

A Service of

Leibniz-Informationszentrum Wirtschaft Leibniz Information Centre

Horbach, Andrei

Working Paper — Digitized Version
Combinatorial relaxation of the k-traveling salesman problem

Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel, No. 599

Provided in Cooperation with:

Christian-Albrechts-University of Kiel, Institute of Business Administration

Suggested Citation: Horbach, Andrei (2005): Combinatorial relaxation of the k-traveling salesman problem, Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel, No. 599, Universität Kiel, Institut für Betriebswirtschaftslehre, Kiel

This Version is available at: https://hdl.handle.net/10419/147657

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal and scholarly purposes.

You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.

Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel

No. 599

Combinatorial relaxations of the k-traveling salesman problem

Andrei Horbach

Working Paper, October 2005

Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre, Olshausenstr 40, 24098 Kiel, Germany, horbach@bwl.uni-kiel.de

Abstract

The k-traveling salesman problem, or k-TSP is: given a graph with edge weights and an integer k, find a simple cycle of minimum weight visiting exactly k nodes. To obtain lower bounds for the traveling salesman problem the 2-matching relaxation and the 1-tree relaxation can be used. We generalize these two relaxations for the k-TSP.

Keywords: k-traveling salesman problem, k-TSP, matching, 2-matching, 1-tree.

Introduction 1

Let G = (V, E) be a graph with node set V and edge set E. A chain L in G between nodes u and v is a subgraph with nodes $u = v_0, v_1, \ldots, v_k = v$ and edges $\{v_{i-1}, v_i\}$, $i \in \{1, \dots, k\}$, where all the edges are distinct. A chain without repetition of nodes is called a path. If in a chain $\,v_0=v_k,\,$ then the chain is called a cycle. If all the nodes in a cycle $\,C\,$ except v_0 and v_k are distinct, then C is a simple cycle, or circuit. Let k be an arbitrary integer from 3 to n. A simple cycle in G consisting of exactly k edges is a k-cycle. Henceforth we will identify a chain

 $L \,=\, \big\{\{v_0,v_1,\ldots,v_k\}, \{\{v_0,v_1\},\{v_1,v_2\},\ldots,\{v_{k-1},v_k\}\}\big\} \quad \text{with its edge set, i.e. we will}$ write $L = \big\{\{v_0, v_1\}, \{v_1, v_2\}, \dots, \{v_{k-1}, v_k\}\big\}$. For a set $F \subseteq E$ we define $x^F \in \mathbf{B}^E$ to be the incidence vector of F such that

$$x_e^F = \begin{cases} 1 & if \ e \in F \\ 0 & otherwise. \end{cases}$$

In the following we will identify subsets of E with their incidence vectors.

The k-traveling salesman problem (k-TSP) is: given a graph G = (V, E) with |V| = n and |E|=m, an integer $k\leq n$ and a cost vector $c\in\mathbf{R}^E$, find a k-cycle of minimum length. The (symmetric) traveling salesman problem (TSP) is to find in G an n-cycle of minimum length.

Some polyhedral results for the k-TSP have been obtained by Maurras and Nguyen [12, 11], Maurras, Kovalev, and Vaxès [10] and by Girlich, Höding, Horbach and Kovalev [5]. Some polyhedral results for the asymmetric p-cycle problem (the problem to find in a directed graph a cycle on p nodes of minimum length) has been obtained by Hartmann and Ozlük [6].

A branch-and-cut algorithm has been implemented by Nguyen [13]. An upper bound for the diameter of the convex hull of the feasible solutions of the k-TSP on a complete graph has been given by Girlich, Höding, Horbach and Kovalev [4].

Let $x \in \mathbf{R}^E$, $S, T \subseteq V$, $F \subseteq E$, $v \in V$. We use the following notation:

$$x(F) := \sum_{e \in F} x_e,$$

$$E(S,T) := \{\{s,t\} \mid s \in S, t \in T\},$$

$$\delta(S) := E(S,V \setminus S),$$

$$\delta(v) := \delta(\{v\}).$$

$$(1)$$

2 1-trees and Lagrangean relaxation

When solving the traveling salesman problem by branch and bound we need a good bounding technique. Polyhedral bounds, i.e. bounds obtained by solving some linear programming

relaxations of TSP can be used. Consider the following linear programming relaxation of the traveling salesman problem.

$$\min_{s.t.} c^{T}x$$

$$s.t. \quad 0 \le x_{e} \le 1, \qquad \forall e \in E, \qquad (i)$$

$$x(\delta(v)) = 2, \qquad \forall v \in V, \qquad (ii)$$

$$x(E(U)) \le |U| - 1, \quad \forall U \subseteq V, \emptyset \ne U \ne V. \quad (iii)$$
(2)

No combinatorial polynomial algorithm is known to solve (2). Held and Karp proposed a method to solve (2) using 1-trees and Lagrangean relaxation, see [7] and [8]. Let I be a node in G=(V,E). A set $F\subseteq E$ is a 1-tree if $|F\cap\delta(1)|=2$ and $E\setminus\delta(1)$ forms a spanning tree on $V\setminus\{1\}$.

The idea is to consider the following equivalent formulation of (2)

$$\min c^{T}x$$

$$s.t. \quad 0 \leq x_{e} \leq 1, \qquad \forall e \in E, \qquad (i)$$

$$x(\delta(v)) = 2, \qquad \forall v \in V \setminus \{1\}, \qquad (ii')$$

$$x(\delta(1)) = 2, \qquad (ii'')$$

$$x(E(U)) \leq |U| - 1, \quad \forall U \subseteq V \setminus \{1\}, \emptyset \neq U \neq V \setminus \{1\}, \quad (iii)$$

$$x(E) = |V|, \qquad (iv)$$

and to introduce (ii') into the objective function with Lagrangean multipliers:

$$\max_{\gamma \in \mathbf{R}^{V \setminus \{1\}}} \min \ c^T x + \sum_{v \in V \setminus \{1\}} \gamma_v (2 - x(\delta(v)))$$

$$s.t. \quad 0 \le x_e \le 1, \qquad \forall e \in E, \qquad (i)$$

$$x(\delta(1)) = 2, \qquad (ii'') \qquad (4)$$

$$x(E(U)) \le |U| - 1, \quad \forall U \subseteq V \setminus \{1\}, \emptyset \ne U \ne V \setminus \{1\}, \quad (iii)$$

$$x(E) = |V|. \qquad (iv)$$

The extreme solutions of (i), (ii'), (iii), (iv) are 1-trees, hence the minimum of a linear function over (i), (ii''), (iii), (iv) can be found by applying any shortest spanning tree algorithm on graph $G \setminus \{1\}$.

Iteratively modifying the Lagrangean multipliers we achieve the optimum of (2).

3 (k,1)-forests and Lagrangean relaxation

The idea of Held and Karp can be extended for the k-TSP.

Definition 1. A set $F \subseteq E$ is a (k,1)-forest if |F| = k and F contains at most one simple cycle.

Consider the following IP-formulation of the k-TSP.

$$\begin{array}{llll} \min & c^T x \\ s.t. & 0 \leq x_e \leq 1, & \forall e \in E, & (i) \\ & x(\delta(v)) \leq 2, & \forall v \in V, & (ii) \\ & x(\delta(v)) - 2x_e \geq 0, & \forall v \in V, \ \forall e \in \delta(v), & (iii) \\ & x_{(u,v)} + x(u,T) + x(v,S) - x(S,T) \leq 2, & \forall u,v,S,T \ partition \ of \ V, & (iv) \\ & x(E) = k, & (v) \\ & x_e \in \{0,1\}, & \forall e \in E. & (vi) \end{array}$$

Using the fact that each k-cycle is a (k,1)-forest with the degree of each node equal to 2 or 0 we obtain the following formulation of the k-TSP.

$$\begin{array}{ll} \min \ c^T x \\ s.t. \ x \big(\delta(v) \big) \leq 2, & \forall v \in V, & (ii) \\ x \big(\delta(v) \big) - 2x_e \geq 0, & \forall v \in V, \ \forall e \in \delta(v), & (iii) \\ x \text{ is an incidence vector of a (k,1)-forest.} & (vi') \end{array}$$

We denote the family of all (l, 1)-forests, l = 0, ..., k, by $\mathcal{F}_{\leq k}$.

Lemma 1. The pair $(E, \mathcal{F}_{\leq k})$ is a matroid with the ground set E and the family of independent sets $\mathcal{F}_{\leq k}$.

Proof. Obviously if $F \in \mathcal{F}_{\leq k}$ then any subset of F is also in $\mathcal{F}_{\leq k}$. We must proof: for given $F_1, F_2 \in \mathcal{F}_{\leq k}$, $|F_1| < |F_2|$, there is $e \in F_2 \setminus F_1$ such that $F_1 \cup \{e\} \in \mathcal{F}_{\leq k}$. Two cases are possible:

- 1. Set F_1 contains no cycle. Then for any $e \in F_2 \setminus F_1$ we have $F_1 \cup \{e\} \in \mathcal{F}_{\leq k}$.
- 2. The set F_1 contains a cycle. Consider the connected components of F_1 , say $K_1=(V_1,E_1),\ K_2=(V_2,E_2),\ \ldots,\ K_s=(V_s,E_s).$ Since $|F_1|<|F_2|$ and F_2 contains at most one cycle, there is an edge $e\in F_2$ such that $e\notin\bigcup_{i=1}^s E(V_i,V_i)$ and therefore $F_1\cup\{e\}\in\mathcal{F}_{\leq k}.$ This completes the proof.

A minimal weight (k, 1)-forest in a given graph with n nodes and m edges can be found in $O(m \log n)$ operations using the greedy method which is an adaptation of Kruskal's algorithm, see [9].

We can solve (6) using subgradient optimization. The advantage of this approach is that we do not need to implement a linear programming algorithm and separation technique. However, the lower bounds may be worse than that obtained from the linear programming relaxation of (5).

4 Matchings

Let G = (V, E) be a graph and b be a vector in \mathbf{Z}_{+}^{V} . A vector $x \in \mathbf{Z}_{+}^{E}$ is a b-matching if

$$x(\delta(v)) \le b_v \tag{7}$$

holds for each $v \in V$. A b-matching x is called *perfect* if

$$x(\delta(v)) = b_v \tag{8}$$

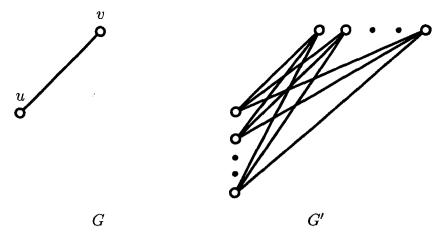


Figure 1: Reduction of the perfect b-matching problem to the perfect matching problem

holds for each $v \in V$. A b-matching x is called simple if x is a zero-one vector. If b is the all-one vector, then x is a 1-matching or simply a matching. If all the components of b equal 2, then x is a 2-matching.

Let c be a weight vector associated with G. The problem of finding a (simple, perfect) b-matching of minimum (maximum) weight is a minimum (maximum) weight (simple, perfect) b-matching problem. All such matching problems are polynomial time solvable, see e.g. Derigs [2] and Schrijver [14]. The matching and the 2-matching problems are defined analogously. Edmonds [3] gives a polynomial algorithm for the maximum weight matching problem. The minimum weight perfect matching problem can be easily reduced to the maximum weight matching problem by the following modification of the weight vector: for each edge e set $c'_e := M - c_e$ where M is a big number, and replace the weight vector c with c'.

By the following transformation, which is due to Tutte [15], the perfect b-matching problem on a given weighted graph G=(V,E) with the weight vector c can be reduced to the perfect matching problem on a graph G'=(V',E') with a weight vector c'. The graph G' is constructed as follows: for each node $v\in V$ create b_v nodes v_1,v_2,\ldots,v_{b_v} in V' and for each edge $\{u,v\}\in E$ create $b_v\cdot b_u$ edges $\{u_1,v_1\}, \{u_1,v_2\},\ldots,\{u_1,v_{b_v}\},\ldots,\{u_{b_u},v_1\}, \{u_{b_u},v_2\},\ldots,\{u_{b_u},v_{b_v}\}$ with weights $c'_{u_iv_j}:=c_{uv}$ for $i=1,\ldots,b_u,\ j=1,\ldots,b_v$, see figure 1.

Now if x' is a feasible solution of the perfect matching problem on G', then $x^* \in \mathbf{Z}_+^E$ with

$$x_{uv}^* = \sum_{i=1}^{b_u} \sum_{j=1}^{b_v} x_{u_i v_j}' \tag{9}$$

for each edge $\{u,v\} \in E$ is a perfect b-matching in G. Moreover, $c'x' = cx^*$ and for each perfect b-matching in G there is at least one perfect matching in G' with identical weight. Hence, if x' is an optimal solution of the perfect matching problem on G', then x^* is an optimal solution of the perfect b-matching problem on G.

The perfect matching problem on G' can be solved in time polynomial in |G'|, so the perfect b-matching problem on G can be solved in time bounded by polynomial in b(V) and |E|, which gives a pseudo-polynomial (polynomial in the size of the problem and b(V)) algorithm for the simple perfect b-matching problem. The simple perfect b-matching problem on a given graph G = (V, E) can be reduced to the perfect b-matching problem on some graph G' = (V', E') by the following transformation.

For each node v in V create a node v' in V' and set $b'_{v'} = b_v$. For each edge $e \in E$, $e = \{u, v\}$, introduce two nodes u_e and v_e in V' and three edges, $\{v', v_e\}$, $\{v_e, u_e\}$, and

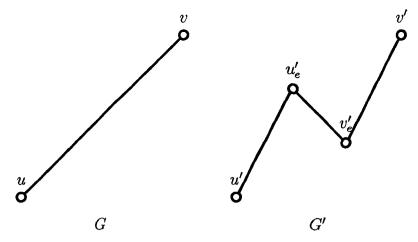


Figure 2: Reduction of the simple perfect b-matching problem to the perfect b-matching problem

 $\{u_e,u'\}$ in E'. Set $b'_{u_e}:=b'_{v_e}:=1$ and set $c'_{v'v_e}:=c'_{u_eu'}:=c_{uv}$, $c_{v_eu_e}:=0$, see figure 2. Now the optimal solution x^* of the simple perfect b-matching problem can be derived from the optimal solution x' of the perfect b'-matching problem by setting $x_e:=x'_{uu_e}$ for each $e\in E$, $e=\{u,v\}$.

Note that for the simple perfect b-matching problem we can assume for each node v the parameter b_v to be at most the degree of v, otherwise the problem is not feasible. Therefore, the transformation described above reduces the simple perfect b-matching problem on G = (V, E) to the perfect matching problem on a graph G' = (V', E') with $O(|V|^2)$ nodes. It gives a polynomial algorithm for the simple perfect b-matching problem.

Another reduction of a (simple) b-matching problem is due to Berge, see [1]. For a deeper survey of matchings see Derigs [2] and Schrijver [14].

5 The simple (k, 2)-matching relaxation

Let G = (V, E) be a graph with n nodes and k be an integer, $0 \le k \le n$. A 2-matching x is a (k, 2)-matching if x(E) = k. A (k, 2)-matching x is called *perfect* if

$$x(\delta(v)) \in \{0, 2\} \tag{10}$$

for each $v \in V$. A (k, 2)-matching x is called *simple* if x is a zero-one vector. The problem to find a simple (k, 2)-matching of minimum weight c^Tx in a given graph G is the *minimum weight simple* (k, 2)-matching problem.

Theorem 1. The minimum weight simple (k, 2)-matching problem is polynomial time solvable.

Proof. The simple (k,2)-matching problem on G=(V,E) can be reduced to the perfect b-matching problem on the graph G'=(V',E') with the weight vector $c'\in\mathbf{R}^{E'}$ and the b-vector $b'\in\mathbf{Z}_+^{V'}$ defined as follows. For each node $v\in V$ create a node $v'\in V'$ with b(v')=2. For each edge $e=\{u,v\}\in E$ create nodes $u_e,v_e\in V'$ with $b(u_e)=b(v_e)=1$ and three edges $\{u',u_e\},\{u_e,v_e\}$ and $\{v_e,v'\}$ and set $c'_{u'u_e}:=c'_{v'v_e}:=c_{uv}$ and $c_{u_ew_e}:=0$. Create a new node $v_k\in V'$ with $b(v_k)=2\cdot (n-k)$. Create for each $v\in V$ an edge $\{v_k,v'\}$ with $c'_{v_kv'}=0$.

The graph G' has O(|E|) nodes and O(|E|+n-k) edges and can be built in O(|E|) operations. Moreover, it holds that $b(V') \leq 2n$. The b-matching problem on G' can

be solved in polynomial in |E'| and b(V') number of operations, which yields a strongly polynomial time algorithm for the simple (k, 2)-matching problem.

However, the algorithm given in the proof above can be hardly used in practice. Indeed, for a complete graph G we need to solve a perfect matching problem on a graph G' with $O(n^2)$ nodes, which can be a challenge even for rather small values of n.

An integer vector $x \in \mathbf{Z_+}^E$ is the incidence vector of a k-cycle if the following three conditions are satisfied:

- 1. x is a simple (k, 2)-matching,
- 2. x is a perfect (k, 2)-matching,
- 3. the support graph of x is connected.

Now we can see that for a given weighted graph G an optimal solution of the simple (k,2)-matching problem on G gives a lower bound for the optimal objective value of the k-TSP on G. The simple (k,2)-matching problem is polynomial time solvable. However, we leave open the question how to design an efficient combinatorial algorithm for the simple (k,2)-matching problem and the question whether the perfect (k,2)-matching problem is polynomially solvable.

6 Examples

Here we show some small examples of applying these two bounding techniques for the k-TSP. **Example 1.** Consider a complete graph with 4 nodes which are points in a plane with coordinates (0,3), (3,3), (3,6), (2,0), see figure 3. Here we have k=3, the weights of the edges are euclidian length. The minimum weight

(3,1)-forest a) has the weight of $6+\sqrt{10}$, the minimum weight simple (3,2)-matching b) has the weight of $6+\sqrt{13}$, and the minimum weight 3-cycle c) has the weight of $6+\sqrt{18}$. **Example 2.** A complete graph with 5 nodes, all the same as in the first example plus one point (5,5) and k=4, see figure 4. The minimum weight (4,1)-forest a) has the weight of $6+\sqrt{5}+2\sqrt{2}$, the minimum weight simple (4,2)-matching b) has the weight of $3+\sqrt{13}+\sqrt{5}+2\sqrt{2}$, and the minimum weight 4-cycle c) has the weight of $3+\sqrt{18}+\sqrt{5}+2\sqrt{2}$.

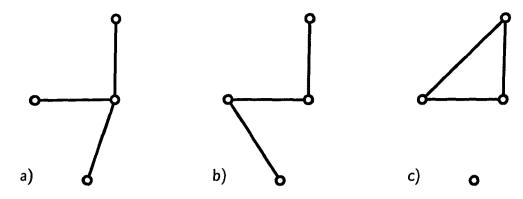


Figure 3: Minimum weight a) (3,1)-forest, b) simple (3,2)-matching, and c) 3-cycle

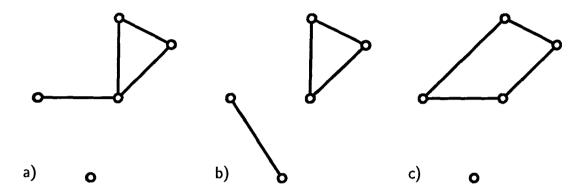


Figure 4: Minimum weight a) (4,1)-forest, b) simple (4,2)-matching, and c) 4-cycle

Acknolegment. The author is thankful to Andreas Drexl for his useful suggestions and comments.

References

- [1] C. Berge, The Theory of Graphs and its Applications, John Wiley, New York, 1962.
- [2] U. Derigs, Programming in Networks and Graphs, Springer-Verlag, 1988.
- [3] J. Edmonds, *Maximum matching and a polyhedron with 0,1-vertices*, Journal of Research of the National Bureau of Standards Section B **69** (1965), 67–72.
- [4] E. Girlich, M. Höding, A. Horbach, and M. Kovalev, *On the diameter of the circuit and the k-cycle polytopes*, Technical Report 7, Faculty of Mathematics, Otto-von-Guericke University Magdeburg, 2002.
- [5] _____, Regular δ -path inequalities for the k-cycle polytope, Technical Report 15, Faculty of Mathematics, Otto-von-Guericke University Magdeburg, 2003.
- [6] M. Hartmann and Ö. Özlük, Facets of the p-cycle polytope, Discrete Applied Mathematics 112 (2001), 147–178.
- [7] M. Held and R.M. Karp, *The traveling-salesman problem and minimum spanning trees*, Operations Research **18** (1970), 1138–1162.
- [8] _____, The traveling-salesman problem and minimum spanning trees: part II, Mathematical Programming 1 (1971), 6–25.
- [9] J.B. Kruskal, On the shortest spanning subtree of a graph and the traveling salesman problem, Proceedings of the American Mathematical Society 7 (1956), 48–50.
- [10] J.-F. Maurras, M.M. Kovalev, and Y. Vaxès, On the convex hull of the 3-cycles of the complete graph, Pesqui. Oper. 23 (2003), 99–109.
- [11] J.-F. Maurras and V.H. Nguyen, On the linear description of the k-cycle polytope, International Transactions in Operational Research 8 (2001), 673–692.
- [12] _____, On the linear description of the 3-cycle polytope, European Journal of Operational Research 137 (2002), 310-325.
- [13] V. H. Nguyen, *Polyèdres de cycles: description, composition et lifting de facettes*, Ph.D. thesis, Université de la Méditerranée, 2000.
- [14] A. Schrijver, Combinatorial Optimization Polyhedra and Efficiency, Springer, 2003.
- [15] W.T. Tutte, A short proof of the factor theorem for finite graphs, Canadian Journal of Mathematics 6 (1954), 347–352.