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Abstract 

In this paper, we propose a general model for various schedul ing problen is that occur 
in Container terminal logistics. Tlie scheduling model consists of the assignm ent of jobs to 
resources and the temporal arrangement of the jobs subject to precedence constrai nts and 
sequence-dependent setnp times . We demon strate how tlie model can be applied to solve 
several different real-world problems from Container terminals in tlie port of Ham burg (Ger-
many). We consider scheduling proble ms for straddl e carriers, automated guided vehicle s 
(AGVs), stacking cranes, and workers who han dle reefer Containers. Subsequently, we dis-
cuss a simple dispa tching heuristic as well as a more advanced genetic algori thm for the 
general model. Based on a tailor ed generator for experimental data, we ex amine the Perfor ­
mance of the he uristics in a comp utational study. We obtain promising results that suggest 
that the genetic algorithm is well suited for application in practice. 

Keywoids: Container logistics, Container terminal, optimization, scheduling, heurist ics, 
genetic algorithm. 

1 Introduction 

In the 1960s, the Container was introduced as a universal carrier for various goods. 1t soon be-
came a Standard in worldwide transportation. The success of the Container is associated with the 
increasing containerization (which means that the number of goods transported in Containers has 
steadily grown) and with increasing world trade. At the same time, Container terminals are con-
tinuously facing the challenge of strong competition between ports and of turning around more 
and larger ships in shorter times. This leads to the necessity to use the highly expensive terminal 
resources such as quai cranes, straddle carriers, automated guided vehicles, and stacking cranes as 
efficiently as possible. A key factor of success is the optimization of the logistic processes. There-
fore, many researchers and practitioners have developed optimization approaches for Container 
terminal logistics. 

important optimization problems include the assignment of berths to arriving vessels (see Imai 
et al. [12, 13], Lim [22]) and the assignment of quai cranes to vessels or ship-bays (see Daganzo 
[3], Peterkofsky and Daganzo [24]). Scheduling the Container transport on the terminal has been 
studied for two different types of equipment, namely straddle carriers (see Böse et al. [2], Kim and 
Kim [19], Steenken et al. [27]) and automated guided vehicles (see Bae and Kim [1]). Also the 
problem of allocating and scheduling stacking cranes has been considered (see Zhang et al. [32]). 
Strategie*; for locating Containers in the yard have been discussed for several problem settings (see 
de Castilho and Daganzo [4], Kim and Kim [16], Kim et al. [17], Taleb-ibrahimi et al. [29], Zhang 
et al. [31]). In order to study the complex processes on Container terminals with their dynamic 
nature, Simulation models have been developed (see Gambardella et al. [7, 8], Kim et al. [18], 
Legato and Mazza [21], Yun and Choi [30]). Finally, a method to generale data for experiments 
with optimization and Simulation approaches has been suggested (see Hartmann [10]). 

In this paper, we introduce a general model for scheduling Container terminal resources such 
as different types of equipment and manpower. This way, we take an approach that is different 
from the scheduling papers listed above because we provide a model that is not designed for a 
Single application. Our model consists of a set of jobs (which could be transportation tasks or 
other activities) that must be scheduled and assigned to a resource. For the temporal arrangement 
of the jobs, sequence-dependent setup times have to be observed. They can be used to cover, e.g., 
the empty times of the equipment between two Container transports. Tlie objective is to minimize 
the average tardiness per job with respect to due dates. In order to demonstrate the generality of 
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our model, w e present four applications froin the port of Hamburg (Germany), nainely straddle 
carriers, automated guided vehicles (AGVs), stacking cranes, and workers. Subsequently, we 
propose a genetic algorithm for the general model and analyze it in a computational study. The 
paper closes with a summary of the results and discusses opportunities for future research. 

2 A General Model for Scheduling Problems 

In this section, we propose a general model for scheduling problems in Container terminal logistics. 
After the definition of the model, we outline how several real-world scheduling problems can be 
captured by the general model. 

2.1 Model Formulation 

We consider a set./ = {1of jobs that have to be carried out. Moreover, we consider a set 
of identical resources. Each job j E J has to be executed on one of the resources. 

Since the resources are identical, each job can be performed on any of the resources. Each resource 
r E R can only be occupied with one job at a time. Some of the jobs are related by precedence 
constraints. The predecessors of job / are given by the set Pj. The processing of a job may not 
start before all of its predecessors are completed. The set of successors of job j is denoted as Sj. 

Each job j E J has a processing time pj > 0. Before job j can actually be processed, a setup 
time is required. Let i EJ denote the job that is executed on resource r E R immediately before 
job j. A sequence-dependent setup time j(/- > 0 has to be taken into account before processing job 
j. Once started, a job may not be interrupted, that is, both the setup and the processing phase of 
a job must be carried out as a non-preemptable whole. For the setup times, the following tri angle 
inequality must hold: We assume< s:j +Sjk for any three jobs i, j, and k. 

Each job j 6 Jis related to two specific time instants. First, time dj is the due date of job /'. 
That is, job j should be completed at or before time dj. Completing job j later than time dj is 
allowed, bat it will lead to penalty costs in the objective function. Second, time ej denotes the 
earliest time at which resource r E R tha t carries out job j is available again after the execution of 
job j. Hence, if job j is completed earlier than time eJ} then resource r becomes available at time 
ej. Otherwise, resource r becomes available immediately after the completion of job j. 

We assume that the model is applied repeatedly in a rolling planning horizon. Therefore, 
the scheduling problem must take the "initial State" of each resource into account, that is, the 
availability time and the setup State of that resource. The initial State of a resource is characterized 
by the last job carried out by that resource. For each resource r € R, we denote the last job as 

This last job is a dummy job in the sense that it is assumed to be fixed, that is, it cannot be 
(re-)scheduled. The last jobs are comprised in the set J+ — [ jj\r G R }, for which we assume 
JCJ+ = 0. Each last job is associated with two types of Information. First, it is related to a 
finish time fß- that reflects the time at which resource r is available. Note that fß- > taow must 
hold, where tnuw denotes the current time (without loss of generality, we assume taow = 0). Second, 
job j' f 6 Jv contains the initial setup State of resource r £ R (hence the setup time j,-/ must be given 
for all i €./ U,/'1' and j € J). The definition of J* eases the notation of the model with respect to 
the initial State. Let us emphasize again that only the jobs m.J (and not those in7+) are considered 
for scheduling. 

The problem now is to find a schedule for the jobs j E J, that is, a resource rj and a finish 
time fj for each job j EJ such that all constraints given above are observed. The objective is to 
minimize the average tardiness per job. Tardiness minimization and hence observing the due dates 
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is one of the most important goals in practice. Other objectives of high practical relevance will be 
discussed in Section 6. 

The problem setting can be summarized by the following conceptual model. We have two types 
decision variables: fj is the finish time of job j. Moreover, xjr is a decision variable that determines 
wether job j is executed on resource r (xjr = 1) or not (xJr - 0). Finally, let ij eJöJ+ be the job 
that is carried out immediately before job j on the same resource. Now the conceptual model can 
be formulated as follows: 

Minimize - • ^ {fj ~ dj) (1) 
n ,KJ Jj»lj 

subject to £ Xjr = l j eJ (2) 
r€ft 

Jb+S h J+Pj-fj ß) 
Cij + Sjjj + Pj < fj j£J (4) 

(5) 

Xjr&{0,1} r€R (6) 
/)>0 V'EJ (7) 

The objective function (1) minimizes the average tardiness. Constraints (2) ensure that each 
job is assigned to exactly one resource. Next, (3) take care of the setup times and the processing 
times between two consecutive jobs on the same resource. The earüest availability time of a 
resource after the completion of ajob is consideredby (4). The precedence relations are taken into 
account by (5). Finally, (6) and (7) define the decision variables. 

The model contains several features that are well known from other scheduling problems in the 
literature. The concept of jobs with precedence constraints and resource requests can also be 
found in the classical resource-constrained project scheduling problem (see Pritsker et al. [25]). 
Moreover, there is a relationship between the resource assignment part of the new model on the 
one hand and the multi-mode extension of the resource-constrained project scheduling problem 
on the other hand (see Elniaghraby [6], Talbot [28]). The objective of minimizing the tardiness 
with respect to due dates has also been considered in the context of project scheduling (see, e.g., 
Kapuscinska et al. [15]). The concept of sequence-dependent setup times occurs in many problems 
in the field of lotsizing and batching (see Jordan [14]). We will make use of the similarity between 
the new model and resource-constrained project scheduling when designing a heuristic for the new 
model in Section 3. 

Note that the model outlined above is a rather abstract formulation. The generality of the 
approach enables us to apply it to different problem settings that do not seem to have much in 
common at first glance. The jobs reflect tasks that have to be carried out in Container handling. 
The resources can reflect the technical equipment for Container handling or manpower. The setup 
and processing times can correspond to moving a resource to some location, moving a Container, 
or other tasks. Several practical applications will be given in the following subsections. 

2.2 Application to Straddle Carriers 

Many Container terminals employ straddle carriers (sometimes also called van carriers) for trans­
portation of Containers on the terminal. Straddle carriers are used for transportation between the 
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Stack on the one hand and other locations such as a quai crane, the area for external trucks, or 
the train area on the other hand. Since straddle camers are able to unload themselves and high 
enough to Stack Containers on top of each other, they can also be employed to transport Containers 
to their positions within a yard block. Thus, they can also carry out shuffle moves within a block, 
that is, they can move a Container to another position in case it stands on top of another Container 
that must be moved out. If stacking cranes serve the blocks, however, straddle carriers transport 
Containers from and to hand-over positions at a block, and they do not carry out shuffle moves. 

Of course, the set of the transportation tasks of the straddle carriers defines the set of jobs for 
scheduling, and the number of resources is given by the number of straddle carriers. Precedence 
relations exist between jobs that correspond to Containers that stand on top of each other. The job 
related to an upper Container is a predecessor of the job related to the lower one. 

The processing time pj of a job j is the time that a straddle carrier needs for the transportation 
of a Container between two locations on the terminal. It is defined as the time between picking up 
the container and putting it down. As the locations are fixed, the transportation times are fixed as 
well. The setup time s,j between two jobs i and j is given by the time that a straddle carrier requires 
to get from the position where the container of job i was put down to the pick-up position of job j. 
Hence, the setup time models the empty travel time of a straddle carrier. For any two positions, an 
estimate of the processing and setup time is usually available for scheduling. Of course, scheduling 
can affect only the empty (or setup) times but not the transportation (or processing) times. 

The due date dj of a job j is determined as follows. Let us first consider the case that a 
straddle carrier is supposed to bring a container from the Stack to another location such as a quai 
crane or an external truck. In this case, the due date reflects the latest time at which the container 
should have arrived there. For a quai crane waiting for a container, the due date corresponds to the 
time at which the quai crane requires the container in order to keep its loading sequence on time. 
Considering an external truck, the due date reflects the acceptable waiting time of the truck driver. 
Moreover, keeping the waiting times for trucks short helps to avoid congestions in the truck area. 
In the second case, a straddle carrier is supposed to bring a container to the Stack. Here, the due 
date is used to model the latest time at which a straddle carrier has to pick up a container at some 
location. For example, an arriving container must be picked up from a quai crane or an external 
truck at or before the due date. In this case, we have a due date for pick-up, say dj. The latter can 
be transformed into a due date related to the completion of the job by setting dj =dj+pj. This is 
possible because the time between pick-up and completion is a constant, namely the transportation 
or processing time pj. Recall that the due date is always related to the finish time of a job, see the 
objective function (1). 

The earliest availability time e, of a resource after carrying out a job j is used to model the 
blocking of straddle carriers by other resources. Consider a job j that requires a straddle carrier 
to t ransport a container from a quai crane to a yard block. Let ej denote the time at which the 
container is available for the straddle carrier (i.e., the time at which it has been put on the ground 
by the quai crane). The earliest release time of the straddle carrier is ej — ej + pj which reflects 
the earliest possible time to complete this job. Now let us consider a job j to transport a container 
from the Stack to a truck which is already waiting for the container. In this case, we have <?/ = 0 
because the straddle carrier is available immediately after completing the job. These two cases 
should be sufiicient to illustrate the use of the earliest release times. Generally speaking, we have 
ej > 0 if the straddle carrier will have to wait for another resource, whereas we have e, = 0 if it is 
not blocked by another resource. 

The use o f the initial State and of the objective function is obvious. Summing up, we h ave 
employed all features of the general scheduling model of Subsection 2.1 to capture the straddle 
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carrier scheduling problem. 

2.3 Application to Automated Guided Vehicles 

On modern Containerterminals with ahigh degree of automation, often automated guided vehicles 
(AGVs) are employed to carry Containers between the quai and the yard Nocks. Unlike straddle 
carriers, AGVs are unable to unload themselves. Therefore, stacking cranes are needed to serve 
the yard blocks. Hence, the jobs to schedule are the t ransportation of Containers from a quai crane 
to a stacking crane and from a stacking crane to a quai crane. While the former case corresponds 
to the discharging of a vessel, the latter case occurs when loading a vessel. 

The application of the general model to the AGV case is similar to the straddle carrier case 
with only a few differences. Again, the processing time pj reflects the transportation of a Container 
while the setup time s/j models the empty time between two successive jobs. Tlie due dates dj 
reflect the latest hand-over times at the quai cranes. If an AGV exceeds its due date, this will lead 
to a waiting time of the quai crane. Thus, keeping the due dates is crucial for a high quai crane 
productivity and hence for a short time in port for the vessels. The earliest release times ej consider 
tlie fac t that AGVs can be blocked by the other terminal resources. Since AGVs cannot unload 
themselves, an AGV arriving before its due date will have to wait for the crane related to this job. 
Therefore, the earliest release time is equal to the due date, that is, ej = dj. Finally, precedence 
relations are needed to control the order of AGVs arriving at a quai crane with a Container. This 
AGV order is important because the sequence of Containers to be loaded onto a vessel is often 
fixed. 

2.4 Application to Stacking Cranes 

Usually, the Stack is organized in several yard blocks. Many Container terminals employ stacking 
cranes to serve these blocks. Normally, there is one crane for each block (occasionally, two cranes 
per block are used). So-called rail-mounted gantry cranes cannot be moved to another block. On 
the other hand, so-called rubber-tyred gantry cranes can be moved, but this takes a long time and is 
not done very often (decisions to transfer a crane are based on workload estimations of tlie blocks, 
see Zhang et al. [32]). Thus, for both crane types, crane assignments to blocks can be assumed 
to be fixed for the detailed scheduling problem considered here. Moreover, the assignment of 
Containers to blocks is given (it is not part of this scheduling problem). Therefore, we have a 
separate crane scheduling problem for each block. That is, we consider the set of jobs associated 
with a Single block, and we have a Single crane resource (or, in the rare case of double cranes, 
two resources). The jobs include transportation moves between positions within the block on the 
one hand and AGVs, straddle carriers, or external trucks on the other hand. Furthermore, jobs 
representing shuffle moves have to be taken into account. 

As for the straddle carrier case, we have precedence relations between jobs that correspond to 
Containers that stand on top of each other. The processing time pj of a job j is the transportation 
time that a crane needs between picking up the Container and putting it down. Again, the setup 
time Sij between two jobs i and j is given by the time that the crane req uires to get from the position 
where the Container of job i was put down to the pick-up position of job j. The due date dj of a 
job j determines the latest acceptable completion time and hence also the waiting time of the other 
resource (AGV, straddle carrier) or the external truck. The earliest release times again model the 
blocking of the crane by other resources. For example, if a crane serves an AGV which arrives in 
a just-in-time fashion, the crane will not be available before the due date, that is, we have e, = dj. 
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On the other hand, if a crane is to serve an external truck which has already arrived at the block, it 
will be available after completing the job, that is, we have ej — 0. 

2.5 Application to Reefer Workers 

Reefer Containers are used to carry goods that require a controlled temperature (such as refriger-
ated or frozen goods). They have a device for temperature regulation which requires electricity. 
Hence, they are stored in specific yard blocks or areas of blocks that provide electricity connec-
tions. Reefer Containers require special handling by a manpovver resource, the reefer workers. 

The jobs carried out by the reefer workers are connecting aniving Containers, disconnecting 
departing ones, doing small repair tasks, and Controlling the temperature of the reefer Containers 
in the Stack. For each of these job types, a p rocessing time pj is given. Note that, unlike the 
previously described applications, here the processing time does not coirespond to moving to 
another location. The use of the setup times, however, is similar to equipment scheduling. The 
setup time stj between a job i and a job j is the time that a reefer worker needs to move from the 
container associated with job i to the container related to job j. An estimate of this time can be 
assumed to be available. This estimate is based on the container positions in the Stack. 

For connection jobs, the due date dj reflects the time that a reefer container is allowed to be 
without electricity. Of course, a container can keep its temperature in the allowed ränge only for 
a certain time if it is without electricity. For disconnection jobs, the due date reflects the latest 
time the container must be disconnected such that the stacking crane or straddle carrier can pick 
it up on time (the terminal control systein inight include a bufler time when Computing the due 
date). For repair jobs and temperature control jobs, a due date is given as well. After a worker has 
completed a job, he can immediately move on to the next job. Therefore, we can set the earliest 
availability times to ej — 0.A definition of precedence relations is not necessary. 

In practice, the reefer workers are often equipped with portable radio sets. When they have 
completed a job, they transmit this Information to the terminal control system via the radio set. In 
retum, they get the next job. 

3 Optimization Heuristics 

3.1 Priority Rule Based Dispatching Method 

In this subsection, we present a simple dispatching heuristic for the scheduling problem. This 
method can be be viewed as a straightforward way to build job sequences for the resources. The 
following steps are repeated until all jobs have been scheduled: 

• Compute eligible jobs. Compute the set E of eligible jobs as the set of the currently un-
scheduled jobs of which all predecessors have already been scheduled. 

• Select job. Select the job j* to be scheduled next as the eligible job with the smallest due 
date. 

• Select resource. Select the resource r* to be assigned to the selected job as the resource 
with the earliest completion time so far. 

• Update schedule. Schedule job j* at the end ofthe current job sequence of resource r*. 
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From a more general point of view, the criteria for selecting a job and a resource can be seen 
as priority rules. According to the Classification of Kolisch and Hartniann [20], this approach is a 
deterministic single-pass priority rule method. Due to its simplicity, this dispatching method does 
not contain much intelligence for optimization. In onr computational study, we use it merely for 
comparison purposes. 

3.2 Genetic Algorithm 

Introduced by Holland [11], genetic algorithms (GAs) adopt the principles of biological evohition 
to solve hard optimization problems. For our GA, we exploit the similarities of the general Con­
tainer terminal scheduling problem to the resource-constrained project scheduling problem. These 
similarities allow us to use the project scheduling GA of Hartmann [9] as a starting point. This GA 
will be adapted to solve the problem introduced in this paper. in particular, the decoding procedure 
and the construction of the initial population require problem-specific knowledge. 

3.2.1 Basic Scheine 

We apply the generational management framework of Eiben et al. [5]. The GA starts with the 
computation of an initial population, i.e., the first generation. The number of individuals in the 
population is referred to as P. The GA then determines the fitness values of the individuals of 
the initial population. After that, we apply the crossover Operator to produce new individuals 
("children") from the existing ones ("parents"). Subsequently, we apply the mutation Operator to 
the newly produced children. After Computing the fitness of each child, we add the children to the 
current population. Then we apply the selection operator to reduce the population to its former 
size P. Döing so, we obtain the next generation to which we again apply the crossover operator 
and so on. This process is repeated for a prespecified number G of generations is reached. Note 
that exactly P G individuals (and thus schedules) are computed. Of course, other stopping criteria 
could be employed as well, e.g., a time limit or a number of generations without improvement of 
the best objective function value found so far. 

More fomially, the GA scheme can be summarized as follows. Here, T denotes the current 
population (i.e., a set of individuals), C is the set of children, and g is the number of the current 
generation. 

g'= l; 
generate P individuals for the initial population !P; 
apply decoding procedure to compute fitness for individuals I € SP; 
forg:=2 to G do 
begin 

produce a set C of children from T by crossover; 
apply mutation to children / € C; 
apply decoding procedure to compute fitness for children / £ C", 
T := T U C; 
reduce population £P to size P by means of selection; 

end. 
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3.2.2 Problem Representation 

Genetic algorithms for scheduling problems often do not operate directly on schedules but on rep-
resentations of schedules. The latter are then transfornied into schedules by means of a problem-
specific decoding procedure. The advantage of such an indirect approach is that it allows to einploy 
Standard representations together with Standard genetic Operators (crossover, mutation). 

In our genetic algorithm, a schedule is represented by a precedence feasible job list [jj,...../„). 
In a job list, each job appears exactly once, that is, we have / = {j\,... ,j„}. A job list is 
precedence feasible if all predecessors of a job j appear in the list before job j, that is, Pjt C 

Ji... |} for i = 1,... ,n. This representation is a generalization of the classical permutation 
based representation (see Reeves [26]). It has been shown to be superior to other representations 
for resource-constrained scheduling problems (see Hartmann [9]). Note that the representation 
does not contain Information on resource selection. In fact, the task of assigning resources to jobs 
will be left to the decoding procedure. 

3.2.3 Decoding Procedure 

The decoding procedure employs problem-specific features to transform the Standard representa­
tion into a Solution for our scheduling problem. The job list determines the order in which the 
jobs are scheduled by the decoding procedure. The latter scans the job list from left to right and 
successively schedules the jobs using the following Steps: 

• Select job. Select the next job from the job list. 

• Select resource. Select resource r* such that executing job on r* leads to the smallest pos­
sible tardiness among all resources. If there is rnore than one resource with zero tardiness, 
select the one with the maximum availability time. 

• Update schedule. Schedule job j,- at the end of the current job sequence of resource r*. 

While the scheduling order of jobs is prescribed by the job list representation, the decoding 
procedure takes care of the resource assignment part of the problem. In accordance with the 
objective function, the resource selection mechanism minimizes the tardiness of the current job. 
As a tie-breaking criterion to choose among resources with tardiness = 0, we select the resource 
with the largest availability time in the current partial schedule. The idea behind this is that we do 
not want to waste resource capacities by selecting a resource that would lead to a large setup time 
or considerable earliness. Note that in the case of only one resource, there are no choices to be 
made by the decoding procedure. The fitness of an individual is defined as the objective function 
value of the schedule related to the individual. 

3.2.4 Crossover 

For crossover, the current population is randomly partitioned into pairs of individuals. From each 
pair of individuals (parents), two new individuals (children) will be produced. Let us assume that 
two individuals of the current population have been selected for crossover. We have a mother 
individual M = (./f... and a father individual F — Now two child individuals 
have to be constructed, a daughter D and a son 5. 

Let us Start with a definition of the daughter D = (jf,...). Combining the parent's activity 
lists, we have to make sure that each activity appears exactly once in the daughter's activity list. 
We make use of a general crossover technique presented by Reeves [26] for permutation based 
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genotypes. We perform a two-point crossover for which we draw two random integers q\ and 
qi with 1 < q\ < qi < n. Now the daughter's job list is determined by taking the activity list of 
the positions i = l.... ,41 from the mother, that is, jf := jf. The positions i = q\ -f-1,....qi are 
derived from the father. However, the activities already selected may not be considered again. We 
set jf := y'f where k is the lowest index such that y'f ^ {y'f;... ,jf,}. The remaining positions 
i — q 2 + 1 are again taken from the mother, that is, we have y'f : = jf where k is the lowest 
index with jf f. {y'f,... ,jf.x\. The son individual is computed analogously. For the son's job list, 
the first and the third part are taken from the father and the second one is taken from the mother. 

This crossover strategy constructs job lists in which each job appears exactly once. Moreover, 
it has been proven by Hartmann [9] that the resulting job lists are precedence feasible, given that 
tlie parents' job lists were precedence feasible as well. Since this crossover operator produces 
feasible offspring, there is no need for a repair operator. This property leads to a good inheritance 
behavior of building blocks of solutions. 

3.2.5 Mutation 

The following mutation operator is applied to each nevvly pro duced child individual. We move 
through the job list fromleftto right. Thereby, we apply a rightshiftto each job with a probability 
of jOmutation- Consid er a current position i £ {1— 1} in the job list 

(y 11 * • • ; ji 1•• • ) jh*• ' •)jZ) - • • r jn )• 

Let 2 be the smallest index of the successors of job y'/, that is, z = min{£ | yV € £),.}. Now job y, 
can be shifted behind some randomly drawn position hE {i +1.... — 1}, which leads to job list 

(y'l •>• • • • j i-- i • y'i+I ~ ; Jh ̂  jit jh -\-1; • • • ? Jz. • - -: jn) • 

That is. activity j, is right shifted within the activity list and inserted immediately after some 
activity jf,. Clearly, the resulting job list is still precedence feasible. On the basis of preliminaiy 
computational experiments, we selected a mutation probability of ymutation = 0.05. 

3.2.6 Selection 

After the newly produced individuals have been added to the current population, the next step is to 
select the individuals that survive and make up the next generation. We have tested several variants 
of the selection operator which all follow a survival-of-the-fittest strategy (cf., e.g., Michalewicz 
[23]). Following the study of Hartmann [9]), we decided to employ the ranking method, The 
ranking method sorts the individuals with respect to their fitness values and selects the P best ones 
while the remaining ones are deleted from the population (ties are broken arbitrarily). 

3.2.7 Initial Population 

Finally, we define how to determine the first generation containing P individuals. That is, we 
have to specify the construction of job lists. A job list is constructed by a priority rule based 
heuristic which canbe classified as a multi-pass biased random sampling method (see Kolisch and 
Hartmann [20]). For building up one job list, the following steps are repeated until the list contains 
all «jobs: 

• Compute eligible jobs. Compute the set E of eligible jobs. A job is eligible if it has not yet 
been added to the current job list and if all its predecessors have already been added. 
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• Select job. Draw the eligible job f G E to be scheduled next using the probability 

for each eligible job j 6 E, where 5 = max{dj | j~ l.is the maximal due date. 

• Update job list. Add job j*. at the end of the current job list. 

Generally speaking, the initial population should have two properties: It should be diversified 
because a large gene pool is advantageous for the artifkial evolution. Moreover, it should be 
of good average quality (in terms of fitness or objective function value) because this provides a 
good starting point for the evolution. The random mechanism of our method should lead to a 
reasonable genetic diversity while the definition of the probabilities p( j) should lead to job lists of 
good quality. This is due to the fact that the probabilities p(j) are based on a p riority rule which 
assigns higher priori ties (and thus higher selection probabilities) to jobs with tighter due dates. 
That is, these jobs are likely to appear earlier in a job list, and they will be scheduled earlier by 
the decoding procedure. This way, the risk of exceeding their due dates is reduced, which leads to 
better objective function values. 

Note that the method outlined above is different from the straightforward approach which 
selects jobs on a pure (unbiased) random basis, that is, with equal probabilities Pj = ^. Our 
method puts more emphasis on constructing job lists of good quality. This point will be examined 
further in the computational tests of Subsection 5.2. 

4 Generating Experimental Data 

4.1 Generator 

In order to demonstrate the applicability of the general scheduling model and the genetic algo­
rithm, we carried out several computational experiments. These experiments required test in-
stances as input data for the heuristic. In order to obtain a large number of test instances, we 
developed a data generator for our problem setting. It is controlled by parameters that allow to 
produce instance sets with specific characteristics. In particular, the parameters enabled us to 
produce quite realistic test sets for the container terminal applications mentioned in Section 2. 

The generator works as follows. The number n of jobs and the number m of resources are 
specifiedby the user as parameters. In additionto the n regulär jobs, the m dummy jobs that repre-
sent the initial setup states for the resources are generated. Each (non-dummy) job j is randomly 
assigned a processing time pj from where pm-m and praax are parameters that 
denote the minimal and maximal processing time, respectively. On the basis of a parameter T for 
the scheduling horizon, a due date dj is drawn from {pj-- • •, T) for each job /. The earliest release 
times are determined using a parameter a£ [0.1]. This parameter allows to control whether the 
earliest release time ej of a job j is equal to its due date or zero (recall that these were the two typ-
ical cases in the applications of our model). With probability a, we set ej — 0 and with probability 
1 - a, we set = dj. Finally, we have to generale a setup time s,-, between two consecutive jobs i 
and j on the same resource. The following approach is designed to produce setup times which do 
not violate the triangle ine quality. First, each job j is randomly assigned a value yj £ {0.... ,5} 
between zero and a parameter S representing the maximal setup time. Then the setup time between 
jobs i and j is defined as sij = \yj —yi\. 
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Test set number of jobs number of resources scheduling horizon 
straddle carrier 
AGV 

380 
105 
125 

80 
50 
6 

30 min 
15 min 
60 min 
30 min 

reefer worker 
stacking crane 8 

Table 1: Characteristics of the four generated test sets 

4.2 Test Sets 

Using the generator described in the previous subsection, we generated a set of test instances 
for each of the four Container ter minal applications discussed in Section 2. That is, we have a 
straddle carrier set, an AGV set, a reefer worker set, and a stacking crane set. These four sets 
differ in the settings of the generator parameters and hence in their characteristics. We attempted 
to generale realistic instances which may similarly occur in practice at peak time on a medium-
sized Container terminal. The characteristics of the test sets can be summarized as follows (see 
also the main parameter settings displayed in Table 1): 

• The straddle carrier set contains the largest instances. This is because we assume the straddle 
carriers to carry out transportation jobs both on the seaside and on the Iandside as well as 
shuffle moves. This set includes the largest number of resources and jobs and a medium 
scheduling horizon. 

• The AGV case considers only transportation jobs between quai and Stack. Therefore, we 
have selected snialler numbers of jobs and resources than for the straddle carrier set. More­
over, we have a shorter scheduling horizon because shuffle moves are not considered. 

• In the reefer worker set, we have fewer resources than in the previous two cases but ä longer 
scheduling horizon. The latter results from substantially longer time windows for reefer 
jobs. 

• The stacking crane case is the smallest problem setting with only one resource (correspond-
ing to one yard block served by a Single crane). Due to shuffle moves, the horizon is the 
same as for tlie straddle carrier set. 

For each of the test sets, the parameter settings were done in a way that leads to scarce re­
sources. Scarce resources make it difficult to find schedules with small tardiness—thus, we obtain 
challenging test problems. This is important for our computational analysis because we need an 
average tardiness > 0 to be able to compare the Performance of the heuristics with respect to 
the objective funtion value (in fact, the parameters were adjusted such that we have an average 
tardiness > 0 even for the best heuristic). Moreover, the case of scarce resources is particularly 
important in practice. In this case, minimization of tardiness is crucial for successfully carrying 
out the logistic processes. 

For each of the four cases, 250 instances were generated. Hence, our test set consists of 1,000 
instances altogether which should be a reasonable basis for a thorough computational analysis. 
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Heuristic PxG straddle carrier AGV reefer worker stacking crane 
Dispatching 202.4 128.4 292.4 29.0 
GA 50x25 10.4 10.0 11.9 12.0 
GA 100x50 5.7 , 8.1 3.8 11.9 
GA 200 x100 2.8 6.7 1.5 11.9 

Table 2: Results of the heuristics (average tardiness per job in seconds) 

Heuristic f xG straddle carrier AGV reefer worker stacking crane 
Dispatching — 0.05 0.01 0.01 < 0.01 
GA 50x25 1.72 0.17 0.11 < 0.01 
GA 100x50 6.22 0.62 0J8 0.01 
GA 200x100 22.80 2.52 1.47 0.07 

Table 3: Average computation times on a Pentium 4 with 1.6 GHz (in seconds) 

5 Computational Results 

5.1 Evaluation of the Heuristics 

In order to evahiate the heuristics, they were coded in ANSI C and compiled with the lcc Compiler. 
The experiments were carried out on a Pentium 4-M based Computer with 1.6 GHz running under 
Windows XP. 

Table 2 gives the results for the GA with three different settings for population size P and 
number of generations G. For comparison purposes, also the results of the simple dispatching 
method are displayed. As expected, increasing the number of schedules computed by the GA 
improves the results (although this does not hold for the stacking crane case, but that is due to the 
extremely small problem size which does not leave much potential for longer optimization). The 
average tardiness achieved by the dispatching method ranges between half a minute and almost 
five minutes. Consequently, the dispatching method is of no use in practice because it produces 
unacceptable delays. The GA, however, is able to reduce the average tardiness to only a very 
few seconds (recall that the GA still leads to an average tardiness > 0 due to the design of the 
test instances). Assuming that the test instances are quite realistic, we can State that these results 
suggest to apply the GA in practice. This is particularly true since the instances used here are very 
hard due to scarce resource capacities. 

Let us now have a brief look a t the computation times that were needed to produce the re­
sults of Table 2. An overview of the computation times is given in Table 3. We can see that the 
computation time increases with the number of jobs and the number of resources which is due to 
the structure of the decoding procedure. Of course, it also increases with the number of sched­
ules computed. Most important, however, is that the GA requires only a moderate computational 
effort. A computation time of a few seconds (say, one or two) makes i t applicable for online op­
timization and frequent rescheduling in practice. Consequently, the GA can be used in an online 
terminal control system even for the largest instances (in our case, straddle carrier scheduling), 
given that the number of schedules computed is restricted appropriately. Faster Computers will 
further increase its applicability. 
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Heuristic initial population straddle carrier AGV reefer worker stacking crane 
GA unbiased random 28.8 10.6 19.6 11.9 
GA biased sampling 5.7 8.1 3.8 11.9 

Table 4: Impact of method for initial population (average tardiness per job in seconds) 

Heuristic criterion straddle carrier AGV reefer worker stacking crane 
GA tardiness only 28.2 11.4 5.3 11.9 
GA tardiness & availability 5.7 8.1 3.8 11.9 

Table 5: Impact of decoding procedure (average tardiness per job in seconds) 

5.2 Effectivexiess of Genetic Algorithm Components 

We now tum to the question whether the components of the GA really contribute to its Perfor­
mance. Three components will be examined in more detail, namely the initial population, the 
decoding procedure, and the crossover operator. In each case, we compare the original GA (with 
P x G ~ 100 x 50) with a variant in which the component linder consideration is modified. 

Let us first consider the method for Computing an initial population. As mentioned in Sub­
section 3.2.7, we have employed due date based probabilities for job selection instead of equal 
probabilities. Table 4 displays the results for biased sampling and those for the straightforward 
unbiased random approach. The biased sampling method which makes use of the due dates leads 
to better solutions. It produces a better initial population which is still diverse enough, so that it 
provides a good starting point for tlie evolution. 

Next, we discuss the decoding procedure. Recall that the procedure selects a resource with 
respect to minimum tardiness and, as a tie-breaker for resources with zero tardiness, with respect 
to maximum availability time. While the first criterion corresponds to the objective function, one 
might wonder if the second criterion has a positive effect. Table 5 gives the results for the GA with 
both criteria and for a variant in which only the first criterion is used. The results show that the 
availability time criterion is indeed useful. 

Finally, we analyze the inheritance mechanism determined by the representation and the cross­
over operator. We want to know if the GA really benefits from inheriting genes from previous gen­
erations. The GA computes P schedules for the initial population and applies crossover, mutation, 
and selection over G generations. This way, it evaluates P • G schedules on the whole. The GA 
can now be compared with the method that computes the initial population which is stopped after 
it has computed P • G schedules. Thus, the latter requires the same computational effort as the lull 
GA but does not apply the genetic Operators. Of course, the genetic Operators only make sense if 
the GA leads to better results than the method for the initial population alone, given that in both 
cases the same number of solutions is computed. In fact, according to the study of Hartmann [9], 
there are GAs in the literature which feil this test, that is, they do not benefit from genetic inher­
itance. The results provided in Table 6, however, show that our GA leads to much better results 
than the sampling method for constructing the initial population if the same number of solutions 
is computed. Hence, it clearly profits from the genetic principles. 
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Heuristic #schedules straddle carrier AGV reefer worker stacking crane 
biased sampling only 5000 24.0 17.3 44.0 12.3 
füll GA 100x50 5.7 8.1 3.8 11.9 

Table 6: tmpact of inheritance (average tardiness per job in seconds) 

6 Conclusions and Research Perspectives 

In this paper, we proposed a general optimization model for scheduling jobs on container termi­
nal. We shov ved that our model is applicable to straddle carriers, automated guided vehicles, 
stacking cranes, and reefer workers. The generality of our model is advantageous in practice be­
cause it allows to use the same model and optimization algorithms for several different scheduling 
problems. Furthermore, we developed a genetic algorithm to solve the proposed problem. With 
a tailored instance generator, we generated several large sets of test instances for a computational 
analysis. Our experiments showed that the genetic algorithm is well suited to solve hard test in­
stances of realistic size. The genetic algorithm appeared to be applicable for online scheduling 
within a terminal control system where good schedules are needed within very short computation 
times. The study also demonstrated that the genetric algorithm is clearly superior to a simple 
dispatching strategy for this problem. 

An interesting topic for future research is the development of further algorithms to solve the 
general scheduling problem. Further heuristics might lead to even better results. Developing exact 
algorithms to compute optimal solutions may be promising as well. Optimal solutions are useful 
because they provide a natural basis for the evaluation of heuristics. Moreover, exact algorithms 
might even be applicable in practice to solve small instances such as stacking crane scheduling 
with one or two resources. 

Another point for further research is the adaptation of the objective function to various practical 
requirements. We have selected the tardiness minimization with respect to due dates because this 
appears to be the most important objective according to our practical experience. An extension 
of th is objective would be the minimization of weighted tardiness. That is, each job would be 
associated with a weight that reflects the penalty for exceeding its due date by one time unit. This 
way, jobs with higher priority could be preferred in the scheduling process. Moreover, employing 
weighted tardiness can be useful in an online environment which is typical for container terminal 
scheduling. Assigning a higher weight to jobs with earlier due dates puts anemphasis on the jobs 
in the first part of the schedule which will be carried out before rescheduling. Another populär 
objective is the m inimization of the makespan. This might be relevant if the jobs are not directly 
connected to other processes (e.g., quai crane sequence of specific Containers) such that they are 
not associated with individual due dates. (It is interesting to note that makespan minimization 
is a special case of the tardiness minimization objective. Simply define a dummy job with zero 
setup and processing time which is a successor of all other jobs. If the due date of this dummy 
job is set to zero and the due dates of the other jobs are set to very large numbers, the tardiness 
objective is equal to the makespan objective.) Finally, the minimum tardiness objective can be 
extended by a component to minimize the setup time per job. The tardiness part takes care of job 
completion on time in case of scarce resources. Tliereby, the setup times are minimized iniplicitly 
because this helps to minimize the tardiness. A setup time component in the objective function 
would lead to short setup times also if the resources are not scarce and meeting the due dates is 
not (Hfficult. In practical applications, minimizing setup times saves fuel for the equipment and 
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increases the acceptance of automatically generated schedules by the human resources (e.g., reefer 
workers are assigned shortest possible ways). Optimization approaches with alternative objectives 
could be tested in Simulation models, particularly if the objectives explicitly consider aspects of 
online scheduling. 
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