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Abstract 

This work is an up-to-date-extension of a previous annotated bibliography (2004) 
which covered 40 references only. It focuses on what has been published d uring the last 
ten years in the area of combinatorial optimization and scheduling theory concerning 
robustness and other similar techniques dealing with worst case optimization under 
uncertainty and non-accuracy of problem data. 

Keywords: robustness - tolerance - worst-case scenario - input data uncertainty -
non-accuracy - flexibility of Solution - maximal regret 

1 Introduction 

One of the most interesting branches of combinatorial optimization that has emerged over the 
past 20 - 30 years is robust optimization. Sinee the early 1970s there has been an increasing 
interest in the use of worst-case optimization models. The theory of robustness is a relatively 
new and quickly developing area of combinatorial optimization. It deals with uncertainty 
of problem parameters. The presence of such parameters in optimization models is caused 
by inaccuracy of initial data, non-adequaey of models to real processes, errors of numerical 
methods, errors of rounding off and other factors. So it appears to be important to identify 
classes of models in which small changes of input data lead to small changes of the result 
under worst possible scenario of distribution of problem parameters. The models with such 
properties are called robust counterpart. It is obvious that any optimization problem arising in 
practice can hardly be correctly formulated and solved without use of results of the theory of 
robustness and post-optimal analysis. During the last ten years many authors concentrate on 
robust optimization and related approaches in which one optimizes against the worst instances 
that might arise by using min-max (or some other) objective. 

This survey gives an idea of the variety of modern techniques and may serve as a short 
introduction into the theory of robustness. The main goal of this annotated bibliography is to 
collect all existing papers together in order to present a complete description of new avenues 
that have not been explored earlier. 

In the article annotations the original phrases and abstract fragments are used in order to be 
as close as possible to authors descriptions. Of course, the author remains responsible for 
reformulation errors or omissions that might exist. Unfortunately, we were not able to take 
into account papers which have been written in any language different from English. If th ere 
are some authors whose articles were not included in the bibliography but their papers are 
closely related to the topic, please let know. 
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2 Terms and concepts 

We consider a general optimization problem in the following Standard form: 

minimize /(c, x) 

subject to 
< 0, 

X £ X, ? — 1 j ..., 77., 

where 
- x is the vector of variables 
- X is the set of feasible solutions 
- / and <7; a re convex function 
- c and a are problem parameters (uncertain). 

Uncertainty may be related to coefficients of objective function, coefficients of restrictions or 
both of them. It seems very naturally to give a definition of a robust Solution as follows: an 
optimal Solution is robust if it remains optimal under any realization (scenario) of the data 
(problem parameters). But this definition can hardly be regarded as desirable, because it is too 
restrictive. Most unlikely such a Solution exists. Another definition may be considered more 
appropriate: our subject is to find a robust Solution which minimizes maximum regret (mini-
mizes worst case scenario). The major part of the papers presented in this bibliography deals 
with problems like that. Authors of most papers attempt to answer to the following closely 
related questions: How can one represent uncertainty? What is a robust Solution? How to 
calculate a robust Solution? How to Interpret worst case realization under uncertainty? and 
others. Different answers to these questions lead to different approaches and directions. Bib-
liographical analysis provides us with a list of contributors who proposed several main avenues 
in the theory of robustness: 
- Averbakh [11] - [12] (minmax regret optimization) 
- Ben-Tal and Nemirovski [1] - [6] (ellipsoidal uncertainty) 
- Bertsimas and Sim [14] - [19] (robust optimization with control of conservatism of a Solu­
tion) 
- Kouvelis and Yu [27] (minmax regret) 
- Mulvey, Vanderbei and Zenios [9] - [10] (worst possible scenario and penalty functions) 
- Yaman, Karasan and Pinar [40] - [42] as well as Montemanni and Gambardella [32] - [36] 
(absolute and relative robustness for minimum spanning tree and shortest path problems). 

3 



References 

Part I. Robustness in Convex Optimization and Linear Programming 

In recent years a large number of papers is appearing under the name of robust 
optimization in which playing against the worst instances that might arise by using a 
min-max objective or some others is considered. We Start our survey with some papers 
dealing with continuous optimization problems since they are historically the first for 
which robustness has been analyzed. Papers [1] - [10] present different approaches to 
deal with uncertainty for some convex optimization and linear programming problems. 
However, as the resulting robust formulations involve conic quadratic problems and 
other difficulties, such methods cannot be directly applied to discrete optimization. To 
the best of our knowledge, the only attempt to develop the concept of robustness which 
is s uitable for both convex and combinatorial optimization has been done by Bertsimas 
et al. in [17] - [19]. 

[1] Ben-Tal A. and Nemirovski A. (1998). Robust convex optimization. Mathematics 
of Operations Research 23, 769 - 805. 

Ben-Tal and Nemirovski address the over conservatism of robust solutions by allowing 
the uncertainty sets for the data to be ellipsoids, and propose efficient algorithms to 
solve convex optimization problems under data uncertainty. 

[2] Ben-Tal A. and Nemirovski A. (1999). Robust solutions to uncertain programs. 
Operations Research Letters 25, 1-13. 

[3] Ben-Tal A. and Nemirovski A. (2000). Robust solutions of linear programming 
problems contaminated with uncertain data. Mathematical Programming 88, 411 - 424. 

[4] Ben-Tal A., El Ghaoui L. and Nemirovski A. (2000). Robust semidefinite 
programming. In Saigal R., Vandenberghe L. and Wolkowicz H. editors, Handbook of 
Semidefinite programming and applications, Kluwer Academic Publishers, Waterloo. 

[5] Ben-Tal A., Nemirovski A. and Roos C. (2002). Robust solutions to uncertain 
quadratic and conic-quadratic problems. SIAM Journal on Optimization 13, 535 - 560. 

[6] Ben-Tal A., Goryashko A., Guslitzer E. and Nemirovski A. (2004). Adjustable 
robust solutions of uncertain linear programs. Mathematical Programming 99, 351 -
376. 

A number of important formulations as well as applications are introduced in [1] - [6] 
and some other papers of these authors. A detailed analysis of the robust optimization 
framework in linear programming is provided. 
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[7] El Ghaoui L. and Lebret H. (1997). Robust Solution to least- squares problems to 
uncertain data. SIAM Journal Matrix Analysis Appl. 18, 1035 - 1064. 

[8] El Ghaoui L., Oustry F. and Lebret H. (1998). Robust solutions to uncertain 
semidefinite programs. SIAM Journal Optimization 9, 33 - 52. 

El Ghaoui et al. derived in [7] - [8] results similar to [1] - [4], In particular, they deal 
with robust reformulation of optimization model by adapting robust control techniques 
under the assumption that the coefficient matrix data may vary inside ellipsoidal 
uncertainty set. The robust counterpart of some important problems are either exactly 
or approximately tractable problems that are efficiently solvable with interior point 
methods. However, the difficulty of the robust problems increases. 

[9] Mulvey J., Vanderbei R. and Zenios S. (1995). Robust optimization of large-scale 
systems. Operations Research 43, 264 - 281. 

Mulvey et al. present an approach that integrates goal programming formulations with 
scenario-based description of the problem data. They use penalty functions to develop 
robust models to hedge against the worst possible scenario. 

[10] Mulvey J. and Vanderbei R. (1995). Robust optimization of large-scale systems: an 
emerging new technology. Scientific Report A204992, Princeton University. 

A generalized interior point algorithm for convex objective functions has been developed 
and applied to various large scale problems. 
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Part II. Robustness in Combinatorial Optimization 

A general combinatorial optimization problem can be stated as follows. Let E = 
{ei, e2, en} be a finite ground set and let X C 2e\{0} be a non-empty family of 
subsets of E known also as the power set of E. Note that any feasible Solution x e X 
is a subset of E, x C E. Let c : E —> Z be a cost function on the elements of E, 
which w.l.o.g. assumes integer values. The problem consists in minimizing integer-valued 
objective function f(c,x) : X —> Z over the set of feasible solutions X. 

Combinatorial problems are integer (in particular binary) programming problems. Defin-
ing x € {0, l}n by Xi — 1 if a 6 x and 0 otherwise for any i = 1,..., n, we can identify 
subsets x C E and binary vectors. On the other hand, binary programs are combinato­
rial ones. General integer programs, where variables are supposed to have non-negative 
integer values, are also combinatorial while we assume that the set of feasible solutions 
is bounded and therefore finite. 

If input problem parameters, in particular, cost function values, are crisp and fixed, 
then we say that our problem is deterministically stated, otherwise we assume some 
sort of uncertainty. There are several general alternative approaches in combinatorial 
optimization how to model uncertainty: the probabilistic and stochastic approaches, 
the use of fuzzy numbers, the scenario-based realization of parameters, the interval 
representation of input data. In scheduling theory, one can often apply critical chain 
scheduling and buffer management as well. Below one can find a list of references 
which are related to these and some other approaches which are so populär nowadays. 
Modelling with fuzzy numbers is a big and relatively independent theory which is 
not covered in the bibliography. The very general idea which the approaches have in 
common is the following; in robustness theory, instead of solving the original problem 
itself, one should construct a robust counterpart problem with one or several objectives 
which somehow guarantee that an obtained Solution is robust or stable with respect to 
uncertainty of input data. 

[11] Averbakh I. (2001). On the complexity of a class of combinatorial optimization 
problems with uncertainty. Mathematical Programming 90, 263 - 272. 

In this paper the minmax regret Version of the problem of selecting p objects of 
minimum total weights out of set of m objects is considered. There are two types of 
uncertainty of problem parameters considered in the paper. In the case of scenario-
represented uncertainty (even if there are only two possible scenarios) it is shown 
that the robust version of the problem of finding the minimum weight base of a 
uniform matroid of rank p on a ground set of cardinality m is NP-hard. The second 
case of uncertainty, so-called interval uncertainty, is traditionally more complicated 
to analyze. All weights can take on any values from some interval. It means that 
the set of possible realizations has a form of rectangle box in the Space of problem 
parameters. However, in that case a new polynomial algorithm with complexity 
0((min(p, m — p ))2m) is proposed. The author claims that it is the first known 
example of a minmax regret combinatorial optimization problem that is polynomially 
solvable in the case of interval representation of uncertainty while being NP-hard 
in the case of scenario represented uncertainty. This is a very interesting result and 
it may give an additional stimulus to researchers for finding polynomial algorithms 
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for the large variety of robust combinatorial optimization problems where complex-
ity in t he practically important case of interval representation of uncertainty is still open. 

[12] Averbakh I. and Lebedev V. (2004). Interval data minmax regret network optimiza­
tion problems. Discrete Applied Mathematics 138, 289 - 301. 

The authors consider the minimum spanning tree and the shortest path problems on 
a network with uncertain lengths of edges. In particular, for any edge of the network, 
only an interval estimate of the length of the edge is known, and it is assumed that 
the length of each edge can take on any value from the corresponding interval of 
uncertainty, regardless of the values taken by the lengths of other edges. It is required 
to find a minmax regret Solution. It is proven that both problems are NP-hard even if 
the bounds of all intervals of uncertainty belong to (0,1). The interval data minmax 
regret shortest path problem is NP-hard even if the network is directed, acyclic, and 
has a layered structure. Nevertheless it was shown that the problems are polynomially 
solvable in the practically important case where the number of edges with uncertain 
lengths is fixed or is bounded by the logarithm of a polynomial function of the total 
number of edges. 

The following paper are closely related to Averbakh's approach: 

• Averbakh I. (2000). Minmax regret solutions for minimax optimization problems 
with uncertainty. Operations Research Letters 27, 57 - 65. 

• Averbakh I. and German O. (2000). Minmax regret median location on a 
network under uncertainty. INFORMS Journal on Computing 12, 104 - 110. 

• Averbakh I. and German O. (2000). Algorithms for the robust 1-center problem 
on a tree. European Journal of OperationsI Research 123, 292 - 302. 

• Averbakh I. (2003). Complexity of robust single-facility location problems on 
networks with uncertain lengths of edges. Discrete Applied Mathematics 127, 505 
-522. 

• Averbakh I. and German O. (2003). An improved algorithm for the minmax 
regret median problem on a tree. Networks 41, 97 - 103. 

• Averbakh I. (2004). Minmax regret linear resource allocation problems. Opera­
tions Research Letters 32, 174 - 180. 

• Averbakh I. and Lebedev V. (2005). On the complexity of minmax regret 
linear programming. European Journal of Operational Research 160, 227 - 231. 
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• Lebedev V. and Averbakh I. Complexity of minimizing the total flow time 
with interval data and minmax regret criterion. (to appear in Discrete Applied 
Mathematics). 

• Averbakh I. The minmax relative regret median problem on networks. (to appear 
in INFORMS Journal on Computing). 

• Averbakh I. The minmax regret permutation flow shop problem with two Jobs, 
(to appear in European Journal of Operational Research). 

[13] Aron I. and P. van Hentenryck. (2004). On the complexity of the robust spanning 
tree problem with interval data. Operations Research Letters 32, 36 - 40. 

This paper is focused on the robust spanning tree problem where the edge costs are 
given by intervals under the robust deviation framework (minimization of the maximum 
deviation of total cost from the costs of the minimum spanning tree for all possible 
realizations of the edge cost within the given intervals). This papers proves a conjecture, 
which originally stated in [27]. It Claims that the there is no polynomial algorithm for 
such type of robustness. The authors prove that the robust spanning tree problem at 
least as hard as the central tree problem (it consists in finding a tree in graph G such 
that the rank of its cospanning tree is minimal over all the cospanning trees of G), 
the NP-completeness of which is well-known. Furthermore, it is shown that the robust 
spanning tree problem remains hard on complete graphs, even though the central tree 
can be found in polynomial time on such graphs. 

[14] Bertsimas D. and Sim M. (2002). Robust discrete optimization. Working Paper. 
Operations Research Center, MIT. 

A robust version (counterpart) of integer programming problems is proposed for 
the case when both the cost coefficients and the data constraints are subject to 
uncertainty. When only the cost coefficients are subject to uncertainty and the 
problem is 0 — 1 discrete optimization problem on n variables the procedure of 
solving the robust counterpart by solving n + 1 instances of the original problem is 
described. As the consequence a very interesting fact stated: if t he original problem is 
polynomially solvable, than the robust counterpart problem also remains polynomially 
solvable. It means that robust versions of such well-known problems as matching, 
spanning tree, shortest path, matroid intersection etc. are polynomially solvable. Some 
results concerning the a-approximation of 0 —1 discrete optimization problems are given. 

[15] Bertsimas D. and Sim M. (2003). Robust discrete optimization and network flows. 
Mathematical Programming 98, 49 -71. 
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Additionally to the results of [14], the authors propose an algorithm for robust network 
flows that solves the robust counterpart by solving a polynomial number of nominal 
minimum cost flow problems in a modified network. 

[16] Bertsimas D. and Sim M. (2004). The price of robustness. Operations Research 52, 
35 - 53. 

A robust approach to solving linear optimization problems with uncertain data was 
proposed in the early 1970s and has recently been extensively studied and extended. 
The authors propose another approach which is different from previous ones in order 
to control the level of conservatism in the Solution. This approach has the advantage 
that it leads to a linear optimization model and it can be directly applied to discrete 
optimization problems (it was done later in [14]). 

[17] Bertsimas D. and Sim M. (2004). Robust conic optimization. Working Paper. 
Operations Research Center, MIT. 

In earlier proposals the robust counterpart of a conic optimization problem exhibits 
an increase in complexity, i.e. robust linear programming problems [3] become second 
order cone problems, robust second order cone problems [1] become semidefinite 
programming problems and robust semidefinite programming problems become [4] 
NP-hard. In this paper a relaxed robust counterpart for general cone optimization 
problems that preserves the computational tractability of the nominal problem is 
proposed. Namely, under this concept the robust cone optimization retains the original 
structure, i.e. robust linear programming problems remain LPs, robust second order 
cone programming problems remain SCCPs and robust semidefinite programming 
problems remain SDP. Moreover, when that data entries are independently distributed, 
the size of the proposed robust problem especially under l2 norm is practically the same 
as the original problem. 

[18] Bertsimas D. and Sim M. (2004). Robust discrete optimization under ellipsoidal 
uncertainty sets. Working Paper. Operations Research Center, MIT. 

It is probably the first attempt to investigate robust discrete optimization under 
ellipsoidal uncertainty sets. It is shown that the robust counterpart of a discrete 
optimization problem with correlated objective function data is NP-hard even though 
the original problem is polynomially solvable. For uncorrelated and identically distributed 
data, it is proved that the robust counterpart retains the complexity of the original 
problem. A generalization of the robust discrete optimization approach proposed earlier 
is g iven which presents the tradeoff between robustness and optimality. 

[19] Bertsimas D., Pachamanova D. and Sim M. (2004). Robust linear optimization 
under general norms. Operations Research Letters 32, 510 - 516. 
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The explicit characterization of the robust counterpart of a linear programming problem 
with uncertainty set is described by an arbitrary norm. This approach encompasses 
several approaches from the literature and provides guarantees for constraint violation 
under probabilistic models that allow arbitrary dependencies in the distribution of the 
uncertain coefficients. 

[20] Burkard R. and Dollarn H. (2001). Robust location problem with positive/negative 
weights on a tree. Networks 38, 102 - 113. 

[21] Burkard R. and Dollani. H. (2002). A note on the robust 1-center problem on trees. 
Annals of Operations Research 110, 69 - 82. 

In this paper the authors consider different aspects of robust 1-median problems on a 
tree network with uncertain or dynamically changing edge lengths and vertex weights 
which can also take negative values. The dynamic nature of a parameter is modeled by 
a linear function of time. A linear algorithm is designed for the absolute dynamic robust 
1-median problem on a tree. 

[22] Carrizosa E. and Nickel S. (2003). Robust facility location. Mathematical Methods 
in Operations Research 58, 331 - 349. 

[23] Chen B. and Lin C. (1998). Minmax-regret robust 1-median location on a tree. 
Networks 31, 93 - 103. 

[24] Deineko V. and Woeginger G. (2006). On the robust assignment problem under a 
fixed number of cost scenarious. Operations Research Letters 34, 175 - 179. 

The authors investigate the complexity of the min/max assignment problem under a 
fixed number of scenarios. It is proven that this problem is polynomially-time equivalent 
to the exact perfect matching problem in bipartite graph, an unstudied combinatorial 
optimization problem of unknown computational complexity. 

[25] Hites R., De Smet Y., Risse N., Salazar-Neumann M. and Vincke P. (2003). 
A comparison between multicriteria and robustness frameworks, IS-MG 2003/16, 
Universite Libre de Bruxelles. 

A parallelism between multicriteria optimization and robustness concepts is established. 
New problems like multicriteria multiscenarios problem and multicriteria evaluation of 
robustness are discussed. 

[26] Kasperski A. and Zielinski P. (2006). The robust shortest path problem in series­
parallel multidigraphs with interval data. Operations Research Letters 34, 69 - 76. 
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The robust shortest path problem in edge series-parallel multidigraph with interval 
costs is examined. A pseudopolynomial algorithm for the problem with maximal regret 
criterion is applied to calculate the optimal Solution. 

[27] Kouvelis P. and Yu G. (1997). Robust discrete optimization and its application. 
Kluwer Academic Publishers, Norwell, M.A. 

A comprehensive treatment of the State of the art (up to 1997) in robust discrete 
optimization and extensive references are presented in this work. However, there still 
are more open problems than solved ones. Most of the known results correspond to 
scenario-represented models of uncertainty, i.e. where there exists a finite number of 
possible scenarios each of which is given explicitly by listing the corresponding values 
of parameters. It is shown that most classical polynomially solvable combinatorial 
optimization problems loose this nice property and become NP-hard in a robust version 
with scenario-represented uncertainty (to appear). 

[28] Kouvelis P. and Sayin S. (2005). Algorithm robust for the bicriteria discrete 
optimization problem. Annais of Operations Research. 

The authors study various definitions of robustness in a discrete scenario discrete 
optimization setting. It was shown that a generalized definition of robustness into 
which scenario weights are introduced can be used to identify the efficient solutions of 
multiple objective discrete optimization problems. It is proven that the Solution of a 
pair of optimization problems, with the first of them being a robust optimization one, 
is always an efficient Solution. Moreover, any efficient Solution can be obtained as an 
optimal Solution to a pair of such problems. 

[29] Kozina G. and Perepelitsa V. (1993). Interval discrete models and multiobjectivity 
complexity estimates. Interval Computations 1, 51 - 59. 

[30] Kozina G. and Perepelitsa V. (1994). Interval spanning tree problem: solvability 
and computational complexity. Interval Computations 1, 42 - 50. 

The author study a special case of minimum spanning tree problem where the edge 
costs (weights) are not fixed but take their values from some intervals. No stochastic 
distribution is given inside intervals. The interval function is defined as the sum of 
interval weights over all edges of feasible spanning tree. Contrary to the classical 
minimum spanning tree problem which can be easily solved by the algorithms of Kruskal 
(1956) or Prim (1957), minimum spanning trees of the interval problem depend on 
weights realization and optimal objective value generally is not unique. Therefore, the 
authors of [30] propose to introduce the relation on the set of intervals, which gives the 
possibility to transform the problem into a special bicriteria counterpart. The Pareto 
set of the counterpart, which can be generated by Standard multiobjective methods, 
is taken to be the Solution of the interval problem. It is shown that the counterpart 
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problem is intractable, and it follows that the interval problem is also very hard to solve. 

[31] Montemanni R. and Gambardella L. (2005). A branch and bound aIgorithm for 
the robust spanning tree problem with interval data. European Journal of OperationsI 
Research 161, 771 - 779. 

[32] Montemanni R. and Gambardella L. (2004). An exact algorithm for the robust 
shortest path problem with interval data. Computers and Operations Research 31, 1667 
- 1680. 

[33] Montemanni R., Gambardella L. and Donati A.V. (2004). A branch and bound 
algorithm for the robust shortest path problem with interval data. OR Letters 32, 225 
-232. 

Montemanni et al. proposed a branch and bound algorithm for the robust spanning tree 
and the robust shortest path problem in [31] and [32], [33] respectively. The method 
embeds the extension of some result previously known in literature and some new 
original elements. It is claimed that the technique proposed is up to 210 faster then 
methods recently appeared in literature. 

[34] Montemanni R. (2005). A Benders decomposition approach for the robust spanning 
tree problem with interval data. European Journal of Operational Research (to appear). 

[35] Montemanni R. and Gambardella L. (2005). The robust shortest path problem 
with interval data via Benders decomposition. 40R 3, 315 - 328 . 

Montemanni and Gambardella propose a new exact algorithm, based on Benders 
decomposition, for the robust spanning tree and the robust shortest path problem in 
[34] and [35] respectively. Computational results highlight the efficiency of the new 
method. It was shown that the technique is very fast on all the benchmarks considered, 
especially on those that were harder to solve for the methods previously known. 

[36] Montemanni R., Barta j. and Gambardella L. (2005). The robust traveling 
salesman problem with interval data. Technical Report IDSIA-20-05. 

The authors present a new extension to the basic problem, where travel times are 
specified as a ränge of possible values. The robust deviation criterion is applied to drive 
optimization over the interval data problem so obtained. Some interesting theoretical 
properties of the new optimization problems are identified and presented, together with 
a new mathematical formulation and some exact algorithms. The exact methods are 
compared from an experimental point of view. The methodology proposed can be used 
to attack the robust counterpart of other NP-hard combinatorial optimization problems 
too. 
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[37] Y. Nikulin (2005). Simulated annealing algorithm for the robust spanning tree 
problem, Manuskripte aus den Instituten für Betriebswirtschaftslehre No. 591, 
Christian-Albrechts-Universität zu Kiel. 

This paper addresses the robust spanning tree problem with interval data, i.e. the 
case of classical minimum spanning tree problem when edge weights are not fixed but 
take their values from some intervals associated with edges. The problem consists in 
finding a spanning tree that minimizes so-called robust deviation, i.e. deviation from an 
optimal Solution under the worst case realization of interval weights. As it was proven 
in [27], [12] the problem is NP-hard, therefore it is of great interest to tackle it with 
some metaheuristic approach, namely simulated annealing, in order to calculate an 
approximate Solution for large scale instances efficiently. The author describes theoretical 
aspects and presents the results of computational experiments. This is the first at-
tempt to develop a metaheuristic approach for solving the robust spanning tree problem. 

[38] Y. Nikulin. (2005). The robust shortest path problem with interval data: a probabilistic 
metaheuristic, Manuskripte aus den Instituten für Betriebswirtschaftslehre No. 597, 
Christian-Albrechts-Universität zu Kiel. 

The metaheuristic appraoch of [37] is applied to the robust shortest path problem with 
interval data. 

[39] Pinar M. (2004). A note on robust 0-1 optimization with uncertain cost coefficients. 
40R 2, 309 - 316. 

Based on the approach of Bertsimas and Sim [15], [18] to robust optimization in the 
presence of data uncertainty, an easily computable bound on the probability that robust 
Solution gives and objective function value worse than the robust objective function 
value, under the assumption that only cost coefficients are subject to uncertainty. 

[40] Yaman H., Karasan O. and Pinar M. (2001). The robust spanning tree problem 
with interval data. Operations Research Letters 29, 31 - 40. 

A robust version of the minimum spanning tree problem under interval type of 
uncertainty (each edge cost can take any value in it's interval, independent of the other 
edge) is considered. The authors propose to compute a robust spanning tree. Two 
types of robustness are studied. A spanning tree whose absolute worst case scenario 
(i.e. scenario in w hich the cost of this spanning tree is maximum) is minimum is called 
an absolute robust spanning tree. Under the second concept, a robust spanning tree 
whose total cost minimizes the maximum deviation from the optimal spanning tree over 
all realizations of the edge costs is called a relative robust spanning tree. In this paper 
it is proven that the absolute robust spanning tree problem can be solved in polynomial 
time. Additionally, a mixed-integer programming reformulation of the relative robust 
spanning tree problem is presented. 
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[41] Yaman H., Karasan O. and Pinar M. (2001). The robust shortest path prob­
lem with interval data. Comput.&Oper. Res. (revised, 2004, available online: 
www.optimization — online.org/DB_HTML/2Q0l/QS/ZQl.html) 

Motivated by telecommunication applications, the author investigate the shortest path 
problem on directed acyclic graphs under arc length uncertainties represented as interval 
numbers. Using a minimax-regret criterion the authors define and identify robust paths 
via mixed-integer programming and exploiting interesting structural properties of the 
problem. 

[42] Yaman H., Karasan O. and Pinar M. (2004). Restricted robust optimization for 
maximization over uniform matroid with interval data uncertainty. BUkent University. 

For the problem of selecting p items with uncertain (interval) objective function 
coefficients so as to maximize total profit (maximization over uniform matroid) the 
authors introduce the r-restricted robust deviation criterion and seek solutions that 
minimize it. This new criterion increases the modeling power of the robust deviation 
(minmax regret) criterion by reducing the level of conservativeness of the robust 
Solution. It is shown that r-restricted robust deviation solutions can be computed 
efficiently. 

[43] Yu G. (1996). On the max-min knapsack problem with robust optimization applications. 
Operations Research 44, 407 - 415. 

[44] Yu G. and Yang J. (1997). On the robust shortest path problem. Comput&. Oper. 
Res. 25, 457 - 468. 

In this paper a scenario approach is adopted to characterize uncertainties. Two 
robustness criteria are specifed: the absolute robust criterion and the robust deviation 
criterion. It is shown that under both criteria the robust shortest path problem is 
NP-complete even for much more restricted layered networks of width 2, and with only 
2 scenarios. A pseudo-polynomial algorithm is devised to solve the robust shortest path 
problem in general networks under bounded number of scenarios. 

[45] Zielinski P. (2004). The computational complexity of the relative robust shortest path 
problem with interval data. European Journal of Operational Research 158, 570 - 576. 

The author shows that the robust deviation path problem is NP-hard even for planar 
graphs of degree 3. 
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Part III. Robustness in Scheduling Theory 

Uncertainty in scheduling may have many reasons: 

- equipment (machine) breakdowns 
- activity (Job) disruption 
- earliness or tardiness 
- changes of processing or duration time 
- changes of release data, due dates or deadlines 
- nature and human factors and others. 

No one can guarantee the reliability of input data in the contemporary non-static 
permanently changing world. That is one reason why almost all modern scheduling 
techniques try to find a Solution (being probably non-optimal but as close as possible 
to an optimal one), which has the property of flexibility to changes of input data. In 
this section we give a brief description of the literature concerning both theoretical and 
practica! aspects of scheduling in the robustness framework. 

[46] Al-Fawzan, M.A. and Haouari M. (2005). A bi-objective model for robust resource-
constrained project scheduling. International Journal of Production Economics 96, 175 
- 187. 

A common problem which arises in project management is the fact that the planned 
(baseline) schedule is often disrupted by several uncontrollable factors. In order to take 
into account possible disruptions and their negative consequences at the project design 
stage a concept of schedule robustness based on the concept of job free slack is intro-
duced. The robustness of schedule is defined as the total sum of the free slacks, i.e. 
amounts of time that every activity can slip without delaying the Start of the very next 
activity while maintaining resource availability and precedence constraints. Hence, the 
robustness of a schedule is understood as its ability to be maintained in the case of 
some undesired events influencing the realization of particular activities. Two objectives 
- robustness maximization and makespan minimization - are considered. A tabu search 
algorithm to generate an approximate set of efficient solutions is proposed. 

[47] Ballestin F. and Leus R. (2006). Metaheuristics for stable scheduling on a Single 
machine. Working Paper. 

A Single machine scheduling problem is considered. Two metaheuristics for solving an 
approximate formulation of the model that assumes that exactly one job is disrupted 
during schedule execution are proposed. Uncertainty is modelled for job duration and 
primal objective is to minimize deviation between planned and actual job starting times. 

[48] Davenport A. and Beck J. (2000). A survey of techniques for scheduling with 
uncertainty. Working Paper, Toronto. 
(http://www.eil.utoronto.ca/profiles/chris/chris.papers.html) 
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This paper surveys some robust scheduling techniques that have been appeared during 
the last decade since the well-known survey by McKay et al. about the state-of-the-art 
in job-shop scheduling was written. Many new approaches are discussed. redundancy-
based techniques (a reservation of extra time and resources for unexpected events), 
probabilistic techniques (they do not construct a robust schedule, but we have the 
possibility to measure the probability of uncertainty and, moreover, to construct an 
optimal schedule so to maximize), different on-line and off-line approaches as well as 
rescheduling techniques. 

[49] Jensen M. (2001). Robust and flexible scheduling with evolutionary computation. 
Ph.D. thesis, University of Aarhus, Department of Computer Science. 

This thesis presents two fundamentally different approaches for scheduling Job shops 
facing machine breakdowns. The first method is called neighbourhood based robustness 
and is based on an idea of minimizing the cost of a neighbourhood of schedules. The 
scheduling algorithm attempts to find a small set of schedules with an acceptable 
level of Performance. The other method for stochastic scheduling uses the idea of 
co-evolution to create schedules with a guaranteed worst-case Performance for a known 
set of scenarios. The method is demonstrated to improve worst-case Performance of 
the schedules when compared to ordinary scheduling; it substantially reduces running 
time when compared to a more Standard approach explicitly considering all scenarios. 

[50] Kouvelis P., Daniels R. and Vairaktarakis G. (2000). Robust scheduling of a 
two-machine flow shop with uncertain processing times. HE Transactions 36, 667 - 682. 

This paper is one of the first attempts to introduce the concept of robustness for 
scheduling problems. The authors suggest a robust schedule when processing times are 
uncertain, but they compute this robust schedule based on maximum absolute deviation 
between the robust Solution and all the possible scenarios, but this requires knowledge 
of all possible scenarios. Moreover, the optimal Solution of each scenario is supposed to 
be known a priori. 

[51] Lambrechts O., Demeulemeester E. and Herroelen W. (2006). Proactive and 
reactive strategies for resource-constrained project scheduling with uncertain resource 
availability. Working Paper. 

The goal of the paper is to build a robust schedule that meets the project due date and 
minimizes the schedule instability cost, defined as the expected weighted sum of the 
absolute deviations between the planned and actually realized activity starting times 
during project execution. The authors describe how stochastic resource breakdowns can 
be modeled, which reaction is recommended when a resource infeasibility occurs due to 
a breakdown and how one can protect the initial schedule from the adverse effects of 
Potential breakdowns. 
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[52] Leus R. (2003). The generation of stable project plans. PhD thesis. Department of 
applied economics, Katholieke Universiteit Leuven, Belgium. 

[53] Leus R. and Herroelen W. (2004). Robust and reactive project scheduling: a review 
and Classification of procedures. International Journal of Production Research 42, 1599 
- 1620. 

Predictive-reactive scheduling refers to the process where a baseline schedule is 
developed prior to the Start of the project and updated if necessary during project 
execution. The objective of this paper is to review possible procedures for generation of 
proactive (robust) schedules, which are as good as possible protected against schedule 
disruptions, and for deployment of reactive scheduling procedures that may be used to 
revise or re-optimize the baseline schedule when unexpected events occur. Finally, the 
authors propose a survey of the basics of critical chain scheduling and indicate in which 
environments it is useful. 

[54] Leus R. and Herroelen W. (2005). The complexity of mechine scheduling for stability 
with a single disrupted job. Operations Research Letters 33, 151 - 156. 

[55] Policella IM., Smith S-, Cesta A. and Oddi A. (2004). Generating robust schedules 
through temporal flexibility. Proceedings 14th International Conference on Automated 
Planning and Scheduling, Whistler CA. 

This paper considers the problem of generating partial order schedules that retain tem­
poral flexibility and thus provide some degree of robustness. Two different orthogonal 
procedures for construction a POS were proposed. The first, which the authors call the 
resource envelope based approach, uses computed bounds on cumulative resource usage 
(i.e., a resource envelope) to identify potential resource conflicts, and progressively 
winnows the total set of temporally feasible solutions into a smaller set of resource 
feasible solutions by resolving detected conflicts. The second, referred to as the earliest 
start time approach, instead uses conflict analysis of a specific (i.e., earliest Start time) 
Solution to generate an initial fixed-time schedule, and then expands this Solution to a 
set of resource feasible solutions in a post-processing step. 

[56] Sevaux M. and Sörensen K. (2004). A genetic algorithm for robust scheduling 
in a just in-time environment. Technical Report LAMIH, SR-2003-1, University of 
Valencieness, France. 

It is shown how a robust genetic algorithm can be applied to single machine scheduling 
problem when release dates are subject to small variations. This method leads to a 
robust Solution, meaning that the value of the objective function remains high when 
small variations in some release dates occur. 
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[57] Sevaux M. and Zann Le Quere. (2003). Solving a robust maintenance scheduling 
problem at the French railways Company. Technical Report LAMIH, SR-2003-3, 
University of Valencieness, France. 

This paper gives an extension of the results derived by Sevaux and Sörensen for a differ­
ent scheduling problem with a different objective. The authors focus on solving a robust 
scheduling problem at the French railway Company, which can be modelled as a special 
case of a resource-constrained scheduling problem with additional constraints. The 
objective is to construct a robust schedule, i.e. a sequence of the tasks on each resource 
for which the makespan value can be predicted when the duration of the task is increased. 

[58] Sörensen K. (2001). Tabu search for robust solutions. In Proceedings of the 4th 
Metaheuristics International Conference, Porto, Portugal, 707 - 712. 

The robust tabu search firstly introduced in this paper is a new and original technique 
based on ideas taken from theory of robust optimization for continuous mathematical 
functions. 

[59] Tsutsui S. and Ghosh A. (1997). Genetic algorithms with a robust Solution searching 
scheme. IEEE Transactions on Evolutionary Computation 1, 201 - 208. 

[60] Tsutsui S. and Jain J.C. (1998). Properties of robust Solution searching in multi-
dimensional space with genetic algorithms. In Proceedings of the 2nd International 
Conference on Knowledge-Based Electronic Systems. 

[61] Van de Vonder S., Demeulemeester E., Herroelen W. and Leus R. (2005). The 
use of buffers in project management. The trade-off between stability and makespan. 
International Journal of Production Economics 97, 227 - 240. 

The case of stochastic activity duration is considered. The concept of buffers is 
introduced to protect an optimal schedule from disruption. 

There are also some interesting papers devoted to the concept of super solutions 
for constraint programming: Super solutions are a mechanism to provide robustness. 
They are solutions in which, if a small number of variables lose their values, one can 
guarantee to be able to repair the Solution with only a few changes. 

[62] Hebrard E, Hnich B. and Walsh T. (2004). Super solutions in constraint program­
ming. In Proceedings of CP-AI-OR 2004, 157- 172. 

[63] Holland A. and O'Sullivan B. (2004). Weighted Super Solutions for Constraint 
Programs. Technical Report UCC-CS-2004-12-02. 
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[64] Mehta S. and Uzsoy R. (1998). Predictive scheduling of a job shop subject to 
breakdowns. IEEE Transavtions on Robotics and Automation 14, 365 - 378. 

[65] Mehta S. and Uzsoy R. (1998). Predictible scheduling of a single machine subject to 
breakdowns. Int. J. Computer Integrated Manufacturing 12, 15 - 38. 

Finally, we would like to mention the text book [66] (written and available in German 
only), which contains a comprehensive description of a large variety of robustness 
concepts. 

[66] Scholl, A. Robust scheduling and Optimization: Basics, Concepts and Methodology, 
Physics, Heidelberg, 2001 (in German: Robuste Planung und Optimierung: Grundlagen, 
Konzepte und Methoden, Experimentelle Untersuchungen. Physica-Verlag, Heidelberg). 
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Part iV. Robustness in Economics 

Additionally, we give a short list of references on robustness and stability in economics, 
namely in portfolio optimization, supply chain management, master production 
scheduling, lot-sizing and monetary policy. 

[67] Aghassi M. and Bertsimas D. (2006). Robust game theory. Mathematical Pro­
gramming. Ser. B 107, 231 - 273. 

[68] Atamturk A. and Zhang M. (2004) Two-stage robust network flow and design for 
demand uncertainty. Research Report, University of California at Berkeley. 

The authors describe a two-stage robust optimization approach for solving network 
flow and design problems with uncertain demand. The approach is generalised to multi-
commodity network flow and applications to lot-sizing and location-transportation prob­
lems are presented. 

[69] Ben-Tal A., Margalit T. and Nemirovski A. (2000). Robust modelling of 
multi-stage portfolio problems. In K. Roos, T. Terlaky, and S. Zhang, editors, High 
Performance Optimization, Kluwer Academic Publisher, Dordrecht, 303 - 328. 

[70] Ben-Tal A., Golany B., Nemirovski A. and Vial J.-P. (2003). Supplier-retailer 
flexible commitments contracts: A robust optimization approach. Technical Report, 
Dept. of Management Studies, University of Geneva. 

[71] Bertsimas D. and Thiele A. (2003). A robust optimization approach to supply chain 
management. Technical Report, MIT. 

[72] Bertsimas D. and Thiele A. (2006). A robust optimization approach to inventory 
theory. Operations Research 54, 150 - 168. 

[73] Butler R., Ammons J. and Sokol J. (2004). A robust optimization model for 
Strategie production and distribution planning for a new produet. Working Paper, 
University of Central Florida. 

[74] El Ghaoui L., Oks M. and Oustry F. (2003). Worst-case value-at-risk and robust 
portfolio optimization: A conic programming approach. Operations Research 51, 543 -
556. 

[75] Erdogan E. and lyengar G. (2004) Ambiguous chance constrained problems and 
robust optimization. CORC Technical Report TR-2004-10, Columbia University. 

[76] Erdogan E., Goldfarb D. and lyengar G. (2004). Robust portfolio management. 
CORC Technical Report TR-2004-11, Columbia University. 
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[77] Giannoni M. (2002). Does model uncertainty justify caution? Robust optimal 
monetary policy in a forward-looking model. Macroeconomic Dynamics 6, 111 - 144. 

[78] Goldfarb D. and lyengar G. (2003). Robust portfolio selection problems. Mathematics 
of Operations Research 21, 1 - 38. 

[79] Kimms, A. (1998). Stability measures for rolling schedules with applications to 
capacity expansion planning, master production scheduling, and lot sizing. OMEGA 26, 
355 - 366. 

[80] Levin A. and Williams J. (2003). Robust monetary policy with competing reference 
models. Working Paper, Federal Reserve Bank of San Francisco. 

[81] Lütgens F. and Sturm J. (2002). Robust option modelling. Technical Report, 
University of Maastricht. 

[82] Popescu I. (2003). Robust mean-covariance solutions for stochastic optimization. 
Technical Report, INSEAD. 

[83] Schyder L. (2005). Facility location under uncertainty: a review. Technical Report, 
04T-015, Department of Industrial and Systems Engineering, Lehigh University. USA 

This paper reviews the literature on stochastic and robust facility location models. It 
illustrates the rieh variety of approaches for optimization under uncertainty and their 
application to facility location problem. 

[84] Yu C. and Li H. (2000). A robust optimization model for stochastic logistic problems. 
International Journal of Production Economics 64, 385 - 397. 

[85] Yu G. (1997). Robust economic order quantity models. European Journal of Opera-
tional Research 100, 482 - 493. 
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