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Abstract 

This paper addresses the airport flight gate assignment problem with multiple ob-
jectives. The objectives are to maximize the total flight gate preferences, to minimize 
the number of towing activities and to minimize the absolute deviation of the new 
gate assignment from a so-called reference schedule. The problem examined is a mul-
ticriteria multi-mode resource-constrained project scheduling problem with generalized 
precedence constraints or time windows. While in previous approaches the problem has 
been simplified to a Single objective counterpart, we tackle it directly by a multicriteria 
metaheuristic, namely Pareto Simulated Annealing, in order to get a representative ap-
proximation of the Pareto front. 

Keywords: airport gate assignment, multiple criteria optimization, project scheduling, 
time windows, Pareto simulated annealing. 

1 Introduction 

Scheduling problems arising in practica almost always have a multiple criteria nature, a fact 
which was indicated in [40] for the first time. Nevertheless until recently, research in schedul
ing continued to deal mainly with single objective problems and, hence, scheduling theory 
and multicriteria optimization so far have developed separately. One of the first attempts to 
improve the Situation and to incorporate multicriteria approaches into scheduling theory was 
done in [48]. In this research it has been shown that a Solution which is optimal with respect 
to one single objective might be arbitrarily bad with respect to other criteria and thus will be 
unacceptable for the decision maker. As a consequence it can be generally concluded that 
any problem arising in practice can hardly be properly solved without multicriteria optimiza
tion techniques. Nowadays this is commonly accepted, a fact which will stipulate scheduling 
research within the multiple criteria framework. 
Due to the growth of air transport traffic (it has roughly doubled since the early 1980s) 
techniques for managing and allocating airport and airline resources in a dynamic operational 
environment effectively and efficiently have gained an ever-increasing interest. Strong com Pe
tition between airlines and the demand of passengers for more comfort have lead to complex 
planning problems that require new models and methods. The scheduling problems nowadays 
faced by airport and airline manägers are even möre complicated than most other traditional 
scheduling problems. Classical flight gate scheduling deals with assigning aircraft to their 
terminal stand positions, which are known as 'gates'. We refer the reader to [17] where a 
comprehensive survey of existed models and Solution techniques is presented. 
The most recent models represent the flight gate scheduling problem (FGSP) as a quadratic 
assignment problem (QAP) with multiple objectives (see, e.g., [13, 14, 15, 49, 50]) or as a 
resource- and time window-constrained project scheduling problem (RCPSP; see, for instance, 
[16]). It should be emphasized, that these two distinct models generally highlight two differ-
ent strategies adopted in the major airports of the United States and the European Union, 
respectively. While these models have been developed for different application domains both 
adopt multiple criteria. Moreover, both are very hard to solve even in the single objective case. 
Therefore, for practica! purposes, it seems to be promising to combine different well-known 
metaheuristic approaches (simulated annealing, tabu search, genetic algorithms) providing a 
good approximation of optimal solutions with acceptable running times with multicriteria op
timization concepts. In [21], for example, such an approach has been developed for FGSP 
modelled as QAP with multiple objectives. In this paper we elaborate such an approach for 
FGSP modelled as RCPSP with multiple objectives. 
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The paper is organized as follows. In section 2 the problem is formulated mathematically. In 
section 3 a survey and synthesis of algorithms developed for RCPSP type models is given. 
Section 4 presents a detailed description of a particular multicriteria procedure. A short 
summary and some conclusions can be found in section 5. 
Results of computational experiments will be presented in part II of the paper, which is issued 
separately. 

2 Mathematical model 

2.1 General description 

Traditionally, a well-constructed flight gate assignment must satisfy two restrictions: 

• no two aircraft may be assigned to the same gate simultaneously, i.e. one gate can 
process only one aircraft at the same time, 

• every flight must be assigned to exactly one gate, that is, an aircraft cannot be moved 
or reassigned to another position once it has been located at a terminal gate. 

Note that the models with such strict restrictions represent the strategy adopted for United 
States airports. This strategy considers arrival, departure and intermediate parking stages as 
a single non-split entity to be assigned to the same position. 
In the model presented in this paper we relax the assumption that a flight has to be assigned 
as a whole to one and only one gate. The model uses a fairly large number of apron stands for 
passenger embarking and disembarking reflecting scarce terminal space. As indicated above 
such a model Covers the Situation encountered frequently at European airports. 
Sometimes, special constraints are introduced mainly because of a particular airport configu-
ration. The most commonly used such constraint is that any two large-type aircraft cannot be 
assigned to neighboring gates. Below we will refer to such constraints as 'shadow' restrictions. 
The mathematical formulation of the problem we consider in this paper was originally proposed 
in [16]. The purpose of the model is to assign three possible aircraft activities (arrival; optional 
intermediate parking, the length of which depends on the ground time; departure) to the 
available airport flight gates and to schedule Start and completion times of the activities at 
the positions. 
The model has several new ingredients: 

• First, the activities are modeled separately and, hence, can potentially be assigned to 
different positions. The aircraft can be moved to another position using tow tractors, a 
procedure which is called towing. 

• Second, in contrast to the Standard objective function commonly used (which minimizes 
passenger Walking distance) a multiple objectives formulation is introduced. As indicated 
above three objectives were considered to be most important: 

- maximization of total flight-gate preferences, 

- minimization of the number of towing activities, 

- minimization of the absolute deviation of the new gate assignment from a so-called 
reference schedule 

2 



The first and second objective are oriented towards convenience for airport services, whereas 
the third objective takes into account passenger comfort. The overall goal is to optimize all 
the objectives simultaneously. In fact, the multiple criteria nature of the problem makes it very 
unlikely that a so-called ideal optimal Solution which simultaneously optimizes all objectives 
does exist— and can be found and verified in reasonable time. Therefore, one has to determine 
a Solution that provides an appropriate compromise between all the different objectives while 
assuring a set of hard constraints. 
In the following subsection a mathematical formalization of the problem is presented. 

2.2 Model formulation 

Let n be the number of aircraft (flights) and m be the number of terminal stand positions 
(gates). Each aircraft activity (arrival, departure or parking) i can be described by its Start time 
Si and by its completion time Q. The Start time for an arrival activity £• and the completion 
time of a departure activity tf are fixed and given a priory according to some time-table. All 
other start and completion times are decision variables of the model. Thus, we have 3n aircraft 
activities, and An decision variables related to time. Additionally, we have n implicit variables 
related to gate assignment. In total the number of variables is equal to 5n. 
Let V denote the set of all activities as a unification of the sets of arrival, parking and departure 
activities, respectively, that is, V = Va U Vp U Vd. Each activity i has a minimum required 
processing time Activity i can be assigned to different flight gates (that is, can be 
processed in different modes) Mj from the associated mode set M.i which is a subset of the 
set of all possible modes A4. To cope with the Situation where the constraints do not allow to 
assign all aircraft to real gates, a fictitious gate 0 with unlimited capacity is introduced. Every 
set Mi contains this dummy gate, and an assignment to the dummy gate will be penalized in 
the objective functions. 
If two interrelated (linked) activities are assigned to different flight gates, then they require a 
towing procedure in order to be moved from one position to another. Two activities are linked if 
they are subsequently served by the same aircraft (e.g. arrival/parking or parking/departure). 
Towing activity i assigned to gate Mi to activity j assigned to gate Mj takes some fixed 
processing time d^.jM . Let £tow represent the set of linked activities. It follows that the 
completion and start times of two linked activities i and j should satisfy the equality Q + 

— Sj to provide continuous processing. In fact, this means that among all 4n decision 
variables only 2n variables are independent. The values d^.jM. are usually defined by a 
function := ft0W(i,MiJ,Mj). 
Gates are disjunctive resources that can only process one aircraft at a time (the only exception 
is, of course, dummy gate 0). Between the processing of two activities i and j at the same 
gate a fixed setup time df^M. 6 N0 must pass. The setup time can reflect the time required 
to push the first aircraft back from the gate and for moving the second aircraft to the gate 
as well as the time required for setting up gate equipment. Observe also that, if i and j 
are two activities served by the same aircraft, i.e. (i,j) G £tow, then d^JM. = 0. In 
analogy to the time needed for towing, the setup time is usually calculated by some function 
<TM"J¥, :=f 
Additionally to these basic disjunctive constraints we have to consider so-called shadow' 
restrictions (i,Mi,j,Mj) between gates Mi and Mj which can be interpreted as follows: if 
mode Mi € M.i is assigned to activity i, then activity j must not be processed simultaneously 
in mode Mj € A4j. The set of shadow restrictions is denoted as sshadow. 
Now, the model can be summarized as follows: Find a schedule (S, C, M) which assures con-
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straints (1) to (5) and optimizes goals (6a) to (6c). 

Minimal processing time 
Mer (1) 

Continuous processing 
Q + = % V(i,j)ei*- (2) 

Disjunctive activities and setup times 

For all activities i,j EV such that either Mi = Mj ^ 0 or 3(i, Mt,j, Mj) E £shadow one of 
the following two conditions must be fulfilled: 

(3=) 

C, + «ffln £ S> (3b) 

Start and completion time 

Si = Vi E Va (4a) 

Q = tf Vi E (4b) 

Qe No Vier (4c) 

Mode selection 

Mit Mi Vi E V (5) 

Objectives 

The objective function is a vector containing the goals: (1) maximization of the total assign
ment preference score, (2) minimization of the number of required towing Operations, and 
(3) minimization of the deviation from a given reference gate schedule. Hence, the objective 
function z(M) := (zi,z2,z3) is a vector with the three partial objectives where 

Zl := YwiUiMi, (6a) 
iev 

Z2 := |(i,j) e £tmv : Mi f Mj\, and (6b) 

z3 := ^2 wi• (6c) 
ieV-. Mi^M[ 

Typically E [0,1] is a preference value associated with every activity-mode combination, 
Wi E [0,1] is a priority weight associated with every activity and M[ denotes the reference gate 
of activity i, respectively. Apparently, the choice of appropriate preference weights and priorities 
may have a substantial impact on the optimal gate schedule. Note that any maximization 
(minimization) objective can be converted into a minimization (maximization) objective by 
simply changing its sign. 

3 Algorithms: survey and synthesis 

Generally speaking project scheduling is concerned with single-item or small batch production 
where scarce resources have to be allocated to dependent activities over time. Accordingly, 
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applications can be found in diverse industries such as construction engineering, Software devel-
opment, etc. Due to the variety of potential applications there do exist two main aIgorithmic 
streams of research. One of them does not take into account any specifics of potential ap
plications, that is, it is concerned with the development of general purpose algorithms (for 
a general project scheduling model type under consideration). On the contrary researchers 
develop algorithms for specific 'project scheduling' application domains (as we do here). Of 
course, both streams are interrelated and mutually stimulate each other. We review algorithms 
belonging to the first and to the second variety in subsections 3.1 and 3.2, respectively. While 
doing so the work done on simulated annealing is reviewed separately. 

3.1 General purpose algorithms 

It is well-known that even the single objective RCPSP is NP-hard [3], hence it cannot be solved 
in polynomial time unless P = NP (see [23]). In the following we sketch exact and heuristic 
algorithms for the RCPSP and for the multi-mode RCPSP (MRCPSP) with a special emphasis 
on heuristics for the latter. Heuristics for solving the MRCPSP are of special importanee 
because of two reasons: First, our model is close to the classical MRCPSP. Second, exact 
algorithms for solving the MRCPSP are not able to solve highly resource-constrained MRCPSP 
instances with more than 20 activities and 2 modes in acceptable running times. An in-depth 
survey of exact and heuristic algorithms for the RCPSP and the MRCPSP is given in [6]. For 
project scheduling techniques with special emphasis on time windows we refer the reader to 
[39], 
Exact algorithms There exists a huge variety of exact Solution techniques. Among them 
procedures based on the branch and bound principle are most populär. In the single objective 
case almost all authors consider makespan minimization as objective. In [41] for instance an 
algorithm based on branch and bound and guided by the so-called precedence tree is proposed. 
The algorithm developed in [12] uses the concept of minimal delaying alternatives originally 
proposed in [9]. The branch and bound algorithm presented in [7] uses the notion of schedule 
scheme and some ideas from [2], contrary to the concept of constructing partial schedules 
introduced in [47]. In [28] and [45] algorithmic enhancements based on dominance criteria are 
given. Finally, truncated branch and bound algorithms have been presented in [19, 20]. 
Heuristic algorithms A couple of heuristics for the RCPSP have been evaluated in [29]. 
Heuristic algorithms for solving the MRCPSP have for instance been provided in [34]. Re-
cently, Hartmann [27] developed the most effective and efficient heuristic algorithm for solving 
the MRCPSP. Basically the algorithm works as follows. The genetic algorithm generates an 
initial population, i.e. the first generation, containing a certain number of individuals and then 
determines their fitness values. Then the population is randomly partitioned into pairs of 
individuals. To each pair of (parent) individuals, the crossover operator produces two new 
offsprings. Subsequently, the mutation operator is applied to the genotypes of the newly pro-
duced children. After Computing the fitness of the offsprings, they are added to the current 
population, duplicating the population size temporarily. Then the selection operator is applied 
in order to reduce the population to its former size and to obtain the next generation to which 
the crossover operator is applied again. This process is repeated for a prespeeified number of 
generations. 
Simulated annealing A classical single objective SA for arbitrary optimization problem was 
originally proposed in [32] and [33]. In fact, SA originates from Monte Carlo methods developed 
in [37] to simulate physical annealing processes. To the best of our knowledge, one of the first 
attempts to adapt SA for solving RCPSP was done in [4] and it has been shown there that 

5 



the proposed procedure was able to outperform TS. In [36] an algorithm based on simulated 
annealing and priority scheduling methods has been proposed for the RCPSP. The priority 
scheduling method selects and schedules an activity with the highest priority value among 
those activities for which the predecessors have been completed and for which there is enough 
resource available at the current point of time. Performance of the algorithm is compared 
with existing heuristics from [41]. In [8] the SA from [36] is slightly modified in order to delay 
some activities, a fact which extends the search space and requires extra computation time. 
A new SA algorithm for RCPSP and MRCPSP was proposed in [5], The conventional SA 
scheme is replaced by a new design, where the search is based on (1) alternated activities 
and a time incrementing process - in the case of RCPSP, (2) two embedded search loops 
alternating activities and mode neighborhood exploration - in the case of MRCPSP. 
Multicriteria versions of SA have been developed in [25, 26]. In [25] a two-stage approach 
is proposed: in the first stage a large representative sample of approximately non-dominated 
schedules is produced, whereas the second stage presents an Interactive procedure searching 
for the best solutions in the sample. In [26] the approach developed in [25] is generalized for 
the MRCPSP with fuzzy data. A decision support system for a multicriteria version of the 
MRCPSP is described in [44]. 
A new variant of SA for MRCPSP was presented in [31], where two slightly different versions 
of SA were considered - SA with or without penalty functions. Contrary to the simple Standard 
cooling scheme used in [4] and [5], both versions use a cooling scheme which has initially been 
described in [1], It is based on the concept of Markov chains and their associated lengths. 
The most recent versions of local search-based probabilistic metaheuristics (SA and TS) for 
the MRCPSP with positive discounted cash flows and four different payment models have 
been presented in [38]. 
The multicriteria SA proposed in [10, 11] is a metaheuristic that uses the concepts sketched 
out above for simulated annealing and genetic algorithms. The Output is a representative 
approximation of the Pareto set, the reason why it is known as Pareto simulated annealing 
(PSA). The fundamental milestones are as follows: (1) the concept of neighborhood, (2) use of 
aggregation function-based probabilities for acceptance of new neighborhood solutions, (3) the 
concept of generating solutions or agents, (4) management of the population of generating 
solutions or repulsion, (5) normalization of objectives, (6) the scheme of changing of the 
annealing temperature, and (7) updating the set of potentially Pareto optimal solutions. 
A general description of PSA is given in subsection 4.2. Observe that PSA defines only a 
general algorithmic scheme, which has to be customized for a particular combinatorial problem 
by defining the way new solutions are generated from a neighborhood for a given Solution. For 
the FGSP the PSA is adopted in subsections 4.7 to 4.9. 

3.2 Special purpose algorithms 

Recall the major idea behind the FGSP presented above, that is, to model the problem as 
a special multi-mode resource-constrained project scheduling problem with generalized prece-
dence constraints or time windows. The model can be interpreted in project scheduling terms 
as follows: (i) continuous processing restrictions (2) represent temporal constraints, (ii) dis-
junctive activities and setup time restrictions (3a) to (3b) generate unary resource constraints, 
(iii) start and completion time restrictions (4a) to (4c) define domain constraints. It should 
be noted that the objectives (6a) to (6c) depend only on the gate assignment and not on the 
start and completion times of processing activities at the assigned positions as in the classical 
RCPSP. 
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Algorithms specifically dedicated to the model (1) to (6) are very rare. To be honest, only 
two references, that is [16, 18], do exist. Some details are reviewed in what follows. 
Exact algorithms The basic optimization algorithm for the FGSP is a truncated branch and 
bound procedure. The algorithm proceeds by assigning modes to the activities and by resolving 
resource conflicts that might appear. In comparison with a Standard branch and bound proce
dure, it has several distinctive features. First of all, it uses two different types of branching: (i) 
branching over flight gates (modes) by assigning the best mode to some unscheduled activity 
according to some rule and accepting or forbidding this assignment afterwards, (ii) branching 
over disjunctive constraints by resolving resource conflicts and defining which activity from 
the set of already scheduled ones (an activity is considered to be scheduled if it has a mode 
assignment) must be the predecessor. The second feature of the proposed method is that it 
uses constraint propagation techniques. This means that at each node of the binary search 
tree induced by the branching scheme constraint propagation techniques are applied in order 
to reduce the search space until a fixed point has been computed. 
Heuristic algorithms For dealing with large instances arising in practice (which have a huge 
number of aircraft activities and airport gates), the branch and bound procedure was upgraded 
with additional problem decomposition (variable partitioning) techniques. Additionally, large 
neighborhood search techniques have been implemented. Computational experiments with 
large real-life data as well as with manually constructed small examples demonstrate the 
effectiveness of the technique especially in comparison with the results of a modern rule based 
decision support system. 
IMevertheless, it has to be emphasized that, in fact, the multicriteria core of the problem was 
not fully considered in [16, 18]. The authors propose to use a Standard linearization technique 
in order to convert the multiple criteria problem into a single criterion one without giving 
spacial emphasis on selecting aggregation coefficients. Hence, the problem of finding the 
solutions which are efficient with respect to all objectives still seems to be open. Apparently, 
a simple aggregation of objectives has several disadvantages: (i) the Interpretation of numeric 
values of an aggregated objective function is difficult due to the different meaning of the partial 
objectives, (ii) the meaning of the weights is not clear for the decision maker, and (iii) tuning 
the aggregation function by playing with a set of large weights may be too costly. 
Summarizing we conclude that the search for methods which are better suited for FGSP under 
multiple objectives is an important and interesting topic of research. 

4 Pareto simulated annealing 

In this section we describe a Pareto simulated annealing algorithm (PSA) for solving the FGSP 
(1) to (6).3 The choice of simulated annealing is not occasional: As shown in [30], SA has 
computational advantages in a multiple criteria setting. 

4.1 Optimality in the presence of multiple criteria 

We start with necessary definitions of optimality in the multiple criteria case. Contrary to the 
single criterion case, where the structure ässociated with the set of feasible solutions is totally 
ordered (i.e. there is no incomparability between two solutions, and the definition of optimality 
is straightforward) in the multicriteria case this definition is no longer trivial, because partial 

3ln [21] PSA has been adapted to the gate assignment problem modelled as a multiple criteria QAP. 
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criteria, which have to be optimized simultaneously, are often in conflict with each other (that 
is, incomparable). 
Let II C M7 be the set of feasible solutions. Moreover, let = {ZP}1= i be the mapping 
of S criteria in the space of II. The concept of optimality is based on the dominance relation 
between two vectors in the criteria space. In case of minimization 

z(ir) = (21(71-), Z2(TT), ZS(TT)) —» min 
iren 

we say that 7r' dominates 7r if zp(TT1) < ZP(TT) for all p = 1 ,...,6, with at least one strict 
inequality, and TT is non-dominated otherwise. A set of solutions is said to be Pareto optimal 
if, while moving from Solution w belonging to the set of Pareto optimal solutions (or briefly, 
the Pareto set) V5 C II to another Solution TT' 6 II in the feasible set, an improvement of the 
value of one criterion would at least deteriorate the value of one other criterion. 
In terms of vector dominance the definition of Pareto optimality can be reformulated as follows: 
TT € II is a Pareto optimal Solution (Pareto Optimum) if and only if there exists no Solution 7r' 
that dominates TT. Any 7r which is not Pareto optimal cannot represent an optimal Solution, 
because 37T' £ II such that zp(TT') < zp(ir) for all p = 1,...,<5 with a strict inequality in 
at least one case. Thus, roughly speaking, the Pareto set is the set of all non-dominated 
solutions. 
The method commonly used for solving a multicriteria problem iscalled weighting method [46]. 
It takes each objective function zp and multiplies it by the corresponding weighting coefficient 
Xp. The modified functions are then added together to obtain a single cost function, which 
can easily be solved using any single objective method. Mathematically, the new function is 
written as 

<5 S 
•2A(T) = ^ ] ApZp(?r), 0 < Xp < 1, ^ ] Xp = 1, A = (Ai,..., A<j). 

P—1 p=1 

If the problem is convex, i.e. the set of feasible solutions and the objective functions are convex, 
then a complete set of proper Pareto optimal solutions can be found ('proper' in the sense of 
[24]; see, e.g., [22] and [48], too). However, if the problem is not convex, then there is no 
guarantee that this method will yield the entire Pareto set. Usually, the weighting coefficients 
are initialized somehow, and they are varied afterwards to generate the entire Pareto set. 
For solving the multicriteria FGSP one might now suggest to proceed as follows: (1) aggregate 
all objectives into one goal function, and (2) use, e.g., some Standard heuristics for resolving 
the new problem with the aggregated objective function. As outlined above such an approach 
has been chosen by [16, 18]. In the sequel, however, we will show that such an approach is 
inferior to a multicriteria heuristic. 

4.2 Pareto simulated annealing: general description 

Pareto simulated annealing (PSA) proposed in [10], [11] is a multiple criteria metaheuristic 
that uses some general building blocks developed for single objective simulated annealing (SA) 
as well as several specific concepts which take into account the multiple criteria nature of the 
problem (see [30]). 
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Standard concepts of SA 

• Neighborhood concept 

At each Iteration q the neighborhood N(n) of Solution 7r is specified (usually problem-
specific). N(7r) represents the subset of solutions ir' which can be reached in one 
Iteration emanating from 7r. Generally, it is not possible to störe the neighborhood 
structure, because the set of feasible solutions has an exponential size. To overcome 
this difficulty a set AM of allowed^modifications F or neighborhood search moves is 
introduced. In this case for a given Solution 7r the neighborhood N(ir) can be defined 
by N(7r) = {F(TT) | F E AM}. 

• Probabilistic acceptance of a new neighborhood Solution 

In each Iteration q Solution 7r' is accepted with probability 

P(7r,7r',T9) = min |l, exp j 

This probability is decreased during the course of the algorithm. In other words, we can 
escape a local optimum, but the probability for doing so is low after a large number 
of iterations. It guarantees that there is a high probability to locate a global optimum 
while avoiding to be trapped in local optima. 

• Parameter (temperature) dependent acceptance probability 

The probability of making the transition to the new Solution depends on a global time-
varying parameter T called the annealing temperature: (Tq)%L1 is a sequence of positive 
control parameters with lim Tq = 0. 

g—»oo 

• Cooling schedule 

Generally, the sequence (Tqis created by a function g, i.e. Tq+1 = g(Tq) for all q. 
The initial annealing temperature TQ has to be defined in advance. 

• Termination criterion 

One has the freedom to introduce different stopping criteria. Typically, SA is repeated 
until the system reaches a State which is "good enough", or until a given time limit 
has been reached. The annealing temperature decreases to (nearly) zero short before 
termination. 

Specific concepts of PSA 

• Use of aggregation function-based probabilities for acceptance of new neighborhood 
solutions 

PSA uses the concept of multiple objective acceptance rules proposed by Serafini [42], 
[43]. In the multiple criteria case while moving from Solution n to some randomly 
generated Solution 7r' E N(TT) one of the following three mutually exclusive situations 
may arise: (i) w' dominates or is equivalent to 7r, (ii) ir' is dominated by 7r, (iii) 7/ is non-
dominated with respect to 7T. In the first case the new Solution may be considered to be 
not worse than the current one and, hence, accepted with probability one. In the second 
case the new Solution may be considered to be worse than the current one (w is considered 
as potentially Pareto optimal) and accepted with probability less than one in order to 
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avoid getting trapped in local optima. In the third case 7r and 7r' are incomparable (and 
initially non-dominated). It follows that we have to introduce a multicriteria probabilistic 
acceptance rule which can be defined in various ways, interpreted as a local aggregation 
of all objectives with the weighted Tchebycheff scalarizing function or weighted linear 
scalarizing function with reference point z(7c). Thus, the probability of accepting the 
new Solution ir' is defined as: 

• The concept of generating solutions or agents 

Initially a set (sample) G of generating solutions with fixed cardinality |G| = </> is 
randomly produced to provide a sufficiently large search space for PSA. With each of the 
generating solutions a separate weight vector Xw = (AJ,..., AJ) is associated. For each 
7r E G the weight vector can be generated easily by the following iterative procedure: 

1. Let I = {1,..., £} and £2 = 1; 

2. Randomly choose p G 7; 

3. If |/| 7^ 1, then A£ := £2 • Random(0,1), £2 := £2 — A£, 
eise Xp := £2 and stop; 

4. Set I := I \ {p} and go to Step 2. 

Note that £2 corresponds to the total sum of weights Yfp=i ^p- Manipulating these 
weights provides good dispersion of the outcome Pareto front and makes the solutions 
of PSA more representative. The generating solutions may be treated as "spy agents" 
working almost independently but exchanging Information about their positions. It allows 
to control the distance between agents, predicting the generating solutions to be very 
close or too far from each other. 

• Management of the population of generating solutions or repulsion 

The degree of repulsion a is fixed and usually takes a very small positive value close to 
zero. The weight vector X* associated with a given generating Solution 7r is modified 
in order to increase the probability of moving 7r away from its dosest neighbor ir in the 
generating sample. This is obtained by increasing the weights of the objectives for which 
TT is better than TT and decreasing the weights of the objectives for which n is worse than 
fr: 

p (Ap — a otherwise, 

The following metric distance between solutions in the space of normalized objectives is 
used to determine the dosest neighbor ix of n: 

6 

An additional requirement is that the dosest neighbor 7r has to be non-dominated with 
respect to TT. If there is no generating Solution that meets this requirement each weight 
is either increased or decreased with probability equal to 

P(7r, 7r', X,Tg) = min j 1, exp ^max^ j 

f(A; :=A; + a) = f(A; :=A; -a) = l 
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Note that this mechanism never repulses the generating solutions outside the non-
dominated set. Moreover, each repulsion Iteration also requires normalization to satisfy 

Yfp= i K = !• 

• Normalization of objectives 

In real-life problems the ranges of objectives usually are quite different. The idea of 
PSA is to work with normalized weight vectors. So, the scalarization should be applied 
to normalized objective values. For each objective zp, p = we introduce the 
so-called ränge equalization factor [46] 

1 
Vp~ — fp 

where rp is the (approximate) ränge of objective p. Objective function values multi-
plied by ränge equalization factors are called normalized objective function values. This 
method is working properly if the objective ränge is large enough. Sometimes when 
the exact calculation of the objective ränge is too difficult, one can set rp equal to the 
expected approximate maximum value of the objective. 

• Updating the set of potentially Pareto optimal solutions 

The set of potentially Pareto optimal solutions Vpot is empty at the beginning of the 
method. It is updated after a new Solution is generated. Updating the set of potentially 
Pareto optimal solutions with Solution TX consists of: (1) adding 7r to if no Solution 
in Vpot dominates 7r and (2) removing from Vall solutions dominated by 7r. The 
process of updating Vpot may be very time consuming. Thus, several simple additional 
techniques could be used in order to reduce the time required for updating; for details 
see [30]. 

The characteristics of PSA may vary dependent on particular characteristics of the problem 
under consideration and, of course, substantrally influence the effectiveness of PSA. Initial 
values of the following parameters have to be defined in advance: the number of generating 
solutions <f>, the initial annealing temperature T0, the repulsion coefficient a > 0, the cooling 
schedule and the termination criterion. A flowchart of PSA summarizing all ingredients is 
presented in Figure 1. 

4.3 Arrival, parking and departure activities 

Let us now specifically address model (1) to (6). Figure 2 illustrates the most general case when 
arrival activity i € Va, parking activity j 6 Vp and departure activity k £ Vd of a particular 
aircraft are assigned to different gates Mj, Mk, respectively, and connected with towing 
procedures. The black part of an activity identifies the predefined minimal processing time, 
whereas the length of the grey part of each activity depends on variables' values and, hence, 
may vary. 
In the sequel for each activity i £ V we will use the following notation: ESi/LSi - earli-
est/latest start time of activity i, ECi/LCi - earliest/latest completion time of activity i. 
These parameters depend on the activity type. Initially they can be calculated as follows: 
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Figure 1: Flowchart of PSA 

12 



Figure 2: Arrival, Parking and Departure Activity 

ESi = LSi = Si = ta 

z,% =^-pr-%M.-pr 

z,c, = c-pr -%M. 

ECk = LCk = Ck = td 

% =f+pT + + 

62t =c-pr" 

If Mi = Mj, that is, arrival and parking activities are assigned to the same gate, then d!^iiM. = 
0, that is, there is no need for towing. Likewise, if Mj = Mk, then dJ^.kMk = 0. Otherwise, 
d%MijM > 0 and d%M.kMk > 0. Recall that in order to reduce the number of parameters 
which have to be defined explicitly, towing times are usually calculated by means of a function 

Initial values of earliest and latest start and completion times define the admissible domain for 
each time variable as follows: 

Activity Variable Interval 
i E y* {tf}, [ECi, LC,] 
JET/' [ESs, LS,}, [ECj, LC,] 
& eT/d [ESk, LSt], {(?} 

Without loss of generality we assume that all variables take their values from corresponding 
time domains, the values of which are cardinal numbers. 

Arrival activity i G Va 

Parking activity j G Vp 

Departure activity k G Vd 
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Initially, for each activity j 6 Vp the following relations are obvious: 

ECj = ESj + p™n, LCj = LSj + pfn, that is, LCj - ECj = LS3 - ESr 

Observe that start and completion time domains depend on chosen modes (gates). In order 
to avoid this, we initialize the admissible interval by taking the minimal (usually zero because 
ftow(i,ß,j, ß) = 0) value of ftow{i, Mi,j, Mj) instead of dfä?dMj for each (i,j) E V x V. 

4.4 Mode domains and their reduction 

Recall that the objectives depend on the mode assignment only. Therefore, we will say that 
activity i E V is scheduled or assigned if some mode from domain AMi that initially coincides 
with Mi is assigned to i, in other words the set of scheduled activities represents the set of 
activities Vs which are assigned to some particular gates. All other activities are considered 
as non-scheduled and belong to the set of free activities V* := K\VS. 
Let i and i' be two activities served by different aircraft, and assume the temporal constraint 
i before il (denoted as i —> i') to be valid. If no such constraint exists for a particular gate 
assignment ß E then ß can be removed from AM<- Formally, we have 

i —+ i', ß E AMi A ESi + min ds^l > LSi> => A% = \ {ß}. (7) 

In other words, before each new activity assignment we have to scan all activities with their 
mode domains and update the domains by excluding those modes which are not feasible at the 
moment. Such a procedure is known as 'mode shaving' (see [16]). We include the apron into 
mode domains in order to assure that the domain set always contains at least one element, 
given the fact that the apron has unlimited capacity and assignment is never forbidden. 

4.5 Disjunctive activities 

Gates are disjunctive resources. They can process one activity at a time. The only exception is 
dummy gate 0 that represents the apron. It has infinite capacity and can process an unlimited 
number of flights simultaneously. 
The set of disjunctive activities, i.e. activities that may potentially overlap and for which 
constraints (3a) to (3b) must be explicitly defined, can be generally described as follows: 

D := {(O') E y x y | + max > % A 
ßeMiveMi, " 

% + max (C > ES A 
ßeMiveMj % u%li 

[A4 n A4;, ^ 0 V 3(z, At, I/) € p e At, y e Aii,]}. 

In fact, any disjunctive conflict depends on the gate assignment, so we delay its resolution until 
the corresponding activities are scheduled. In other words, if a disjunctive conflict appears, 
that is, if (i) the same mode is assigned to activities i and i' or (ii) shadow restrictions between 
i assigned to gate ß and i' assigned to gate v arise, and, additionally, i may precede i' as 
well as i' may precede i, then we have to resolve this conflict by ordering the activities, i.e. 
defining whether activity i or %' should be processed first. 
For illustrative purposes consider the following Situation: Let i be an activity already assigned 
to gate ß and let i' be potentially assigned feasible gate v. Suppose that a disjunctive conflict 
induced a shadow restriction (i,ß,i', u) E eshadow between the two activities, i.e. 

> % and IQ, + ̂  > % 
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Observe that these two inequalities are valid only if either i or i' represents a parking activity 
(or both, of course); otherwise there is no disjunctive conflict at all. Then we choose one the 
two alternative precedence relations at random. This heuristic rule we will use for generating a 
new Solution. Assume now that w.l.o.g. i must precede i' which implies that + < Sy 
has to be assured. In the next section we describe exact time domain reduction rules that can 
be interpreted as implicit additional time constraints. 

4.6 Time domains and their reduction 

We will denote start and completion time domains of activity i E V as Asi and Act. The 
time domains will be updated iteratively during the course of the algorithm, and ESi (ECi) 
and LSi (LCi) will denote the current left and right border of the start and completion time 
interval, respectively. Initially the time domains are calculated as follows: 

Activity Initial time domain 
z E TZ" A^ = [EQ"'\ z,cr*] 
j E yp Ag* = A%* = 

kevd 1 = [ESlknit,3 LSinit}, 

where 

Note that Ag. = Agf = {(?} Vi E Va and ACk = Ag* = {tdk} VA; E Vd. 
Time domain reduction for linked activities (i,j,k) E Va x Vv x Vd is possible in case of 
towing procedures as follows: 

If (i,j)€VxV\ then LC™" = min{LC^ iXfÄ - CÜM,}' 

ES?" = -*{ES?d, ESf + 

EC?" = max{ECf, ECf + 

EST" = maxiESf, ESf" + %«,}-

If (J, k)€V'x V', then LC?"" = min{LC°'d, LCf" -

LS?" = min{LSf, LSf" -

LC™" = min{LCf, LCf" -

EST" = max[ESf, EST' + 

If (ij, k) SV'xVxV, then LC?" = IC,'" LCf - 4SdM, ~ 

ES?" = m Bx{ESf, ES?« + 

EC?" = max[ECf, EC?" + d^M,}, 

LS?" =min{LSf,LSf -d%tMJ, 

LC?" = min {LCf, LCfa - d^.kMJ, 

EST" = maxfßSf, ES?" + d<SljM. + <%«„}. 
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Here 'old' denotes the corresponding previous value while 'new' indicates the newly calculated 
one. 
Let % and i' be two activities served by different aircraft which are assigned to gates \x and 
v, respectively. If they are not in disjunction, there is nothing to reduce. Otherwise we can 
perform reduction only after resolving the disjunctive conflict. W.l.o.g. suppose that we have 
i —> i'. Then the following reduction of the time domain sets is possible: 

ASr = Agf \ (LSf - oo) (8) 

\ [ 0, ECf + <tg%) (9) 

In other words rules (8) and (9) imply 

ICT" = min{LC^, and 

= max{E^, + <%}. 

The reduction of the domain of an arrival, parking or departure activity may imply a reduction 
of the domains of all linked (connected with towing) activities served by the same aircraft. 
Such domain reduction does not depend on the fact whether the linked activity has already 
scheduled or not. In other words, if we perform domain reduction according to rules (8) and 
(9), then we should perform mode reduction for activities j and k linked to activity i as well 
as for activities j' and k' linked to activity i'. 
Suppose that we apply time domain reduction according to rule (8). Two cases are possible: 

• Case 1. Activity i £ Va represents an arrival activity. Let j G Vp and k G Vd be two 
activities linked to i. Then time domain reduction for j and k works as follows: 

15^" = - (IC^ - (L^ - <%))}, 

IC™" = IC^, 65%™ = 

• Case 2. Activity i G Vv represents a parking activity. Let j G Va and k E Vd be two 
activities linked to i. Then time domain reduction for j and k works as follows: 

IS?" _ _ dg*))}, 

IC?™ = mm{IC^, IC^ - (IC^ - (1^ - d%))}, 

^ - (IC^ - (1^ - ̂ g))}. 

It should be emphasized that if activity i represents a departure activity, then the completion 
time domain consists of one element, LCj = ECi = td, and domain reduction does not make 
any sense at all. 
Now suppose that we apply time domain reduction according to rule (9). For activities f and 
k' linked to activity i' it works as follows. Again two cases are possible: 

• Case 1. Activity i! G Vd represents a departure activity. Let j' G Vp and k' G Va be 
two activities linked to i'. Then time domain reduction for j' and k! works as follows: 

= max{EC^, EC^ + ((ECf* + dg%) - E^)}, 

= EC^. 
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• Case 2. Activity i' E Vp represents a parking activity. Let j' E Va and k' E Vd be two 
activities linked to i. Then time domain reduction for j and k works as follows: 

EQT" = max{EC^, + ((ECf + dg^) - &5^)}, 

Eqr = max{E^, + ((EC^ + dg^) - &S^)}, 

EST" = max{ES^, + ((ECf + dg) - ES^)}. 

It should be emphasized that if activity i' represents an arrival activity, then the start time 
domain consists of one element, LS? = ES\> = t°, and domain reduction does not make any 
sense at all. 
For the case where i' —»i, one can construct domain reduction rules in a similar way. 
Note, that time domain reduction assures minimal processing time constraints (1), continuous 
processing constraints (2) and disjunctive precedence constraints (3) once we have resolved 
the disjunctive conflict. 
Observe, that this modification of time domains can only iead to reduction of unresolved 
constraints without resolving time constraints itself. The remaining freedom has no influence 
on objective values and can be easily resolved (because no conflicts appear after time domain 
reduction) in a supplementary optimization subproblem, which is beyond the scope of this 
paper. 

4.7 Initial Solution 

In order to start PSA we need to construct an initial Solution 7r°, which is both time and 
resource feasible, i.e. satisfies constraints (1) to (5). Formally, the procedure of finding an 
initial Solution can be divided into two stages. 
Preprocessing stage. Sometimes the time span between arrival and departure, which is named 
as ground time of a particular flight, is too short. In this case the arrival activity i, parking 
activity j and departure activity k cannot be assigned to different gates, that is, must be 
assigned to the same gate. This fact can be easily detected during preprocessing. By defining 
minimal processing times of the activities p™m := tf — f?, p™m := 0 and p™m := 0, we can 
immediately guarantee Mi = Mj = M&, that is, all activities will be assigned to the same 
gate. Observe that assigning all three activities (i,j, k) of the same flight to the same gate 
M means that d%MjM = 0 and = 0. We can label such activities as 'non-split' and all 
other activities as 'split', respectively. 
Main stage. The initial feasible Solution can be constructed by assigning different modes to 
the activities according to the rules below. The procedure terminates when all activities have 
been scheduled and an initial feasible Solution has been constructed. 

Initialization 
Initialize Vs := 0 and V* := V. Apply mode shaving (see subsection 4.4). 
Iteration (proceed until all activities are scheduled) 
a) Randomly choose activity i E V*. Select Mi E at random, assign Mi to activity i, 
i.e. set Vs := Vs U {%} and Vf := V* \ {%}. Then exclude Mj from 
b) If there appears a disjunctive conflict between activities i and j E Vs, then resolve it by 
choosing a precedence relation for i and j at random. 
c) Perform start and completion time reduction as described in subsection 4.6. Apply mode 
shaving. 
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Because the objective functions depend on mode assignment only, we search for a Solution 
in which all modes have been assigned. In this case the start and completion time domains 
are generally reduced, but may still have more then one element, that is, temporal constraints 
may still not be resolved. The remaining degree of freedom can be easily exploited by a 
supplementary optimization problem that allows to schedule all required towing procedures. 

4.8 Neighborhood search moves 

Recall that PSA defines only a general scheme. In order to be applicable to a particular 
optimization problem PSA has to be customized according to the combinatorial specifics of 
the problem. In order to do so we need neighborhood search moves, i.e. rules which define 
how to move from one feasible Solution 7r to another Solution ix' (called neighbor). These 
moves should fulfill two conditions: (i) ease of calculation of cost change &p = ZP(TX') — ZP(TX) 
for each partial objective p = 1,..., 3; (ii) coverage of the entire search space or at least a 
major part of it. 
The general idea behind the construction of search moves is as follows: In each Iteration of PSA 
we will choose at random one 'split* activity i (suppose that it was assigned to gate ß) and relax 
the decision concerning i but keep all other decisions concerning activities jeV(i) := F\{i}. 
Then we reconstruct the partial Solution for all activities from V(i) by resetting mode and 
time domains to their initial values and then making all mode assignment and disjunction 
orientation decisions we have made in the previous stage during the construction of schedule 
7r. Observe, that the application of time reduction rules during reconstruction may essentially 
change time domains for activities j 6 V{i) := V \ {«}, but feasibility of chosen modes is 
preserved. Afterwards, we have to complete the new schedule ix' by randomly choosing one of 
two strategies: 
a) Basic strategy. We forbid an old mode assignment by excluding ß from AM, and choose 
another feasible gate. If no feasible gate is available (it is possible when set of feasible modes 
A&fi consists of fictions gate m-1-1 only that represents the apron), then neighborhood search 
move fails. 
b) Disjunctive strategy. If a chosen activity i is a disjunctive one, then we can alter the 
previous disjunctive decision (i.e. invert the precedence relation) and assign activity i to gate 
ß afterwards. 
We will call a move according to both strategies Basic move or Disjunctive move, respectively. 
Obviously, the calculation of the costs change ©i, 02, 03 is cheap in both cases. 

4.9 Summary of PSA 

Stepwise the algorithm is summarized as follows: 
1. Construct an initial feasible Solution 7r° by the strategy described above. Set the an

nealing temperature T as a linear function of the input size T = TQ- n, where To is the 
starting temperature and n is the number of flights. Initialize the list of potential Pareto 
optimal solutions: Vpot — {TT0}. Define the number of agents (j). Initialize the repulsion 
coefficient a. 

2. If 4> = 1, then Solution 7r° represents a single agent, otherwise, if the number of agents 
is greater than one, generate set G, |(2| = of agents using the same strategy 
which we used for construction of initial Solution. Attach a normalized weight vector 
A* = (AJ", Ag, A3) to each of the generating solutions TX € G. Update Vpot by checking 
dominance relations between agents. 
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3. For each agent ix E G do: 

(a) Select agent jx € G which is nearest to TX, that is, such that 

3 
^(zp(?r) - zp(ir))2 -4 min 
P=l 

and which is non-dominated with respect to 7r. If there is no such Solution -ff, then 
each objective is increased or decreased with probability equal to 

P(A£ := Ap + a) = P(A£ := A£ - ct) = p = 1,2,3; 

Else for each objective p = 1,2,3 : 

\*.= \XV+0t 'f ZpM < 
p [Ap— a otherwise. 

Normalize the weights such that A^ + A£ + AJ = 1. 

(b) Determine the type of neighborhood move used in the current Iteration: Disjunctive 
Move or Basic Move (details are given below). 

Randomly generate a neighborhood 7r' of this type and calculate the cost 0 if the 
generated neighborhood move is performed. 

(c) If TX' is non-dominated by 7r then update V^,t. 

(d) Accept 7r' instead of 7r with probability 

F(TT, 7r', A, T) = min j 1, exp (^-a • max.^ Ap[%>(^) ^ | j 

where a and b are Constants that define the acceptance rate. 

4. If the condition for changing the annealing temperature is fulfilled decrease T using 
predetermined cooling scheme. 

5. If termination criterion is valid, then stop; otherwise go to 3. 

The set of potentially Pareto optimal solutions is empty at the beginning of the method. 
It is updated after a new Solution is generated. Updating the set of potentially Pareto optimal 
solutions with Solution ix consists of: (1) adding TX to Vp0t if no Solution in Vpot dominates TX 
and (2) removing from Vp0t all solutions dominated by TX. The process of updating Vp0t may 
be very time consuming. Thus, several simple additional techniques could be used in Order to 
reduce the time required for updating (for details see [30]). 
Let q represent the number of iterations of PSA. For computational purposes we use the 
following parameters: initial annealing temperature T0 = 2; cooling schedule Tg = 0.998q-T0-n\ 
termination criteria: Tq < 0.001 or q > 10,000 or \Pp0t\ > 20; the Consta nts a and b which 
define the acceptance probability are set to 2 and 0.5, respectively. 
The detailed analysis of computational experiments is performed in part II [?] of the paper. 
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5 Conclusions 

This paper deals with the FGSP under multiple criteria. The problem is modelled as a special 
multi-mode project scheduling problem with unary resources. We propose to attack the prob
lem with a metaheuristic approach based on Pareto Simulated Annealing in order to solve the 
problem effectively and efficiently in reasonable time. 
The development of other metaheuristic methods which are well suited for FGSP under mul
tiple objectives is an important area of future research. Another interesting direction is to 
incorporate in the model possible earliness or tardiness of flights and construct a Solution 
which is flexible to such type of uncertainty of parameters. 
The set of potentially Pareto optimal solutions generated by PSA may contain a large number 
of elements. Therefore, there is need for a supplementary procedure that yields a unique best 
compromise Solution according to the preferences of a decision maker. One might either employ 
sound mathematical techniques or some interactive procedures oriented on feedback from the 
decision maker. Techniques belonging to the first category are based on lexicographic ordering 
and predetermined, fixed reference points (see, e.g. [35]), whereas interactive procedures based 
on light beam search depend on psychology rather than mathematics (see, e.g., [25]). Such 
procedures take into account local preferences with respect to a given sample of solutions. 
The preferences' influence is restricted to one phase of calculations. The major advantages 
of interactive procedures are both simple format of preferences and visibility of the Output for 
the decision maker thus increasing confidence in the final results. 
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