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Abstract 

Combinatorial auctions permitting bids on bundles of items have been 
developed to remedy the exposure problem associ ated with single-item auc­
tions. Given winning bündle prices a set of item prices is called market 
Clearing or equilibrium if all th e winning (losing) bids are greater (less) than 
or equal to the total price of the bündle items. However, the prices for indi-
vidual items are not readily computed once the winner determination problem 
is solved. This is due t o the duality gap of integ er programming caused by 
the indivisibility of th e items. In this paper we reflect on the calculation of 
approximate or pseudo-dual item prices. In particular, we present a novel 
scheme based on the ag gregation of winning bids. Our analysis is illustrated 
by means of numerical examples. 
Keywords: Combinatorial auctions, set packing, dual prices 

1 Introduction 

Combinatorial auctions are auctions where single bids on multiple distinct items 
are allowed. Single item auctions have been the topic of intensive research for 
many years and particular incentive compatible efficient auctions have been de­
veloped. In s ome markets, however, a participant's valuation of an item depends 
significantly on which other items the participant acquires. Items can be Sub­
stitutes or complements, and the valuation of a particular bündle of items may 
not be equal to the sum of the valuations of the individual items, that is, valua-
tions are not additive. In th is setting, economic efficiency is increased by allowing 
bidders to bid on combinations of items, which is exactly what a combinatorial 
auction does. Due to this increased economic efficiency combinatorial auctions 
have become the focus of extensive research in recent years. 

One major obstacle in the design of combinatorial auctions is the Solution of the 
winner determination problem. Winner determination is equivalent to the weighted 
set packing problem which belongs to the class of NP-hard integer programs (for 
a detailed exposition of this issue see Rothkopf et al. 1998). In practice combina­
torial auctions usually are applied in a multi-round setting. Düring each round, 
bidders submit bids on packages and then the auctioneer determines a provisional 
allocation of bundles to bidders. In this case approximate dual Information may 
be useful for bidders as approximate marginal vatues that enable bidders to bid 
more efficiently in s ubsequent rounds. 

When the linear programming relaxation of the winner determination problem 
for a combinatorial auction does not possess the integrality property there does 
not exist a linear price function that supports the optimal allocation of winning 
bundles. 

In these situations an often used method is to adopt pseudo-dual prices, that is, 
prices that are in some sense close to the prices obtained for a pure linear program. 
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The way these pseudo-dual prices are constructed are based on the following basic 
ideas: 

1. The winning bundles should have reduced cost equal to zero. A S tandard 
requirement for a line ar program based on linear programming duality theory 
is that a basic variables reduced cost should be equal to zero. 

2. For the non-winning bids the item prices should ideally have the property 
that all non-winning bids are priced out, i.e. the reduced costs for these bids 
should be non-negative. However, in the general case when the linear pro­
gramming relaxation does not yield an integral Solution this is unachievable. 
The approximation made in these cases in order to obtain an approximate 
linear price function is to require that as many as possible of the non-winning 
bids are priced out or, alternatively, that the maximum deviation for a linear 
price to price out the non-winning bids is minimal. 

3. As in linear programming it is often required that prices for constraints that 
have slack in t he optimal Solution yield an item price of zero. 

All these requirements can be interpreted as requiring primal feasibility, primal 
complementary slackness, dual feasibility, and dual complementary slackness. 

The exposition of our work is as follows: In section 2 we introduce the winner 
determination problem. In se ction 3 properties of dual prices are formally defined. 
In sec tion 4 first we reflect on different alternatives for the construction of pseudo­
dual prices and then we present a novel scheme based on the aggregation of 
winning bids. Some ideas for future work a re provided in s ection 5. 

2 Winner determination 

One of the most important challanges with combinatorial auctions is solving the 
winner determination problem, a topic which has received most attention from 
researchers. 

Let us assume for simplicity that only one unit of each item is available. Two 
general models for winner determination in combinatorial auctions are known from 
literature. The first one (see Wurmann and Wellman 1999) assumes that every 
bidder submits a bid on ev ery subset of items. Furthermore, the number of bundles 
a winner may win is limited to at most one. The second (see, e.g., DeMartini et 
al. 1999) allows multiple bundles per winner. 

Let m denote the number of items and n the total number of bidders. Then the 
first model reads as follows: 

2 



n 2m —1 
Maximize ^ ̂  öijZy 

«=1 j=l 
n 2m—1 

Subject to ^ ̂ 2 o,hjXij <1 h = 1,..., i 
i=i j=i 
2m—X 

Xij ^ 1 1 :=- 1 j . • . j 71 
J=1 

2 — lj • • • ^ 71 
j= l,...,2m-l G {0, 1} 

(1) 

(2) 

(3) 

(4) 

b(j is the bid price for bündle j from bidder i. x^ is a binary variable indicating 
whether bidder i gets bündle j (= 1) or not (= 0). The binary parameter 
cthj is equal to 1, if item h is contained in bündle j (0, otherwise). Constraint (2) 
indicates that at most one unit of each item is available for sale. Constraint (3) 
assures that each bidder gets at most one (over all 2m — 1 possibilities, ignoring 
the zero-valued) bündle. 

The second model has no limits on how many bundles each bidder may obtain 
as long as the availability constraint is assured. For notational simplicity in the 
subsequent sections let I = denote the set of items, and let J = 

be the set of (bundles) bids. Then the second model reads as follows: 

Maximize bjXj 
jeJ 

Subject to Y; aijXj <1 Vi 6 7 
46/ 
xj e {o, 1} Vj e J 

(5) 

bj is the bid price for bündle j from bidder i. Xj indicates whether bid j is accepted 
(xj = 1) or not (xj = 0). The parameter aij is equal to 1, if it em i is contained 
in bid j or not (aij = 0). All bids submitted are covered by this formulation and, 
hence, more than one column may come from a particular bidder. Of course, this 
is equivalent to the case where each bündle is supposed to come from a unique 
bidder. 

The first model has an advantage over (5) in describing XOR bids, i.e. bids sharing 
an "XOR" relation, where a bidder wants to get only one bündle out of a given 
set. When such bids are allowed a new onstraint has to be added to (5). 

Model (5) is the most widely studied single-unit (each item is unique and there is 
only one unit for sale of each item), single-sided (one seller and multiple buyers) 
case and we will study it subsequently. It is the set packing problem, a well-
known NP-complete optimization problem (Garey and Johnson 1979). Exact and 
heuristic algorithms for solving the set packing problem have been developed by, 
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e.g., Borndörfer (1998), Delorme et al. (2004), Harche and Thompson (1994), 
Hoffmann and Padberg (1993) and Sandholm (2002). 

A recent survey of combinatorial auctions is provided by de Vries and Vohra 
(2003). Combinatorial auctions can be useful in many environments and have been 
considered for problems including selling spectrum rights (McMillan 1994, Mil-
grom 2000), airport take-off & landing time slot allocation (Rassenti et al. 1982), 
railroad segments (Brewer 1999), and delivery routes (Caplice and Sheffi 2003). 
Other applications are surveyed in, for instance, Kwon et al. (2005). 

3 Properties of dual prices 

The winner determination problem formulated above is an integer programming 
problem. In general solving the linear programming relaxation of the winner de­
termination problem will result in a Solution in which some of the variables have 
non-integral values. In su ch cases where the integer programming problem has a 
duality gap which is strictly greater than zero, we know from theory that there 
does not exist a linear price function that supports the optimal allocation of win­
ning bundles. In t his Situation the use of an approximate linear price system has 
been advocated. To the best ofour knowledge this idea of an approximate linear 
price system for use in a combinatorial auction setting was presented for the first 
time in the article by Rassenti et al. (1982) on the allocation of landing rights. 

The approximate linear price system or the pseudo-dual prices are based on trying 
to replicate the properties of the dual price system that exist for a linear program. 

Döing so we have to look at the linear programming relaxation of the winner 
determination problem, that is, the problem 

Maximize &jxj 
j&J 

Subject to Yl aijxj < 1 Viel / (6) 
jeJ 
xj > 0 V j E J 

and the corresponding dual 

Minimize Ylui 
iei 

Subject to YJ aijui > bj Vj € J 
iei 
Uj > 0 V i e / 

(7) 

where u = («j) is the vector uf dual variables. 

For the linear programming relaxation we know that an optimal primal Solution 
x* = (xj) of (6) and the corresponding optimal dual Solution u* = (u*) of (7) 
have the following properties: 
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Property 1 (primal feasibility) 

An optimal primal Solution x* = (xj) satisfies the constraints 

jeJ 
E <1 Viel 

x*j >0 V j e J 

and is said to be primal feasible. • 

Property 2 (dual feasibility) 

An optimal dual Solution ü* = (ü,*) sa tisfies the constraints 

E a-ijU* > bj Vj'eJ 
iei 
u}> 0 Vi € I Miel 

and is said to be dual feasible. • 

Property 3 (primal complementary slackness) 

If an optimal primal Solution (äy) and the corresponding optimal dual Solution 
(u*) satisfy the constraints 

Property 4 (dual complementary slackness) 

If an optimal primal Solution (x*j) and the corresponding optimal dual Solution 
(u|) satisfy the constraints 

4 Calculation of pseudo-dual prices 

In the following first in section 4.1 we detail the underlying assumptions made by 
'normal' approaches when constructing a set of approximate pseudo-dual prices. 
Then a new scheme based on the aggregation of winning bids is presented in 
section 4.2. Finally, we give in section 4.3 further insights into how the different 
schemes work using a nontrivial, meaningful instance. 

then the primal complementary slackness condition is assured. • 

then the dual complementary slackness condition is assured. • 
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4.1 Some basic characteristics 

In a combinatorial auction the auctioneer is trying to get a good and hopefully 
optimal Solution to the winner determination problem. Assume that the optimal 
integer Solution x* = (a^) to the winner determination problem (5) has been 
found and that the linear programming relaxation (6) does not have the integrality 
property. We now know that there does not exist a linear price system that can 
be interpreted as an equilibrium market Clearing mechanism. 

The underlying assumptions made when constructing a set of approximate pseudo­
dual prices are: 

(a) The Solution x* = (xj) is primal feasible. 

(b) At least one of the properties dual feasibility, primal complementary slack-
ness or dual complementary slackness must be relaxed. 

The 'normal' approach taken in the procedures that have been developed to con-
struct pseudo-dual prices is that: 

(i) Primal complementary slackness should be required. This means that we 
make sure that the winning bids for the different bundles of items all have 
reduced cost equal to zero. 

(ii) Dual complementary slackness should be required. This means that the 
price for an unsold item should be equal to zero. 

Hence the 'normal' relaxation used is to relax the requirement of dual feasibility 
leading to the fact that some of the loosing bids for a particular bündle of items 
will have a negative reduced cost when faced with the pseudo-dual price system 
making the agents that have submitted these bids suspicious and wondering why 
their bid has not been successful. This is the approach taken by Rassenti et 
al. (1982) and by DeMartini et al. (1999) among others. 

In the following we will de scribe the approach by DeMartini et al. (1999) in more 
detail (an in-depth description of a couple of other approaches can be found in 
Bj0rndal and J0rnsten 2002 and Xia et al. 2004). 

Assume that the winner determination problem (5) has been solved to optimality 
and that (x^) is the corresponding optimal integer Solution. Let JQ := {j € J : 
Xj = 0} and Jj := {j £ J : Xj = 1} denote the set of loosing and winning bids, 
respectively. Apparently, we have JQ D J\ = 0 and JQ U J\ = J. Then the main 
component of the approach is to solve the linear program (8) to (13). 
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Minimize z (8) 

Subject to £0#«* +yj > bj Vj € J0 (9) 
ieJ 

= 6, Vj € Ji (10) 
j<=J 

z>yj Vj € J0 (11) 

Ui > 0 Vi € I (12) 

Vj >0 Vi e Jo (13) 

At the prices («,•) there may be some losing bids for which Yljej aijui < bj, falsely 
signaling a possible winner, which is by v irtue the nature of package bidding. Of 
course, such bids can be resubmitted if (b j — J2jeJavu*) 's 'ar6e enough'. The 
objective (8) has been designed to minimize the number of such bids. If "ideal" 
prices exist, they will be the Solution with yj = 0 for all j G J o and, hence z will 
be equal to zero. If th e prices from (8) are not unique a sequence of iterations 
each of which requires to solve the linear program (8) to (13) is performed (for 
details see DeMartini et al. 1999). 

If du al complementary slackness (see Property 4) is required, too, we add 

Ui = 0 Vi E I : ^2,aijX*j < 1 (14) 
jeJ 

to the set of constraints (9) to (13). 

Example 1 An example with 6 items and 21 bids taken from Parkes (2001) illus-
trates the idea. The bid prices (bj) and the coeficient matrix (a^) are provided 
in Table 1. • 

Table 3 provides the results of the Solution of the integer program and of the 
linear programming relaxation of instance 1. Variables not given there have value 
0. OPV abbreviates optimal objective function value. 

Solution of model (5) Solution of model (6) 
%4 = XU = 1 
OPV = 275,000 

£4 = x\2 = X20 = 0.5 
OPV = 300,000 

Table 3: Instance 1 - IP- and LP-solution 

Solving the linear program of DeMartini et al. (1999) produces the results shown 
in Table 4. Column one corresponds to model (9) to (13), that is the case without 
enforcing dual complementary slackness, and column two corresponds to model 
(9) to (14), that is the case with enforcing dual complementary slackness. By 
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z4 
O" 
n> 

s 

"ö Q) 

I 
hO o o 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 

6,- 60 50 50 200 100 110 250 50 60 50 110 200 100 255 50 50 75 100 125 200 250 

aij 1 1 1 1 1 1 1 1 1 1 1 1 

a2j 1 1 1 1 1 1 1 1 1 1 1 1 

a3j 1 1 1 1 1 1 1 1 1 1 1 1 
aij 1 1 1 1 1 1 1 

O'bj 1 1 1 1 1 1 1 

af>j 1 1 1 1 1 1 1 

fD 
ro 
"D ID 
QJ 
3 
& 

O 
3 CA 

8 

j 1 2 3 5 6 7 8 9 10 11 12 13 14 15 16 18 19 20 21 22 

bj 60 50 50 100 110 250 50 60 50 110 200 100 255 50 50 100 125 200 250 275 

üij 1 1 1 1 1 1 1 1 1 1 1 1 

a2j 1 1 1 1 1 1 1 1 1 1 1 1 

a3 j 1 1 1 1 1 1 1 1 1 1 1 1 

°4j 1 1 1 1 1 1 1 

a5j 1 1 1 1 1 1 1 

°6j 1 1 1 1 1 1 1 



not requiring dual complementary slackness the auctioneer makes use of the fact 
that agent 2 does not get any bündle and hence prices out that agent result-
ing in non-anonymous item prices. On the other hand in case of requiring dual 
complementary slackness bids 7 and 20 have negative reduced cost. 

Solution of model (9) to (13) Solution of model (9) to (14) 
u = (150,50,75,0,75,0) 
z = 0 

u = (100,100,75,0,0,0) 
z = 25 

Table 4: Instance 1 - Results for DeMartini et al. (1999) 

An alternative to the above scheme would be to only require dual feasibility (see 
Property 2); this would off course lead to the fact that the linear programming 
prices are used as approximative prices. The negative effect of this is that the 
item prices in sum will be too high and, hence, some agents might be reluctant to 
rise their bids based on this price Information. Also it must be assumed that the 
winning bids only are required to pay their bid price. For instance 1 this would 
give us the approximate prices u\ = 100, %% = 100 and u3 = 100. 

4.2 Prices based on aggregation of winning bids 

An alternative idea that so far to the best of our knowledge has not been suggested 
and evaluated is to require only that the winning bids are lump together into one 
Single bid. Consequently, in t he formulation for calculating pseudo-dual prices we 
only require that this winning aggregate bid has reduced cost equal to zero whereas 
the individual winning bündle bids might either have reduced cost negative, zero 
or positive. 

First of all we need some definitions. 

Definition 1 (aggregate winning bid) 

Let (Xj) denote an optimal Solution to the winner determination problem (5). 
Furthermore, recall J\ := {j £ J : ij = 1}. Then an aggregate winning bid 
j = n + 1 is constructed as follows: 

bn+1 = ^2 fyxj 
jeJi 

= (n Vis/ O 
^0, otherwise. 

Definition 2 (aggregate winning bid instance) 

Consider a particular instance of the winner determination problem (5) with I 
items and J bids. Let (xp denote an optimal Solution for this instance and 
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J\ := {j £ J : x* = 1} the set of winning bids. Then an aggregate winning bid 
instance with the set of I items and the set 

J' = J \ Ji U {n + 1} 

of bids with bn+1 and atjn+i V i € I according to Definition 1 is constructed. • 

If we apply Definitions 1 and 2 to the example from Table 1 we get the modified 
instance 1' provided in Table 2. 

Solving the linear programming relaxation of instance 1' yields the optimal objec-
tive function value 275,000 and the Solution X22 = 1 {%j = 0, otherwise) turns 
out to be integral. 

Since the linear programming relaxation has the integrality property a linear price 
system that clears the market has been found with ui — 7 5, U2 = 75 and U3 = 
125. 

With this price system all non winning bids have non-negative reduced cost 
whereas one of the winnig bids, bid 17 has a positive reduced cost of 50 and 
the other winning bid 4 has a negative reduced cost of 50 and, hence, in total for 
all winning bids the reduced cost is zero. 

The idea could equally well have been formulated in terms of the linear program 
(15) to (20) for calculating pseudo-dual prices 

Minimize z (15) 

Subject to ^2 aijui + Uj 2 bj V j € JQ (16) 
jeJ 

T ( maxaj,- | Ui = y bj (17) 
6^" / Ä 
Z>% VjeJa (18) 
^ > 0 Vi 6 / (19) 

Uj > 0 \/j e JQ (20) 

and additionally constraint (14) if d ual complementary slackness is a lso required. 

What are the pros and cons of these approximate pseudo-dual prices? First, with 
this approach it is more likely that many more of the loosing bids will have reduced 
costs that are non-negative since the approximate prices are less restricted. The 
winning bidders get to know if complementary bids do exist that make them 
winners. Although some of the winning bids might appear to be very profitable 
with a hugh negative reduced cost the bidder should be aware of the fact that it 
must mean that their complementary player has an equally big loss at the current 
prices. However, if th e potential winners are told what they have to pay as their 
bid price and if the auction rules stipulate how potential winning bids can be 
updated it is very likely that these approximate pseudo-dual bids are better than 
the pseudo-dual prices used so far. 
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3 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

bj 693 4,924 81 420 2,791 761 2,806 858 2,763 4,040 3,876 5,852 3,147 2,279 5,158 1,598 4,798 701 4,850 2,788 

Ol j 1 1 1 1 1 1 1 1 1 1 
a2j 1 1 1 1 1 1 1 1 1 
a3j 1 1 1 1 1 1 1 1 1 
0,4j 1 1 1 1 1 1 1 1 1 1 
05j 1 1 1 1 1 1 1 
a6j 1 1 1 1 1 1 1 1 
07j 1 1 1 1 1 1 1 1 
«8j 1 1 1 1 1 1 1 1 1 1 1 

3 1 2 3 4 5 7 9 10 11 12 13 14 15 16 17 18 20 21 

bj 693 4,924 81 420 2,791 2,806 2,763 4,040 3,876 5,852 3,147 2,279 5,158 1,598 4,798 701 2,788 6,469 

Ülj 1 1 1 1 1 1 1 1 1 1 
«2 j 1 1 1 1 1 1 1 1 1 
03 j 1 1 1 1 1 1 1 1 1 
a4j 1 1 1 1 1 1 1 1 1 1 
0,5j 1 1 1 1 1 1 1 
a6j 1 1 1 1 1 1 1 1 
a7j 1 1 1 1 1 1 1 1 
°8j 1 1 1 1 1 1 1 1 1 1 1 



4.3 Further insights 

We will illustrate the various alternatives on a slightly more complicated auction. 

Example 2 An example with 8 items and 20 bids taken from the combinatorial 
auction test suite (CATS; see [11]) illustrates the various pricing schemes presented 
above. The bid prices (bj) and the coeficient matrix (o%) of this instance are 
provided in Table 5. • 

Table 7 provides the results of the Solution of the integer program and of the linear 
programming relaxation of instance 2. Again, variables not given there have value 
0 and OPV is an abbreviation for optimal objective function value. 

Solution of model (5) Solution of model (6) 
#6 = X% = S19 = 1 
OFV = 6,469 

^2—^5=57=^11=^19—0.33, X4 =Xß=0.66 
OFV = 7,203 

Table 7: Instance 2 - Results 

If we apply Definitions 1 and 2 to the example from Table 5 we get the modified 
instance 2' provided in Table 6. The optimal Solution of the linear programming 
relaxation of this modified instance with one winning bündle is x2 = X4 = 0.4 and 
£5 = X7 = xio = xn = in = X21 = 0.2 (0, otherwise) with 7093.6 as objective 
function value. 

For this example the various approximate prices are: 

1. Linear programming prices: 
u = (858; 420; 1283; 1001; 734; 761; 947; 1,199) 

2. Pseudo-dual prices without dual complementary slackness: 
z = 0, u = (858; 420; 822; 358; 1,849; 761; 1,590; 1,671) 

With these prices we can see how the auctioneer might use unsold items 
and price them up in Order to achieve dual feasibility. 

3. Pseudo-dual prices with dual complementary slackness inforced: 
z = 408.7143; u = (858; 11.2857; 1,524.8571; 1,084.4285; 0; 761; 454.857; 
1,774.57); eight of the loosing bids have negative reduced cost. 

4. For the aggregate formulation based on only requiring that the winning 
bundles in total have reduced cost zero we get the following approximate 
prices: z = 347; u = (426; 73; 1,710; 1,393; 0; 209; 640; 2,018); for these 
prices seven non winning bids have negative reduced cost and for the three 
winning bids two have positive reduced cost and one winning bid a negative 
reduced cost. 
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Another interesting aspect that is worth a more thorough study regarding the use 
of pseudo-dual prices is the effect a bid from one of the winning bündle bidders 
on an unsold item has on the pseudo-dual prices. 

Here we let bidders 6, 8 and 19 extend their bid so as to also include item 5, 
one at a time; the resulting pseudo-dual prices then change and are displayed in 
Table 8. 

bid z u 
6 378.2 (858; 41.8; 1,402.8; 1,023.4; 213.6; 547.4; 546.4; 18,359) 
8 367 (712; 53; 1,504; 1,147; 146; 761, 580; 1,566) 

19 307 (858; 113; 1,118; 881; 712; 761; 760; 1,266) 

Table 8: New Dual Prices 

Döing the same for the aggregate winning bündle case results in z = 275.6 and 
u = (1,419.2; 144.4; 417.4; 257; 1,506.8; 1,416.4; 868; 439.8). 

5 Summary and future work 

We have in this note suggested that there is a need to broaden our understanding 
of the use of approximate pseudo-dual prices in c ombinatorial auction. So far the 
most common assumption made when constructing pseudo-dual prices is that pri­
mal complementary slackness should always be required. We have here presented a 
relaxed version of this assumption requiring only aggregate primal complementary 
slackness. This leads to an alternative approximate price system with different 
characteristics. It would be interesting to conduct some experiments in which 
the different alternative approximate prices are presented by different groups of 
agents in order to find out how the differences affect the bidding in an iterative 
combinatorial auction setting. 
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