
Nikulin, Yury

Working Paper — Digitized Version

Simulated annealing algorithm for the robust spanning
tree problem

Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel, No. 591

Provided in Cooperation with:
Christian-Albrechts-University of Kiel, Institute of Business Administration

Suggested Citation: Nikulin, Yury (2005) : Simulated annealing algorithm for the robust spanning tree
problem, Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel, No. 591,
Universität Kiel, Institut für Betriebswirtschaftslehre, Kiel

This Version is available at:
https://hdl.handle.net/10419/147649

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/147649
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

Manuskripte

aus den

Instituten für Betriebswirtschaftslehre

der Universität Kiel

No. 591

Simulated annealing algorithm for the robust spanning tree problem

Yury Nikulin

Christian-Albrechts-Universität zu Kiel,
Institut für Betriebswirtschaftslehre,

Olshausenstr 40, 24118 Kiel, Germany,
nkln@lycos.com

Abstract

This paper addresses the robust spanning tree problem with interval data, i.e. the
case of classical minimum spanning tree problem whe n edge weights are not fixed but
take their values from some intervals associated with edges. The problem c onsists in
finding a spanning tree that minimizes so-called robust deviation, i.e. deviation from
an optimal Solution under the worst case realization of interval weights. As it was
proven in [8], the problem is NP-hard, therefore it is of great interest to tackle it
with some metaheuristic approach, namely simulated annealing, in order to calculate an
approximate Solution for large scale instances efficiently. We describe theoretical aspects
and present the results of co mputational experiments. To the best of our knowledge,
this is the first attempt to develop a metaheuristic approach for solving the robust
spanning tree problem.

Keywords: robust spanning tree, simulated annealing, uncertainty.

1 Introduction

We consider the special case of a minimum spanning tree problem where the edge costs
(weights) are not fixed but take their values from some intervals. No stochastic distribution is
given inside intervals. The interval function is defined as the sum of interval weights over all
edges of feasible spanning tree. This problem was first mentioned in [9], where some questions
concerning solvability and computational complexity were studied. Contrary to the classical
minimum spanning tree problem which can be easily solved by the algorithms of Kruskal (1956)
or Prim (1957), minimum spanning trees of the interval variant depend on weights realization
and the optimal objective value generally is not unique. Therefore, the authors of [9] proposed
to introduce the relation on the set of intervals, which gives the possibility to transform the
problem into a special bicriteria counterpart. The Pareto set of the counterpart, which can
be generated by Standard multiobjective methods, is taken to be the Solution of the interval
problem. It was shown that the counterpart problem is intractable, and it follows that the
interval problem is also very hard to solve.
The special interest motivated by telecommunications applications induces not to solve the
interval spanning tree problem itself, but to hedge against the worst case realization (scenario)
of problem parameters, which can be interpreted as given with uncertainty. Playing against
worst case scenario is commonly known as robust optimization (see, e.g. [8] as well as the
more recent papers [3], [4] and the annotated bibliography [18]). As it was indicated in [8],
in many cases the robust equivalent of a polynomially solvable problem becomes NP-hard.
Robust spanning tree problem was originally formulated in [8] for the case where edge costs are
taken from some set of scenarios. It was proven that the problem is NP-hard [5] if t he number
of scenarios is bounded. Furthermore, strong NP-hardness of the problem for unbounded
number of scenarios has been shown.
The basic theoretical background for the robust spanning tree problem has been presented in
[23]. Two different types of robustness were introduced: absolute and relative robustness. It
was proven that the absolute robust spanning tree problem can be easily resolved, whereas the
relative robust spanning tree problem is very hard to solve. A reformulation of the last problem
as a specific mixed integer program was presented. The concepts of weak and strong edges
were introduced as well a s polynomial time algorithms for their recognition were described. It
was shown how these concepts can be efficiently used in a preprocessing stage for solving the
relative robust spanning tree problem. We will shortly sketch out the main results from [23]

2

in s ection 3. In t he remainder of the present paper only relative robustness is considered, and
the problem is commonly referred to as robust spanning tree problem.
One more evidence of the NP-hardness of the robust spanning tree problem was presented in
[2], where the relation between the well-known central tree problem [21], which is NP-hard,
and the robust spanning tree problem is detected. It was shown that the robust spanning tree
problem is at least as hard as the central tree problem. Moreover, the problem preserves its
hardness on complete graphs, even though a central tree can be found in polynomial time
on such graphs. Therefore, it was concluded that both factors - cost interval structure and
topological graph properties - exert an essential influence on making the problem intractable
from a computational point of view. Two cases where the problem can be easily solved are
described: 1) no edge intervals have an intersection 2) the graph is complete and all edge
costs take their value from the same interval. The question whether there are some other
cases when the problem can be easily resolved is sti ll open and presents a promising avenue
for future research.
A branch and bound procedure, which embeds extension of some results previously presented
in the literature as well as some other innovations, are presented in [15]. The results were
compared with earlier results obtained by solving a mixed-integer program in [8] and with
those of the branch and bound algorithm presented in [1], It was shown that the algorithm
outperforms all others and can be regarded as the best known exact algorithm for solving the
robust spanning tree problem. Nevertheless, the proposed algorithm has the time complexity
OflVT'-MtfpIogl#!) and can not solve problem instances with |V| > 25 in reasonable time,
where V(E) is the set of vertices (edges). In [13] and [14] a new exact method based
on Benders decomposition was described with respect to the robust spanning tree and the
robust shortest path problem respectively. It was shown that this approach gives very good
computational results on all the benchmarks considered, and especially on those that were
harder to solve for the methods previously known.
The rest of the paper is organized as follows. In se ction 2 we introduce basic notations and
formulate the problem. Section 3 is devoted to the main theoretical results. How to apply
the simulated annealing metaheuristic is described in s ection 4. The results of computational
experiments are presented in se ction 5. Final remarks appear in s ection 6.

2 Problem description

Let G = (V, E) be a connected graph, where V is the set of vertices and E is the set of edges.
With each edge (i,j) € E we associate a cost interval [kj, û], 0 < kj < u%], i.e. For each
edge (i,j) € E its cost c13 is not fixed and belongs to [Z^, No probability distribution is
given inside the cost interval. Let

T:= {t\t = (V,Et)}

represent the set of all spanning trees of graph G. It is well-known that: a tree contains a
unique spanning tree, a cycle graph Cn contains n spanning trees, and a complete graph Kn

contains nn~2 spanning trees (see e.g. [12]). The matrix tree theorem, also called Kirchhoff's
matrix-tree theorem, states that the number of nonidentical spanning trees (skeletons) of a
graph G is equal to any cofactor of the degree matrix of G minus the adjacency matrix of G
(see e.g. [21]).
The total cost ct of spanning tree t € T is defined as:

3

°t ^ Cij.
(ij)eEt

It is obvious that ct = [lt, ut] where lt := 4? anc' ut := 12 uv-
(id)eEt (ij)eßt

Then interval spanning tree problem is to find the spanning tree of minimum "weight":

minct. (1)
teT

Let s be a realization of edge costs, i.e. c? £ [kj,Uij] is fixed for any (i,j) G E. In the classical
non-interval case, i.e. when some scenario s is given and fixed, the problem is formulated as
follows: among all the spanning trees of a weighted and connected graph find one (possibly
more) with the least total cost, which is called a minimum spanning tree:

minc?, (2)

where
ct := X] c*r

The minimum spanning tree may not be unique. However, if t he weights of all the edges are
pairwise distinct, it is indeed unique. Problem (2) can be easily solved by two greedy strategies,
known as Kruskal's [10] and Prirn's [19] algorithms, with time complexity 0(|£7| log |-E7|) an d
0((\V\ + |£|)log|K|), respectively.
Concerning the interval case the authors of [9] introduced a partial order on the set of intervals.
They proved that the interval spanning tree problem (2) can be reduced to a biobjective
counterpart, where simultaneous minimization of lt as a first objective and ut as a second one
over all spanning trees t e T is needed. The Pareto set of the biobjective optimization problem
corresponds to the set of minimum spanning trees of the interval spanning tree problem. It
was shown that problem (2) is v ery hard to solve in general. One can find some interesting
two-stage techniques based on a Ä-best Solution strategy for solving biobjective minimum
spanning tree problem in [20].
The interval representation of edge costs may be interpreted as some sort of uncertainty for
input data of the classical minimum spanning tree problem. The presence of uncertainty
may be caused by different reasons: inaccuracy of initial data, non-adequacy of models to
real processes, errors of numerical methods, errors of rounding off and other factors. So it
appears to be important to identify a Solution which is flexible under all realizations of problem
Parameters. It is of special interest to find a Solution which provides the smallest changes of
the result under worst possible scenario of distribution of problem parameters. The model
with such a nice property is called robust counterpart problem, and a Solution of the robust
counterpart problem is generally known as robust Solution.
First it seems to be natural to give a definition of a robust Solution as follows: an optimal
Solution is robust if it remains optimal under any realization of the input data. But this
definition can hardly be regarded as desirable, because it is too restrictive. Most unlikely such
a Solution exists. Another definition may be considered more appropriate: our subject is to find
a robust Solution which minimizes maximum regret or relative deviation (minimizes possible
consequences of worst-case scenario with respect to objective function).
Thus, for each spanning tree t in a scenario s the difference between total cost of t and the
cost of minimum spanning tee in s represents the deviation for t in scenario s:

: cf — min cf.
teT 1

4

Let S be the set of all scenarios. For a given spanning tree t G T the worst-case scenario st

is a scenario for which the deviation for t is maximum over all scenarios s € S, i.e.

Then the difference

st := argmaxdet^.
sSS

dev* := cf' — min cf*
4 1 ter 1

represents the robust deviation of t.
A spanning tree t' is said to be a robust spanning tree if i t has the smallest robust deviation

t' := arg min dev?1
ter

among all spanning trees.

3 Theoretical background

In order to keep the paper self-contained we start with some theoretical background, originally
presented in [23].
The following proposition gives a worst-case scenario for a given spanning tree.

Proposition 1 [23] The scenario in which the costs ofevery edge on a spanning tree t e T
is at its upper bound and the cost of every other edge is at its lower bound is a worst-case
scenario, i.e. c% = V(z'J) 6 Et and cg = lX] M(i,j) e E\Et.

In ot her words, for any spanning tree t £T the worst case scenario st is uniquely determined.

Definition 1 [23] A spanning tree t is a weak tree if it is a minimum spanning tree for some
realization s of edge costs. An edge e is a weak edge if it belongs to some weak tree.

The following theorem gives a characterization of weak trees and edges.

Theorem 1 [23] A spanning tree t G T is a weak tree if and only ifit is a minimum spanning
tree when the cost of every edge on this tree corresponds to its lower bound and the costs of
the other edges correspond to their upper bounds.
Edge e is a weak edge if and only ifthere exists a minimum spanning tree using edge e where
the cost of edge e is at its lower bound and the cost of the remaining edges are at their upper
bounds.

Using theorem 1 we can recognize efficiently, i.e. in polynomial time, whether edge e is a
weak edge in graph G by a pplying a slightly modified Version of Kruskal's algorithm which is
in f avor of choosing edge e in c ase of ties.
The following statements give us an idea about the construction of a robust spanning tree.

Proposition 2 [23] A robust spanning tree is a weak tree.

In o ther words, every robust spanning tree uses only weak edges, i.e. all non-weak edges are
not considered at all. This Observation leads to:

5

Proposition 3 [15] A non-weak edge e can be deleted from graph G when solving a robust
spanning tree problem.

The last result can be used efficiently in a preprocessing stage of any aIgorithm solving the
robust spanning tree problem.

Definition 2 [23] An edge e is a strong edge if it belongs to some minimum spanning tree
for any realization s.

Theorem 2 [23] An edge e is a strong edge if and only if there exists a minimum spanning
tree using edge e when the cost of edge e is at its upper bound and the cost of the remaining
edges are at their lower bounds.

Proposition 4 [23] There exists a robust spanning tree such that every strong edge in the
graph belongs to the tree.

As in t he case of weak edges we can recognize strong edges very efficiently using again a slightly
modified version of Kruskal's algorithm. The strong edges can be detected and labelled in
a preprocessing stage. They also have to be ultimately included in a Solution of the robust
spanning tree problem.

4 Simulated Annealing

Simulated annealing (SA) or hill climbing is a generic probabilistic heuristic approach originally
proposed in [6] and [7] for global optimization. Usually, SA locates a "good" approximation of
the global Optimum of a given objective function z in a large search space. At each Iteration,
SA considers some neighbors of the current Solution (search point) 7r, and probabilistically
chooses either to accept a new Solution n' or keeping 7r. The probabilities are chosen so
that the problem ultimately tends to move to solutions with better objective function value.
Typically this process is repeated until a Solution which is "good enough" has been determined,
or until a given time limit has been reached. SA uses several basic concepts: neighborhood,
probabilistic acceptance of a new neighborhood Solution, parameter (temperature) dependent
acceptance probability, cooling schedule, termination criterion.
In order to apply SA to a particular problem, we must specify the search space, the neigh­
borhood search moves, the acceptance probability function, the cooling schedule and the
termination criterion. These choices can significantly affect the method's effectiveness. Un-
fortunately, there is no unique choice that will b e good for all problems, and there is no general
way to find the best choice for a given problem [11].
Now let us precisely describe how to apply SA to the robust spanning tree problem.
As it was already mentioned in section 3, we can reduce the set of edges E in a preprocessing
stage by deleting all non-weak edges and consider graph G' := (V,E') with a new edge set
E', (f — \E '\, which does not contain non-weak edges.

• Search space. Any subset of the edge set E' can be represented by a boolean vector
7r € {0,1}^, such that 7r» = 1 if edge e* belongs to the current subset and 7Tj = 0
otherwise. Thus, a vector 7r represents a current point in the search space. Obviously
the search space of the algorithm is now presented by the variety of subsets of edges
describing a connected graph. The subsets which describe unconnected graphs are not

6

feasible. We have to exclude such points from the search space by defining their ob-
jective values z(7r) — oo. It is necessary to emphasize that in each Iteration we do not
check whether the search point represents an acyclic graph or not. The reason of this is
the following. As far as any connected graph with cycles contains some spanning tree
and the value of objective of such graph is always greater then the value of objective
for the spanning tree, then this spanning tree will be most likely detected later during
execution of SA. The only condition that has to be satisfied for any search point is that
it should always describe a connected graph.

• Initial Solution. Initially, we choose 7r° = (1,1,..., 1) G {0,1}V as starting point.
Alternatively, an initial search point can be generated randomly, but nevertheless the
Connectivity of the graph described by the point has to be guaranteed.

• Neighbourhood search moves. Let ir be the current search point. We randomly chose
i € {1,... ,<p} such that iti does not represent a strong edge. Then we construct the
neighbor search point w' by inverting 7r*, i.e. 7r' = (7^, ... , 7r^) where Trj = -K'-, if
j and 7^ = 1 — itj otherwise.

This formalization is quite natural and best suited for probabilistic and evolutionary
metaheuristics like SA and GA that allow small deterioration of the current Solution in
order to get amelioration afterwards (see e.g. [22]), but not unusual for local search
a Igorith ms that accept only better solutions at each Iteration. For example, in [17] the
authors analyze randomized local search for minimum spanning tree problem with 1-bit
and 2-bit fiips. This algorithms do not select new search points which are worse than
the old one. Observe that the application of this strategy to the robust spanning tree
problem might be an interesting direction for future research.

Two cases are possible: 1) we invert 0 to 1, and 2) we invert 1 to 0. Let us consider
these two cases in detail.

Case 1. Let £ represent an edge subset describing the current Solution 7r. Case 1
corresponds to adding edge % := (i,j) to the edge set of graph h := (V,£) described
by t he current search point 7r. Obviously, a new search point ir' represents graph h! :=
(V, £'), where £' := £ U {ei}. Since h is a connected graph, h' is also connected,
therefore additional checking for Connectivity is not necessary. According to Proposition
1, the worst-case scenario for Solution 7r is the following: V(%, j) G £ and
c-f = kj V{i,j) € E'\£, whereas Solution 7r' has the following worst-case scenario
shr. c^' = Uij V(i,j) E £' and c**' = ltj V(%, j) G E \ £'. In other words, sht can be
obtained from sh by replacing cost c~ — l V] of edge % with new cost c-j*' = u^. Then
the cost Charge A of performing a neighbourhood search move can be calculated as:

^7T—*7T; ^(7T) Z(7I") ~

= cJt' — min cth' — c3,h + min cth =
>i ter 1 n t€T 1

= + min csth — min cth'.
J teT t€T 1

Thus, in order to calculate the cost charge A we have to calculate the difference of the
costs of minimum spanning trees in s cenarios Sh a nd s^.

7

Case 2. This case corresponds to deleting edge e; := (i,j) from the edge set of graph
h (V,E) described by the current search point n. Obviously, a new search point ir'
represents graph h! := {V,£'), where £' := £\{ej}. Additional checking for Connectivity
of b! is necessary. If h! is disconnected, then the neighbourhood search move fails.
Otherwise, similar to Case 1, worst-case scenario sy can be obtained from Sh by replacing
cost c\j = Uij of edge e, with new cost c~ = %. Then the cost Charge A of performing
a neighbourhood search move can be calculated as:

:= - Z(TT) =

= Cw' — min cth' — cfh + min csth =
h. t€T h t€T

— ~ Uü + min csth — min cth>. J teT «er
As in Case 1, in o rder to calculate A we have to calculate the difference of the costs of
minimum spanning trees in sc enarios sh and su-

Note that graph Connectivity can be easily examined using breadth-first search.

• Acceptance probability rule. We use Metropolis acceptance rule, i.e. we accept a new
Solution 7r' i nstead of ir with probability

P(iry,Tq) = min jl,exp j .

• Cooling schedule. The initial cooling temperature To depends on ip and the largest
possible cost cmax := max namely T0 := 100 • tp • Cm ax. Annealing schedule is

(ij)eB'
defined according to the following rule: Tq := a9 • T0l where a := 0.95.

• Termination criterion. One has the freedom to introduce different stopping criteria.
Typically, SA is repeated until the system reaches a State which is "good enough",
or until a given time limit has been reached. The annealing temperature decreases
to (nearly) zero short before termination. For computational purposes we define the
termination criterion: Tq < 7, where 7 is equal to 0.001.

In ord er to improve efficiency of the algorithm in practica! calculation we use gradient descent
method incorporated into simulated annealing. Let L be the parameter that determines the
number of successful moves that will be considered at each temperature level. A larger value
increases the optimization time, but tends to yield solutions with a narrower spread around
the global optimum. For instances with small number of vertices (up to 10) we define this
parameter equals to 10, for medium instances (with 15-20 vertices) we put L = 30 whereas
for instances (the number of vertices is from 20 tili 50) we put L = 50. The main idea of
gradient descent method is very simple: among L possible moves we choose the one with
minimal value of A.

8

5 Computational Experiments

An experimental version of the SA algorithm has been coded using Java Development Kit
(JDK), version 5.0, Update 2.0, and implemented on a Pentium IV machine with 1.7 GHz
clockpulse and 512 Mb RAM.1

In order to evaluate the algorithm we use the family of benchmarks similar to [15]. Never-
theless, the instances considered are not identical due to random creation of parameters. We
consider complete graphs with 10, 25 and 50 vertices. For each edge (i,j) £ E, we gener-
ate the lower bound kj uniformly at random from interval (0,20), and the upper bound Uij
from (kj,40). We compare the running time with the result of [15], where the fastest exact
algorithm recently known has been presented. We also have to take into account that for the
results presented in [15] a Pentium II PC 400 MHz with 128 Mb RAM was used, whereas our
machine is considered to be 12 - 15 times faster. Therefore, we introduce the ratio r = 0.07,
which is used for proper correlation of the results. The total running time r (rounded average
values) in seconds is presented in Table 1. In the first column the original running time of
a branch and bound algorithm for the robust spanning tree problem (BB-RST) is presented,
whereas in the second column this running time is correlated with the ratio r. As one can
see, the SA algorithm can be effectively applied for large instances where all the known exact
techniques are time consuming.

M BB-RST BB-RST SA-RST
10 0.28 0.02 0.065
25 484 34 0.55
50 not presented not presented 1.85

Table 1: Running time

We addressed four benchmark examples with 5, 10, 15 and 20 vertices. We used the mixed
integer reformulation of the robust spanning tree problem given in [23], encoded the model
with AMPL-Ianguage and solved the instances by ILOG CPLEX 7.0.0 solver in order to get
an exact Solution for the instances. Due to the stochastic nature of our algorithm, a Single
run of it on a given instance is meaningless. A big number of repetitions is needed to give a
representative view of the efficiency. After running the algorithm s = 100 times, we calculate
the number of successful runs of SA, i.e. where our metaheuristic algorithm was able to find
the optimal Solution, and the number s2 of satisfactory runs of SA, i.e. where the approximate
Solution is very dose to optimal one (the gap between optimal and approximate values of
objective is less than the mean cost of one edge in t he robust tree; for large instances the gap
defines 2% — 5% relative error of objective calculation). Then p = gives a probability of
success given a time measure r. Thus, the pairs (r,p) characterize efficiency of the algorithm
with given parameters. These data are summarized in Table 2.

M s Sl S2 r P
5 100 82 10 0.030 sec 92%

10 100 10 48 0.065 sec 58%
15 100 12 66 0.220 sec 78%
20 100 8 56 0.410 sec 64%

Table 2: SA efficiency

•"The code and the benchmark instan ces can be obtaine d from the authors upon request.

9

6 Conclusion

In this paper we propose a simulated annealing metaheuristic for the robust spanning tree
problem where edge costs are not fixed but take their values from predefined intervals. Düring
preprocessing we efficiently recognize the strong and weak edges, i.e. the edges that belong to
some spanning tree for any or for some realization of edge costs, respectively. This recognition
allows us to reduce the processing time of the main algorithm. For the simulated annealing al­
gorithm we use boolean vector representation of the edge set and 1-1 flip of vector components
as search moves. We compare our algorithm with the best procedures recently known. We are
convinced that our approach can be considered as efficient to be used for large instances when
finding optimal Solution with exact methods takes too much time. We are also optimistic that
using 2-2 flip together with 1-1 flip may slightly improve the algorithm, therefore it might be
a promising area for the future research.
Acknowledgements. The author is grateful to Andreas Drexl for careful reading of the paper
and for numerous suggestions that drastically improved the presentation. The author is also
thankful to Harm Brand for algorithm encoding.

References

[1] I. Aron and P. van Hentenryck, A constraint satisfaction approach to the robust spanning
tree problem with interval data. Computer Science Department, Brown University, Maz
2002, Proceedings of the 18th Conference on Uncertainty in Artificial Intelligence, August
1 -4, 2002, Edmonton, Canada.

[2] I. Aron and P. van Hentenryck, On the complexity of the robust spanning tree problem
with interval data. Operations Research Letters 32 (2004) 36 - 40.

[3] A. Ben-Tal and A. Nemirovski, Robust solutions to uncertain programs. Operations Re­
search Letters 25 (1999) 1 - 13.

[4] A. Ben-Tal and A. Nemirovski, Robust solutions of linear programming problems conta-
minated with uncertain data. Mathematical Programming 88 (2000) 411 - 424.

[5] M. Garey and D. Johnson. Computers and intractability. A guide to the theory of NP-
completeness. Freeman and Co, San Francisco 1979.

[6] S. Kirkpatrick, Optimization by simulated annealing - quantitative studies. Journal of
Stat. Phys. 34 (1984) 975 - 986.

[7] S. Kirkpatrick, C. Gelatt and M. Vecchi, Optimization by simulated annealing. Science
220 (1983) 671 - 680.

[8] P. Kouvelis and G.Yu. Robust discrete optimization and its applications. Kluwer Academic
Publishers, Norwell, M.A. 1997.

[9] G. Kozina and V. Perepelitsa, Interval spanning tree problem: solvability and computa­
tional complexity. Interval Computing 1 (1994) 42 - 50.

[10] J.B. Kruskal, On the shortest spanning subtree of a graph and the traveling salesman
problem. Proceedings of the American Mathematical Society 7 (1956) 48 - 50.

10

[11] P. van Laarhoven and E. Aarts. Simulated annealing: theory and applications, Reidel,
Dordrecht, Holland 1987.

[12] O.Melnikov, R. Tyshkevich, V. Yemelichev and V. Sarvanov. Lectures on graph theory.
B1 Wissenschaftsverlag. Mannheim - Zürich. 1994.

[13] R. Montemanni, A B enders decomposition approach for the robust spanning tree problem
with interval data. European Journal of Operational Research (to appear).

[14] R. Montemanni and L.M. Gambardella, The robust shortest path problem with interval
data via Benders decomposition. 40R (to appear).

[15] R. Montemanni and L. G ambardella, A branch and bound algorithm for the robust span­
ning tree problem with interval data. European Journal of Operational Research 161
(2005) 771 - 779.

[16] J. Mulvey, R. Vanderbei and S. Zenios, Robust optimization of large-scale systems. Op­
erations Research 43 (1995) 264 - 281.

[17] F. Neumann and I. W egener, Randomized local search, evolutionary algorithms, and the
minimum spanning tree problem. In: Deb et al. (Eds.): GECCO 2004, LNCS 3102,
Springer, Berlin, Germany, pages 713 - 724.

[18] Y. Nikulin, Robustness in combinatorial optimization and scheduling theory: an anno-
tated bibliography, Manuskripte aus den Instituten für Betriebswirtschaftslehre No. 583,
Christian-Albrechts-Universität zu Kiel, Germany 2004.

[19] R.C. Prim, Shortest connection networks and some generalizations, Bell S ystems Tech­
nology Journal 36 (1957) 1389 - 1401.

[20] S. Steiner and T. Radzik, Solving the biobjective minimum spanning tree problem using
a k-best algorithm. Department of Computer Science King's College London, Technical
Report TR-03-06, 2003.

[21] K. Thulasiraman, M.N.S. Swamz. Graphs: theory and algorithms. Wiley, New York, 1992.

[22] I. Wegener, Simulated annealing beats metropolis in combinatorial optimization. Elec­
tronic Colloquium on Computational Complexity, Report No. 8, Dortmund, Germany
2004.

[23] H. Yaman, O. Karasan and M. Pinar, The robust spanning tree problem with interval
data. Operations Research Letters 29 (2001) 31 - 40.

11

