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Abstract

In this paper we consider the problem of allocating scarce resources in a divisional-
ized company; the resources are made available by the headquarters and requested by
profit centers (PCs). This problem was observed at a large german insurance company
(LAGIC). Currently, the resources are allocated for free; for the future, LAGIC proposes
to use an iterative allocation mechanism to solve the allocation problem. Alternatively,
we present a combinatorial auction-based allocation mechanism. Within experimental
tests the performance of these two mechanisms is analyzed. To this end, instances are
generated motivated by the problem size and structure occurring at LAGIC.

Keywords: Resource allocation, in—house services, combinatorial auctions, efficient allocation,
winner determination, multidimensional binary knapsack problem, instance generator

1 Introduction

In this paper we analyze an allocation problem arising at LAGIC. LAGIC is a divisionalized
company with one service center providing | K| types of resources that are demanded by |I|
divisions (or customers). Each division manager is responsible for the profit being made in
his division, i.e., we have profit centers. Every profit center ¢ has a set of jobs (or tasks) J;,
indexed j. A job causes costs amounting to 7;; > 0, requires c;;x > 0 capacity units of
resource kK € K, and creates revenue r;; > 0. The headquarters are not aware of the net
profit (r;; — ;) for each job (private information).

We assume that the more resources a profit center gets the more profit it can achieve. In
addition, the total demand for the resources 3=, 3", c; jx exceeds supply A of resource & for
at least one £k, i.e., at least one service is scarce. This results in an allocation problem: how
should the resources be distributed among the self-interested profit centers in order to achieve
a firm-wide profit-maximizing job portfolio? For this we need an efficient allocation provided
by an allocation mechanism which maximizes total net profit. Such a mechanism is applied to
assign arbitrary items to entities. It consists of an allocation rule and incoming signals from
the participants who demand the resources. The allocation rule determines, depending on the
signals, who'is awarded the resources, see, e.g., [18]. Signals, in this particular context, are
parameters that indicate the net profit involved using the resources in the profit centers.

In [12] it is shown how to allocate resources when resource productivity differs between divi-
sions; the productivity is assumed to be private information. The authors in [13] deal with
the issue why auctions are used to allocate resources in certain environments and which type
of auction is most efficient. For more literature about mechanisms for allocating resources in
a divisionalized firm we refer to, e.g., [2], [14], and [31]. A nice literature survey on auction
theory can be found in [17].

We analyze two different allocation mechanisms. The first, an iterative procedure proposed
by LAGIC, is a mechanism based on priority rules. Alternatively, we present a combinatorial
auction-based allocation mechanism. Within experimental studies these two algorithms are
compared with respect to achieved overall net profit, computational time, and resource usage.
Due to lack of real-world data, artificial instances for simulating the problem arising at LAGIC
are generated. To get more experimental evidence, alternative problem sizes and structures

are considered.



2 Priority Rule-based Allocation Mechanism

2.1 Basic ldea

The idea of this mechanism is to first serve those customers that are most “important” or
“big", measured in terms of the cumulated costs
Li= ) 7%y

JeJ;
for getting done all jobs within their profit center. The priority rule-based allocation mechanism
(PAM) picks the participant ¢ with the highest I'; who is first allowed to contribute to the
overall job portfolio. He chooses the job j € J; he prioritizes highest and is assigned the
resources required to execute this job. Hence, the mechanism selects among the biggest
customers the best jobs first and adds them to the job portfolio. Then I'; is reduced by the
costs which will be necessary to realize the scheduled job, ;;, and the capacities Ay are
reduced by the resource usage of the job, ¢; jx. Then, in the next iteration, PAM selects again
the customer with the highest I'; and so on. The implementation details are presented below.

2.2 . Implementation Details

In this section we first provide some assumptions about the behavior of the participants in
order to automate PAM. Second, we present an algorithm that realizes these assumptions.

As already mentioned, it is assumed that each participant ¢ knows his job costs v, ;. Fur-
thermore we assume that he is aware of revenues r;;, V5 € J;, which occur if the required
resources are assigned to him; obviously, he makes a profit with a job if r;; ~;; > 0. The
revenues are presumed to be private information.

If at any stage of the process customer ¢ has the highest cumulated costs, i.e.,
I = max {Ta},

he tries to get the required amount of resources for a single job j*; we assume that job j*
maximizes his additional profit, that is,

5 = {3 1 res = = max e = )}
with ties broken arbitrarily. [f this job cannot be realized because there are not enough re-
sources he tries to realize the second best job and so on.
Notice, that the customer does not act strategically, e.g., that he does not try to execute a
job with low costs in order not to reduce his cumulated costs too much. This is a reasonable
assumption since he cannot observe the behavior of the other participants.

Now we can define an algorithm since the actions of a participant are sufficiently determined.
As a consequence, every participant can authorize a software agent, i.e., a piece of software

that acts on his behalf.

The algorithm can be stated as given in Table 1.
The number of customers is reduced if no job of the customer with the currently highest
cumulative costs can be scheduled. The procedure stops if there are no participants left and,

thus, no schedulable job.



Algorithm 1 (PAM)

Input: I, Ji, vij, 7ij. K, Ag
Output: ZFPAM, L,

A, + Ap;  //set residual capacities
Ti= Y v, //set cumulative costs
Jjedi

I; « Ty, //set residual cumulative costs

J! « J;; //set remaining jobs

I' — I; //set active participants

j*=0; //job with highest priority

L =0; //initial solution empty

zZFPAM _ ¢, //current objective function value

do{

= {z |T; = rzla.x{I‘h}} //choose bidder with highest cumulative cost

Jr=R7 i =Yg = max (Tis p — fy,u,h)}; //choose job with highest priority

if (Ax > cio jo 1 Yk € K){* //if job schedulable
L=LU{j*};, //add job to solution
ZFPAM = zpPAM Ti j» — Vi jo; //update objective function
Ji = J]\{5*}; //update remaining jobs
Ly =T — v+, //update cumulative cost

Ay = Ay — ¢ j» Yk € K;  //update resource availability
}
else { //job not schedulable
J!=J/\{j*}, //update remaining jobs
if (J]=0) //no job remains
I' «+ I'\ {i*}, //reduce participants

if (I'=0){ //no more participants

return IL, ZFPAM. //return solution and objective function value
stop;

Table 1: Algorithm PAM



3 Combinatorial Auctions as Mechanism

3.1 Basic Ildea

A combinatorial auction is an auction where many items are sold simultaneously. Bidders are
allowed to bid on arbitrary subsets of items. This is reasonable if there exist from the side of the
participants nonadditive preferences for subsets of items. For example, we have superadditive
preferences (complementarities) if a bundle of goods has a higher valuation than the sum of
the valuations for the individual items. Complementarities can stem from economies of scale or
economies of scope, for example. Whenever they occur it is not reasonable to employ multiple
sequential single-item auctions, for instance, because then the bidders face a forecasting
problem; they have to guess at an early stage of the auctions which items they will get later
on. As a consequence, a participant has to estimate the private valuations of all other bidders.
The forecasting problem can be illustrated using the data given in Table 2 with two items and

two bidders.

[ {Ar {B} {4,B}
bidder 1| 10 10 25
bidder2 | 14 7 22

Table 2: Valuations of Two Bidders

The table says that bidder 1 values item {A} at 10 currency units (cu), {B} at 10 cu and
receiving the bundle at 25 cu, for instance. Notice, that both bidders have superadditive pref-
erences since the bundle is valued higher than the sum of the valuations for the single items.
Assume that {A} is auctioned off before {B}. To select the bidding price for {A} bidder 1
has to forecast at what prize he could get {B} in the later auction. If, for example, he can
get item {A} at 15 cu the bids for { B} must not exceed 10 cu because, otherwise, he will be
left with a loss. :

Within a combinatorial auction bidder 1 can place bids on three subsets, on {A}, on {B},
and on {A, B} with three bidding prices. Thus, combinatorial auctions enable the bidders to
express their complementarities explicitly and the forecasting problem disappears.

Combinatorial auctions have been applied successfully in various ways. In [24] an application
to airport time slot allocation is shown, where the bidders have complementarities about land-
ing and starting slots for aircrafts. The authors in [4], [8], and [22] use the trucking services
environment. Combinatorial auctions have also been considered for scheduling machines, cp.
[7], [19], [30], disposing spectrum licenses ([21]), and purchasing airtime for advertising ([15]),
to mention only a few.

The general winner determination problem is tackled in [1], [9], [26], and [27], for example. In
[25] and [28] some special cases are presented that are solvable in polynomial time. A survey
on combinatorial auctions is given in [6].

Next, we show how combinatorial auctions can be applied to our allocation problem.

3.2 Application

In our application the particular resources can be assumed to be the items that are auctioned
off by the headquarters of LAGIC. Furthermore, each item comes along in multiple identical

4



copies (or units); therefore, we have the situation of a multi-item multi-unit allocation prob-
lem.

Every job requires a specific amount of resources in order to be executed. Note, that the
jobs of a profit center are independent since it is possible for every PC to execute all jobs
or none or anything in between. Therefore, the jobs can be interpreted to be the bidders.
Subsequently, it is not decisive which PC provides which job. (This situation can change if the
PCs are budget-restricted or if the bidding price is not the only decision criterion for assigning
resources, cp. [3] and [18], for example.)

Furthermore, we have superadditive preferences whenever a job needs more than one unit of
an arbitrary resource. To clarify that consider the example in Table 3.

| resource A resource B profit

job 1 5 units 2 units 25 cu
job1l| 4 units 2 units 0cu
job1l | 5 units 1 units 0 cu

Table 3: Valuations of One Bidder

The first row states that job 1 needs 5 units of resource 4 and 2 of resource-type B to be re-
alized; the incurring profit is 25. The next two rows imply that if too few units of resources are
assigned to job 1 it cannot be executed and the profit is 0. (This situation changes if resources
can be substituted by other resources. For example, the job could also be executed if it would
get 4 units of A and 4 units of B. As a consequence, every job would place more than one bid.)

Each job is assumed to submit a bid that includes the amount of resources c;; that have to
be assigned to it in order to be processed and a bidding price b;. Without loss of generality
we assume that the bidding price is at most its incurring profit, i.e.,

bj_<_pj=rj—'yj, V_)EJ _ (1)

Since the management's goal is to achieve an efficient allocation the social welfare has to be
maximized. Presume for the moment that all bids have been submitted truthfully, i.e., b; = p;.
Then, the efficient allocation can be determined solving a combinatorial optimization problem.
The latter is frequently called the “Winner Determination Problem” and is formulated in the
following.

Let the variable z; equal 1, if the j—th bid is accepted and 0, otherwise. The objective is to
maximize the social welfare. In our case, the social welfare can be stated as follows:

2. (ri =) = = 2_pi (2)
jeJ jeJ

which adds up the profits p; of the accepted jobs.

The winner determination problem can be stated as follows:

max Y b;z; (3)
jeJ

st. Y. cipz; < Ag Vke K (4)
jeJ
z; € {0,1} VielJ (5)



The objective function maximizes the sum of the bidding prices for the accepted bids. In
the following, this value is denoted by ZFCA Restrictions (4) require that the claim of the
accepted jobs on the resources does not exceed the respectively available capacity. (5) states
the domain of the decision variables.

This problem is the well-known multidimensional binary knapsack—problem which is proven to
be A"P-hard in the general case, cp. [16].
Various algorithms have been proposed in the literature. We refer to [10] and [23] and the

references therein.

Recall that each bidder is assumed to bid truthfully. Note, that the efficient allocation is likely
not to be achieved if the bidders do not tell the truth about their valuations; but the bidders
can be incited to bid truthfully using the Vickrey—Clarke-Groves pricing scheme (cp. [29], [5],
and [11]). Similar to the Vickrey payments it is also a second~price scheme. The payments are
determined as follows: Consider that (3)—(5) was solved and let W denote the set of winners,
that is, the profit centers which were assigned at least one unit of any resource. Furthermore,
let B, state the sum of the bidding prices of the accepted bids of winner w, i.e.,

Bo= 3 bjzj, Vw e W.

J€Jw

Then, for every w € W, (3)—(5) is solved again — now without all jobs belonging to PC w,

obtaining ZF\gA. The difference ZFCA — ZF\EA can be interpreted to be the contribution
of winner w to the auction outcome. Following the idea of Vickrey payments, w has to pay

Po=fu— (2FA - 2F).

This implies that he has to pay his bidding price reduced by his contribution to the auction.
This pricing rule has the properties to be incentive compatible and individually rational and
it is the profit maximizing mechanism of all mechanisms that yield an efficient allocation, cp.
[18]. A drawback is that the optimization problem has to be solved |W|+ 1~times in order to
calculate all payments. Therefore it is essential that the winner determination problem can be
solved in reasonable time. In Section 4 we show that this is the case for the relevant instance
sizes for LAGIC using a standard software package.

3.3 Special Cases

Next, we state some special cases such that the winner determination problem can be solved
efficiently. In particular, special structures of the claims on the capacities are analyzed.

Theorem 1 The special case { Ik | cjp = 2 ¢ VI EJT } can be solved in polynomial
k€K

time.

Proof. In this case every job requests units of only a particular resource. Therefore, the
jobs can be partitioned by the resource they request. Then, the units of a resource can be
auctioned off simultaneously and independently from other resources. Hence, this is the special
case of combinatorial auctions with identical objects where the winner determination problem
was proven to be polynomially solvable, cp., e.g., [28]. ]
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Theorem 2 The special case { Ygr=1VjelJ } can be solved in polynomial time.
kK

Proof.  In this case every job has only a claim on one unit of a particular resource. Observe,
that this is a special case of Theorem 1. O

Theorem 3 The special case {3 K| Xcjw>Aw and 3 cijx < Ap, Vk € K\{k’}} can
j€T i€T

be solved in pseudo—-polynomial time.

Proof.  In this case only one resource is scarce. Therefore, the winner determination problem
reduces to a binary knapsack problem that was shown to be solvable in pseudo—polynomial
time, cp., e.g., [20]. ]

Theorem 4 The special case {cj; =&, Vk € K, Vj € J} can be solved in polynomial time.

Proof.  In this case every. job requires the same number of units for each resource, i.e., we
have standardized jobs. Obviously, the winner determination problem can be reduced to the
case of a binary knapsack problem only considering the most scarce resource &', where
A . A
k'={k|——=mln—_—h-}

k
Ck heK ¢y,

with ties broken arbitrarily. Observe that this is a polynomially solvable special case of the
binary knapsack problem; an optimal solution can be derived by accepting the '_%H highest
bids. Obviously, these jobs can be determined in polynomial time.

4 Experimental Comparison

In order to test the performance of the two presented allocation mechanisms experimentally
we implemented PAM in GNU C. The winner determination problem is solved to optimality

using the standard software package CPLEX 7.0.
The tests have been performed on an AMD Athlon with a 1.8 GHz processor and 768 MB of

RAM running a Linux operating system.

4.1 Test—bed

Since we are not aware of real-world data sets but only know the basic data for LAGIC we
develop an instance generator so as to reflect the allocation problem at LAGIC. lts allocation
problem has about 5 customers, 10 resources, and 500 jobs. In order to yield more experimental
evidence we derive several parameters. In particular, Table 4 shows which parameters may have
an impact on the performance of the mechanisms.

Without loss of generality the value of all parameters are chosen to be integer-valued.

Parameter I# denotes the number of participants of the allocation procedure. We choose
I1 =5 and I2 = 10. Furthermore, the number of jobs is J1 = 250 or J2 = 500. The number
of resources is chosen to be K1 =10 or K2 = 15.



Notation | Meaning

I# number of customers, with # € {1,2}
J# number of jobs, with # € {1, 2}
K# number of resources, with # € {1,2}
R# magnitudes of resources, with # € {1,2}
M# | magnitudes of jobs, with # € {1, 2}

C costs of jobs
P# | revenues, with # € {1,2,3}
D# distribution of jobs, with # € {1,2, 3,4}

Table 4; Control Parameters for Instance Generation

The resource availability R# is also selected in two ways. For R1, each capacity constraint is
uniformly drawn from the interval {9000; 11000]. R2 chooses each availability with probability
of 3 from intervals [6000; 8000], [8000; 10000], and [10000; 12000].

The jobs are classified into three groups: large, medium, and small. For each large job the
claim on the capacity was drawn uniformly from [1%;5%) - Ak, for each medium job from
[0.5%; 1%] + Ak, and for each small job from [0.01%;0.5%)] - A¢. Thus, we get, e.g., for Rl
the interval of [90; 450} units for large jobs.

For M1, 2% (18%,80%) of the jobs are large (medium, small); for M2, 10% (20%, 70%) are
large (medium, small). For example, choosing {J1; M1} yields 5 large, 45 medium sized, and
200 small jobs.

The costs for a job are assumed to be dependent on the sum of it's claim on capacities, which
corresponds to parameter C. For each job a number is uniformly drawn from [500; 750] and
multiplied by Y- c;x. Hence, we do not check the influence of C

The profits are determined in three different ways. For each job size, a value is drawn uniformly
from a specific interval. Table 5 summarizes the intervals for alternative job sizes and settings.

We get the revenue by adding up the profit and the costs.

l large medium small

P1 | [25000;50000] [25000;50000] [25000; 50000]
P2 | [15000;20000] ([17500;22500] [20000; 25000]
P3 | [20000;25000] [17500;22500] [15000;20000]

Table 5: Intervals for Profits

After having characterized and generated the jobs the instance generator “builds” the cus-
tomers by distributing the jobs to them. We select four kinds of distributions.

D1 and D3 imply that the size of all customers is similar in terms of I';. For D1, every
participant approximately gets the same number of large, medium and small jobs.

For D3, py = —Iiji is calculated. Then, the largest jobs are assigned to the first customer
until py < 3, 71,;- Then, the rest of the large, medium, and small jobs are assigned uniformly
to the other participants. Thus, we yield customers of equal size but with different “job—
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structure” .

D2 and D4 imply that the customers differ with respect to I';. To be more precise, we assume
that we have for 11 (12) one (two) big, two (four) middle, and two (four) small customers
in terms of I';. Again, these two parameter settings differ in the “job—structure”; for D2 and
I1, 40% of the large, the medium, and the small jobs are assigned to the first participant,
20% each to the second and third, and 10% each to the fourth and fifth. Consequently, we
have one big, two medium-sized, and two small customers with the same job structure. For
12 = 10, the number of large, medium, and small customers are doubled.

D4 differs from D2 respecting the “job-structure”; for this, po = 33; 7; is calculated. For /1,
customer 1 gets the largest jobs until 0.4 - p; < ¥°; 71,5 Furthermore, two and three get the
next largest jobs until 0.2 - po < ¥°; 725 and 0.2 - pp < 35, 73,5, respectively. Then, the rest is
assigned equally to the fourth and fifth participant.

We generated 5 instances for each possible parameter combination. Hence, in total we have
2-2.2-2.2-3-4-5=1920

instances.

4.2 Results

In this section we study the experimental behavior of the two proposed allocation mechanisms.
In order to analyze the impact of the parameter settings given in the instance generator we
solved all instances for PAM and the combinatorial auction (CA).

For each setting we are interested in the following values:
e objective function
e runtime

® Jdverage resource usage

First, we give experimental evidence of how the objective function values for the two mecha-
nisms and the chosen parameter settings behave.

For the objective function value we compared the values ZFPAM 4nq ZFCA,

The value ZF A is a reasonable choice since a second—price auction is considered. Therefore,
the participants are incited to bid truthfully. Consequently, (3) gives the social welfare of the
allocation. Note, that for our considerations we do not need to calculate the second prices
since these only state how the wealth derived in (3) is distributed among the PCs and the

vheadquarters.

Notice, that PAM is a heuristic for the exact solution of (3)~(5) and, thus, yields a lower
bound to CA. Hence, the following expression holds:

ZFCA > 7 PAM (6)
As performance criterion we use the following formula:
zFCA
P | =22 _ .
&Y = (ZFPAM 1) 100% > 0 (7)

9



Rl R2
D1 D2 D3 D4 D1 D2 D3 D4

0.56 0.27 1.30 1.06 0.00 1.97 1.40 132
P1 2.93 2.38 2.16 331 1.38 3.70 2.79 3.77
7.19 3.93 2.92 8.38 3.13 5.90 3.85 6.66
0.00 0.09 0.04 1.16 0.01 0.01 0.05 1.20
M1 | P2 1.09 0.99 141 3.95 091 1.04 111 2.79
2.04 2.09 2.85 7.21 2.10 1.98 1.72 4.63
0.88 1.24 3.01 0.00 3.05 0.00 0.00 0.88
P3 3.08 4,04 4.45 0.72 5.98 4.98 1.01 3.28
5.14 7.99 6.38 2.00 9.52 8.11 2.28 5.31

27.09 36.11 25.07 8097 3353 2946 2667 7127
P1 40.17 4522 3405 10115 36.40 3507 3710 96.16
47.02 52,66 47.60 121.90 | 40.19 3763 4413 114.78
2.73 9.45 499  88.33 1.82 6.59 464 8091
M2 | P2 3.23 1298 6.76 96.06 2.90 9.14 6.52 91.85
408 18.11 7.67 108.23 402 11.96 9.18 112.88
247.44 129.01 14526 144.63 || 221.24 145.64 147.18 12981
P3 1} 270.70 164.33 16295 174.69 || 24521 163.34 166.05 155.85
: 303.85 .193.72. 178.42 239.37 || 265.75 183.82 186.76 184.23

Table 6: Performance for 5 Bidders, 10 Resources, and 250 Jobs

This can be interpreted as the average improvement of CA over PAM in percent. Observe
that the values of expression (7) are always larger or equal to zero. The results are stated in
Tables 6~13; each table is based on a combination of [|I|;|K|;|J|] and the three entries for
each parameter setting denote the minimal, average, and maximal value for £€17 |

The following observations can be made:

e Auctions yield a significant higher result if we have a tendency towards large jobs. For
M?2 one can observe an average improvement of 192% and for M1 a value of 36% on

average.

o Auctions tend to work better the more jobs we have. The improvement with 250 jobs
is on average 52%, in the 500 jobs case 176%.

e With respect to the distribution of jobs (D) we can state that the D4 case yields an
average improvement of 170% which is much more than in the other cases (D1: 105%,

D3: 90%, D2: 88%).

o Auctions work better in a “normal” correlation of job size with job revenues, that is,
if big jobs create high revenues (P3); for this an average improvement of 225% can
be observed. If the size of a job is independent from its revenue (P1) the average
improvement is 76%. In the case of a negative correlation (P2) we yield a value of 41%.

e The number of resources (K) has only little influence on the performance of auctions.
On average, auctions tend to perform better with a growing number of resources. With
10 different resources (K1) the improvement was 113%, with 15 resources (K2) 116%.

e The number of customers (I) has no significant influence on the performance of auctions
in relation to PAM. The 5 customers case (/1) yielded 112% improvement, the 10
customers case (12) 117%.

10



Rl R2

D1 D2 D3 D4 D1 D2 D3 D4

26.42 3296 33.77 75.49 2898 3895 3193 86.59

Pl | 3699 4388 3812 8601 3653 4352 39.60 89.90
50.08 56.53 4191 9467 | 43.37 4856 45.18 93.54

10.16 1758 26.63 78.17 1150 1959 2679 81.16

M1 | P2 1328 21.75 3039 85.50 13.94 2230 30.18 86.73
15.82 2348 3351 94.03 1751 2422 3320 92.08

122.45 85.65 75.55 113.25{ 123.40 86.70 78.12 104.41

P3 || 13537 102.18 85.20 12221 || 138.42 9553 81.72 124.98
159.42 120.46 89.57 132.10 |} 152.13 11257 88.22 131.51

8242 7714 80.37 37258 88.97 85.01 84.68 380.75

P1 93.77 101.02 102.83 41753 || 101.93 103.05 96.61 450.14
101.70 133.05 126.22 48323 J| 117.80 111.96 108.86 497.60

8.45 38.44 33.70 293.72 1053 33.81 2659 270.76

M2 | P2 10.44 40.15 3554 308.86 12.01 4092 30.18 310.14
1273 4269 3863 321.98 1461 45.81 33.99 358.46

567.87 451,18 515.81 558.11 [[ 578.09 461.08 461.95 439.45

P3 || 64121 477.79 54805 594.64 || 606.80 511.73 523.88 604.53
712.85 521.72 572.80 630.40 || 653.57 599.18 578.94 749.18

Table 7: Performance for 5 Bidders, 10 Resources, and 500 Jobs

Rl R2

D1 D2 D3 D4 D1 D2 D3 D4

1.62 1.35 0.55 1.15 1.88 0.76 1.06 0.27

P1 2.87 3.48 3.19 3.11 3.07 1.99 2.84 2.49
3.45 6.84 5.70 5.49 4.86 3.28 4.64 3.38

0.03 0.62 0.39 1.92 0.00 0.04 0.67 227

M1 | P2 0.29 1.67 1.19 2.90 0.63 0.64 111 431
0.41 3.04 1.44 3.56 1.05 1.07 1.81 7.67

5.20 3.05 3.03 0.96 4,51 222 1.20 2.68

P3 8.06 5.78 5.19 4.76 7.15 4.99 3.08 4.16
12.16 8.84 7.15 9.18 10.42 9.97 7.19 5.99

25.68 2950 3773 8343 [ 29.54 2738 2545 7525

P1 36.76 47.87 47.06 96.98 | 43.30 4737 39.86 105.63
4536 5626 56.70 107.64 | 57.08 61.10 68.62 135.37

1.45 8.22 335 83.11 217 6.23 420 84.00

M2 | P2 358 13.11 475 99.15 328 1212 6.08 101.31
6.83 19.75 539 118.17 449 16.56 7.19 124.06

231.88 155.38 161.82 153.75 || 254.76 141.68 141.02 132.22

P3 || 262.65 168.32 186.51 183.19 || 284.24 178.26 166.44 176.02
285.78 183.28 225.00 230.91 [ 307.85 19751 197.90 254.01

Table 8: Performance for 5 Bidders, 15 Resources, and 250 Jobs
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Rl R2

D1 D2 D3 D4 D1 D2 D3 D4
33.17 38.07 36.97 87.24 35.72 36.35 38.21 76.87
Pl 41.81 46.83 41.55 92.49 4415 43.52 40.06 94.05
51.31 52.13 46.16 97.33 50.43 58.15 4435 128.52
11.92 19,59 27.72 78.14 11.31 21.88 23.55 76.62
M1 | P2 13.38  21.69 30.35 84.77 13.46 24.36 30.48 80.72
15.62 2431 34.74 90.13 14.87 25.70 37.81 87.52
130.09 102.30 80.64 123.68 || 130.08 90.96 73.45 115.30
P3 || 141.37 106.46 86.36 132.40 || 145.29 99.25 83.77 127.02
156.08 110.72 01.22 151.44 || 166.54 106.51 08.23 14475
89.11 94.08 69.14 358.59 73.06 83.31 75.80 352.84
Pl | 111.58 107.95 86.28 429.63 jj 108.09 105.18 99.31 399.51
138.901 1190.17 125.06 533.44 || 132.64 146.66 145.51 464.91
8.31 38.53 30.44 268.50 10.83 33.87 2897 290.52
M2 | P2 10.93 41.93 33,51 296.45 11.13 39.87 32.00 312.15
’ 13.03 49.13 35.17 325.00 j| 11.41 . 44.33 3526 349.71
626.15 457.69 445.52 561.59 || 598.25 444.13 505.41 521.28
P3 || 676.69 506.28 530.29 613.13 || 656.41 508.51 545.69 594.63
741.60 548.76 600.23 702.25 || 696.19 599.92 647.92 645.21

Table 9: Performance for 5 Bidders, 15 Resources, and 500 Jobs
R1 R2

D1 D2 D3 D4 D1 D2 D3 D4
0.00 1.36 0.74 3.58 2.25 0.00 0.58 2.04
Pl 2.44 441 2.77 5.23 3.48 3.22 2.61 3.09
4.92 7.08 3.83 6.69 5.11 6.35 3.56 4.21
0.04 0.04 0.75 1.97 1.38 1.12 0.04 0.84
M1 | P2 2.14 0.89 1.40 4.47 1.57 1.89 1.51 4.49
493 1.83 1.80 6.64 1.79 2.61 3.29 7.00
0.57 4,20 0.00 0.27 0.97 0.55 2.28 3.40
P3 451 6.28 2.31 4.79 3.67 4.26 4.00 4.95
9.18 9.72 4.82 7.25 6.73 11.32 4.83 7.59
20.47 36.47 29.94 113.77 2477 36.48 38.77 110.38
P1 48.19 41.80 40.40 133.94 39.83 43.20 4475 12444
61.64 49.69 51.07 159.16 45.09 50.05 50.03 139.13
3.05 12,24 4,34 108.14 2.59 11.46 4.83 104.56
M2 | P2 4.48 14.69 5.00 116.78 3.85 15.29 559 114.48
5.94 20.96 5.43 125.34 5.06 18.36 7.30 121.98
236.64 170.90 174.38 154,55 || 263.38 160.92 210.61 173.49
P3 || 288.11 184.78 215.65 180.07 || 275.98 180.86 233.21 190.44
365.10 193.05 246.27 197.42 |[ 290.93 200.35 252.47 213.19

Table 10: Performance for 10 Bidders, 10 Resources, and 250 Jobs
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R1 R2

Dl D2 D3 D4 D1 D2 D3 D4

26,54 41.88 4219 7479 36.16 4060 39.24 78.39

P11l 4038 4517 4495 89.36| 4270 4844 4469 8955
51.41 4989 52.04 99.24 50.18 5473 51.98 102.36

9,50 2049 2237 78.39 985 1954 19.79 79.50

M1 | P2 13.83 2263 2696 86.25 1236 2153 2470 86.14
1659 2551 3191 96.81 1472 2341 3043 9141

13427 9411 9158 104.60 || 108.58 100.69 87.36 110.34

P3 || 141.89 106.24 103.09 12218 || 130.37 113.44 96.95 120.86
160.08 117.89 124.05 13233 || 142.66 127.91 113.44 146.49

80.04 89.84 9779 357.39 75.31 9255 7791 32230

Pl 99.67 108.39 107.63 435.85 || 104.64 104.74 99.02 374.80
137.21 119.63 123.12 571.76 || 130.95 109.54 120.39 426.19

9.44 3731 1970 27245 958 3742 2098 287.08

M2 ) P2 11.30 4080 2291 296.06 11.10 4015 2261 307.48
1411 4558 25.28 31873 1272 4299  26.03 330.74

585.08 452,94 47555 577.12 |[ 511.66 423.52 432.50 549.92

P3 || 646.80 47550 538.01 616.40 || 605.76 498.45 559.03 660.95
681.54 487.71 611.88 662.77 || 633.79 59521 655.30 739.96

Table 11: Performance for 10 Bidders, 10 Resources, and 500 Jobs

R1 R2

D1 D2 D3 DA D1 D2 D3 D4

241 032 1.90 0.71 1.17 3.92 2.28 1.40

P1 319 3.16 3.89 3.14 3.46 4.48 3.17 408
4,01 5.48 7.02 5.54 5.55 5.34 4.30 8.01

- 0.78 1.09 1.02 4.01 0.00 1.45 0.39 1.96

M1 | P2 218 225 1.52 5.32 0.74 204 140 497
326 4.20 1.77 7.42 1.48 2.71 3.16 7.23

2.28 1.97 410  4.06 2.30 1.61 1.56 2.36

P3 448  3.98 5.53 6.10 6.68 3.80 3.53 5.95
930 529 677 821l 1318 608 486 1060

30.84 47.11 3530 117.65 ]| 37.89 3891 36.09 107.28

P1ll 43.18 53.08 49.38 15051 || 52.60 5053 45.88 123.93
48.76 6297 6226 16798 | 79.02 64.94 5594 14745

2.30 12.84 3.04 99.72 2.11 13.86 0.73  96.56

M2 | P2 326 17.06 439 11429 320 1543 439 108.00
460 19.42 6.54 122.67 406 18.90 6.53 118.45

584.50 166.00 100.19 166.21 || 234.42 15025 20645 180.24

P3|l 306.25 17779 23119 19461 || 280.22 173.42 219.39 192.96
334.43 104.92 265.35 216.97 || 308.54 203.02 229.43 199.96

13
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R1 R2
D1 D2 D3 D4 D1 D2 D3 D4

31.23 3758 4136 86.87 ) 43.84 38.77 3416 86.17
P1 4432 4351 4416 9567 || 4613 49.61 4182 90.83
5194 46.00 4957 10523 | 4924 56.18 4486 99.47
1179 1774 2287 86.11 1143 1933 2061 75.99
M1 | P2 13.87 2079 2787 88.09 | 14.08 2262 2526 86.14
18.26 23.79 3154 90.05]) 1651 2553 28.82 96.41
116.43 11031 93.04 12491 ] 12281 96.63 9547 12226
P3 (| 128.83 115.69 107.05 13526 || 136.13 103.55 105.37 127.74
151.81 123.84 121.36 14259 || 163.90 11285 11839 135.14

94,96 11061 75.01 363.93 || 6521 97.15 105.53 373.71
P1 | 108.66 119.15 93.84 430.96 || 11409 11585 115.62 430.89
129.91 126.79 12026 470.82 || 137.16 143.25 14026 496.22
10.53 3635 20.00 288.70 9.28 3797 2381 292.23
M2 P2 1214 4341 2450 31944 | 1067 4700 2509 309.57
1448 5401 26.72 35791 ) 1294 5518 2743 331.43
539.84 470.87 476.65 571.70 || 507.26. 445.24 508.99 550.10
P3 || 572.24 510.03 568.36 674.64 }| 592.55 476.96 575.49 614.41
648.74 567.97 642.76 731.36 || 653.06 522.84 630.06 691.78

Table 13: Performance for 10 Bidders, 15 Resources, and 500 Jobs
e In the best case auctions yield a 749% higher objective function value, in the worst—case
auctions do not improve the value of PAM.

e The resource availability has no influence on the performance of auctions in our setting.
For R1 we have an improvement of 115%, for R2 of 113%.

Now we turn our interest to the runtime behavior of CA. Table 14 states the absolute numbers
of instances that were solved to optimality for a certain instance size and runtime bound.

(IGIKIJ)] ] <1s <5s <10s <50s <100s <500s <1000s < 5000s < 10000s

[5;10;250] | 231 9
[5;10;500] | 186 26 8 15 3 0 1 1

[5;15;250] | 221 19

(5:15;500] | 149 56 9 9 4 5 4 2 2
[10;10;250] | 238 2

[10;10;500) | 173 31 11 9 6 7 2 1
[10;15;250] | 223 17 .

[10;15;500] | 147 60 9 10 5 5 2 1 1

Table 14: Ruhtime Performance

This table states that, e.g., 231 instances for [5; 10; 250] could be solved within 1 second (s).
One can observe that each instance was solved to optimality since the sum of each row is 240
which is the sum of instances for each instance size [|I[; |K]; |J]].

For [;-;250] we observed a very good performance; the average runtime is below 1 second
with a maximal computational time of 4.7s.

The instances [-; -; 500] needed — as one may expect — more time; for the case of [5; 10; 500],
one instance needed 1100 seconds to be solved, all others were solved within 1000s. For
[10; 10, 500] one instance was solved in 1300s and all others within 16 minutes. For 15 re-
sources the running times went up. For [10; 15; 500] CPLEX needed for two instances more
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than 1000s (6600s and 2400s) to solve them; each of the other instances were solved within
16 minutes. The case [5;15;500] resulted in four instances that could not be solved within
1000s (9700s, 5200s, 3300s, and 1200s). All other instances are solved within at most 16

minutes.

PAM solved all instances within 0.01 seconds. Therefore, PAM outperforms CA with respect
to running time.

Let us take a look at a possible worst—case running time for calculating Vickrey payments; to
this end, assume that the running time has to be multiplied by |I]| + 1 in order to obtain all
payments. Then, our worst—case gives 11-6600s which is about 20 hours. That is, within one
day starting at the end of the auction the allocation and all payments can be determined in
the worst—case assumed. This is still a reasonable time since the runtime is not critical in the
suggested setting. Therefore, combinatorial auctions have to be preferred to PAM because of
extreme differences in quality of the achieved allocation.

Finally, we analyze the resource usage resulting from the two algorithms. The knowledge of
the resource usage can contribute to long—term capacity planning.
We consider two average resource usage indices ¢CIP and ¢CA.

Let

A} =Y cjpal, for 6 € {CA PAM}, Vk € K, (8)
jeJ
denote the capacity of resource k used, then,
¢CIP = 1 ¥ _ﬁ -1 -100% (9)
" |K| \ & APAM ’

keK

can be interpreted as average improvement of resource usage from CA to PAM, expressed in
percent. The results for (CI¥ are given in Table 15.

|[5:10;250] [5:10:500] [5:15;250] [5:15:500] [10;10;250] [10;10;500] [10;15:250] [10;15:500]

min -2.70 -4.48 -3.14 -1.10 -2.98 -2.51 -2.95 -0.56
avg 2.45 4.09 270 4.44 229 3.94 2.84 4.63
max 19.39 17.32 12.77 15.40 13.24 18.95 13.82 16.18

Table.15: Results for .(C”’

We can state that CA has a better resource usage than PAM for each parameter setting
[[1]; |K];|J|] on average since all average values are positive. The overall worst—case is about
—4.5%. Furthermore, one can observe that (€I is on average significantly higher for [-; -; 500]

than for [1; -; 250].
In order to give a statement of overall average resource usage, let
%

CA_ 1 47
¢ _IKI,;:;( © 100%, (10)
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that is, the average resource usage for CA over all resources expressed as the sum of the
fraction of resource usage and capacity limit A for each k € K. Table 16 states the results

observed for ¢ CA

|[5:10:250] [5;10;500] ([5;15;250] [5;15;500] [10;10;250] [10;10;500] [10;15;250] [10;15;500]

min 90.27 92.70 91.02 95.42 88.97 94.20 91.57 94.49
avg 96.07 97.79 95.58 97.43 96.05 97.85 95.62 97.37
max 98.95 99.50 98.55 99.00 98.76 99.65 98.39 98.89

Table 16: Results for ¢ CA

In the worst—case, the value for CA as 88.97%; in all other cases, ¢ CA was above 90%.
Furthermore, one can observe a similar behavior as that of (CI¥; for instances [-;-; 500] we
yield a significantly higher resource usage than for the cases [; -; 250]. On average CA had a
resource usage of 96.7%.

5 Conclusions

In this paper we considered an allocation problem arising in practice. Two allocation mech-
anisms were analyzed experimentally. Opposite to PAM combinatorial auctions lead to an
efficient allocation. We observed that auctions almost always outperform PAM respecting
objective function value and resource usage. On the other hand, PAM requires less com-
putational time. However, we showed that running times are not critical for the instances
generated. In fact, we can determine the allocation and all payments within one day in the
worst—case. Note, that PAM provides no payments for the resources awarded.

There are several shortcomings applying a combinatorial second—price auction. First, the net
profit involved with each job has to be explicitly estimated. Second, for larger instances spe-
cialized algorithms for winner determination have to be employed. Furthermore — although
endowed with nice theoretical properties — the acceptance among the participants may be
affected by the complexity and lack of transparency of winner determination and the pricing
scheme. Finally, we recommend to ensure that the private valuations are not made available to
the headquarters and to the other profit centers. Therefore, a trustworthy third party should
be employed as auctioneer.

Acknowledgement: We like to thank Frank Stege and his team for making us aware of this
topic, Andreas Drexl and Thomas AndreBen for helpful comments, and Ingo Strunk, who took

over parts of coding.
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