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Abstract 

The fc-traveling salesman problem, or k-TSP is: given a graph with edge weights and an 
integer k, find a simple cycle of minimum weight visiting exactly k nodes. To obtain lower 
bounds for the traveling salesman problem the 2-matching relaxation and the 1-tree relaxation 
can be used. We generalize these two relaxations for the fc-TSP. 

Keywords: Ä-traveling salesman problem, fc-TSP, matching, 2-matching, 1-tree. 

1 Introduction 

Let G=(V,E) be a graph with node set V and edge set E. A chain L in G between 
nodes u and v is a subgraph with nodes u = Vo,v i,... ,vk = v and edges 
i € {1,..., &}, where all the edges are distinct. A chain without repetition of nodes is called 
a path. If in a chain VQ = %, then the chain is called a cycle. If a ll the nodes in a cycle C 
except VQ and % are distinct, then C is a simple cycle, or circuit. Let k be an arbitrary 
integer from 3 to n. A simple cycle in G consisting of exactly k edges is a k-cycle. 
Henceforth we will identify a chain 
L = {{vo,vi,...,vk},{{vo,v1},{vl,v2},...,{vk-i,vk}}} with its edge set, i.e. we will 
write L = {{v0,vi}y{v1,v2},... ,{vk-\,vk}}. 
For a set F C E we define xF e BE to be the incidence vector of F such that 

In the following we will identify subsets of E with their incidence vectors. 
The k-traveling salesman problem (fc-TSP) is: given a graph G — ( V, E) with \V\ = n and 
\E\ = m, an integer k < n and a cost vector c € Rs, find a fc-cycle of minimum length. 
The (symmetric) traveling salesman problem (TSP) is to find in G an n-cycle of minimum 
length. 
Some polyhedral results for the ft-TSP have been obtained by Maurras and Nguyen [12, 11], 
Maurras, Kovalev, and Vaxes [10] and by Girlich, Höding, Horbach and Kovalev [5]. Some 
polyhedral results for the asymmetric p-cycle problem (the problem to find in a directed graph 
a cycle on p nodes of minimum length) has been obtained by Hartmann and Özlük [6]. 
A branch-and-cut aIgorithm has been implemented by Nguyen [13]. An upper bound for the 
diameter of the convex hull of the feasible solutions of the fc-TSP on a complete graph has 
been given by Girlich, Höding, Horbach and Kovalev [4], 
Let x G Rß, S,T C V, F C E, v e V. We use the following notation: 

When solving the traveling salesman problem by branch and bound we need a good bounding 
technique. Polyhedral bounds, i.e. bounds obtained by solving some linear programming 

1 if e € F 
0 otherwise. 

(1) 

2 1-trees and Lagrangean relaxation 
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(3) 

relaxations of TSP can be used. Consider the following linear programming relaxation of the 
traveling salesman problem. 

min (Fx 
s.t. 0<xe<l, Ve G (i) . 

%(#(%)) = 2, Mv G V, {ii) ^ ' 

No combinatorial polynomial aIgorithm is known to solve (2). Held and Karp proposed a 
method to solve (2) using 1-trees and Lagrangean relaxation, see [7] and [8]. Let 1 be a 
node in G = (V, E). A set F C E is a 1 -tree if |F fl 5(1)| = 2 and E \ 5(1) forms a 
spanning tree on K\{1}. 
The idea is to consider the following equivalent formulation of (2) 

min cFx 
s.t. 0 < xe < 1, Ve G E, (i) 

%(<?(%)) = 2, («0 
®(^(!)) = 2> (**") 
z(E(^))<|(/|-i, vc/cy\{i},0^[//y\{i}, (m) 

= |y|, (%%,) 

and to introduce {ii') into the objective function with Lagrangean multipliers: 

max min crx + J2 jv{2 — x {8{v))) 

s.t. 0 < xe < 1, Ve G E, (?) 

z(5(l)) = 2, (ö") W 

z(E([/))<|[/|-i, (m) 

z(E) = |y|. M 

The extreme solutions of (%), { ii"), {iii), {iv) are 1-trees, hence the minimum of a linear func­
tion over {i), {ii"), {iii), {iv) can be found by applying any shortest spanning tree algorithm 
on graph G\{1}. 
Iteratively modifying the Lagrangean multipliers we achieve the Optimum of (2). 

3 (k, l)-forests and Lagrangean relaxation 

The idea of Held and Karp can be extended for the fc-TSP. 

Definition 1. A set F C E is a {k, 1 )-forest if |F| = k and F contains at most one 
simple cycle. 

Consider the following IP-formulation of the k-TS P. 

3 



min cTx 
s.t. 0<xe<l, Ve G E, (i) 

x(S(v)) <2, Vv G V, (ii) 
x(8(v)j - 2xe >0, Vi> G V, Ve G <?(u), (iii) (5) 
X{u,v) + x(u, T) + x(v, S) - x(S, T) < 2, VM, V, S, T partition of V, (iv) 
x(E) = k, (v) 
xe G {0,1}, Ve G F. (w) 

Using the fact that each Ä-cycle is a (k, l)-forest with the degree of each node equal to 2 or 
0 we obtain the following formulation of the fc-TSP. 

min (Fx 
s.t. x(S(v)) <2, VÜ G V , (ii) 

x(8(v)) - 2xe >0, Vt; G V, Ve G 6(f), (iii) 
x is an incidence vector of a (k,l)-forest. (vi') 

We denote the family of all (l, l)-forests, l = 0,..., k, by T<k. 

(6) 

Lemma 1. The pair (E,T<k) is a matroid with the ground set E and the family of 
independent sets T<k-

Proof. Obviously if F G T<M then any subset of F is also in T<k-
We must proof: for given F1;F2 G T<k, |fi| < \F2\, there is e G F2 \ Fi such that 
Fi U {e} G T<k. Two cases are possible: 
1. Set Fi contains no cycle. Then for any e G F2 \ Fi we have Fi U {e} G T<k. 
2. The set Fi contains a cycle. Consider the connected components of Fi, say Ki = 
(Vi,Ei), K2 = (V2,E2), ..., Ks = (VS,ES). Since |Fi| < |F2| and F2 contains at most 

3 
one cycle, there is an edge e G F2 such that e £ \J E(Vi} Vi) and therefore Fi U {e} G 

1=1 
This completes the proof. • 

A minimal weight (k, 1)-forest in a given graph with n nodes and m edges can be found in 
0(m log n) Operations using the greedy method which is an adaptation of Kruskal's aIgorithm, 
see [9]. 
We can solve (6) using subgradient optimization. The advantage of this approach is that we 
do not need to implement a linear programming aIgorithm and Separation technique. However, 
the lower bounds may be worse than that obtained from the linear programming relaxation of 
(5). 

4 Matchings 

Let G = (V, E) be a graph and b be a vector in Z^. A vector x G Zf is a b-matching if 

x(S(v)) < bv (7) 

holds for each v G V. A 6-matching x is called perfect if 

x(S(v)) = bv (8) 
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V 

G G' 

Figure 1: Reduction of the perfect ö-matching problem to the perfect matching problem 

holds for each v E V. A fc-matching x is called simple if x is a zero-one vector. If b is 
the all-one vector, then x is a 1-matching or simply a matching. If all the components of b 
equal 2, then x is a 2-matching. 
Let c be a weight vector associated with G. The problem of finding a (simple, perfect) 
6-matching of minimum (maximum) weight isa minimum (maximum) weight (simple, perfect) 
6-matching problem. All such matching problems are polynomial time solvable, see e.g. Derigs 
[2] and Schrijver [14]. The matching and the 2-matching problems are defined analogously. 
Edmonds [3] gives a polynomial algorithm for the maximum weight matching problem. The 
minimum weight perfect matching problem can be easily reduced to the maximum weight 
matching problem by the following modification of the weight vector: for each edge e set 
de:~ M — c e where M is a big number, and replace the weight vector c with d. 
By the following transformation, which is due to Tutte [15], the perfect 6-matching problem on 
a given weighted graph G = (V, E) with the weight vector c can be reduced to the perfect 
matching problem on a graph G' = (V', E') with a weight vector d. The graph G' is 
constructed as follows: for each node vEV create bv nodes vi,v2 ,...,Vbv in V' and for 
each edge {u,v} EE create bv - b u edges {ui,vi}, {%!,%} {«!,%,} i}, 
{ubu,v2} with weights d^. := CuV for i = 1,... ,bu, j = 1,... ,bv, see 
figure 1. 
Now if 2/ is a feasible Solution of the perfect matching problem on G', then x* E Zf with 

for each edge {u,v} E E is a perfect 6-matching in G. Moreover, dx' = cx* and for each 
perfect fr-matching in G there is at least one perfect matching in G' with identical weight. 
Hence, if x' is an optimal Solution of the perfect matching problem on G', then x* is an 
optimal Solution of the perfect 6-matching problem on G. 
The perfect matching problem on G' can be solved in time polynomial in |G'|, so the 
perfect 6-matching problem on G can be solved in time bounded by polynomial in b(V) 
and \E\, which gives a pseudo-polynomial (polynomial in the size of the problem and b{V)) 
algorithm for the simple perfect 6-matching problem. The simple perfect 6-matching problem 
on a given graph G = (V,E) can be reduced to the perfect (/-matching problem on some 
graph G' = (Vf, E') by the following transformation. 
For each node v in V create a node v' in V' and set b'v, = bv. For each edge e E E, 
e={u,v}, introduce two nodes ue and ve in V' and three edges, {v\ve}, {ve,ue}, and 

(9) 
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V 

G G' 

Figure 2: Reduction of the simple perfect 6-matching problem to the perfect 6-matching 
problem 

{we,«'} in E'. Set VUe := b'Ve := 1 and set dv,ve := dUeU, := cuv, := 0, see figure 2. 
Now the optimal Solution x* of the simple perfect 6-matching problem can be derived from 
the optimal Solution x' of the perfect 6'-matching problem by setting xe := x'UUe for each 
eGE, e = {u,v}. 
Note that for the simple perfect 6-matching problem we can assume for each node v the 
Parameter bv to be at most the degree of v, otherwise the problem is not feasible. Therefore, 
the transformation described above reduces the simple perfect b-matching problem on G = 
(V,E) to the perfect matching problem on a graph G' = (V',E') with 0(\V\2) nodes.lt 
gives a polynomial algorithm for the simple perfect 6-matching problem. 
Another reduction of a (simple) 6-matching problem is due to Berge, see [1], For a deeper 
survey of matchings see Derigs [2] and Schrijver [14]. 

5 The simple (k, 2)-matching relaxation 

Let G = (V,, E) be a graph with n nodes and k be an integer, 0 < k < n. A 2-matching 
x is a (k, 2)-matching if x(E) = k. A (k, 2)-matching x is called perfect a 

for each v G V. A (k, 2)-matching x is called simple if x is a zero-one vector. 
The problem to find a simple (k, 2)-matching of minimum weight cFx in a given graph G 
is the minimum weight simple (k, 2)-matching problem. 

Theorem 1. The minimum weight simple (k, 2)-matching problem is polynomial time solvable. 

Proof. The simple (k, 2)-matching problem on G = (V,E) can be reduced to the perfect 
6-matching problem on the graph G' = (VE') with the weight vector d € Rß' and the 
6-vector b' € Z^' defined as follows. For each node v € V create a node v' G V' with 
b(v') = 2. For each edge e = {u,v} G E create nodes ue,ve G V' with b(ue) = b(ve) = 1 
and three edges {u',ue}, {ue,ve} and and set du,ue := cfv,ve := and Cuet£)e :=0. 
Create a new node vk G V' with 6(%) = 2 • ( n — k ). Create for each v G V an edge 
H, %/} with dVkV, = 0. 
The graph G' has 0(|£'[) nodes and 0(\E\ + n — k) edges and can be built in 
Operations. Moreover, it holds that b(V) < 2n. The 6-matching problem on G' can 

x(8{v)) G {0,2} (10) 
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be solved in polynomial in \E'| and b(V') number of Operations, which yields a strongly 
polynomial time algorithm for the simple (k, 2)-matching problem. • 

However, the algorithm given in the proof above can be hardly used in practica. Indeed, for a 
complete graph G we need to solve a perfect matching problem on a graph G' with 0(n2) 
nodes, which can be a challenge even for rather small values of n. 
An integer vector x € Z+E is the incidence vector of a fc-cycle if the following three conditions 
are satisfied: 

1. x is a simple (k, 2)-matching, 

2. x is a perfect (k, 2)-matching, 

3. the support graph of x is connected. 

Now we can see that for a given weighted graph G an optimal Solution of the simple (k, 2)-
matching problem on G gives a lower bound for the optimal objective value of the k-TSP on 
G. The simple (k, 2)-matching problem is polynomial time solvable. However, we leave open 
the question how to design an efficient combinatorial algorithm for the simple (k, 2)-matching 
problem and the question whether the perfect (k, 2)-matching problem is polynomially solvable. 

6 Examples 

Here we show some small examples of applying these two bounding techniques for the &-TSP. 
Example 1. Consider a complete graph with 4 nodes which are points in a plane with 
coordinates (0,3), (3,3), (3,6), (2,0), see figure 3. Here we have k = 3, the weights of the 
edges are euclidian length. The minimum weight 
(3,l)-forest a) has the weight of 6 + VlÖ, the minimum weight simple (3,2)-matching b) 
has the weight of 6 + \/13, and the minimum weight 3-cycle c) has the weight of 6 + \Zl8. 
Example 2. A complete graph with 5 nodes, all the same as in the first example plus 
one point (5,5) and k = 4, see figure 4. The minimum weight (4,l)-forest a) has the 
weight of 6 + \/5 + 2\/2, the minimum weight simple (4,2)-matching b) has the weight of 
3+\/i3+V5+2\/2, and the minimum weight 4-cycle c) has the weight of 3+\/l8+\/5+2v^. 
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a) o b) o c) o 

Figure 3: Minimum weight a) (3,l)-forest, b) simple (3,2)-matching, and c) 3-cycle 

a) O b) c) O 

Figure 4: Minimum weight a) (4,l)-fbrest, b) simple (4,2)-matching, and c) 4-cycle 
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