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Abstract 

This paper addresses the robust spanning tree problem with interval data, i.e. the 
case of classical minimum spanning tree problem whe n edge weights are not fixed but 
take their values from some intervals associated with edges. The problem c onsists in 
finding a spanning tree that minimizes so-called robust deviation, i.e. deviation from 
an optimal Solution under the worst case realization of interval weights. As it was 
proven in [8], the problem is NP-hard, therefore it is of great interest to tackle it 
with some metaheuristic approach, namely simulated annealing, in order to calculate an 
approximate Solution for large scale instances efficiently. We describe theoretical aspects 
and present the results of co mputational experiments. To the best of our knowledge, 
this is the first attempt to develop a metaheuristic approach for solving the robust 
spanning tree problem. 

Keywords: robust spanning tree, simulated annealing, uncertainty. 

1 Introduction 

We consider the special case of a minimum spanning tree problem where the edge costs 
(weights) are not fixed but take their values from some intervals. No stochastic distribution is 
given inside intervals. The interval function is defined as the sum of interval weights over all 
edges of feasible spanning tree. This problem was first mentioned in [9], where some questions 
concerning solvability and computational complexity were studied. Contrary to the classical 
minimum spanning tree problem which can be easily solved by the algorithms of Kruskal (1956) 
or Prim (1957), minimum spanning trees of the interval variant depend on weights realization 
and the optimal objective value generally is not unique. Therefore, the authors of [9] proposed 
to introduce the relation on the set of intervals, which gives the possibility to transform the 
problem into a special bicriteria counterpart. The Pareto set of the counterpart, which can 
be generated by Standard multiobjective methods, is taken to be the Solution of the interval 
problem. It was shown that the counterpart problem is intractable, and it follows that the 
interval problem is also very hard to solve. 
The special interest motivated by telecommunications applications induces not to solve the 
interval spanning tree problem itself, but to hedge against the worst case realization (scenario) 
of problem parameters, which can be interpreted as given with uncertainty. Playing against 
worst case scenario is commonly known as robust optimization (see, e.g. [8] as well as the 
more recent papers [3], [4] and the annotated bibliography [18]). As it was indicated in [8], 
in many cases the robust equivalent of a polynomially solvable problem becomes NP-hard. 
Robust spanning tree problem was originally formulated in [8] for the case where edge costs are 
taken from some set of scenarios. It was proven that the problem is NP-hard [5] if t he number 
of scenarios is bounded. Furthermore, strong NP-hardness of the problem for unbounded 
number of scenarios has been shown. 
The basic theoretical background for the robust spanning tree problem has been presented in 
[23]. Two different types of robustness were introduced: absolute and relative robustness. It 
was proven that the absolute robust spanning tree problem can be easily resolved, whereas the 
relative robust spanning tree problem is very hard to solve. A reformulation of the last problem 
as a specific mixed integer program was presented. The concepts of weak and strong edges 
were introduced as well a s polynomial time algorithms for their recognition were described. It 
was shown how these concepts can be efficiently used in a preprocessing stage for solving the 
relative robust spanning tree problem. We will shortly sketch out the main results from [23] 
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in s ection 3. In t he remainder of the present paper only relative robustness is considered, and 
the problem is commonly referred to as robust spanning tree problem. 
One more evidence of the NP-hardness of the robust spanning tree problem was presented in 
[2], where the relation between the well-known central tree problem [21], which is NP-hard, 
and the robust spanning tree problem is detected. It was shown that the robust spanning tree 
problem is at least as hard as the central tree problem. Moreover, the problem preserves its 
hardness on complete graphs, even though a central tree can be found in polynomial time 
on such graphs. Therefore, it was concluded that both factors - cost interval structure and 
topological graph properties - exert an essential influence on making the problem intractable 
from a computational point of view. Two cases where the problem can be easily solved are 
described: 1) no edge intervals have an intersection 2) the graph is complete and all edge 
costs take their value from the same interval. The question whether there are some other 
cases when the problem can be easily resolved is sti ll open and presents a promising avenue 
for future research. 
A branch and bound procedure, which embeds extension of some results previously presented 
in the literature as well as some other innovations, are presented in [15]. The results were 
compared with earlier results obtained by solving a mixed-integer program in [8] and with 
those of the branch and bound algorithm presented in [1], It was shown that the algorithm 
outperforms all others and can be regarded as the best known exact algorithm for solving the 
robust spanning tree problem. Nevertheless, the proposed algorithm has the time complexity 
OflVT'-MtfpIogl#!) and can not solve problem instances with |V| > 25 in reasonable time, 
where V(E) is the set of vertices (edges). In [13] and [14] a new exact method based 
on Benders decomposition was described with respect to the robust spanning tree and the 
robust shortest path problem respectively. It was shown that this approach gives very good 
computational results on all the benchmarks considered, and especially on those that were 
harder to solve for the methods previously known. 
The rest of the paper is organized as follows. In se ction 2 we introduce basic notations and 
formulate the problem. Section 3 is devoted to the main theoretical results. How to apply 
the simulated annealing metaheuristic is described in s ection 4. The results of computational 
experiments are presented in se ction 5. Final remarks appear in s ection 6. 

2 Problem description 

Let G = (V, E) be a connected graph, where V is the set of vertices and E is the set of edges. 
With each edge (i,j) € E we associate a cost interval [kj, û ], 0 < kj < u%], i.e. For each 
edge (i,j) € E its cost c13 is not fixed and belongs to [Z^, No probability distribution is 
given inside the cost interval. Let 

T:= {t\t = (V,Et)} 

represent the set of all spanning trees of graph G. It is well-known that: a tree contains a 
unique spanning tree, a cycle graph Cn contains n spanning trees, and a complete graph Kn 

contains nn~2 spanning trees (see e.g. [12]). The matrix tree theorem, also called Kirchhoff's 
matrix-tree theorem, states that the number of nonidentical spanning trees (skeletons) of a 
graph G is equal to any cofactor of the degree matrix of G minus the adjacency matrix of G 
(see e.g. [21]). 
The total cost ct of spanning tree t € T is defined as: 
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°t ^ Cij. 
(ij)eEt 

It is obvious that ct = [lt, ut] where lt := 4? anc' ut := 12 uv-
(id)eEt (ij)eßt 

Then interval spanning tree problem is to find the spanning tree of minimum "weight": 

minct. (1) 
teT 

Let s be a realization of edge costs, i.e. c? £ [kj,Uij] is fixed for any (i,j) G E. In the classical 
non-interval case, i.e. when some scenario s is given and fixed, the problem is formulated as 
follows: among all the spanning trees of a weighted and connected graph find one (possibly 
more) with the least total cost, which is called a minimum spanning tree: 

minc?, (2) 

where 
ct := X] c*r 

The minimum spanning tree may not be unique. However, if t he weights of all the edges are 
pairwise distinct, it is indeed unique. Problem (2) can be easily solved by two greedy strategies, 
known as Kruskal's [10] and Prirn's [19] algorithms, with time complexity 0(|£7| log |-E7|) an d 
0((\V\ + |£|)log|K|), respectively. 
Concerning the interval case the authors of [9] introduced a partial order on the set of intervals. 
They proved that the interval spanning tree problem (2) can be reduced to a biobjective 
counterpart, where simultaneous minimization of lt as a first objective and ut as a second one 
over all spanning trees t e T is needed. The Pareto set of the biobjective optimization problem 
corresponds to the set of minimum spanning trees of the interval spanning tree problem. It 
was shown that problem (2) is v ery hard to solve in general. One can find some interesting 
two-stage techniques based on a Ä-best Solution strategy for solving biobjective minimum 
spanning tree problem in [20]. 
The interval representation of edge costs may be interpreted as some sort of uncertainty for 
input data of the classical minimum spanning tree problem. The presence of uncertainty 
may be caused by different reasons: inaccuracy of initial data, non-adequacy of models to 
real processes, errors of numerical methods, errors of rounding off and other factors. So it 
appears to be important to identify a Solution which is flexible under all realizations of problem 
Parameters. It is of special interest to find a Solution which provides the smallest changes of 
the result under worst possible scenario of distribution of problem parameters. The model 
with such a nice property is called robust counterpart problem, and a Solution of the robust 
counterpart problem is generally known as robust Solution. 
First it seems to be natural to give a definition of a robust Solution as follows: an optimal 
Solution is robust if it remains optimal under any realization of the input data. But this 
definition can hardly be regarded as desirable, because it is too restrictive. Most unlikely such 
a Solution exists. Another definition may be considered more appropriate: our subject is to find 
a robust Solution which minimizes maximum regret or relative deviation (minimizes possible 
consequences of worst-case scenario with respect to objective function). 
Thus, for each spanning tree t in a scenario s the difference between total cost of t and the 
cost of minimum spanning tee in s represents the deviation for t in scenario s: 

: cf — min cf. 
teT 1 
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Let S be the set of all scenarios. For a given spanning tree t G T the worst-case scenario st 

is a scenario for which the deviation for t is maximum over all scenarios s € S, i.e. 

Then the difference 

st := argmaxdet^. 
sSS 

dev* := cf' — min cf* 
4 1 ter 1 

represents the robust deviation of t. 
A spanning tree t' is said to be a robust spanning tree if i t has the smallest robust deviation 

t' := arg min dev?1 
ter 

among all spanning trees. 

3 Theoretical background 

In order to keep the paper self-contained we start with some theoretical background, originally 
presented in [23]. 
The following proposition gives a worst-case scenario for a given spanning tree. 

Proposition 1 [23] The scenario in which the costs ofevery edge on a spanning tree t e T 
is at its upper bound and the cost of every other edge is at its lower bound is a worst-case 
scenario, i.e. c% = V(z'J) 6 Et and cg = lX] M(i,j) e E\Et. 

In ot her words, for any spanning tree t £T the worst case scenario st is uniquely determined. 

Definition 1 [23] A spanning tree t is a weak tree if it is a minimum spanning tree for some 
realization s of edge costs. An edge e is a weak edge if it belongs to some weak tree. 

The following theorem gives a characterization of weak trees and edges. 

Theorem 1 [23] A spanning tree t G T is a weak tree if and only ifit is a minimum spanning 
tree when the cost of every edge on this tree corresponds to its lower bound and the costs of 
the other edges correspond to their upper bounds. 
Edge e is a weak edge if and only ifthere exists a minimum spanning tree using edge e where 
the cost of edge e is at its lower bound and the cost of the remaining edges are at their upper 
bounds. 

Using theorem 1 we can recognize efficiently, i.e. in polynomial time, whether edge e is a 
weak edge in graph G by a pplying a slightly modified Version of Kruskal's algorithm which is 
in f avor of choosing edge e in c ase of ties. 
The following statements give us an idea about the construction of a robust spanning tree. 

Proposition 2 [23] A robust spanning tree is a weak tree. 

In o ther words, every robust spanning tree uses only weak edges, i.e. all non-weak edges are 
not considered at all. This Observation leads to: 
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Proposition 3 [15] A non-weak edge e can be deleted from graph G when solving a robust 
spanning tree problem. 

The last result can be used efficiently in a preprocessing stage of any aIgorithm solving the 
robust spanning tree problem. 

Definition 2 [23] An edge e is a strong edge if it belongs to some minimum spanning tree 
for any realization s. 

Theorem 2 [23] An edge e is a strong edge if and only if there exists a minimum spanning 
tree using edge e when the cost of edge e is at its upper bound and the cost of the remaining 
edges are at their lower bounds. 

Proposition 4 [23] There exists a robust spanning tree such that every strong edge in the 
graph belongs to the tree. 

As in t he case of weak edges we can recognize strong edges very efficiently using again a slightly 
modified version of Kruskal's algorithm. The strong edges can be detected and labelled in 
a preprocessing stage. They also have to be ultimately included in a Solution of the robust 
spanning tree problem. 

4 Simulated Annealing 

Simulated annealing (SA) or hill climbing is a generic probabilistic heuristic approach originally 
proposed in [6] and [7] for global optimization. Usually, SA locates a "good" approximation of 
the global Optimum of a given objective function z in a large search space. At each Iteration, 
SA considers some neighbors of the current Solution (search point) 7r, and probabilistically 
chooses either to accept a new Solution n' or keeping 7r. The probabilities are chosen so 
that the problem ultimately tends to move to solutions with better objective function value. 
Typically this process is repeated until a Solution which is "good enough" has been determined, 
or until a given time limit has been reached. SA uses several basic concepts: neighborhood, 
probabilistic acceptance of a new neighborhood Solution, parameter (temperature) dependent 
acceptance probability, cooling schedule, termination criterion. 
In order to apply SA to a particular problem, we must specify the search space, the neigh­
borhood search moves, the acceptance probability function, the cooling schedule and the 
termination criterion. These choices can significantly affect the method's effectiveness. Un-
fortunately, there is no unique choice that will b e good for all problems, and there is no general 
way to find the best choice for a given problem [11]. 
Now let us precisely describe how to apply SA to the robust spanning tree problem. 
As it was already mentioned in section 3, we can reduce the set of edges E in a preprocessing 
stage by deleting all non-weak edges and consider graph G' := (V,E') with a new edge set 
E', (f — \E '\, which does not contain non-weak edges. 

• Search space. Any subset of the edge set E' can be represented by a boolean vector 
7r € {0,1}^, such that 7r» = 1 if edge e* belongs to the current subset and 7Tj = 0 
otherwise. Thus, a vector 7r represents a current point in the search space. Obviously 
the search space of the algorithm is now presented by the variety of subsets of edges 
describing a connected graph. The subsets which describe unconnected graphs are not 
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feasible. We have to exclude such points from the search space by defining their ob-
jective values z(7r) — oo. It is necessary to emphasize that in each Iteration we do not 
check whether the search point represents an acyclic graph or not. The reason of this is 
the following. As far as any connected graph with cycles contains some spanning tree 
and the value of objective of such graph is always greater then the value of objective 
for the spanning tree, then this spanning tree will be most likely detected later during 
execution of SA. The only condition that has to be satisfied for any search point is that 
it should always describe a connected graph. 

• Initial Solution. Initially, we choose 7r° = (1,1,..., 1) G {0,1}V as starting point. 
Alternatively, an initial search point can be generated randomly, but nevertheless the 
Connectivity of the graph described by the point has to be guaranteed. 

• Neighbourhood search moves. Let ir be the current search point. We randomly chose 
i € {1,... ,<p} such that iti does not represent a strong edge. Then we construct the 
neighbor search point w' by inverting 7r*, i.e. 7r' = (7^, ... , 7r^) where Trj = -K'-, if 
j and 7^ = 1 — itj otherwise. 

This formalization is quite natural and best suited for probabilistic and evolutionary 
metaheuristics like SA and GA that allow small deterioration of the current Solution in 
order to get amelioration afterwards (see e.g. [22]), but not unusual for local search 
a Igorith ms that accept only better solutions at each Iteration. For example, in [17] the 
authors analyze randomized local search for minimum spanning tree problem with 1-bit 
and 2-bit fiips. This algorithms do not select new search points which are worse than 
the old one. Observe that the application of this strategy to the robust spanning tree 
problem might be an interesting direction for future research. 

Two cases are possible: 1) we invert 0 to 1, and 2) we invert 1 to 0. Let us consider 
these two cases in detail. 

Case 1. Let £ represent an edge subset describing the current Solution 7r. Case 1 
corresponds to adding edge % := (i,j) to the edge set of graph h := (V,£) described 
by t he current search point 7r. Obviously, a new search point ir' represents graph h! := 
(V, £'), where £' := £ U {ei}. Since h is a connected graph, h' is also connected, 
therefore additional checking for Connectivity is not necessary. According to Proposition 
1, the worst-case scenario for Solution 7r is the following: V(%, j) G £ and 
c-f = kj V{i,j) € E'\£, whereas Solution 7r' has the following worst-case scenario 
shr. c^' = Uij V(i,j) E £' and c**' = ltj V(%, j) G E \ £'. In other words, sht can be 
obtained from sh by replacing cost c~ — l V] of edge % with new cost c-j*' = u^. Then 
the cost Charge A of performing a neighbourhood search move can be calculated as: 

^7T—*7T; ^(7T ) Z(7I") ~ 

= cJt' — min cth' — c3,h + min cth = 
>i ter 1 n t€T 1 

= + min csth — min cth'. 
J teT t€T 1 

Thus, in order to calculate the cost charge A we have to calculate the difference of the 
costs of minimum spanning trees in s cenarios Sh a nd s^. 
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Case 2. This case corresponds to deleting edge e; := (i,j) from the edge set of graph 
h (V,E) described by the current search point n. Obviously, a new search point ir' 
represents graph h! := {V,£'), where £' := £\{ej}. Additional checking for Connectivity 
of b! is necessary. If h! is disconnected, then the neighbourhood search move fails. 
Otherwise, similar to Case 1, worst-case scenario sy can be obtained from Sh by replacing 
cost c\j = Uij of edge e, with new cost c~ = %. Then the cost Charge A of performing 
a neighbourhood search move can be calculated as: 

:= - Z(TT) = 

= Cw' — min cth' — cfh + min csth = 
h. t€T h t€T 

— ~ Uü + min csth — min cth>. J teT «er 
As in Case 1, in o rder to calculate A we have to calculate the difference of the costs of 
minimum spanning trees in sc enarios sh and su-

Note that graph Connectivity can be easily examined using breadth-first search. 

• Acceptance probability rule. We use Metropolis acceptance rule, i.e. we accept a new 
Solution 7r' i nstead of ir with probability 

P(iry,Tq) = min jl,exp j . 

• Cooling schedule. The initial cooling temperature To depends on ip and the largest 
possible cost cmax := max namely T0 := 100 • tp • Cm ax. Annealing schedule is 

(ij)eB' 
defined according to the following rule: Tq := a9 • T0l where a := 0.95. 

• Termination criterion. One has the freedom to introduce different stopping criteria. 
Typically, SA is repeated until the system reaches a State which is "good enough", 
or until a given time limit has been reached. The annealing temperature decreases 
to (nearly) zero short before termination. For computational purposes we define the 
termination criterion: Tq < 7, where 7 is equal to 0.001. 

In ord er to improve efficiency of the algorithm in practica! calculation we use gradient descent 
method incorporated into simulated annealing. Let L be the parameter that determines the 
number of successful moves that will be considered at each temperature level. A larger value 
increases the optimization time, but tends to yield solutions with a narrower spread around 
the global optimum. For instances with small number of vertices (up to 10) we define this 
parameter equals to 10, for medium instances (with 15-20 vertices) we put L = 30 whereas 
for instances (the number of vertices is from 20 tili 50) we put L = 50. The main idea of 
gradient descent method is very simple: among L possible moves we choose the one with 
minimal value of A. 
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5 Computational Experiments 

An experimental version of the SA algorithm has been coded using Java Development Kit 
(JDK), version 5.0, Update 2.0, and implemented on a Pentium IV machine with 1.7 GHz 
clockpulse and 512 Mb RAM.1 

In order to evaluate the algorithm we use the family of benchmarks similar to [15]. Never-
theless, the instances considered are not identical due to random creation of parameters. We 
consider complete graphs with 10, 25 and 50 vertices. For each edge (i,j) £ E, we gener-
ate the lower bound kj uniformly at random from interval (0,20), and the upper bound Uij 
from (kj,40). We compare the running time with the result of [15], where the fastest exact 
algorithm recently known has been presented. We also have to take into account that for the 
results presented in [ 15] a Pentium II PC 400 MHz with 128 Mb RAM was used, whereas our 
machine is considered to be 12 - 15 times faster. Therefore, we introduce the ratio r = 0.07, 
which is used for proper correlation of the results. The total running time r (rounded average 
values) in seconds is presented in Table 1. In the first column the original running time of 
a branch and bound algorithm for the robust spanning tree problem (BB-RST) is presented, 
whereas in the second column this running time is correlated with the ratio r. As one can 
see, the SA algorithm can be effectively applied for large instances where all the known exact 
techniques are time consuming. 

M BB-RST BB-RST SA-RST 
10 0.28 0.02 0.065 
25 484 34 0.55 
50 not presented not presented 1.85 

Table 1: Running time 

We addressed four benchmark examples with 5, 10, 15 and 20 vertices. We used the mixed 
integer reformulation of the robust spanning tree problem given in [23], encoded the model 
with AMPL-Ianguage and solved the instances by ILOG CPLEX 7.0.0 solver in order to get 
an exact Solution for the instances. Due to the stochastic nature of our algorithm, a Single 
run of it on a given instance is meaningless. A big number of repetitions is needed to give a 
representative view of the efficiency. After running the algorithm s = 100 times, we calculate 
the number of successful runs of SA, i.e. where our metaheuristic algorithm was able to find 
the optimal Solution, and the number s2 of satisfactory runs of SA, i.e. where the approximate 
Solution is very dose to optimal one (the gap between optimal and approximate values of 
objective is less than the mean cost of one edge in t he robust tree; for large instances the gap 
defines 2% — 5% relative error of objective calculation). Then p = gives a probability of 
success given a time measure r. Thus, the pairs (r,p) characterize efficiency of the algorithm 
with given parameters. These data are summarized in Table 2. 

M s Sl S2 r P 
5 100 82 10 0.030 sec 92% 

10 100 10 48 0.065 sec 58% 
15 100 12 66 0.220 sec 78% 
20 100 8 56 0.410 sec 64% 

Table 2: SA efficiency 

•"The code and the benchmark instan ces can be obtaine d from the authors upon request. 
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6 Conclusion 

In this paper we propose a simulated annealing metaheuristic for the robust spanning tree 
problem where edge costs are not fixed but take their values from predefined intervals. Düring 
preprocessing we efficiently recognize the strong and weak edges, i.e. the edges that belong to 
some spanning tree for any or for some realization of edge costs, respectively. This recognition 
allows us to reduce the processing time of the main algorithm. For the simulated annealing al­
gorithm we use boolean vector representation of the edge set and 1-1 flip of vector components 
as search moves. We compare our algorithm with the best procedures recently known. We are 
convinced that our approach can be considered as efficient to be used for large instances when 
finding optimal Solution with exact methods takes too much time. We are also optimistic that 
using 2-2 flip together with 1-1 flip may slightly improve the algorithm, therefore it might be 
a promising area for the future research. 
Acknowledgements. The author is grateful to Andreas Drexl for careful reading of the paper 
and for numerous suggestions that drastically improved the presentation. The author is also 
thankful to Harm Brand for algorithm encoding. 

References 

[1] I. Aron and P. van Hentenryck, A constraint satisfaction approach to the robust spanning 
tree problem with interval data. Computer Science Department, Brown University, Maz 
2002, Proceedings of the 18th Conference on Uncertainty in Artificial Intelligence, August 
1 -4, 2002, Edmonton, Canada. 

[2] I. Aron and P. van Hentenryck, On the complexity of the robust spanning tree problem 
with interval data. Operations Research Letters 32 (2004) 36 - 40. 

[3] A. Ben-Tal and A. Nemirovski, Robust solutions to uncertain programs. Operations Re­
search Letters 25 (1999) 1 - 13. 

[4] A. Ben-Tal and A. Nemirovski, Robust solutions of linear programming problems conta-
minated with uncertain data. Mathematical Programming 88 (2000) 411 - 424. 

[5] M. Garey and D. Johnson. Computers and intractability. A guide to the theory of NP-
completeness. Freeman and Co, San Francisco 1979. 

[6] S. Kirkpatrick, Optimization by simulated annealing - quantitative studies. Journal of 
Stat. Phys. 34 (1984) 975 - 986. 

[7] S. Kirkpatrick, C. Gelatt and M. Vecchi, Optimization by simulated annealing. Science 
220 (1983) 671 - 680. 

[8] P. Kouvelis and G.Yu. Robust discrete optimization and its applications. Kluwer Academic 
Publishers, Norwell, M.A. 1997. 

[9] G. Kozina and V. Perepelitsa, Interval spanning tree problem: solvability and computa­
tional complexity. Interval Computing 1 (1994) 42 - 50. 

[10] J.B. Kruskal, On the shortest spanning subtree of a graph and the traveling salesman 
problem. Proceedings of the American Mathematical Society 7 (1956) 48 - 50. 

10 



[11] P. van Laarhoven and E. Aarts. Simulated annealing: theory and applications, Reidel, 
Dordrecht, Holland 1987. 

[12] O.Melnikov, R. Tyshkevich, V. Yemelichev and V. Sarvanov. Lectures on graph theory. 
B1 Wissenschaftsverlag. Mannheim - Zürich. 1994. 

[13] R. Montemanni, A B enders decomposition approach for the robust spanning tree problem 
with interval data. European Journal of Operational Research (to appear). 

[14] R. Montemanni and L.M. Gambardella, The robust shortest path problem with interval 
data via Benders decomposition. 40R (to appear). 

[15] R. Montemanni and L. G ambardella, A branch and bound algorithm for the robust span­
ning tree problem with interval data. European Journal of Operational Research 161 
(2005) 771 - 779. 

[16] J. Mulvey, R. Vanderbei and S. Zenios, Robust optimization of large-scale systems. Op­
erations Research 43 (1995) 264 - 281. 

[17] F. Neumann and I. W egener, Randomized local search, evolutionary algorithms, and the 
minimum spanning tree problem. In: Deb et al. (Eds.): GECCO 2004, LNCS 3102, 
Springer, Berlin, Germany, pages 713 - 724. 

[18] Y. Nikulin, Robustness in combinatorial optimization and scheduling theory: an anno-
tated bibliography, Manuskripte aus den Instituten für Betriebswirtschaftslehre No. 583, 
Christian-Albrechts-Universität zu Kiel, Germany 2004. 

[19] R.C. Prim, Shortest connection networks and some generalizations, Bell S ystems Tech­
nology Journal 36 (1957) 1389 - 1401. 

[20] S. Steiner and T. Radzik, Solving the biobjective minimum spanning tree problem using 
a k-best algorithm. Department of Computer Science King's College London, Technical 
Report TR-03-06, 2003. 

[21] K. Thulasiraman, M.N.S. Swamz. Graphs: theory and algorithms. Wiley, New York, 1992. 

[22] I. Wegener, Simulated annealing beats metropolis in combinatorial optimization. Elec­
tronic Colloquium on Computational Complexity, Report No. 8, Dortmund, Germany 
2004. 

[23] H. Yaman, O. Karasan and M. Pinar, The robust spanning tree problem with interval 
data. Operations Research Letters 29 (2001) 31 - 40. 

11 


