is an away-break (home-break).

III We can set a break in period p > 2 where no break has been set on the path from the
root node to the current node if the number of | periods having breaks does not get
exceeded and p does not complete a sequence of three periods having breaks.

Since in a single RRT having a minimum number of breaks each team has exactly one break
(two teams must have their breaks in period 1 which makes these two breaks artificial) the
consequence of setting a break determines each period's venue of the team we set the break
for. Accordingly, branching by setting a specific break is implemented by fixing each match
variable corresponding to the team at hand but not obeying the venue of this team for a period
to 0. Hence, the subproblem's structure is not affected. This branching idea has proven to
be quite effective in cutting subtrees being infeasible according to the minimum number of
breaks structure.
Note, that after finishing the branching scheme's first stage we obtain a partition of teams into
teams playing at home and teams playing away for each period. Therefore, CG subproblem
MDP is reduced to the minimum cost bipartite matching problem and can be solved according
to the basic work in [18].
Since fixing breaks for each team does not guarantee integer solutions to (9) to (16) we
propose a second stage for branching if t he optimal Solution to the current node is fractional.
Here, the branching idea is motivated by the structure of the master problem which is a type
of set partitioning problem as outlined in section 2.
[1] g ive an exhaustive overview and emphasize a method developed by [2 4]. This strategy has
been successfully applied to B&P frameworks, e.g. in [21] and [27]. The rule prescribes to find
two columns c and d having fractional variable values in t he current optimal Solution. Second,
two rows r and r' must be determined such that c Covers r and r' and d Covers exactly one
of them. As shown in [1] c,d,r,r' always exist in a Standard set partitioning problem if the
current Solution is not integral. Two subproblems are created by e ither forcing r and r' to be
covered by t he same column or forcing r and r' to be covered by different columns. Projecting
this idea to our problem we obtain the branching strategy outlined in the following.
If r is of type (10) and r' is of type (11) pairing (i,j)=r is contained in MDs assigned top=r'
as well as in MDs assigned to other periods having variable values greater than zero. Forcing
both rows to be covered by the same column and different columns means fixing (i,j) to p
and forbidding (i,j) to be carried out in p, respectively.

7

In the first child node pairing (i,j) is fixed to be carried out in period p. Therefore, solutions to
the subproblem corresponding to p must incorporate pairing This can be implemented
by f ixing Xij + Xjti = 1. Only one of these two variables has not been fixed to 0 during the
first stage of the branching scheine, hence, the other one is fixed to 1 now. Next, we solve the
remaining minimum cost bipartite matching problem corresponding to period p based on the
set T \ Those subproblems corresponding to periods in P \ {p} must not incorporate
pairing Therefore, we set Xij = Xjti = 0. In th e second child node pairing (i,j) can not
be carried out in period p. This is implemented by setting xi:j = Xjti = 0 in the subproblem
corresponding to period p. In period p' p (i,j) might be carried out, hence, the subproblem
corresponding to p' is not affected by the branching step.
We have to decide how to select a branching candidate if more than one is given. We propose
to select the candidate leading to the lowest possible cost of the pairing (i,j) to be fixed in
period p.
Clearly, these two branching layers lead to integer solutions since fixing teams' venues as well
as fixing the period a match is carried out means fixing the whole schedule.

3.2 Node Order Strategy

In preliminary test runs we investigated the Performance of classical depth first search (DFS)
and classical breadth first search (BFS) choosing the node having the lowest lower bound next.
Since there is no efficient heuristic to transform node's optimal solutions into feasible solutions
to the original problem DFS provides feasible solutions much faster than BFS does. Since we
aim at optimality BFS providing exact solutions much faster than DFS is to be favored to
DFS. Unfortunately, we suffer from lack of memory while solving all instances but the very
smallest ones.
Therefore, we use beam search as an intermediate approach. Beam search originates from
the artificial intelligence Community, see [20] and [23]. Beam search means to explore a fixed
number of nodes at each level of the search tree. This number is called beam width w. We
select those w nodes having the lowest lower bounds for further exploration. All nodes but
those w get discarded which makes the approach a heuristic one.
The larger w is the more nodes get explored and, therefore, Solution quality and runtime as well
memory requirements rise. If we let w = 1 just a single path from the root node is explored.
This either leads to finding a single feasible Solution or finishing the procedure without any
feasible Solution if the path leads to a node whose problem is infeasible. Between those
extremes, beam search enables us to customize it depending on problem size and constraints
taken into account in order to find a promising tradeoff between Solution quality and memory
requirements.
Obviously, the heuristic nature of beam search is a major drawback since we aim at the
minimum cost Solution. By slight Variation we can turn the heuristic beam search into an
exact method. Instead of discarding those nodes not selected for the beam we preserve them
for a backtracking mechanism. If the approach backtracks on a specific level, again, the w most
promising remaining nodes are selected and a new beam down from this level is established.
Therefore, we have some kind of DFS order for beams. We experience counterrotating effects
when changing w here too: The larger w is chosen the lower is the number of beams needed
to reach the optimal Solution as well as the overall running time of our aIgorithm. On the
other hand the smaller w is chosen the lower are running time requirements to fully explore a
beam and overall memory requirements.

8

3.3 Column Generation Process

Column management Covers three activities: generating initial columns in order to obtain
the first restricted master problem as beginning for the iterativ column generation approach,
generating pleasant columns during the column generation approach, and deleting columns
not pleasant anymore in o rder to reduce the restricted master problem's size.

3.3.1 Generating Initial Columns

Initial columns for the restricted master problem have to provide at least one feasible Solution
to the problem represented by the current node. The constraints in the current node are
composed of constraints of the original problem and of constraints resulting from branching
steps executed on the path from the root node to the current node of the branching tree. If
no feasible Solution is provided no dual variables corresponding to a feasible Solution are given.
These are substantially needed for the column generation process.
Each constraint in the restricted master problem originates from the original problem. We
construct feasible solutions according to structure of single RRTs by using a generation scheme
originating from [17], namely the polygon technique. Constraints according to the minimum
number of breaks structure are taken into account by the generation scheme given in [25].
The constraints contained in the pricing problem CG subproblem MDP are fulfilled by each
single RRT and, hence, by both generation schemes. Constraints derived from branching
decisions on the other hand can not be considered by both generation schemes. Scheduled
MDs not obeying these branching constraints are called infeasible MDs in the following. We
incorporate infeasible MDs in the restricted master problem since we can not guarantee initial
feasible MDs providing a Solution to the master problem by using the chosen generation scheme.
We have to make sure that the CG process will ban infeasible MDs from the solutions while
optimizing. Therefore, we set cost cm to Mm0 = n<-n~^ maxM£Tit7^pgp(QJiP) if s cheduled
MD m is infeasible.
Instead of generating a single scheduled MD per period by using the generation scheme we
propose to construct |P| scheduled MDs per period. The generation scheme yields |P| different
MDs forming a single RRT. We assign each of them to each period and obtain \P\2 different
scheduled MDs. The underlying idea is to increase probability of finding a good Solution as
first Solution to the restricted master problem by covering more possible solutions.
Alternatively, we suggest to employ the optimal solution's MDs of the father node as initial
columns. When doing this we have to check whether a MD m is feasible according to con
straints of the parent node but gets infeasible by the constraint derived from the branching
step. If s o we set cm — M vio in the current node. This methodology is justified by the fact
that the father node and the current node differ in only one branching step. Therefore, the
father node's optimal Solution might just slightly differ from the optimal Solution or at least a
good Solution of the current node. Obviously, we can not use this idea for the root node.
We tested all variants outlined above. The following strategy proofed to be the most affective
one (measured in running times) and is the one we restrict all what follows to:

• For the root node we construct \P\2 initial columns by assigning each MD obtained from
the generation scheme of [25] to each period.

• For each other node we pass the columns contained in t he father node's optimal Solution
as well as those from the generation scheme as initial columns to the child nodes.

9

3.3.2 Generating Columns

Since we have |P| decomposed problems MDP resulting from the pricing problem MD there
are several decisions to be made about the Solution process.
In order to find the overall minimum reduced cost scheduled MD we have to solve all single
decomposed problems iteratively. Hence, we determine \P\ scheduled MDs all of which might
have negative reduced cost. Consequently, we propose to insert all scheduled MDs having
negative reduced cost into the restricted master.
Alternatively, we can solve decomposed problems until we have found the first scheduled MD
having negative reduced cost. Therefore, we solve the decomposed problems in decreasing
order of dual variable ßp. ßp is a Constant element of the reduced cost of MDs assigned
to period p and, therefore, the problem MDP having highest ßp is most likely to produce a
scheduled MD having negative reduced cost.
Testing both variants made clear that solving each single decomposed problem is more effective.

3.3.3 Discarding Columns

While optimizing the master problem lots of scheduled MDs are generated and are inserted
into the restricted master problem. Nearly all of them turn useless later on when they are not
part of the current optimal Solution's base anymore. In o rder to reduce Solution times for the
restricted master problem it is substantial to prevent the restricted master from growing to
large. There are two populär ideas to choose columns to be deleted from the restricted master
problem:

* A column is deleted whenever it has not been part of the base for a given number of
iterations.

• A column is deleted whenever its reduced cost are larger than a given threshold.

According to our test the best choice for our problem is to delete a scheduled MD when it has
not been part of the base for 5 iterations.

3.3.4 Lower Bound

One major drawback of column generation is that optimality of solutions is often proven much
later than the Solution is found (also called tailing-off effect). Hence, many iterations are
spent useless (in terms of finding the master's optimal solutions). Consequently, we propose
a lower bound according to the current restricted master's optimal Solution and the optimal
solutions to the pricing problems MDP. Whenever we compute a lower bound for the optimal
Solution to the current node which is higher than the best feasible solution's value known so
far we cancel the column generation process. The subtree corresponding to the current node
is pruned, then.
With res pect to the B&P scheme we consider the set PMf C PM of scheduled MDs being
feasible according to the current node. Note that each branching step is represented by fixing
variables of matching subproblems and, therefore, can be fully represented by reduction of
PM. Furthermore, we have to take into account the set PMinf of scheduled MDs introduced
into the restricted master as initial columns and being infeasible according to the fixed variables
of the current node. Let PM' = PMf U PMinf.
[19] proposes a lower bound for the current master's optimal Solution when the master problem
has a set partitioning structure. We pick this idea up and adapt it to (9) to (16).

10

Theorem 1 Given an optimal Solution to the restricted master problem having value zcur a
lower bound of the optimal Solution 's value to the master problem is given by

zcur ~H ^] m'n f , cm)0j + 'y ^ y] {li,p $i,p ~ brj^p.

Proof. Subtracting the right hand side of (11) and the left band side of (11), respectively,
multiplied by corresponding dual variables ßp from objective function (9) leads to equation
(31).

^ ̂ CmUm ~ y ^ ßp — ^] CrnUm ~ ^ ^ ßp ^] Um (31)
m€PM' p£P m£PM' pEP mePM' ,p(m)=p

Döing the same for (10), (12), (13), and (14) yields (32). Note that all dual variables used in
this second step are less or equal to 0.

cmllm ~ ßp ~ X/ 5Z ai<i ~ X/ 5Z ^'P—

m£PM' p€P i€T j£T,j>i i€T pgp>2

y ^] ^i,p — (n — 2) e > ^] CmUm ~ ~ y] ßp y] J/m~
i&T pgp>2 m£PM' p€P m€PM',p(m)=p

2Z E E 2/-~e - (32)
i£T j£T,j>i m£PM',(i,j)£m \i<=T p €P /

2Z E f Z E -
i€T p^p>2 \jETj/t mePM',(ij)6m,p-l<p(m)<p /

5Z Xy | 5Z X/ ~ ^i.p
i€T pgp>2 \j£T,jjii m€PM',{j,i)em,p-l<p(m)<p

The terms being subtracted from Y^m&PM' cmVm on the left hand side of (32) sum up to the
dual solution's value and, therefore, to the current optimal solution's value of the restricted
master due to duality theory. Furthermore, we extract scheduled MDs' reduced cost on the
right hand side and obtain (33).

y] CmUm ZCUT y] Um I Cm ^] &i,j ßp{m) 1i,p(m)
mgPM' mePM' (i,j)€m,j>i

öi,p(m) ~ 7i,p(m)+l - <^,p(m)+l I + ̂ X/ (^'P + ~ £) ̂ 'P (^^)
/ ier p6P>2

With Em6PM',p(m)=p!/m = 1 for each p £ P and minm'ePM'j,(m')=pCm' ^ Cm for all m G
PM',p(m) = p we transform inequality (33) into (34).

^] c-mUm ^ 2cur + \ ̂ min cm+
mÄ'

53 5Z (7i,p + ^,P - e) KP (34)
i£T peP>2

11

Note that c™ > 0 holds for each m G PMinf and cm G R holds for each m G PMf. From
this we can conclude equation (35).

min Cm — m in (min c^, 0) (35)
m£PM' ,p(m)=p \rn€ P Mf ,p(m) —p J

Obviously, (35) holds if minmePM/)p(m)=pcm < 0. However, the opposite might hold due to
the fact that solely infeasible scheduled MDs might form period p of the current restricted
master's Solution. If s o, there are scheduled MDs in PMinf having reduced cost equal to 0
since they contribute to the current optimal Solution.
Employing (34) and (35) we obtain (36).

y ^ cmVm — ^cur ^ " min [min cmt 0 J 4~

yi (7i,p + öiiP - e) briiP (36)
ier pgp>2

Term (36) directly implies theorem 1. •
A fairly convenient property of this lower bound is that nearly no additional computational
effort is to be made: Dual variables are known from the current optimal Solution to the
restricted master problem and the minimum reduced cost MD for each period is computed in
order to find pleasant columns, anyway.
Furthermore, the lower bound formulation implies a customization to the current node of the
search tree. Branching constraints are incorporated in the matching subproblem restricting
the Solution space of feasible scheduled MDs and, therefore, affect the lower bound according
to the path from the root node to the current node.

4 Computational Results

In order to evaluate our B&P approach we employed Cplex 9.0 as benchmark. We executed
the test runs on a 3.8 GHz Pentium IV PC with 3 GB RAM running Windows Server 2003.
We construct the jnstances with cost randomly chosen from [—10,10]. When measuring
solutions' quality we transform all cost to be non-positive (cij)P = CijtP - maxiJiP Cij,P) and,
therefore, can directly relate the corresponding solutions' values. 20 instances of each size are
tested, except for problems having 10 teams where running times forced us to limit our study
to 3 instances.
We employ Cplex using DFS as well as BFS as node order strategy. Our algorithm is tested
both with exact and heuristic beam search using beam width w = 15. In order to get a fair
comparison according to the times to find feasible solutions we used DFS in our approach as
well. The focus is on running times in order to reach and proof optimality which are given
in table 3 where "B&P beam e." and "B&P beam h." abbreviate exact and heuristic B&P
approach, respectively.
The first thing to observe is that reaching optimality seems possible only for the smallest
of instances. There is no problem when solving instances with up to 8 teams using Cplex.
Employing DFS and BFS problems having 8 teams are solved in about 180 seconds and 50
seconds, respectively, on average. Our approach is clearly slower for these instances. This is
true for each variant, thus for DFS and exact beam search as well as heuristic beam search.

12

size Cplex DFS Cplex BFS B&P DFS B&P beam e. B&P beam h.
4 0.01 0.01 0.08 0.07 0.07
6 0.39 0.38 17.27 23.52 15.20
8 178.42 50.02 2971.59 2302.86 252.96

10 — — 486200.00 1338.54
12 — — 5129.67

Table 3: Running times optimal solutions

size Cplex DFS Cplex BFS B&P DFS B&P beam e./h.
6 0.00 0.00 0.54 2.20
8 6.98 2.5 2.91 95.21

10 — — — 730.00
12 — — — 4665.35

Table 4: Running times first Solution

For larger problem instances Cplex using BFS runs out of memory after about 12 hours of
running time giving an idea of the enormous searching tree's size. Obviously, Cplex does not
suffer from lack of memory if DFS is employed as node order strategy. We tested 3 instances
and stopped each optimization process after 6 days of running time. Not even one feasible
Solution was found for two instances. Cplex found a feasible Solution for the third problem
instance after about an hour. However, the optimality gap could not be lowered to less than
20% with in 6 days of running time.
When applying our approach using exact beam search we solve all three instances to optimality
within 6 days of running time. Although this seems to be an unacceptable amount of time we
reach optimality where Cplex mostly fails to get feasible solutions at all.
In ge neral running times of DFS are higher than those of exact beam search being higher than
those of heuristic beam search. Note that there is an exception from this rule for instances
having 6 teams. This might result from the cost oriented branching scheme being quite efficient
for instances of this size. Because of its heuristic nature Solution quality of the second beam
search approach is of much interest. For problem instances having less than 8 teams we reach
optimality for each single instance. For problems having 8 teams we find optimal solutions for
50% of the instances. Objective values of solutions obtained by heuristic beam search reach
99% of the optimal solution's value on average. No Solution to instances having 10 teams
is optimal. However, their objective values amount to 96% of optimal solutions' values on
average. We expect this gap to grow if the heuristic beam search is applied to larger instances.
Since solely finding good feasible solutions turned out to be pretty time consuming we addi-
tionally line out the amount of time in order to find feasible solutions in table 4.
We refuse to inspect instances having 4 teams since times to find feasible solutions are equal
to or almost zero. Again, our approach can not compete with Cplex solving instances having
6 teams. However, our DFS approach outperforms Cplex using DFS for 8 teams and is close
to Cplex using BFS. We do not distinguish between exact and heuristic beam search anymore
since feasible solutions are found within the first beam and, therefore, results are identical.
Obviously, beam search finds a feasible Solution much slower.
Apart from the time in order to find feasible solutions their quality is a major concern. For
those instances whose optimal Solution is known we give the first solution's quality of the first

13

size Cplex DFS Cplex BFS B&P DFS B&P beam e./h.
6 92.8% 92.8% 86.1% 97.1%
8 77.4% 88.6% 82.7% 96.2%

10 — — — 94.5%

Table 5: Quality first Solution

Solution found by the approaches under consideration in table 5.
Clearly, Cplex using BFS provides better first solutions than Cplex using DFS does. Our
DFS approach provides better first solutions than Cplex using DFS does in a significant lower
amount of running time. Naturally, each approach's first solution's quality decreases if the
number of teams is increased. Our beam search approaches provide the best first solution's
quality to cost of highest amount of running time (see table 4) for instances having 6 and 8
teams. However, our beam search first solution's quality see ms to decrease slower than those
of the other approaches do. Furthermore, first solutions' quality for 10 teams is above all
qualities provided by other approaches. Therefore, we find very good solutions in a reasonable
amount of running time using our heuristic approach where Cplex rarely finds feasible solutions
at all.

5 Conclusions

We propose a B&P approach in order to schedule sports leagues. The approach is quite
reasonable since our restricted master problem is a Variation of the well known set partitioning
problem and our pricing problem is solvable in polynomial time.
Results are ambivalent. On the one hand, we can not compete with Cplex for problem instances
having less than 10 teams. On the other hand, we can solve problem instances having 10 teams
to optimality where Cplex fails. Furthermore, a heuristic variant of our approach provides good
solutions (within 4% of optimality for less than 12 teams) in a small amount of time.
Attractive fields for further research are requirements resulting from real world sports leagues.
Some can easily be incorporated into the pricing problem such as Stadium availability.

References

[1] C. Barnhart, E. L. Johnson, G. L. Nemhauser, M. W. P. Savelsbergh, and P. H. Vance.
Branch-And-Price: Column Generation For Solving Huge Integer Programs. Operations
Research, 46:316-329, 1996.

[2] T. Bartsch. Sportligaplanung - Ein Decision Support System zur Spielplanerstellung (in
German). Deutscher Universitätsverlag, Wiesbaden, 2001.

[3] T. Bartsch, A. Drexl, and S. Kröger. Scheduling the Professional Soccer Leagues of
Austria and Germany. Computers & Operations Research, 33:1907-1937, 2006.

[4] D. Briskorn and A. Drexl. Branching Based on Home-Away-Pattern Sets. In GOR
Proceedings 2006. Springer, Berlin, Germany. Forthcoming.

[5] D. Briskorn, A. Drexl, and F. C. R. Spieksma. Round Robin Tournaments and Three
Index Assignment. Working Paper, 2006.

14

[6] P. Brucker and S. Knust. Complex Scheduling. Springer, Berlin, 2006.

[7] W. Cook and A. Rohe. Computing Minimum-Weight Perfect Malchings. INFORMS
Journal on Computing, 11:138-148, 1999.

[8] D. de Werra. Geograph/, Games and Graphs. Discrete Applied Mathematics, 2:327-337,
1980.

[9] D. de Werra. Scheduling in Sports. In P. Hansen, editor, Studies on Graphs and Discrete
Programming, pages 381-395. North-Holland, Amsterdam, The Netherlands, 1981.

[10] D. de Werra. Minimizing Irregularities in S ports Schedules using Graph Theory. Discrete
Applied Mathematics, 4:217-226, 1982.

[11] D. de Werra. On the Multiplication of Divisions: the Use of Graphs for Sports Scheduling.
Networks, 15:125-136, 1985.

[12] D. de Werra. Some Models of Graphs for Scheduling Sports Competitions. Discrete
Applied Mathematics, 21:47-65, 1985.

[13] D. de Werra, T. Ekim, and C. Raess. Construction of Sports Schedules with Multiple
Venues. Discrete Applied Mathematics, 154:47-58, 1985.

[14] A. Drexl and S. Knust. Sports League Scheduling: Graph- and Resource-Based Models.
Omega, to appear, 2006.

[15] J. Edmonds. Maximum Matching and a Polyhedron with (0,1) Vertices. Journal of
Research of the National Bureau of Standards Section B, 69(B): 125-130, 1965.

[16] P. C. Gilmore and R. E. Gomory. A Linear Programming Approach to the Cutting-Stock
Problem. Operations Research, 9:849-859, 1961.

[17] T. P. Kirkman. On a Problem in Combinations. Cambridge and Dublin Mathematics
Journal, 2:191-204, 1847.

[18] H. W. Kuhn. The hungarian method for the assignment problem. Naval Research Logistics
Quarterly, 2:83-97, 1955.

[19] L. S. Lasdon, editor. Optimization Theory in Large Systems. IMorth-Holland, Amsterdam,
The Netherlands, 1970.

[20] B. T. Lowerre. The HARRY Speeche Recognition System. PhD thesis, Carnegie-Mellon
University, USA, 1976.

[21] A. Mehrotra and M. A. Trick. A Column Generation Approach for Graph Coloring.
INFORMS Journal on Computing, 8:344-354, 1996.

[22] R. Miyashiro, H. Iwasaki, and T. Matsui. Characterizing Feasible Pattern Sets with a
Minimum Number of Breaks. In E. Burke and P. de Causmaecker, editors, Proceedings
of the 4th international conference on the practice and theory of automated timetabling,
Lecture Notes in Computer Science 2740, pages 78-99. Springer, Berlin, Germany, 2003.

[23] S. Rubin. The ARGOS Image Understanding System. PhD thesis, Carnegie-Mellon
University, USA, 1978.

15

[24] D. M. Ryan and B. A. Foster. An Integer Programming Approach to Scheduling. In
A. Wren, editor, Computer Scheduling of Public Transport. Urban Passenger Vehicle and
Crew Scheduling, pages 269-280. North-Holland, Amsterdam, The Netherlands, 1981.

[25] J. A. M. Schreuder. Constructing Timetables for Sport Competitions. Mathematical
Programming Study, 13:58-67, 1980.

[26] J. A. M. Schreuder. Combinatorial Aspects of Construction of Competition Dutch Pro
fessional Football Leagues. Discrete Applied Mathematics, 35:301-312, 1992.

[27] P. H. Vance, C. Barnhart, E. L. Johnson, and G. L. Nemhauser. Solving Binary Cutting
Stock Problems by Column Generation and Branch-and-Bound. Computational Opti-
mization and Applications, 3:111-130, 1994.

16

