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Abstract 

In this paper we consider the prob lern of allocating scarce resources in a divisional­
ized Company; the resources are made available by the headquarters and requested by 
profit centers (PCs). This problem was observed at a large german Insurance Company 
(LAGIC). Currently, the resources are allocated for free; for the future, LAG IC p roposes 
to use an iterative allocation mechanism to solve the allocation problem. Alternatively, 
we present a combinatorial auction-based allocation mechanism. Within experimental 
tests the Performance of these two mechanisms is analyzed. To this end, instances are 
generated motivated by the problem size and structure occurring at LAGIC. 

Keywords: Resource allocation, in-house services, combinatorial auctions, efficient allocation, 
winner determination, multidimensional binary knapsack problem, instance generator 

1 Introduction 

In this paper we analyze an allocation problem arising at LAGIC. LAGIC is a divisionalized 
Company with one Service center providing \K\ types of resources that are demanded by \I\ 
divisions (or customers). Each division manager is responsible for the profit being made in 
his division, i.e., we have profit centers. Every profit center i has a set ofjobs (or tasks) Jit 

indexed j. A Job causes costs amounting to jij > 0, requires Cjj,* > 0 capacity units of 
resource k € K, and creates revenue ry > 0. The headquarters are not aware of the net 
profit (rij — Tij) for each job (private Information). 
We assume that the more resources a profit center gets the more profit it can achieve. In 
addition, the total demand for the resources Y^iJ2j<k,j,k exceeds supply Ak of resource k for 
at least one k, i.e., at least one service is scarce. This results in an allocation problem: how 
should the resources be distributed among the self-interested profit centers in order to achieve 
a firm-wide profit-maximizing job portfolio? For this we need an efficient allocation provided 
by an allocation mechanism which maximizes total net profit. Such a mechanism is applied to 
assign arbitrary items to entities. It consists of an allocation rule and incoming signals from 
the participants who demand the resources. The allocation rule determines, depending on the 
signals, who is awarded the resources, see, e.g., [18]. Signals, in this particular context, are 
Parameters that indicate the net profit involved using the resources in the profit centers. 
In [12] it is shown how to allocate resources when resource productivity differs between divi­
sions; the productivity is assumed to be private Information. The authors in [13] deal with 
the issue why auctions are used to allocate resources in certain environments and which type 
of auction is most efficient. For more literature about mechanisms for allocating resources in 
a divisionalized firm we refer to, e.g., [2], [14], and [31]. A nice literature survey on auction 
theory can be found in [17]. 
We analyze two different allocation mechanisms. The first, an iterative procedure proposed 
by LAGIC, is a mechanism based on priority rules. Alternatively, we present a combinatorial 
auction-based allocation mechanism. Within experimental studies these two algorithms are 
compared with res pect to achieved overall net profit, computational time, and resource usage. 
Due to lack of real-world data, artificial instances for simulating the problem arising at LAGIC 
are generated. To get more experimental evidence, alternative problem sizes and structures 
are considered. 
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2 Priority Rule-based Allocation Mechanism 

2.1 Basic Idea 

The idea of this mechanism is to first serve those customers that are most "important" or 
"big", measured in terms of the cumulated costs 

ri=J2 
jeJi 

for getting done all Jobs within their profit center. The priority rule-based allocation mechanism 
(PAM) picks the participant i with the highest P, who is first allowed to contribute to the 
overall job portfolio. He chooses the Job j € Ji he prioritizes highest and is assigned the 
resources required to execute this job. Hence, the mechanism selects among the biggest 
customers the best Jobs first and adds them to the job portfolio. Then is reduced by the 
costs which will be necessary to realize the scheduled job, 7ij, and the capacities Ak are 
reduced by the resource usage of the job, Cij,k- Then, in the next Iteration, PAM selects again 
the customer with the highest and so on. The Implementation details are presented below. 

2.2 Implementation Details 

In this section we first provide some assumptions about the behavior of the participants in 
order to automate PAM. Second, we present an algorithm that realizes these assumptions. 

As already mentioned, it is assumed that each participant i knows his job costs 7ij. Fur-
thermore we assume that he is aware of revenues rij, Vj € Ji, which occur if the required 
resources are assigned to him; obviously, he makes a profit with a job if — 7^ > 0. The 
revenues are presumed to be private Information. 

If a t any stage of the process customer i has the highest cumulated costs, i.e., 

Ti = maxfrV, 
/IGJ 

he tries to get the required amount of resources for a Single job j*\ we assume that job j* 
maximizes his additional profit, that is, 

f = {j I n ,j - 7ij = (n,h - 7i,/i)} 

with ties broken arbitrarily. If this job cannot be realized because there are not enough re­
sources he tries to realize the second best job and so on. 
Notice, that the customer does not act strategically, e.g., that he does not try to execute a 
job with low costs in order not to reduce his cumulated costs too much. This is a reasonable 
assumption since he cannot observe the behavior of the other participants. 

Now we can define an algorithm since the actions of a participant are sufficiently determined. 
As a consequence, every participant can authorize a Software agent, i.e., a piece of Software 
that acts on his behalf. 

The algorithm can be stated as given in Table 1. 
The number of customers is reduced if no job of the customer with the currently highest 
cumulative costs can be scheduled. The procedure stops if there are no participants left and, 
thus, no schedulable job. 
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Algorithm 1 (PAM) 

In put: I, Jit ritj, K, Ak 

Output: ZFPAM, L; 

Ak f- Ak! //set residual capacities 
Tj = X) //set cumulative costs 

j&Ji 
Fi <— Tj; //set residual cumulative costs 
J[ Ji; //set remainingJobs 
I' <— I; //set active participants 
j* = 0; //job with highest priority 
L, = 0; //initial Solution empty 
ZFPAM = 0; //current objective function value 

i* = Ii | rt- = max{I\}>; //choose bidder with highest cumulative cost 

j* = : {ri*ih — >; //choose job with highest priority 

if (Ak > Ci'j*tk Vk £ K){ //ifjob schedulable 
L = Lü{j*}; //add job to Solution 

ZFPAM = ZF^M _|_ r-.j. — 7j.j.; //update objective function 
J'i — J'i \ 0*}' //update remaining jobs 
fj. = fj. - 7i»,j*; //update cumulative cost 
Äk = Äk — VA € K; //update resource availability 

do{ 

J[ = J[ \ {j*}; //update remaining jobs 
if (J[ — //no job remains 

I' <- I'\ {%*}/ //reduce participants 
} 
if (I' = 0J{ //no more participants 

return L, ZF^M; ffreturn Solution and objective function value 
stop; 

} 
} 

Table 1: Algorithm PAM 
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3 Combinatorial Auctions as Mechanism 

3.1 Basic Idea 

A combinatorial auction is an auction where many items are sold simultaneously. Bidders are 
allowed to bid on arbitrary subsets of items. This is reasonable if there exist from the side of the 
participants nonadditive preferences for subsets of items. For example, we have superadditive 
preferences (complementarities) if a bündle of goods has a higher valuation than the sum of 
the valuations for the individual items. Complementarities can stem from economies of scale or 
economies of scope, for example. Whenever they occur it is not reasonable to employ multiple 
sequential single-item auctions, for instance, because then the bidders face a forecasting 
problem; they have to guess at an early stage of the auctions which items they will get later 
on. As a consequence, a participant has to estimate the private valuations of all other bidders. 
The forecasting problem can be illustrated using the data given in Table 2 with two items and 
two bidders. 

w {B} {A,B} 

bidder 1 10 10 25 
bidder 2 14 7 22 

Table 2; Valuations of Two Bidders 

The table says that bidder 1 values item {A} at 10 currency units (cu), {B} at 10 cu and 
receiving the bündle at 25 cu, for instance. Notice, that both bidders have superadditive pref­
erences since the bündle is valued higher than the sum of the valuations for the Single items. 
Assume that {^4} is auctioned off before {£?}. To select the bidding price for {A} bidder 1 
has to forecast at what prize he could get {B} in the later auction. If, for example, he can 
get item {^4} at 15 cu the bids for {.B} must not exceed 10 cu because, otherwise, he will be 
left with a loss. 
Within a combinatorial auction bidder 1 can place bids on three subsets, on {^4}, on {B}, 
and on {A,B} with three bidding prices. Thus, combinatorial auctions enable the bidders to 
express their complementarities explicitly and the forecasting problem disappears. 

Combinatorial auctions have been applied successfully in various ways. In [24] an application 
to airport time slot allocation is shown, where the bidders have complementarities about land-
ing and starting slots for aircrafts. The authors in [4], [8], and [22] use the trucking services 
environment. Combinatorial auctions have also been considered for scheduling machines, cp. 
[7], [19], [30], disposing spectrum licenses ([21]), and purchasing airtime for advertising ([15]), 
to mention only a few. 
The general winner determination problem is tackled in [1], [9], [26], and [27], for example. In 
[25] and [28] some special cases are presented that are solvable in polynomial time. A survey 
on combinatorial auctions is given in [6]. 

Next, we show how combinatorial auctions can be applied to our allocation problem. 

3.2 Application 

In o ur application the particular resources can be assumed to be the items that are auctioned 
off by the headquarters of LAGIC. Furthermore, each item comes along in multiple identical 
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copies (or units); therefore, we have the Situation of a multi-item multi-unit allocation prob­
lem. 
Every job requires a specific amount of resources in order to be executed. Note, that the 
jobs of a profit center are independent since it is possible for every PC to execute all jobs 
or none or anything in between. Therefore, the jobs can be interpreted to be the bidders. 
Subsequently, it is not decisive which PC provides which job. (This Situation can change if t he 
PCs are budget-restricted or if the bidding price is not the only decision criterion for assigning 
resources, cp. [3] and [18], for example.) 

Furthermore, we have superadditive preferences whenever a job needs more than one unit of 
an arbitrary resource. To clarify that consider the example in Table 3. 

The first row states that job 1 needs 5 units of resource A and 2 of resource-type B to be re-
alized; the incurring profit is 25. The next two rows imply that if too few units of resources are 
assigned to job 1 it cannot be executed and the profit is 0. (This Situation changes if resources 
can be substituted by other resources. For example, the job could also be executed if i t would 
get 4 units of A and 4 units of B. As a consequence, every job would place more than one bid.) 

Each job is assumed to submit a bid that includes the amount of resources that have to 
be assigned to it in order to be processed and a bidding price bj. Without loss of generality 
we assume that the bidding price is at most its incurring profit, i.e., 

Since the management's goal is to achieve an efficient allocation the social welfare has to be 
maximized. Presume for the moment that all bids have been submitted truthfully, i.e., bj = Pj. 
Then, the efficient allocation can be determined solving a combinatorial optimization problem. 
The latter is frequently called the "Winner Determination Problem" and is formulated in the 
following. 
Let the variable Xj equal 1, if the j-th bid is accepted and 0, otherwise. The objective is to 
maximize the social welfare. In our case, the social welfare can be stated as follows: 

resource A resource B profit 

job 1 5 units 2 units 25 cu 
job 1 4 units 2 units 0 cu 
job 1 5 units 1 units 0 cu 

Table 3: Valuations of One Bidder 

bj < Pj = Tj - 7j, Vj e J. (1) 

Z (rj - 7;) Xj = Y,Pjxi> (2) 
j£J jGJ 

which adds up the profits pj of the accepted jobs. 
The winner determination problem can be stated as follows: 

max bj Xj 
j£J 

(3) 

s.t. Chk Xj < Ak 
jeJ 

MkaK (4) 

xj € {0,1} V; e J (5) 
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The objective function maximizes the sum of the bidding prices for the accepted bids. In 
the following, this value is denoted by ZFRestrictions (4) require that the claim of the 
accepted jobs on the resources does not exceed the respectively available capacity. (5) states 
the domain of the decision variables. 

This problem is the well-known multidimensional binary knapsack-problem which is proven to 
be A^P-hard in the general case, cp. [16]. 
Various a Igorith ms have been proposed in the literature. We refer to [10] and [23] and the 
references therein. 

Recall that each bidder is assumed to bid truthfully. Note, that the efficient allocation is likely 
not to be achieved if the bidders do not teil the truth about their valuations; but the bidders 
can be incited to bid truthfully using the Vickrey-Clarke-Groves pricing scheme (cp. [29], [5], 
and [11]). Similar to the Vickrey payments it is also a second-price scheme. The payments are 
determined as follows: Consider that (3)-(5) was solved and let W denote the set of winners, 
that is, the profit Centers which were assigned at least one unit of any resource. Furthermore, 
let ßw State the sum of the bidding prices of the accepted bids of winner w, i.e., 

ßw= Y! bixv e W. 
jdJw 

Then, for every w € W, (3)-(5) is solved again - now without all jobs belonging to PC w, 

obtaining ZF^. The difference ZF^ — Z F^ can be interpreted to be the contribution 
of winner w to the auction outcome. Following the idea of Vickrey payments, w has to pay 

Vw=ßw- (ZFCA - ZF^j . 

This implies that he has to pay his bidding price reduced by his contribution to the auction. 
This pricing rule has the properties to be incentive compatible and individually rational and 
it is the profit maximizing mechanism of all mechanisms that yield an efficient allocation, cp. 
[18]. A drawback is that the optimization problem has to be solved |W| + 1-times in order to 
calculate all payments. Therefore it is essential that the winner determination problem can be 
solved in reasonable time. In S ection 4 we show that this is the case for the relevant instance 
sizes for LAG IC using a Standard Software package. 

3.3 Special Cases 

Next, we State some special cases such that the winner determination problem can be solved 
efficiently. In particular, special structures of the Claims on the capacities are analyzed. 

Theorem 1 The special case < 3 k' | cj# = £ Cj>k, V? e J > can be solved in polynomial 
( k£K J 

time. 

Proof. In this case every job requests units of only a particular resource. Therefore, the 
jobs can be partitioned by the resource they request. Then, the units of a resource can be 
auctioned off simultaneously and independently from other resources. Hence, this is the special 
case of combinatorial auctions with identical objects where the winner determination problem 
was proven to be polynomially solvable, cp., e.g., [28]. • 
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Theorem 2 The special case < £ cjk = 1, Vj G J > can be solved in polynomial time. 
Ue* ' J 

Proof. In t his case every job has only a claim on one unit of a particular resource. Observe, 
that this is a special case of Theorem 1. • 

Theorem 3 The special case < 3A:' | £ cj,k' > Ak> and J2 Cj,k < Ak, VA: e K\{k'} > can 
L j£J j€J J 

be solved in pseudo-polynomial time. 

Proof. In th is case only one resource is scarce. Therefore, the winner determination problem 
reduces to a binary knapsack problem that was shown to be solvable in pseudo-polynomial 
time, cp., e.g., [20]. • 

Theorem 4 The special case {cjtk = ck, \/k G K, Vj G J} can be solved in polynomial time. 

Proof. In this case every job requires the same number of units for each resource, i.e., we 
have standardized jobs. Obviously, the winner determination problem can be reduced to the 
case of a binary knapsack problem only considering the most scarce resource k', where 

k' = {k | ̂  = min ̂  1 
l Ck h€K ch J 

with ties broken arbitrarily. Observe that this is a polynomially solvable special case of the 
binary knapsack problem; an optimal Solution can be derived by accepting the highest 
bids. Obviously, these jobs can be determined in polynomial time. • 

4 Experimental Comparison 

In order to test the Performance of the two presented allocation mechanisms experimentally 
we implemented PAM in GNU C. The winner determination problem is solved to optimality 
using the Standard Software package CPLEX 7.0. 
The tests have been performed on an AMD Athlon with a 1.8 GHz processor änd 768 MB of 
RAM running a Linux operating system. 

4.1 Test-bed 

Since we are not aware of real-world data sets but only know the basic data for LAGIC we 
develop an instance generator so as to reflect the allocation problem at LAGIC. Its allocation 
problem has about 5 customers, 10 resources, and 500 jobs. In order to yield more experimental 
evidence we derive several parameters. In particular, Table 4 shows which parameters may have 
an impact on the Performance of the mechanisms. 
Without loss of generality the value of all parameters are chosen to be integer-valued. 

Parameter /# denotes the number of participants of the allocation procedure. We choose 
II = 5 and 12 = 10. Furthermore, the number of jobs is J1 = 250 or J2 = 500. The number 
of resources is chosen to be Kl = 10 or K2 = 15. 
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Notation Meaning 

/# number of customers, with # e {1,2} 
J# number of jobs, with # € {1,2} 

m number of resources, with # G {1,2} 

m magnitudes of resources, with #€{1,2} 
M# magnitudes of jobs, with # € {1,2} 
C costs of jobs 

P# revenues, with # € {1,2,3} 
D# distribution of jobs, with # e {1,2,3,4} 

Table 4: Control Parameters for Instance Generation 

The resource availability i?# is also selected in two ways. For Rl, each capacity constraint is 
uniformly drawn from the interval [9000; 11000]. R2 chooses each availability with probability 
of i from intervals [6000; 8000], [8000; 10000], and [10000; 12000]. 

The jobs are classified into three groups: large, medium, and small. For each large job the 
claim on the capacity was drawn uniformly from [1%;5%] • Ak, for each medium job from 
[0.5%; 1%] • A k, and for each small job from [0.01%; 0.5%] • Thus, we get, e.g., for i21 
the interval of [90; 450] units for large jobs. 

For Ml, 2% (18%, 80%) of the jobs are large (medium, small); for M2, 10% (20%, 70%) are 
large (medium, small). For example, choosing {«71; Ml} yields 5 large, 45 medium sized, and 
200 small jobs. 

The costs for a job are assumed to be dependent on the sum of it's claim on capacities, which 
corresponds to parameter C. For each job a number is uniformly drawn from [500; 750] and 
multiplied by cj,k• Hence, we do not check the influence of C 

The profits are determined in three different ways. For each job size, a value is drawn uniformly 
from a specific interval. Table 5 summarizes the intervals for alternative job sizes and settings. 
We get the revenue by adding up the profit and the costs. 

large medium small 

PI [25000; 50000] [25000; 50000] [25000; 50000] 
P2 [15000; 20000] [17500; 22500] [20000; 25000] 
PZ [20000; 25000] [17500; 22500] [15000; 20000] 

Table 5: Intervals for Profits 

After having characterized and generated the jobs the instance generator "builds" the cus-
tomers by distributing the jobs to them. We select four kinds of distributions. 
Dl and DZ imply that the size of all customers is similar in terms of T,. For Dl, every 
participant approximately gets the same number of large, medium and small jobs. 

\ _ ry-
For DZ, p\ = ig- is calculated. Then, the largest jobs are assigned to the first customer 
until pi < Then, the rest of the large, medium, and small jobs are assigned uniformly 
to the other participants. Thus, we yield customers of equal size but with different "job-
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structure". 
D2 and DA imply that the customers differ with respect to IV To be more precise, we assume 
that we have for Ii (72) one (two) big, two (four) middle, and two (four) small customers 
in terms of T,-. Again, these two parameter settings differ in the "job-structure"; for D2 and 
II, 40% of the large, the medium, and the small jobs are assigned to the first participant, 
20% each to the second and third, and 10% each to the fourth and fifth. Consequently, we 
have one big, two medium-sized, and two small customers with the same job structure. For 
12 = 10, the number of large, medium, and small customers are doubled. 
D4 differs from D2 respecting the "job-structure"; for this, P2 = Hjjj is calculated. For II, 
customer 1 gets the largest jobs until 0.4 • p 2 < J2j 7ij- Furthermore, two and three get the 
next largest jobs until 0.2 • p i < Y,j 72,j and 0.2 • p2 < 73,j, respectively. Then, the rest is 
assigned equally to the fourth and fifth participant. 

We generated 5 instances for each possible parameter combination. Hence, in total we have 

4.2 Results 

In t his section we study the experimental behavior of the two proposed allocation mechanisms. 
In order to analyze the impact of the parameter settings given in the instance generator we 
solved all instances for PAM and the combinatorial auction {CA). 

For each setting we are interested in the following values: 

• objective function 

• runtime 

• average resource usage 

First, we give experimental evidence of how the objective function values for the two mecha­
nisms and the chosen parameter settings behave. 

For the objective function value we compared the values ZFPA^ and ZF^A. 
The value ZF*~A is a reasonable choice since a second-price auction is considered. Therefore, 
the participants are incited to bid truthfully. Consequently, (3) gives the social welfare of the 
allocation. Note, that for our considerations we do not need to calculate the second prices 
since these only State how the wealth derived in (3) is distributed among the PCs and the 
headquarters. 

Notice, that PAM is a heuristic for the exact Solution of (3)-(5) and, thus, yields a lower 
bound to CA. Hence, the following expression holds: 

2-2-2-2-2-3-4 5 = 1920 

instances. 

ZFCA > ZFPAM (6) 

As Performance criterion we use the following formula: 

9 



i?l R2 
Dl D2 D3 DA Dl D2 DZ DA 

PI 
0.56 
2.93 
7.19 

0.27 
2.38 
3.93 

1.30 
2.16 
2.92 

1.06 
3.31 
8.38 

0.00 
1.38 
3.13 

1.97 
3.70 
5.90 

1.40 
2.79 
3.85 

1.32 
3.77 
6.66 

Ml P2 
0.00 
1.09 
2.04 

0.09 
0.99 
2.09 

0.04 
1.41 
2.85 

1.16 
3.95 
7.21 

0.01 
0.91 
2.10 

0.01 
1.04 
1.98 

0.05 
1.11 
1.72 

1.20 
2.79 
4.63 

P3 
0.88 
3.08 
5.14 

1.24 
4.04 
7.99 

3.01 
4.45 
6.38 

0.00 
0.72 
2.00 

3.05 
5.98 
9.52 

0.00 
4.98 
8.11 

0.00 
1.01 
2.28 

0.88 
3.28 
5.31 

PI 
27.09 
40.17 
47.02 

36.11 
45.22 
52.66 

25.07 
34.05 
47.60 

80.97 
101.15 
121.90 

33.53 
36.40 
40.19 

29.46 
35.07 
37.63 

26.67 
37.10 
44.13 

71.27 
96.16 

114.78 

M2 P2 
2.73 
3.23 
4.08 

9.45 
12.98 
18.11 

4.99 
6.76 
7.67 

88.33 
96.06 

108.23 

1.82 
2.90 
4.02 

6.59 
9.14 

11.96 

4.64 
6.52 
9.18 

80.91 
91.85 

112.88 

P3 
247.44 
270.70 
303.85 

129.01 
164.33 
193.72 

145.26 
162.95 
178.42 

144.63 
174.69 
239.37 

221.24 
245.21 
265.75 

145.64 
163.34 
183.82 

147.18 
166.05 
186.76 

129.81 
155.85 
184.23 

Table 6: Performance for 5 Bidders, 10 Resources, and 250 Jobs 

This can be interpreted as the average improvement of CA over PAM in percent. Observe 
that the values of expression (7) are always larger or equal to zero. The results are stated in 
Tables 6-13; each table is based on a combination of [|7|; \K\\ | J\] and the three entries for 
each parameter setting denote the minimal, average, and maximal value for £c\p . 
The following observations can be made: 

• Auctions yield a significant higher result if we have a tendency towards large jobs. For 
M2 one can observe an average improvement of 192% and for Ml a value of 36% on 
average. 

• Auctions tend to work better the more jobs we have. The improvement with 250 jobs 
is on average 52%, in the 500 jobs case 176%. 

• With respect to the distribution of jobs (D) we can State that the DA case yields an 
average improvement of 170% which is much more than in the other cases (Dl: 105%, 
D3: 90%, D2: 88%). 

• Auctions work better in a "normal" correlation of job size with job revenues, that is, 
if big jobs create high revenues (P3); for this an average improvement of 225% can 
be observed. If the size of a job is independent from its revenue (PI) the average 
improvement is 76%. In the case of a negative correlation (P2) we yield a value of 41%. 

• The number of resources (K) has only little influence on the Performance of auctions. 
On average, auctions tend to perform better with a growing number of resources. With 
10 different resources (Kl) the improvement was 113%, with 15 resources (K2) 116%. 

• The number of customers (7) has no significant influence on the Performance of auctions 
in relation to PAM. The 5 customers case (71) yielded 112% improvement, the 10 
customers case (72) 117%. 



Rl R2 
Dl D2 D3 DA Dl D2 DZ DA 

PI 
26.42 
36.99 
50.08 

32.96 
43.88 
56.53 

33.77 
38.12 
41.91 

75.49 
86.01 
94.67 

28.98 
36.53 
43.37 

38.95 
43.52 
48.56 

31.93 
39.60 
45.18 

86.59 
89.90 
93.54 

Ml P2 
10.16 
13.28 
15.82 

17.58 
21.75 
23.48 

26.63 
30.39 
33.51 

78.17 
85.50 
94.03 

11.50 
13.94 
17.51 

19.59 
22.30 
24.22 

26.79 
30.18 
33.20 

81.16 
86.73 
92.08 

P3 
122.45 
135.37 
159.42 

85.65 
102.18 
120.46 

75.55 
85.20 
89.57 

113.25 
122.21 
132.10 

123.40 
138.42 
152.13 

86.70 
95.53 

112.57 

78.12 
81.72 
88.22 

104.41 
124.98 
131.51 

PI 
82.42 
93.77 

101.70 

77.14 
101.02 
133.05 

80.37 
102.83 
126.22 

372.58 
417.53 
483.23 

88.97 
101.93 
117.80 

85.01 
103.05 
111.96 

84.68 
96.61 

108.86 

380.75 
450.14 
497.60 

M2 P2 
8.45 

10.44 
12.73 

38.44 
40.15 
42.69 

33.70 
35.54 
38.63 

293.72 
308.86 
321.98 

10.53 
12.01 
14.61 

33.81 
40.92 
45.81 

26.59 
30.18 
33.99 

270.76 
310.14 
358.46 

PZ 
567.87 
641.21 
712.85 

451.18 
477.79 
521.72 

515.81 
548.05 
572.80 

558.11 
594.64 
630.40 

578.09 
606.80 
653.57 

461.08 
511.73 
599.18 

461.95 
523.88 
578.94 

439.45 
604.53 
749.18 

Table 7: Performance for 5 Bidders, 10 Resources, and 500 Jobs 

Rl R2 
Dl D2 D3 DA Dl D2 D 3 DA 

PI 
1.62 
2.87 
3.45 

1.35 
3.48 
6.84 

0.55 
3.19 
5.70 

1.15 
3.11 
5.49 

1.88 
3.07 
4.86 

0.76 
1.99 
3.28 

1.06 
2.84 
4.64 

0.27 
2.49 
3.38 

Ml P2 
0.03 
0.29 
0.41 

0.62 
1.67 
3.04 

0.39 
1.19 
1.44 

1.92 
2.90 
3.56 

0.00 
0.63 
1.05 

0.04 
0.64 
1.07 

0.67 
1.11 
1.81 

2.27 
4.31 
7.67 

P 3 
5.20 
8.06 

12.16 

3.05 
5.78 
8.84 

3.03 
5.19 
7.15 

0.96 
4.76 
9.18 

4.51 
7.15 

10.42 

2.22 
4.99 
9.97 

1.20 
3.08 
7.19 

2.68 
4.16 
5.99 

PI 
25.68 
36.76 
45.36 

29.50 
47.87 
56.26 

37.73 
47.06 
56.70 

83.43 
96.98 

107.64 

29.54 
43.30 
57.08 

27.38 
47.37 
61.10 

25.45 
39.86 
68.62 

75.25 
105.63 
135.37 

M2 P2 
1.45 
3.58 
6.83 

8.22 
13.11 
19.75 

3.35 
4.75 
5.39 

83.11 
99.15 

118.17 

2.17 
3.28 
4.49 

6.23 
12.12 
16.56 

4.20 
6.08 
7.19 

84.00 
101.31 
124.06 

P3 
231.88 
262.65 
285.78 

155.38 
168.32 
183.28 

161.82 
186.51 
225.00 

153.75 
183.19 
230.91 

254.76 
284.24 
307.85 

141.68 
178.26 
197.51 

141.02 
166.44 
197.90 

132.22 
176.02 
254.01 

Table 8: Performance for 5 Bidders, 15 Resources, and 250 Jobs 
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PI R2 
Dl D2 DZ DA Dl D2 DZ DA 

PI 
33.17 
41.81 
51.31 

38.07 
46.83 
52.13 

36.97 
41.55 
46.16 

87.24 
92.49 
97.33 

35.72 
44.15 
50.43 

36.35 
43.52 
58.15 

38.21 
40.06 
44.35 

76.87 
94.05 

128.52 

Ml P2 
11.92 
13.38 
15.62 

19.59 
21.69 
24.31 

27.72 
30.35 
34.74 

78.14 
84.77 
90.13 

11.31 
13.46 
14.87 

21.88 
24.36 
25.70 

23.55 
30.48 
37.81 

76.62 
80.72 
87.52 

PZ 
130.09 
141.37 
156.08 

102.30 
106.46 
110.72 

80.64 
86.36 
91.22 

123.68 
132.40 
151.44 

130.08 
145.29 
166.54 

90.96 
99.25 

106.51 

73.45 
83.77 
98.23 

115.30 
127.02 
144.75 

PI 
89.11 

111.58 
138.91 

94.08 
107.95 
119.17 

69.14 
86.28 

125.06 

358.59 
429.63 
533.44 

73.06 
108.09 
132.64 

83.31 
105.18 
146.66 

75.80 
99.31 

145.51 

352.84 
399.51 
464.91 

M2 P2 
8.31 

10.93 
13.03 

38.53 
41.93 
49.13 

30.44 
33.51 
35.17 

268.50 
296.45 
325.00 

10.83 
11.13 
11.41 

33.87 
39.87 

. 44.33 

28.97 
32.00 
35.26 

290.52 
312.15 
349.71 

PZ 
626.15 
676.69 
741.60 

457.69 
506.28 
548.76 

445.52 
530.29 
600.23 

561.59 
613.13 
702.25 

598.25 
656.41 
696.19 

444.13 
508.51 
599.92 

505.41 
545.69 
647.92 

521.28 
594.63 
645.21 

Table 9: Performance for 5 Bidders, 15 Resources, and 500 Jobs 

m R2 
Dl D2 DZ DA Dl D2 DZ D 4 

PI 
0.00 
2.44 
4.92 

1.36 
4.41 
7.08 

0.74 
2.77 
3.83 

3.58 
5.23 
6.69 

2.25 
3.48 
5.11 

0.00 
3.22 
6.35 

0.58 
2.61 
3.56 

2.04 
3.09 
4.21 

Ml P2 
0.04 
2.14 
4.93 

0.04 
0.89 
1.83 

0.75 
1.40 
1.80 

1.97 
4.47 
6.64 

1.38 
1.57 
1.79 

1.12 
1.89 
2.61 

0.04 
1.51 
3.29 

0.84 
4.49 
7.00 

PZ 
0.57 
4.51 
9.18 

4.20 
6.28 
9.72 

0.00 
2.31 
4.82 

0.27 
4.79 
7.25 

0.97 
3.67 
6.73 

0.55 
4.26 

11.32 

2.28 
4.00 
4.83 

3.40 
4.95 
7.59 

PI 
29.47 
48.19 
61.64 

36.47 
41.80 
49.69 

29.94 
40.40 
51.07 

113.77 
133.94 
159.16 

24.77 
39.83 
45.09 

36.48 
43.20 
50.05 

38.77 
44.75 
50.03 

110.38 
124.44 
139.13 

M2 P2 
3.05 
4.48 
5.94 

12.24 
14.69 
20.96 

4.34 
5.00 
5.43 

108.14 
116.78 
125.34 

2.59 
3.85 
5.06 

11.46 
15.29 
18.36 

4.83 
5.59 
7.30 

104.56 
114.48 
121.98 

PZ 
236.64 
288.11 
365.10 

170.90 
184.78 
193.05 

174.38 
215.65 
246.27 

154.55 
180.07 
197.42 

263.38 
275.98 
290.93 

160.92 
180.86 
200.35 

210.61 
233.21 
252.47 

173.49 
190.44 
213.19 

Table 10: Performance for 10 Bidders, 10 Resources, and 250 Jobs 
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Rl R2 
Dl D2 DZ DA Dl D2 DZ Di 

PI 
26.54 
40.38 
51.41 

41.88 
45.17 
49.89 

42.19 
44.95 
52.04 

74.79 
89.36 
99.24 

36.16 
42.70 
50.18 

40.60 
48.44 
54.73 

39.24 
44.69 
51.98 

78.39 
89.55 

102.36 

Ml P2 
9.50 

13.83 
16.59 

20.49 
22.63 
25.51 

22.37 
26.96 
31.91 

78.39 
86.25 
96.81 

9.85 
12.36 
14.72 

19.54 
21.53 
23.41 

19.79 
24.70 
30.43 

79.50 
86.14 
91.41 

P3 
134.27 
141.89 
160.08 

94.11 
106.24 
117.89 

91.58 
103.09 
124.05 

104.60 
122.18 
132.33 

108.58 
130.37 
142.66 

100.69 
113.44 
127.91 

87.36 
96.95 

113.44 

110.34 
120.86 
146.49 

PI 
89.04 
99.67 

137.21 

89.84 
108.39 
119.63 

97.79 
107.63 
123.12 

357.39 
435.85 
571.76 

75.31 
104.64 
130.95 

92.55 
104.74 
109.54 

77.91 
99.02 

120.39 

322.30 
374.80 
426.19 

M2 P2 
9.44 

11.30 
14.11 

37.31 
40.80 
45.58 

19.70 
22.91 
25.28 

272.45 
296.06 
318.73 

9.58 
11.10 
12.72 

37.42 
40.15 
42.99 

20.98 
22.61 
26.03 

287.08 
307.48 
330.74 

P3 
585.08 
646.80 
681.54 

452.94 
475.50 
487.71 

475.55 
538.01 
611.88 

577.12 
616.40 
662.77 

511.66 
605.76 
633.79 

423.52 
498.45 
595.21 

432.50 
559.03 
655.30 

549.92 
660.95 
739.96 

Table 11: Performance for 10 Bidders, 10 Resources, and 500 Jobs 

Rl R2 
Dl D2 DZ DA Dl D2 DZ DA 

PI 
2.41 
3.19 
4.01 

0.32 
3.16 
5.48 

1.90 
3.89 
7.02 

0.71 
3.14 
5.54 

1.17 
3.46 
5.55 

3.92 
4.48 
5.34 

2.28 
3.17 
4.30 

1.40 
4.08 
8.01 

Ml P2 
0.78 
2.18 
3.26 

1.09 
2.25 
4.20 

1.02 
1.52 
1.77 

4.01 
5.32 
7.42 

0.00 
0.74 
1.48 

1.45 
2.04 
2.71 

0.39 
1.40 
3.16 

1.96 
4.97 
7.23 

P3 
2.28 
4.48 
9.30 

1.97 
3.98 
5.29 

4.10 
5.53 
6.77 

4.06 
6.10 
8.21 

2.30 
6.68 

13.18 

1.61 
3.80 
6.08 

1.56 
3.53 
4.86 

2.36 
5.95 

10.60 

PI 
30.84 
43.18 
48.76 

47.11 
53.08 
62.97 

35.30 
49.38 
62.26 

117.65 
150.51 
167.98 

37.89 
52.60 
79.02 

38.91 
50.53 
64.94 

36.09 
45.88 
55.94 

107.28 
123.93 
147.45 

M2 P2 
2.30 
3.26 
4.60 

12.84 
17.06 
19.42 

3.04 
4.39 
6.54 

99.72 
114.29 
122.67 

2.11 
3.20 
4.06 

13.86 
15.43 
18.90 

0.73 
4.39 
6.53 

96.56 
108.00 
118.45 

P3 
284.50 
306.25 
334.43 

166.90 
177.79 
194.92 

190.19 
231.19 
265.35 

166.21 
194.61 
216.97 

234.42 
280.22 
308.54 

150.25 
173.42 
203.02 

206.45 
219.39 
229.43 

180.24 
192.96 
199.96 

Table 12: Performance for 10 Bidders, 15 Resources, and 250 Jobs 
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Rl R2 
Dl D 2 DZ DA Dl D2 DZ DA 

PI 
31.23 
44.32 
51.94 

37.58 
43.51 
46.00 

41.36 
44.16 
49.57 

86.87 
95.67 

105.23 

43.84 
46.13 
49.24 

38.77 
49.61 
56.18 

34.16 
41.82 
44.86 

86.17 
90.83 
99.47 

Ml P2 
11.79 
13.87 
18.26 

17.74 
20.79 
23.79 

22.87 
27.87 
31.54 

86.11 
88.09 
90.05 

11.43 
14.08 
16.51 

19.33 
22.62 
25.53 

20.61 
25.26 
28.82 

75.99 
86.14 
96.41 

PZ 
116.43 
128.83 
151.81 

110.31 
115.69 
123.84 

93.04 
107.05 
121.36 

124.91 
135.26 
142.59 

122.81 
136.13 
163.90 

96.63 
103.55 
112.85 

95.47 
105.37 
118.39 

122.26 
127.74 
135.14 

PI 
94.96 

108.66 
129.91 

110.61 
119.15 
126.79 

75.01 
93.84 

120.26 

363.93 
430.96 
470.82 

65.21 
114.09 
137.16 

97.15 
115.85 
143.25 

105.53 
115.62 
140.26 

373.71 
430.89 
496.22 

M2 P2 
10.53 
12.14 
14.48 

36.35 
43.41 
54.01 

20.00 
24.50 
26.72 

288.70 
319.44 
357.91 

9.28 
10.67 
12.94 

37.97 
47.00 
55.18 

23.81 
25.09 
27.43 

292.23 
309.57 
331.43 

PZ 
539.84 
572.24 
648.74 

470.87 
510.03 
567.97 

476.65 
568.36 
642.76 

571.70 
674.64 
731.36 

507.26 
592.55 
653.06 

445.24 
476.96 
522.84 

508.99 
575.49 
630.06 

550.10 
614.41 
691.78 

Table 13: Performance for 10 Bidders, 15 Resources, and 500 Jobs 

• In the best case auctions yield a 749% higher objective function value, in the worst-case 
auctions do not improve the value of PAM. 

• The resource availability has no influence on the Performance of auctions in our setting. 
For R1 we have an improvement of 115%, for R2 of 113%. 

Now we turn our interest to the runtime behavior of CA. Table 14 states the absolute numbers 
of instances that were solved to optimality for a certain instance size and runtime bound. 

m-AKww < Is < 5s < 10s < 50s < 100s < 500s < 1000s < 5000s < 10000s 
[5; 10; 250] 231 9 
[5; 10; 500] 186 26 8 15 3 0 1 1 
[5; 15; 250] 221 19 
[5; 15; 500] 149 56 9 9 4 5 4 2 2 

[10; 10; 250] 238 2 
[10; 10; 500] 173 31 11 9 6 7 2 1 
[10; 15; 250] 223 17 
[10; 15; 500] 147 60 9 10 5 5 2 1 1 

Table 14: Runtime Performance 

This table states that, e.g., 231 instances for [5; 10; 250] could be solved within 1 second (s). 
One can observe that each instance was solved to optimality since the sum of each row is 240 
which is the sum of instances for each instance size [|/|; \K\\ |J|]. 
For [-; 250] we observed a very good Performance; the average runtime is below 1 second 
with a maximal computational time of 4.7s. 
The instances [•; •; 500] needed - as one may expect - more time; for the case of [5; 10; 500], 
one instance needed 1100 seconds to be solved, all others were solved within 1000s. For 
[10; 10; 500] one instance was solved in 1300s and all others within 16 minutes. For 15 re­
sources the running times went up. For [10; 15; 500] CPLEX needed for two instances more 
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than 1000s (6600s and 2400s) to solve them; each of the other instances were solved within 
16 minutes. The case [5; 15; 500] resulted in four instances that could not be solved within 
1000s (9700s, 5200s, 3300s, and 1200s). All other instances are solved within at most 16 
minutes. 

PAM solved all instances within 0.01 seconds. Therefore, PAM outperforms CA with respect 
to running time. 

Let us take a look at a possible worst-case running time for calculating Vickrey payments; to 
this end, assume that the running time has to be multiplied by |/| + 1 in order to obtain all 
payments. Then, our worst-case gives 11 • 6600s which is about 20 hours. That is, within one 
day starting at the end of the auction the allocation and all payments can be determined in 
the worst-case assumed. This is still a reasonable time since the runtime is not critical in the 
suggested setting. Therefore, combinatorial auctions have to be preferred to PAM because of 
extreme differences in quality of the achieved allocation. 

Finally, we analyze the resource usage resulting from the two algorithms. The knowledge of 
the resource usage can contribute to long-term capacity planning. 
We consider two average resource usage indices and 

Let 

4 = for 6e{CA,PAM},VkeK, (8) 
jeJ 

denote the capacity of resource k used, then, 

"" 01 

can be interpreted as average improvement of resource usage from CA to PAM, expressed in 
percent. The results for are given in Table 15. 

[5;10;250] [5:10:500] [5;15;250] [5:15:500] [10:10:250] [10:10:500] [10:15:250] [10:15:500] 
min -2.70 -4.48 -3.14 -1.10 -2.98 -2.51 -2.95 -0.56 
avg 2.45 4.09 2.70 4.44 2.29 3.94 2.84 4.63 
max 19.39 17.32 12.77 15.40 13.24 18.95 13.82 16.18 

Table. 15: Results for 

We can State that CA has a better resource usage than PAM for each parameter setting 
[|/|; |ÜT|; | J|] on average since all average values are positive. The overall worst-case is about 
—4.5%. Furthermore, one can observe that Cc'p is on average significantly higher for [•; •; 500] 
than for [•; •; 250]. 

In order to give a Statement of overall average resource usage, let 

<io> 
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that is, the average resource usage for CA over all resources expressed as the sum of the 
fraction of resource usage and capacity limit Ak for each k e K. Table 16 states the results 
observed for 

[5;10;250] [5;10;500] [5;15;250] [5; 15,500] [10; 10;250] 0
 

5?
 1
 

[10,15,250] [10; 15;500] 
min 90.27 92.70 91.02 95.42 88.97 94.20 91.57 94.49 
avg 96.07 97.79 95.58 97.43 96.05 97.85 95.62 97.37 
max 98.95 99.50 98.55 99.00 98.76 99.65 98.39 98.89 

Table 16: Results for 

In the worst-case, the value for was 88.97%; in all other cases, was above 90%. 
Furthermore, one can observe a similar behavior as that of Cc'P." f°r instances [•; •; 500] we 
yield a significantly higher resource usage than for the cases [•; -;250]. On average CA had a 
resource usage of 96.7%. 

5 Conclusions 

In this paper we considered an allocation problem arising in practice. Two allocation mech-
anisms were analyzed experimentally. Opposite to PAM combinatorial auctions lead to an 
efficient allocation. We observed that auctions almost always outperform PAM respecting 
objective function value and resource usage. On the other hand, PAM requires less com-
putational time. However, we showed that running times are not critical for the instances 
generated. In fact, we can determine the allocation and all payments within one day in the 
worst-case. Note, that PAM provides no payments for the resources awarded. 

There are several shortcomings applying a combinatorial second-price auction. First, the net 
profit involved with each job has to be explicitly estimated. Second, for larger instances spe-
cialized algorithms for winner determination have to be employed. Furthermore - although 
endowed with nice theoretical properties - the acceptance among the participants may be 
affected by the complexity and lack of transparency of winner determination and the pricing 
scheme. Finally, we recommend to ensure that the private valuations are not made available to 
the headquarters and to the other profit centers. Therefore, a trustworthy third party should 
be employed as auctioneer. 

Acknowledgement: We like to thank Frank Stege and his team for making us aware of this 
topic, Andreas Drexl and Thomas Andreßen for helpful comments, and Ingo Strunk, who took 
over parts of coding. 
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