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Abstract 

Manpower still is one of the most expansive resources, in spite of increasing automa-
tion. While employee scheduling and rostering has been the topic of extensive research 
over the past decades, usually it is assumed that the demand for staff is either given or 
can be obtained without difficulty. In this research we close the gap between practica! 
needs and available models and methods. In particular, we provide an integer pro-
gramming model for long-term Staffing decisions. The model is based on qualification 
profiles, the number of which grows exponentially in terms of the number of processes 
considered. In order to compute tight lower bounds we provide a column generation 
technique. The subproblem is a shortest path problem in a network where the arcs have 
multiple weights. Upper bounds, that is, feasible solutions are calculated my means of 
local search. We present computational results for randomly generated instances and 
empirical results for examples from practice. From these results it is evident that the 
bounds are tight and that substantial cost savings can be achieved. 

Keywords: Work force, planning/staffing, qualification profile, column generation, local 
search, computational/empirical evaluation 

1 fntroduction 

Effectiveness in the use of manpower resources is often the crucial advantage in a Company s 
long-term success over its competitors (see MacBeath 1966). Even though employee schedul­
ing has been addressed by personnel managers, Operations researchers and Computer scientists 
for more than 40 years (see Burke et al. 2004), the rostering literature assumes that the 
demand for staff is either given or can be obtained without difficulty (see Ernst et al. 2004). 
Work force planning is the high est level of personnel planning and determines the restrictions 
for lower levels like scheduling (see Wijngaard 1983). Most of the literature spent on this 
issue deals with special branches, especially the Service sector, where demand for shifts and 
schedules is highly constrained (see the variety of models, algorithms and applications in, e.g, 
Pinedo 2005). On the other hand, short-term scheduling procedures affect the level of Staffing 
that should be provided (see Abernathy 1973). The literature which deals with such interde-
pendencies provides multi-stage integrated models for Staffing and rostering. Unfortunately, 
however, only the size of the work force needed is considered while the skills required by the 
individual jobholder are usually neglected (see Abernathy 1973, Bums and Carter 1985). 

Generally speaking, in the domain of manpower decision research, three major areas can 
be distinguished: Staffing, scheduling and reallocation (see Warner 1976). Usually the time 
horizon of Staffing Covers several months to years, while scheduling/rostering faces several 
weeks. Finally, the time horizon of reallocation is hours to days. 

The Staffing can again be decomposed into two stages: determination of temporal and total 
manpower requirements (see Tien and Kamiyama 1982). These belong to the set of Strategie 
or long-term decisions made by the management. Scheduling or rostering is the process of 
constructing work timetables for the staff so that an Organization can satisfy the demand for 
its goods or services (see Ernst et al. 2004) as well as legal limitations and the convenience 
of the individual. The last stage is to reallocate the staff on shift to the jobs to be processed. 

Wijngaard (1983) points out two extreme cases of organizations. One where each employee 
can do all kinds of jobs, where vacancies can be filled directly by recruitment and where 
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firing is easily possible. The other extreme is the case of an Organization with very specific 
functions and employees with low mobility which makes it difficult to fill vacancies directly by 
recruitment. In the first case all of the work force must be qualified at the same (high) level 
causing the overall cost of employment to be high. In the latter case, the work force is much 
more heterogeneous so that low level activities can be processed by low qualified and cheaper 
jobholders, causing the overall costs of employment to be at a lower level. In this case the 
appropriate planning process is much more complex. 

The optimal manpower structure for a specific Company is determined by its economic envi-
ronment. In a dynamic environment, the company's work force has to be flexible. In a static 
environment, the individual jobholder can be specialized to handle only certain activities. 

In th is paper we propose a general model which can be applied to a wide area of manufacturing 
and service organizations to determine simultaneously the size and the qualification of the 
work force. We develop a mathematical model to determine the number of personnel and the 
required individual skills, in order to meet predicted requirements with the goal of minimizing 
the total cost of employment. 

The outline of the work is as follows: The problem setting is detailled in section 2. In section 3 
we formulate the long-term Staffing problem as an optimization model. Section 4 is dedicated 
to the development of a Igorith ms for the computation of lower and upper bounds. The aim of 
section 5 is to evaluate the model and the methods developed by computational experiments 
and by empirical results. In section 6 we discuss some variants and extensions. Finally, section 7 
gives a summary and some hints on future research. 

2 Problem description 

The basic model for manpower planning was developed jointly with a German printing Company 
with focus on the industrial workers of the printing branch. Nevertheless the model might be 
transfered to different industries without much modification. 

Consider a goods producing Company, divided into a number of departments. The employees 
work on a one shift schedule, five days a week. Within one department, the jobholders are 
qualified all on a similar level, handling heterogeneous tasks. There are no specialists and 
there are no assistants. This common scenario leads to the case, that jobholders may get 
overstrained by handling uncommon, infrequent tasks, resulting in longer processing times. 
On the other hand, jobholders have to "waste" their time with assistant tasks like filing, 
packing or doing errands. Now imagine the aggregated time of all assistant tasks is enough 
to justify the employment of a füll time assistant. The accruing tasks could be reallocated, 
so that one regulär employee can be replaced with a cheaper one, doing only assistant tasks. 
Furthermore the remaining regulär jobholders do not have to have the same high level of 
qualification. It might pay to have a few specialists, handling uncommon hard tasks, when 
they occur but performing the same tasks as the regulär jobholders otherwise. To adjust the 
qualification of the work force to the requirements broken down to a disaggregated level within 
a workflow, can reduce the overall costs of the work force and even improve its Performance. 

The models' focus lies on the determination of the number and qualification of jobholders who 
are handling operational tasks on a day to day basis. The determination of the number and 
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qualification of managers is not considered within this model, because their tasks are more 
complicated and their wages are arranged freely with the employer. The payment of jobholders 
is divided into a number of salary levels, depending on the qualification of the jobholder. 

In a manufacturing-to-order Company, a job is started by the order of a customer. Each 
job consists of a number of processes, from incoming order to delivery. These processes are 
handled in various tasks within different cost centers by jobholders. There are tasks requiring 
a high level of qualification and there are ones that can be handled by jobholders with low 
qualification. Since higher qualified jobholders go with higher costs for the Company, the cost 
minimal set and number of qualification profiles has to be determined. 

Because of heterogeneous Orders, processing times of a process vary from job to job. To obtain 
the overall time demand of each task within the considered time horizon, the aggregated 
processing time of every process for all jobs has to be calculated. 

To determine the future demand of work force for a time horizon of for example one year, the 
demand of cumulated processing time for each process has to be predicted by using past data 
and by estimating marked demand for the next period. This data delivers the basis for our 
model to determine the work force, so that the time demand of a process is being covered 
by the time supply of a certain amount of jobholders, well qualified to handle all processes. 
Furthermore, there must be a minimum number of jobholders to be able to handle a certain 
process for backup reasons (e.g. vacation or disease) or to handle peak times which can result 
from short term reallocation. 

The different processes, a job has to run trough until its delivery, are being handled by job­
holders belonging to different occupational groups. Tasks like job accounting or acceptance of 
order are being handled by mercantile employees, while typesetting and graphical editing are 
handled by type setters. Within each occupational group there are grades of qualification going 
hand in hand with the money a jobholder earns. A mercantile employee who is only charged 
with filing documents is less qualified than someone in Charge to purchase raw materials. The 
latter though is also able to handle tasks of lower qualification. 

Let us take a look at the example in table 1 with two occupational groups A and B where 
each of them can be charged with a high and a low qualified task i to handle the related 
process. A high qualified employee always has the ability to handle low qualified tasks within 
the same occupational group. A qualification profile contains the binary Information if a worker 
is qualified to handle a specific process or not. Overall in case of m processes 2m qualification 
profiles do exist including the case that no qualification is available at all. Someone who is 
only charged to handle task i = 1, equivalent to the qualification profile (1,0,0,0), earns a 
wage of 6 monetary units. Someone who is only charged to handle task i = 2 (0,1,0,0) earns 
a wage of 10. But someone who is charged to handle task i = 1 and i = 2 (1,1,0,0) also earns 
a wage of 10. Task i = 2 is superior in terms of qualification to task i = 1. Table 2 gives an 
overview of all the different qualification profiles of this example and the associated wages. 

If in this model someone is charged to perform tasks from more than one occupational group, 
he is payed the sum of the wages of the tasks. A jobholder who is, e.g., charged to handle 
the processes i — 1 and i = 4 (1,0,0,1) would cost 17. Even though that doesn't seem 
to make sense in the first place, it penalizes certain qualification profiles and prevents the 
model to generate profiles where for example type setters are charged with the purchase of 
raw materials. Nevertheless, such profiles are not excluded explicitely but they will not be 
generated by the model (see section 5.2). 
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Table 1: Qualification level and wages 

3 Optimization model 

Qualification profile wage 
(1,1,1,0) 15 
(0,1,1,0) 15 
(1,0,1,0) 11 
(0,0,1,0) 5 
(1,1,0,0) 10 
(0,1,0,0) 10 
(1,0,0,0) 6 
(1,1,1,1) 21 
(0,1,1,1) 21 
(1,0,1,1) 17 
(0,0,1,1) 11 
(1,1,0,1) 21 
(0,1,0,1) 21 
(1,0,0,1) 17 
(0,0,0,1) 11 

Table 2: Qualification profiles and wages 

In the following first we consider the simplified case that all jobholders have the same annual 
working time, that is, only full-time workers do exist. The more general case of füll- and 
part-time workers is considered in section 6.1. 

Using the parameters 

n number ofjobs j 
m number of processes i 

Pji processing time of process i for job j 
q : number of qualification profiles h 

Ch cost of employee with qualification profile h 
b annual working time of a jobholder 

Si minimum number of jobholders required to handle process i 

{1 if employee with qualification profile h can handle process i 

0 otherwise 

and decision variables 

Xh number of full-time employees with qualification profile h 

we get the following optimization model: 
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min ^chxh (1) 
/l=l 

Q 
b 

S.t. ^2 vih ~xh >^,Pji * = 1, • • • > m (2) 
A=1 2^3=1 Vih j=1 

Q 
yiVihXh > Sj i = 1,... ,m (3) 
/l=l 
xh > 0 and integer h = l,...,q (4) 

Objective function (1) minimizes the total annual cost of the work force. Constraints (2) 
assure that the available working time for each process i meets at least the demand of working 
time of process i for all Jobs. Of course, and b have to be measued in the same time 
units. Constraint (3) assures that there is a minimum number Si of jobholders being able to 
handle process i for backup reasons as outlined above. Note that high values for S{ make the 
manpower on-hand more flexible, since more jobholders will be qualified to handle process i. 
Low values lead to low flexibility of the jobholders but also to lower overall costs. 

The model (1) to (4), also called integer master problem, has an exponential number of 
columns, hence, there is no chance to solve it directly. In order to cope with this fact, we use 
column generation (see Gilmore and Gomory 1960) in order to solve the linar programming 
relaxation to optimality. This gives us a lower bound. The outcome of column generation 
then is used in order to compute feasible solutions, i.e., upper bounds for the optimal objective 
function value as well. 

4 Algorithms 

First we describe in section 4.1 how to compute a lower bound for the optimal objective 
function value. Here, the structure of the subproblem is of special interest; see section 4.2. 
In section 4.3 we show how to tighten the lower bound. Section 4.4 details how to come up 
with feasible solutions, that is, upper bounds. The algorithms are illustrated by means of an 
example in section 4.5. 

4.1 Lower bound 

In order to compute a lower bound of the integer Staffing problem introduced above, we 
replace the integrality requirements (4) through xh > 1 for all h. Starting with an initial set 
of columns, say q, we have to cheque whether a column does exist which lowers the objective 
function (1). Hence, we look at the dual (5) to (8) of the linear programming relaxation of 
the integer master problem. 
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m 
max pii7Ti + S*T* (5) 

m 
s.t. 5^=5 7Ti + y^VihTi <ch h = l,...,q (6) 

^ i=1 

7Ti > 0 » = (7) 

Ti > 0 i = 1, ... ,771 (8) 

Using the dual variables 7Tj > 0 associated with constraint (2) and r» > 0 associated with 
constraint (3) we try to identify a column q + 1 for which 

m ^ TU 
ch < y^wi,g+l™ ^ ^t.g+l7» 

i=l A)=l Vj'1+1 i= 1 
(9) 

is valid (i.e. a dual constraint (6) is violated). If s uch a column exists it has to be added to 
the primal (that is, it prices out attractively). If no such column exists we can stop. 

In order to cheque this condition we have to solve the following optimization problem: 

b 
max 7Ti + %q+iTi: (Vi,g+1) is a qualification profile \ (10) 

i=1 ^j=1 ̂ '9+1 J 

In the following section we will show that this optimization problem can be solved in polynomial 
time by means of iterative shortest path computations. 

4.2 Subproblem 

The set of qualification profiles can be transferred into a complete, directed network G = 
(V,E,w) with node set V, arc set E, and arc weights w, respectively. Every node stands 
for the qualification to handle a specific process. Moreover, a source and a sink node have 
to be added and, hence, overall we have 771 + 2 nodes. The nodes are labeled uniquely such 
that node 0 is the source node, node m + 1 is the sink node and nodes 1 to m correspond to 
the m processes. The arc e&« between node k and node i represents the option of combining 
processes within one qualification profile. The weight Wki of arc is the extra payment 
needed. Figure 1 illustrates the structure of the network for the example introduced above. 

10 5 11 - \ 
4 5 11 0 
- 5 11 0 
10 - 6 0 
10 - 0 / 

Figure 1: Network topology Table 3: Arc weights (wki)fc=o,"'.',4 

The set of arcs E consists of four types of arcs E = E1 U E2 U E3 U which are defined as 
follows (see table 3 also): 
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• Ares E1 from the source node 0 to every node i. The weight %% o f these arcs is the 
wage for the qualification to handle process i. 

• Arcs E2 from every node i to the sink node m+1. The weight of these arcs is w»,m+i = 0. 

• Arcs E3 connecting node k with node i within the same professional group. The weight 
Wki of these arcs equals 0, if the qualification to handle process k is higher than the 
one to handle processs i. Otherwise the weight is the difference of the wage for the 
qualification to handle process i and the wage for the qualification to handle process k. 

• Arcs E4 connecting node k with node i not belonging to the same professional group. 
The weight of these arcs is the wage for the qualification to handle process i. 

The total wage is equal to the shortest path from the source to the sink via all nodes that are 
supposed to be within a certain qualification profile. All in all there are m- (m—l) + 2m arcs. 
The costs Ch of an employee qualified to handle, e.g., processes 1 and 2, that is the profile 
(1,1,0,0), is determined by the shortest path from the source to the sink via nodes 1 and 2: 

Ch = 1Ü0.1 + Wl,2 + W2.5 = 6 + 4 + 0= 10 

The network is designed that way, that there are multiple paths from the source to the sink. 
By setting up rules for the network topology, half of the arcs connecting the process nodes 
can be eliminated. 

Rule 1 (labeling of nodes within occupationa! groups) 

Within one occupationa! group, the nodes have to be ordered by the level of qualification. This 
means that node i +1 is associated to a process i + 1 that needs a higher level of qualification 
than process i. 

Rule 2 (labeling of occupationa! groups) 

The occupationa! groups can be in arbitrary order as long as the processes associated to these 
groups satisfy rule 1. 

After applying these rules, only the Upper triangle of the matrix (WM) is needed, reducing the 
network G to G' = (VE', w') with E' C E as shown in Figure 2. For notational simplicity 
we will omit the prime, i.e. keep the notation G = (% E, w) for the reduced network also. 

In o rder to compute a lower bound, first of all we have to define an initial set of colums, such 
that a feasible Solution can be achieved. In our case this can easily be done by using the 
identity matrix. 
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Then the network is set up to generate column q +1 for the master problem. To this end the 
weights Wki of the arcs are updated using the dual variables TT* an d T» o f the master problem 
according to 

b 
Wki = wki ~ —; TT* - n. 

i vj,q+i 

Since the weights WM of the network are a function of Y2JL1 vj,g+1 we now have to deal with 
multiple arc weights. With every node included in the path from the source to the sink, the 
weights of all arcs change. Referring to figure 2, the weight of the arcs of a path from the 
source to the sink via one node only, would be Wki = Wki ~ f71"» ~ ri• The weight of the arcs of 
a path including two nodes would be 1% = — \^i — Ti and so on. But since the number of 
nodes included in the shortest path from the source to the sink in G is not known beforehand, 
we have to deal with the case that each arc has m weights. Equivalently we may consider 
m networks Gz = (V,E,wz),z = 1,... ,m, where the weight of each arc is calculated for a 
predefined number of nodes, that is, 

WZki = Wki ~ ~7Tj - Ti. (11) 

For each of these z = 1,... ,m networks Qz, the shortest path from the source to the sink, 
containing a maximum of z nodes, has to be determined by using the Bellman-Ford aIgorithm 
(see, e.g., Minieka 1978), a modification of the Dijkstra algorithm. This algorithm computes 
the shortest path between a pair of nodes covering at most z nodes. Note that we do not 
count the source and the sink node (which are contained in the path anyway) and, hence, 
a maximum of z nodes is equivalent to a maximum of z + 1 arcs. If the number of nodes 
contained in the shortest path from the source to the sink in network Gz is smaller than z, then 
the network is discarded, because the weights of the arcs are not consistent with the number of 
nodes, contained in that path. More precisely, only paths according to the following definition 
have to be considered. 

Definition 1 (valid path) 

Consider the network Gz with weights = wki — \ Then a source-to-sink path in 
the network is valid only, if it Covers z + 1 arcs. 

The following procedure, denoted as BestPath, has to be performed in order to determine 
the overall shortest path. 

set bestpath = oc 
for z = l,...,mdo 

calculate weights for all arcs of the network 
compute shortest path, denoted as path, from source to sink covering at most z + 1 arcs 
if number of arcs in path is less than z + 1 then stop endif 
if length of path < bestpath then 

bestpath = path 
störe nodes included in path in (v^q+i) with 
Vjtq+1 = 1, if node i is contained in path (0, otherwise) 

endif 
endfor 
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The costs Ch of a new profile are calculated using the weights of the initial graph G = (V., E, w). 
If inequality (9) is valid a new column defined by (^j,g+i) has to be added to the master problem. 
Otherwise the pricing criterion is met and the column generation process terminates with LB\ 
as valid lower bound. 

The proof, that the aIgorithm works correctly, that is, calculates the overall shortest path, is 
given below. 

Proposition 2 Consider a network Gz with arc weights wz. Then the weight wzki ofarc 
is monotonically increasing in z. 

Proof: Let denote the weight of arc e&j in network Gz. Then the inequality 

Wki ~ ^7U -Ti = Wzki < Wz+l = Wki - - Tj (12) 

is valid. • 

Theorem 3 Consider networtk Gz in iteration z of the algorithm. It is sufficient to compute 
the shortest path containing at most z + 1 arcs in the network Gz in order to find the overall 
shortest path in G. 

Proof: Let L\ denote the length of the shortest source-to-sink path in the network Gz con­
taining exactly A nodes. Then the inequality 

LI > L'z_i > L'~i (13) 

is valid because of the monotonicity property (12). Hence, if the shortest path in Gz is not a 
valid path according to definition 1, it cannot be the overall shortest path in G. • 

Corollary 4 The algorithm can be stopped prematurely, that is, before z equals m, if the 
number of arcs in path is less than z+1. 

Proof: Follows immediately from proposition 2 and theorem 3. • 

4.3 Improved lower bound 

The lower bound LB\ computed by means of the column generation technique described in 
the previous section can be improved easily. Let (%hP) denote the optimal fractional variables 
of the linear programming relaxation of the integer master problem (1) to (4). These variables 
represent the non-integer number of jobholders, needed for qualification profile h. Then 

* = £,# (it) 
h—\ 

defines the sum of the non-integral amount of work force needed, to perform all processes 
within the considered period of time. Hence, the minimum work force size of the integer 
model must be at least [$"]. The costs of the difference [$] — $ can be evaluated with the 
minimum costs, possible to accrue for the missing work force. So the lower bound LB\ can 
be tightened to 

LB2 = LBi + (("$] — < E>) • m in CA 
h=l 

where q is the number of columns generated and ch is the cost of column h. 
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4.4 Upper bounds 

Upon termination of column generation we have a valid lower bound and a fractional Solution 
(a4P). An integral, feasible Solution (zjf) and a valid upper bound UBi can easily be computed 
by means of solving the mixed-integer program which is defined through the columns generated. 
Of course, it might be too time consuming to solve this mixed-integer program to optimality. 
Fortunately, a feasible Solution is sufficient and, hence, computation can be aborted after a 
certain amount of time. 

The gap between UBi and LB2 usually allows much improvement. This is because the 
columns generated to solve the relaxed master problem might not be suitable in order to 
achieve a good integer Solution. We use the Solution corresponding to the upper bound UBi 
as initial Solution for local search, producing a second upper bound denoted as UB2. Among 
the variety of available local search algorithms (see, e.g., Aarts and Lenstra 1997) we decided 
to use simulated annealing in order to improve the upper bound. 

For each qualification profile h a number of jobholders have to be employed and the total 
number of manpower needed to execute all processes is u = J2h=1 x^h- Now we construct a 
matrix A = For every x^ > 0, we add columns to A, each containing the 
binary entries of the corresponding qualification profile (vnl). Apparently, matrix A = (<%•), 
or a for short, represents a feasible Solution of the integer Staffing problem. 

Simulated annealing (SA) is a generic probabilistic heuristic approach originally proposed in 
Kirkpatrick et al. (1983) and Kirkpatrick (1984) for global optimization. Usually, SA locates 
a "good" approximation of the global Optimum of a given objective function F in a large 
search space. At each Iteration, SA considers some neighbors of the current Solution a, and 
probabilistically chooses either to accept a new Solution a' or keeping a. The probabilities 
are chosen so that the problem ultimately tends to move to solutions with better objective 
function value. Typically this process is repeated until a Solution which is "good enough" has 
been determined, or until a given time limit has been reached. 

SA uses several basic concepts: 

• Neighborhood concept 

At each Iteration p, the neighborhood N(a) of Solution a is specified (usually problem-
specific). N(a) represents the subset of solutions a' which can be reached in one 
Iteration emanating from a. Generally, it is not possible to störe the neighborhood 
structure, because the set of feasible solutions has an exponential size. 

• Probabilistic acceptance of a new neighborhood Solution 

In each iteration p, Solution d is accepted with probability 

This probability is decreased during the course of the algorithm. In other words, we can 
escape a local Optimum, but the probability for doing so is low after a large number 
of iterations. It guarantees that there is a high probability to locate a global Optimum 
while avoiding to be trapped in local optima. 
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• Parameter (temperature) dependent acceptance probability 

The probability of making the transition to the new Solution depends on a global time-
varying parameter T called the annealing temperature: (T^)^ is a sequence of positive 
control parameters with lim Tu = 0. 

fl-too 

• Cooling schedule 

Generally, the sequence (T^)^L1 is created by a function g, i.e. = g(T^) for all fi. 
The initial annealing temperature T0 has to be defined in advance. 

• Termination criterion 

One has the freedom to introduce different stopping criteria. Typically, SA is repeated 
until the system reaches a State which is "good enough", or until a given time limit 
has been reached. The annealing temperature decreases to (nearly) zero short before 
termination. 

In order to apply SA to a particular problem, we must specify the search space, the neigh-
borhood search moves, the acceptance probability function, the cooling schedule and the 
termination criterion. These choices can significantly affect the method's effectiveness. Un-
fortunately, there is no unique choice that will be good for all problems, and there is no general 
way to find the best choice for a given problem (see, e.g., van Laarhoven and Aarts 1987, 
Johnson et al. 1989, 1991). 

The local search is performed by swapping entries of the matrix (a^) from 1 to 0 or vice versa, 
following a set of rules. That is, the search mechanism is to examine members of the swap 
neighborhood of the starting Solution a, and then move to neighbor a! and so on. To be more 
precise, let Ai and A7' denote row i and column j of matrix A, respectively. 

Rule 3 (row rule) 

Given row Ai a move is defined by chosing an entry (j = l,...,u) at random and flipping 
it from 1 to 0 or vice versa. 

Rule 4 (column rule) 

Given column A? a move is defined by chosing an entry (i — 1,.. .,m) at random and 
flipping it from 1 to 0 or vice versa. 

We have modified the general purpose SA algorithm described in Abramson et al. (1996) to 
match the needs of our special case. To be more precise we have implemented the following 
algorithm. First, we scan the rows i = 1,... ,m of matrix A cyclically in this order until no 
neighbor has been accepted within a certain number of trials. Given row Ai rule 3 is applied 
a certain number of times. If a neighboring Solution a' is feasible and improves the current 
best known upper bound or is accepted probabilistically we go to the next row. Afterwards, 
we scan the columns j = 1,..., u of matrix A cyclically in this order until no neighbor has 
been accepted within a certain number of trials. Given column A* rule 4 is applied a certain 
number of times. Again, if a neighboring Solution a' is feasible and improves the current best 
known upper bound or is accepted probabilistically we go to the next column. 
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According to preliminary computational tests not further documented here the initial temper-
ature to Start SA was set to T0 = 200 and the cooling schedule is Tß = 0, 98^ • T 0. The 
algorithm terminates after one million swaps or if the Solution gap is less than 2%. 

SA terminates with a as the best feasible Solution found. The objective value associated 
with a is denoted as UB2. According to Abramson et al. (1996), we also implemented a 
function to restore feasibility of al for the case that a move induces infeasibility. Because 
of the computational bürden involved, the overall Performance of SA worsened in terms of 
computation time and we did not keep this Implementation. 

4.5 Illustrative example 

Consider a case with 50 jobs and 20 processes each job has to go through upon delivery. The 
basic data for this instance are provided in table 4. Column one identifies the process number 
i, column two shows the aggregated time demand Pi to process all n = 50 jobs, column 
three gives the minimum number Si of jobholders needed to handle process i, column four 
identifies the occupational group each process belongs to where in this example we assume 
that processes 1 to 7 are being handled by commercial Clerks (group 1), processes 8 to 13 by 
creative workers (group 2) and processes 14 to 20 by production workers (group 3). Finally, 
column five provides the wage for each process. Note that the level of qualification to handle 
process i and the associated wage are positively correlated. Finally, in this example the annual 
working time of each jobholder is set to b = 70 000. 

In case of m = 20 processes, 220 — 1 = 1 048 575 different qualification profiles do exist. 
Column generation delivers the columns to obtain the optimal Solution of the linear program­
ming relaxation of (1) to (4). Table 6 gives an overview of the column generation process. 
An initial set of 10 columns has been constructed as outlined above. Column one of the table 
identifies the latest column considered, column two shows the corresponding optimal objective 
function value (OFV), column three provides the profile associated to the most recent column, 
column four gives the cost of the profile, column five teils us how attractive the column is in 
terms of the weights ü>ki ca lculated according to equation (11) and the last column shows the 
corresponding cost difference. 

Overall we can see that only 58 columns have to be considered and that the optimal objective 
function value of the linear programming relaxation is LBX = 1 0881.98. The minimum 
number of jobholders needed to handle all processes is $ = YlhLixh — 8 .488229. Hence, the 
minimum integer size of the work force is [<J>] = 9 and LBi can be improved as follows: 

58 
LB2 = LBX + ([$] - $) • m in CA = 10 881.98 + (9 - 8.48) • 60 0 = 11 189.05 

h=1 

If we solve the reduced integer master problem with the 58 columns computed before, an upper 
bound UBx = 14 910 is obtained. This implies that the Solution gap is UB}~£B* = 0.33. The 
upper bound UB\ corresponds to the Solution shown in table 7. Thus 12 jobholders have to 
be employed with total costs of 14 910. 

Now we use the feasible Solution corresponding to the upper bound UBX as initial Solution 
for the local search algorithm. The number of manpower needed is u — = 12. 
The matrix A with dimension (20 x 12) is given in table 5. Each column of A represents a 
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* Pi ü group wage 
/ 1 0 0 0 0 1 0 1 0 0 0 0 > 

1 30 149 1 1 600 0 0 0 0 0 1 0 0 0 0 0 1 
2 29 365 2 1 600 1 0 0 0 0 0 0 0 0 0 0 1 
3 30 841 1 1 600 0 0 0 0 0 1 0 1 0 0 0 0 
4 28 494 1 1 800 1 0 0 0 0 0 0 1 0 0 0 0 
5 29 801 1 1 900 1 0 0 0 0 1 0 1 0 0 0 1 
6 28 937 3 1 1 000 1 0 0 0 0 0 0 0 0 0 0 1 
7 28 305 1 1 1 200 0 0 0 0 0 0 0 0 1 1 1 0 
8 29 601 1 2 840 0 0 0 0 0 0 0 0 1 1 1 0 
9 30 517 1 2 840 0 0 0 0 0 0 0 0 1 1 1 0 

10 29 091 2 2 1 080 0 0 0 0 0 0 1 0 1 1 1 0 
11 28 744 3 2 1 200 0 0 0 0 0 0 0 0 1 1 1 0 
12 29 994 1 2 1 200 0 0 0 0 0 0 1 0 0 0 0 0 
13 31 052 1 2 1 320 0 0 1 1 1 0 0 0 0 0 0 0 
14 28 039 1 3 780 0 0 1 1 1 0 0 0 0 0 0 0 
15 29 864 2 3 1 040 0 0 1 1 1 0 0 0 0 0 0 0 
16 29 939 1 3 1 040 0 1 1 1 1 0 0 0 0 0 0 0 
17 33 677 1 3 1 040 0 0 1 1 1 0 0 0 0 0 0 0 
18 29 326 1 3 1 040 0 1 1 1 1 0 0 0 0 0 0 0 
19 30 014 2 3 1 300 

l o 0 1 1 1 0 0 0 0 0 0 0) 
20 28 426 2 3 1 430 \ 0 0) 

Table 4: Illustrative example Table 5: Matrix A = 
iav )£ 

=1,.. 
1,... 

# OPV profile Ch °h ch — ch 
11 20 880.00 01100110011010101010 3 820.00 12 330.00 8 510.00 

12 19 780.00 10010101111001100101 3 630.00 12 330.00 8 700.00 

13 17 600.45 00000001000000000000 840.00 4 080.00 3 240.00 

14 17 511.01 00000000000010000000 1 320.00 4 200.00 2 880.00 

15 17 413.23 01101110101001011011 3 830.00 6 266.67 2 436.66 

16 16 441.24 00000000000001000000 780.00 2 880.00 2 100.00 

17 15 842.00 00000010000000000000 1 200.00 3 240.00 2 040.00 

18 15 264.74 10010101111101011011 3 630.00 5 063.84 1 433.83 

51 11 060.47 00000001111100000000 1 200.00 1 268.87 68.86 

52 10 931.66 00000000111110000000 1 320.00 1 446.00 125.99 

53 10 928.97 10110110000000000000 1 200.00 1 268.57 68.57 

54 10 923.13 01000000000000000000 600.00 660.00 60.00 
55 10 920.61 00000000000000111111 1 430.00 1 464.67 34.66 
56 10 884.82 01100110000000000000 1 200.00 1 228.57 28.57 
57 10 883.34 11000110000000000000 1 200.00 1 228.30 28.30 
58 10 881.98 00001110000000000000 1 200.00 1 200.00 0.00 

Table 6: Columns generated 
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# profile cost 
1 11100000000000000000 600 
2 00000000000000011111 

00000000000000100111 
1 430 
1 430 4P profile cost 3 

00000000000000011111 
00000000000000100111 

1 430 
1 430 

I 10101110000000000000 1 200 4 00000000000001000000 780 
i 00000000000000001010 1 300 5 01111100000000000000 1 000 
3 00000000000001111111 1 430 6 00000000101110000000 1 320 
1 11010100000000000000 1 000 7 00000001111100000000 1 200 
1 00000000001010000000 1 320 8 10011100000000000000 1 000 
1 10011100000000000000 1 000 9 00000000000000111000 1 040 
3 00000001111100000000 1 200 10 00000001011010000000 1 320 
1 01100110000000000000 1 200 11 00000110000000000000 1 200 

12 14 910 12 320 

Table 7: Feasible Solution -JJB\ Table 8: Improved feasible Solution -UB2 

qualification profile, that is, the entries correspond to the parameter (vih)i=lt^m 

computed during column generation. In particular we can see that the two rows 3 and 7 of 
table 7 imply the three identical profiles (columns) 3 to 5 and 9 to 11 of table 5. The cost 
vector associated with the u = 12 profiles is (1 200, 1 300, 1 430, 1 430, 1 430, 1 000, 1 320, 
1 000, 1 200, 1 200, 1 200, 1 200). 

After applying SA, we obtain an improved Solution, shown in table 8. The improved upper 
bound now is UB2 = 12 320 leading to a Solution gap of UB]^jBi = 0.101076. The total 
number of manpower needed is reduced to 11. The total cost of the work force is 12 320. 

5 Evaluation 

Generally, two possible approaches can be found adopted in literature when having to come 
up with test instances for benchmarking purposes. First, practica! cases. Their strength is 
their high practicaI relevance while the obvious drawback is the absence of any systematic 
structure allowing to infer any general properties. Thus, even if an algorithm performs good 
on some practice cases, it is not guaranteed that it will continue to do so on other instances as 
well. Second, artificial instances. Since they are generated randomly according to predefined 
specifications, their plus lies in the fact that fitting them to certain requirements such as given 
probability distributions poses no problems. However, they may reflect situations with little or 
no resemblance to any problem setting of practica! interest. Hence, an algorithm performing 
well on several such artificial instances may or may not perform satisfactorily in practice. 

Therefore, we decided to devise a combination of both approaches, thereby attempting to keep 
their strengths while avoiding their drawbacks. In o rder to do so we present in section 5.1 the 
results of a computational study based on artificial instances while section 5.2 is dedicated to 
a practice case. 

5.1 Computational study 

We used two different subsets of artificial instances: 
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• Subset 1: Instances for which the optimal Solution is readily available. Such instances 
are used to evaluate the quality of the lower and the upper bounds. 

• Subset 2: A set of instances, generated at random by means of an instance generator. 

Subset 1: Instances with known optimal Solution Instances belonging to subset 1 are 
constructed as follows: Let a denote the number of different occupational groups. Moreover, 
let o; denote the number of processes associated to each occupational group. Then the total 
number of processes equals m = a • ÜJ. Assume that the minimum number Si of jobholders 
required for process i equals 1. Furthermore, assume that the aggregated processing time 
Pi = i Pji 's equal to $ (used for Computing the lower bound LB2). Finally, assume that 
the wages are monotonically increasing with the "group" index h = 1,... ,UJ. 

The example given in table 9 with a = 2, u = 4 and Pi = 20 for all i serves for illustrating 
purposes. If we assume that the annual working time is b = 40, then the optimal Solution for 
this example is given in table 10 with UB\ =UB2 = LB — 12. 

Occupational group process wage 
1 1 I 

2 2 
3 3 Jobholder profile wage 
4 4 I 11000000 2 

2 5 1 2 00110000 4 
6 2 3 00001100 2 
7 3 4 00000011 4 
8 4 12 

Table 9: Instance with known optimal Solution Table 10: Optimal Solution 

Subset 2: Instances generated at random Given the parameters m and n, processing 
times pji are drawn at random from the interval [0,..., 3]. Measured in hours, this seems to 
be realistic from an empirical point of view. The parameter 5, is generated at random from 
the set {1,..., Smax} with Smax = 4. 

We have implemented the models and algorithms in ANSI C. We used the open source LP/IP 
solver lp_solve (see [11]). The computations were performed on a PowerPC G4 with 1.67 GHz 
running Mac OSX. 

Subset 1: Results In order to evaluate the quality of the lower and the upper bound the 
model was tested with various instances belonging to subset 1. The results are shown in table 
11. 

The first three columns of table 11 characterize each of the 11 instances tested in terms 
of the input used. Column four displays the optimal objective function value OFT. Column 
five says whether the Solution corresponding to the lower bound already establishes an integral 
Solution (int|_B = yes) or not (intLB = no). Column six provides the upper bound UB2. Finally, 
columns seven and eight display the upper and lower bound deviations GAPUB = UBOPJPT 

and GAPLB = 0P^~^B2, respectively. Based upon these results it is strongly conjectured that 
the lower bounds are tight. 
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a ÜJ b OPT intLB % GAPUB GAPLB 
2 20 20 000 6 000 no 6 000 0.00 0.00 
2 20 10 000 10 000 no 11 400 0.14 0.00 

12 4 4 000 16 800 no 16 800 0.00 0.00 
1 48 4 000 184 800 no 205 800 0.11 0.00 
1 48 8 000 93 600 no 109 300 0.16 0.00 
8 6 4 000 19 200 no 19 200 0.00 0.00 
4 10 4 000 12 000 no 12 600 0.05 0.00 
4 10 10 000 6 000 no 7 500 0.25 0.00 
5 10 2 000 27 500 yes 27 500 0.00 0.00 
5 10 4 000 15 000 no 16 700 0.11 0.00 
5 10 10 000 7 500 no 8 500 0.13 0.00 

Table 11: Results - subset 1 instances 

Even though these instances can be solved at a glance, they are hard to solve for our simulated 
annealing algorithm, leading in some cases to broad gaps GAPUB- With respect to the long-
term nature of the problem and the inherent uncercainty involved, however, we think that the 
Solution gap GAPUB is acceptable. The hardness of instances tends to increase with increasing 
ratio -p:. That is, the more different processes a jobholder has to be qualified to handle, the 
harder it is to find the optimal Solution. 

Subset 2: Results We tested the model with different configurations of the parameters 
m and n on randomly generated instances. For each of the parameter configurations, ten 
instances were generated and solved and the average results were computed. Table 12 shows 
the results of 11 different parameter configurations. 

m n # of jobholders GAP IMPUB CO TUB 
12 3 000 21 0.094 0.013 0.007 16.199 
15 2 000 27 0.040 0.008 0.014 21.498 
15 3 000 26 0.105 0.014 0.014 30.061 
15 4 000 25 0.091 0.016 0.009 26.662 
20 2 000 37 0.055 0.007 0.044 37.494 
20 4 000 35 0.096 0.018 0.041 79.461 
20 6 000 36 0.078 0.246 0.040 159.655 
30 2 000 60 0.062 0.350 0.249 159.695 
30 3 000 57 0.100 0.558 0.214 268.343 
40 3 000 77 0.106 2.002 0.941 623.487 

Table 12: Average results - subset 2 instances 

The first two columns give the number of processes m and the number of jobs n to be handled. 
With 6 = 1 640^^r the third column shows the average number of jobholders needed, to 
perform the accruing workload. The fourth column shows the average gap between UB2 

and LB2 where GAP = UBl"^B3 • In the next column one can see the average improvement 
between JJB\ and UB2. It can be clearly seen, that UB\, delivered by the mixed-integer 
programming solver, worsens with the size of the instance. In column six, the average CPU-
time TLB needed to compute the lower bound LB2 is given. As can be seen in t he last column, 
the average CPU-time TUB t o compute UB2, takes almost all of the total computation time. 
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5.2 Empirical results 

The approach was tested in Cooperation with a medium-size printing Company. The data 
was extracted out of a computer-based job tracking system (see [12]), providing the complete 
data from 1999 to 2004. We performed both a retrospective analysis comparing our results 
with past data and a prospective analysis by predicting future periods. In what follows we 
summarize the results obtained (for details see Mundschenk and Drexl 2005). 

Comparison with past data In the considered Company, there are 33 different cost centers, 
every job can run through until its completion. The jobholder scans the barcode attached to 
the job ticked Coming with each job, to register the checkin time of that job in that cost center, 
into the job tracking system. The same procedure is done, when all tasks are performed within 
that cost center and the job has to be checked out. Since different kinds of processes are 
aggregated within each cost center, we cannot determine the requirements to the individual 
skills of the jobholders on the level of each Single process. However, the data is still well 
enough to expect suitable results. An extract of the data is given in table 13. 

year n m annual workload (h) cost (€) # of jobholders # of FTE 
1999 3 667 33 85 723.88 3 276 664.95 132 91.43 
2000 3 231 33 84 303.38 3 363 326.07 131 90.06 
2001 3 052 33 85 064.68 2 884 708.38 110 89.71 
2002 2 791 33 81 194.30 3 396 041.32 146 92.68 
2003 2 318 33 70 852.68 2 853 577.81 119 80.97 
2004 2 291 33 69 192.68 2 741 759.52 111 73.69 

Table 13: Empirical data - 1999 to 2004 

year # of FTE cost (€) improvement GAP 
1999 58 2 214,625 32% 0.114 
2000 56 2 152,561 36% 0.092 
2001 59 2 143,392 26% 0.094 
2002 56 2 055,859 39% 0.099 
2003 51 1 828,938 36% 0.094 
2004 50 1 775,936 35% 0.083 

Table 14: Results - 1999 to 2004 

The approach was applied to each of the annual data sets, extracted from the job tracking 
system, with the appropriate parameters. Aggregated results for the years 1999 to 2004 are 
displayed in table 14. By generating the appropriate qualification profiles, it can be seen, that 
the total annual workload (see table 13) could have been handled with about 60% of the 
work force. Thus applying the model lowers the total cost of the work force in the ränge of 
26% - 39% where this percentage is defined as old C0St^"cPr°ved cost. 

Work force size needed in the future The data for 2005 and 2006 have been determined 
using linear regression. The results are displayed in table 15. Since the total workload will 
be further on declining, the total size of the work force can further be reduced. By adjusting 
the qualification profile of each jobholder, the total cost of the work force can be reduced to 
about 1.7 million €. 
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Year # of FTE cost (€) GAP 
2005 49 1 806 299 0.112 
2006 49 1 731 793 0.107 

Table 15: Work force size and associated costs for 2005 and 2006 

6 Variants and extensions 

In s ection 6.1 we will show that the approach can be extended to cover the issue of part-time 
workers. Moreover, we will show how to determine individual working times based on the 
results obtained in section 6.2. 

6.1 Part-time workers 

In the following we will show that part-time workers can easily be covered by our methodology. 
Assume that a set K of contracts do exist which differ in the annual working time (the only 
aspect which is of interest here) and let bk, k € K, denote the time according to contract k. 
Let Cfc denote the number of profiles available with respect to working time bk. Then the 
extended model reads as follows: 

mm 

s.t. 

53 13chXh (is) 
k€K 

53 53 Vih Y1171 Z^Xh ~ 53^* i = 1,... ,m (16) 
keKheCk Jh j=1 

53 53 VihXh -Si i = Ii • • • > m (17) 
fc£K hECk 

xh>0 and integer VkeK,VheCk (18) 

If w e compare (1) to (4) with (15) to (18) we can see that the only difference is that in the 
latter case we have to take care of all profiles available for all the different working times. 
Note that the number of profiles available does not depend on the annual working time bk 

and, hence, we have \C\\ = \C2\ = ... = |C|#||. 

As a consequence we need to setup a network for every possible annual working time k E K 
in order to compute the lower bound LB\ of the extended model similar to what has been 
described in section 4.2. Accordingly, in every Iteration of the column generation process, at 
most \K\ columns are generated and added to the master problem, if the pricing criterion 

°h ^ 7l"i 4- y, vi,q+lTi 
i=1 Vj,q+1 i=1 

holds for k € K. The upper bounds UBi and UB2 can be computed without any modification. 

In order to illustrate this extension, we pickup the example from section 4.5. In addition to 
the data used there, we introduce the possibility to hire part-time workers. Now a jobholder 
can either work b1 = 70 000 or b2 = 35 000 time units. Table 3 displays the data. Compared 
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wage 
i Pi Si group full-time part-time 

1 30 149 1 1 600 330 

2 29 365 2 1 600 330 

3 30 841 1 1 600 330 

4 28 494 1 1 800 440 

5 29 801 1 1 900 495 

6 28 937 3 1 1 000 550 
7 28 305 1 1 1 200 660 
8 29 601 1 2 840 462 
9 30 517 1 2 840 462 

10 29 091 2 2 1 080 594 
11 28 744 3 2 1 200 660 
12 29 994 1 2 1 200 660 
13 31 052 1 2 1 320 726 
14 28 039 1 3 780 429 
15 29 864 2 3 1 040 572 
16 29 939 1 3 1 040 572 
17 33 677 1 3 1 040 572 
18 29 326 1 3 1 040 572 
19 30 014 2 3 1 300 715 
20 28 426 2 3 1 430 788 

Figure 3: Extended model - instance 

to table 4 wages for part-time workers are provided, too, which are assumed to be 55% of 
full-time wages. 

To determine the lower bound LBlt two networks Gl = (V,E,wl) and G2 = (V,E,w2) 
have to be defined. The weights w 1 and w2 of the arcs of each network correspond to the 
wages of füll- and of part-time jobholders. Column generation produces up to two columns per 
Iteration. This is accomplished by solving the subproblem for each network separately. In our 
case we have a total of 2 • (2 20 — 1) = 2 097 150 potential columns. This is because each of 
the 220 — 1 different qualification profiles can be evaluated with the cost for füll- and part-time 
jobholders. Surprisingly, only 55 columns have to be generated, until the pricing criterion is 
reached for both networks. The lower bound LBi equals 9 440.513. 

Similar to section 4.4 now we can determine the upper bound by solving the integer program 
and tighten it by performing local search. The upper bound determined for the extended 
model is UB2 = 10 871. In table 16 the qualification profiles, the associated wages and the 
working time of the corresponding profile are given. 

6.2 Individual working times 

In the previous sections we have provided a means to compute those qualification profiles 
which are needed in order to satisfy long-term Staffing requirements in a cost efficient way. 
Afterwards, of course, the question arises how much time each worker should spend on a 
specific process. This question can easiiy be addressed by linear programming. 
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# profile cost working time 
1 00000000000010000000 726 35 000 
2 01000000000000000000 330 35 000 
3 00000010000000000000 660 35 000 
4 00000000000001000000 429 35 000 
5 00000000111100000000 660 35 000 
6 00000000000000000011 788 35 000 
7 00000000000000000011 788 35 000 
8 00000000000000111100 1 040 70 000 
9 00000000000000111100 1 040 70 000 

10 00000001100000000000 840 70 000 
11 00011100000000000000 550 35 000 
12 00011100000000000000 550 35 000 
13 01011100000000000000 550 35 000 
14 10100000000000000000 600 70 000 
15 00000000011100000000 660 35 000 
16 00000000011100000000 660 35 000 

10 871 

Table 16: Qualification profiles of füll- and part-time jobholders 

Using the parameters 

number of processes i 
demand of processing time for process i, that is, Pi = Y?j=iPji 
number of jobholders l 
vector of qualification profile of jobholder l 
annual working time of jobholder l 

and decision variables 

yu individual working time of jobholder l spent on process i 

we get the following model: 

m 
Pi 
u 

Zu 
bi 

m u 
min 

i=l 1=1 
m 

IE» (19) 
i=l 1=1 
m 

s.t. 52ZilVil -bl 1 = 1, ...,U (20) 
1=1 

U 
52zuVn ^pi i = (21) 
i=i 

yu ^ | n , . i = 1,..., m, l = 1,..., u (22) 
I 0 otherwise 

The value 8 in constraint (22) has to be chosen out of the ränge 0 < 8 < fy. To set the lower 
bound of yü to a positive value in case of zu = 1 assures constraint (3) of the Staffing model. 
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cr 
a> 
h-1 
^sJ . / i 1 2 3 4 5 
H i 9 814 0 0 0 0 
3 n> 2 29 355 0 0 0 10 
§ 3 30 831 0 0 0 10 

</> TD a> 3 r+ 
4 0 0 0 0 11 272 </> TD a> 3 r+ 5 0 0 0 0 29 791 

O 3 6 0 0 0 0 28 917 

1 
7 0 0 0 0 0 

O 
s 8 0 0 0 0 0 
Ä 9 0 0 0 0 0 
II 10 0 0 0 0 0 
H-1 11 0 0 0 0 0 
j 12 0 0 0 0 0 

3 13 0 0 0 0 0 
14 0 0 0 70 000 0 

o 15 0 0 10 0 0 
er 3- 16 0 18 557 0 0 0 o 
Q. 17 0 33 667 0 0 0 
o 
Q. 

18 0 10 29 316 0 0 
7 19 0 10 30 004 0 0 

6 7 8 9 10 11 

0 0 52 758 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 17 222 0 0 0 
0 0 10 0 0 0 
0 0 10 0 0 10 

0 0 0 0 0 69 990 
0 10 0 0 60 592 0 

10 30 507 0 0 0 0 
0 19 703 0 0 9 388 0 

8 964 19 770 0 0 10 0 
29 984 10 0 0 0 0 
31 042 0 0 0 10 0 

0 0 0 0 0 0 
0 0 0 58 608 0 0 
0 0 0 11 382 0 0 
0 0 0 10 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 



For illustrative purposes we apply this model to the instance considered in section 4.5 (see 
table 4). If we assume that a total amount of b = 70 000 time units is available for every 
jobholder per year we get the distribution of working time shown in table 17. 

7 Summary and future work 

The approach presented in this paper is suitable to provide a cost-efficient long-term config-
uration of the manpower required. It takes into account the needs to handle all processes, 
accruing in a manufacturing and Service producing Company. Furthermore, the model can 
easily be adjusted to face various hazards in personnel planning, resulting from the dynamics 
of a companies environment. 

Among others, the model and the algorithms have been evaluated successfully using data from 
a printing Company, revealing the potential to significantly lower the costs of the work force. 
All the data needed were easily available due to the fact that the model uses cost accounting 
data. 

Apparently, starting with the manpower of an Organization onhand, manpower planning is a 
dynamic process. As with Organization plans, theoretical perfection can be assumed and an 
ideal requirement of manpower can be determined. Then the requirement can be approached 
from what exists, so that the plan develops as a progression of existing trends in manpower 
work ratios (see MacBeath 1966). Furthermore, staff development and career planning must be 
considered in the organization's structure. The individual jobholder needs to see the potential 
scope for his own career to develop, and obtain reasonable job satisfaction currently and in the 
future. The Staffing model presented above only delivers the ideal requirements of manpower 
to meet the forecasted demand of a future production period. Though it totally neglects the 
issue of staff development, it can be used as part of an overall approach, which takes all issues 
of staff satisfaction and career planning into account. 

There do exist plenty of opportunities for future work. Among others, the development of 
local search algorithms which produce very good solutions for a wide variety of instances, is 
of primary interest. Very large-scale neighborhood search techniques (see the survey Ahuja et 
al. 2002) could be a promising starting point here. Furthermore, the development of exact 
branch-and-price algorithms is a viable research avenue (see, e.g., Barnhart et al. 1998). 
Finally, to study the hierarchical Integration of Staffing and rostering models is an important 
research topic. 
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